1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 *
6 * Right now, I am very wasteful with the buffers.  I allocate memory
7 * pages and then divide them into 2K frame buffers.  This way I know I
8 * have buffers large enough to hold one frame within one buffer descriptor.
9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10 * will be much more memory efficient and will easily handle lots of
11 * small packets.
12 *
13 * Much better multiple PHY support by Magnus Damm.
14 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 *
16 * Support for FEC controller of ColdFire processors.
17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 *
19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20 * Copyright (c) 2004-2006 Macq Electronique SA.
21 *
22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23 */
24
25#include <linux/module.h>
26#include <linux/kernel.h>
27#include <linux/string.h>
28#include <linux/pm_runtime.h>
29#include <linux/ptrace.h>
30#include <linux/errno.h>
31#include <linux/ioport.h>
32#include <linux/slab.h>
33#include <linux/interrupt.h>
34#include <linux/delay.h>
35#include <linux/netdevice.h>
36#include <linux/etherdevice.h>
37#include <linux/skbuff.h>
38#include <linux/in.h>
39#include <linux/ip.h>
40#include <net/ip.h>
41#include <net/page_pool/helpers.h>
42#include <net/selftests.h>
43#include <net/tso.h>
44#include <linux/tcp.h>
45#include <linux/udp.h>
46#include <linux/icmp.h>
47#include <linux/spinlock.h>
48#include <linux/workqueue.h>
49#include <linux/bitops.h>
50#include <linux/io.h>
51#include <linux/irq.h>
52#include <linux/clk.h>
53#include <linux/crc32.h>
54#include <linux/platform_device.h>
55#include <linux/property.h>
56#include <linux/mdio.h>
57#include <linux/phy.h>
58#include <linux/fec.h>
59#include <linux/of.h>
60#include <linux/of_mdio.h>
61#include <linux/of_net.h>
62#include <linux/regulator/consumer.h>
63#include <linux/if_vlan.h>
64#include <linux/pinctrl/consumer.h>
65#include <linux/gpio/consumer.h>
66#include <linux/prefetch.h>
67#include <linux/mfd/syscon.h>
68#include <linux/regmap.h>
69#include <soc/imx/cpuidle.h>
70#include <linux/filter.h>
71#include <linux/bpf.h>
72#include <linux/bpf_trace.h>
73
74#include <asm/cacheflush.h>
75
76#include "fec.h"
77
78static void set_multicast_list(struct net_device *ndev);
79static void fec_enet_itr_coal_set(struct net_device *ndev);
80static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81				int cpu, struct xdp_buff *xdp,
82				u32 dma_sync_len);
83
84#define DRIVER_NAME	"fec"
85
86static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87
88#define FEC_ENET_RSEM_V	0x84
89#define FEC_ENET_RSFL_V	16
90#define FEC_ENET_RAEM_V	0x8
91#define FEC_ENET_RAFL_V	0x8
92#define FEC_ENET_OPD_V	0xFFF0
93#define FEC_MDIO_PM_TIMEOUT  100 /* ms */
94
95#define FEC_ENET_XDP_PASS          0
96#define FEC_ENET_XDP_CONSUMED      BIT(0)
97#define FEC_ENET_XDP_TX            BIT(1)
98#define FEC_ENET_XDP_REDIR         BIT(2)
99
100struct fec_devinfo {
101	u32 quirks;
102};
103
104static const struct fec_devinfo fec_imx25_info = {
105	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
106		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
107};
108
109static const struct fec_devinfo fec_imx27_info = {
110	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
111		  FEC_QUIRK_HAS_MDIO_C45,
112};
113
114static const struct fec_devinfo fec_imx28_info = {
115	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
116		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
117		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
118		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
119};
120
121static const struct fec_devinfo fec_imx6q_info = {
122	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
123		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
124		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
125		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
126		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
127};
128
129static const struct fec_devinfo fec_mvf600_info = {
130	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
131		  FEC_QUIRK_HAS_MDIO_C45,
132};
133
134static const struct fec_devinfo fec_imx6x_info = {
135	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
136		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
137		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
138		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
139		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
140		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
141		  FEC_QUIRK_HAS_MDIO_C45,
142};
143
144static const struct fec_devinfo fec_imx6ul_info = {
145	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
146		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
147		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
148		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
149		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
150		  FEC_QUIRK_HAS_MDIO_C45,
151};
152
153static const struct fec_devinfo fec_imx8mq_info = {
154	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
155		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
156		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
157		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
158		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
159		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
160		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
161		  FEC_QUIRK_HAS_MDIO_C45,
162};
163
164static const struct fec_devinfo fec_imx8qm_info = {
165	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
166		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
167		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
168		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
169		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
170		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
171		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
172};
173
174static const struct fec_devinfo fec_s32v234_info = {
175	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
176		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
177		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
178		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
179		  FEC_QUIRK_HAS_MDIO_C45,
180};
181
182static struct platform_device_id fec_devtype[] = {
183	{
184		/* keep it for coldfire */
185		.name = DRIVER_NAME,
186		.driver_data = 0,
187	}, {
188		/* sentinel */
189	}
190};
191MODULE_DEVICE_TABLE(platform, fec_devtype);
192
193static const struct of_device_id fec_dt_ids[] = {
194	{ .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
195	{ .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
196	{ .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
197	{ .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
198	{ .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
199	{ .compatible = "fsl,imx6sx-fec", .data = &fec_imx6x_info, },
200	{ .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
201	{ .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
202	{ .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
203	{ .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
204	{ /* sentinel */ }
205};
206MODULE_DEVICE_TABLE(of, fec_dt_ids);
207
208static unsigned char macaddr[ETH_ALEN];
209module_param_array(macaddr, byte, NULL, 0);
210MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
211
212#if defined(CONFIG_M5272)
213/*
214 * Some hardware gets it MAC address out of local flash memory.
215 * if this is non-zero then assume it is the address to get MAC from.
216 */
217#if defined(CONFIG_NETtel)
218#define	FEC_FLASHMAC	0xf0006006
219#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
220#define	FEC_FLASHMAC	0xf0006000
221#elif defined(CONFIG_CANCam)
222#define	FEC_FLASHMAC	0xf0020000
223#elif defined (CONFIG_M5272C3)
224#define	FEC_FLASHMAC	(0xffe04000 + 4)
225#elif defined(CONFIG_MOD5272)
226#define FEC_FLASHMAC	0xffc0406b
227#else
228#define	FEC_FLASHMAC	0
229#endif
230#endif /* CONFIG_M5272 */
231
232/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
233 *
234 * 2048 byte skbufs are allocated. However, alignment requirements
235 * varies between FEC variants. Worst case is 64, so round down by 64.
236 */
237#define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
238#define PKT_MINBUF_SIZE		64
239
240/* FEC receive acceleration */
241#define FEC_RACC_IPDIS		BIT(1)
242#define FEC_RACC_PRODIS		BIT(2)
243#define FEC_RACC_SHIFT16	BIT(7)
244#define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
245
246/* MIB Control Register */
247#define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
248
249/*
250 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
251 * size bits. Other FEC hardware does not, so we need to take that into
252 * account when setting it.
253 */
254#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
255    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
256    defined(CONFIG_ARM64)
257#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
258#else
259#define	OPT_FRAME_SIZE	0
260#endif
261
262/* FEC MII MMFR bits definition */
263#define FEC_MMFR_ST		(1 << 30)
264#define FEC_MMFR_ST_C45		(0)
265#define FEC_MMFR_OP_READ	(2 << 28)
266#define FEC_MMFR_OP_READ_C45	(3 << 28)
267#define FEC_MMFR_OP_WRITE	(1 << 28)
268#define FEC_MMFR_OP_ADDR_WRITE	(0)
269#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
270#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
271#define FEC_MMFR_TA		(2 << 16)
272#define FEC_MMFR_DATA(v)	(v & 0xffff)
273/* FEC ECR bits definition */
274#define FEC_ECR_RESET           BIT(0)
275#define FEC_ECR_ETHEREN         BIT(1)
276#define FEC_ECR_MAGICEN         BIT(2)
277#define FEC_ECR_SLEEP           BIT(3)
278#define FEC_ECR_EN1588          BIT(4)
279#define FEC_ECR_BYTESWP         BIT(8)
280/* FEC RCR bits definition */
281#define FEC_RCR_LOOP            BIT(0)
282#define FEC_RCR_HALFDPX         BIT(1)
283#define FEC_RCR_MII             BIT(2)
284#define FEC_RCR_PROMISC         BIT(3)
285#define FEC_RCR_BC_REJ          BIT(4)
286#define FEC_RCR_FLOWCTL         BIT(5)
287#define FEC_RCR_RMII            BIT(8)
288#define FEC_RCR_10BASET         BIT(9)
289/* TX WMARK bits */
290#define FEC_TXWMRK_STRFWD       BIT(8)
291
292#define FEC_MII_TIMEOUT		30000 /* us */
293
294/* Transmitter timeout */
295#define TX_TIMEOUT (2 * HZ)
296
297#define FEC_PAUSE_FLAG_AUTONEG	0x1
298#define FEC_PAUSE_FLAG_ENABLE	0x2
299#define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
300#define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
301#define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
302
303/* Max number of allowed TCP segments for software TSO */
304#define FEC_MAX_TSO_SEGS	100
305#define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
306
307#define IS_TSO_HEADER(txq, addr) \
308	((addr >= txq->tso_hdrs_dma) && \
309	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
310
311static int mii_cnt;
312
313static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
314					     struct bufdesc_prop *bd)
315{
316	return (bdp >= bd->last) ? bd->base
317			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
318}
319
320static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
321					     struct bufdesc_prop *bd)
322{
323	return (bdp <= bd->base) ? bd->last
324			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
325}
326
327static int fec_enet_get_bd_index(struct bufdesc *bdp,
328				 struct bufdesc_prop *bd)
329{
330	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
331}
332
333static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
334{
335	int entries;
336
337	entries = (((const char *)txq->dirty_tx -
338			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
339
340	return entries >= 0 ? entries : entries + txq->bd.ring_size;
341}
342
343static void swap_buffer(void *bufaddr, int len)
344{
345	int i;
346	unsigned int *buf = bufaddr;
347
348	for (i = 0; i < len; i += 4, buf++)
349		swab32s(buf);
350}
351
352static void fec_dump(struct net_device *ndev)
353{
354	struct fec_enet_private *fep = netdev_priv(ndev);
355	struct bufdesc *bdp;
356	struct fec_enet_priv_tx_q *txq;
357	int index = 0;
358
359	netdev_info(ndev, "TX ring dump\n");
360	pr_info("Nr     SC     addr       len  SKB\n");
361
362	txq = fep->tx_queue[0];
363	bdp = txq->bd.base;
364
365	do {
366		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
367			index,
368			bdp == txq->bd.cur ? 'S' : ' ',
369			bdp == txq->dirty_tx ? 'H' : ' ',
370			fec16_to_cpu(bdp->cbd_sc),
371			fec32_to_cpu(bdp->cbd_bufaddr),
372			fec16_to_cpu(bdp->cbd_datlen),
373			txq->tx_buf[index].buf_p);
374		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
375		index++;
376	} while (bdp != txq->bd.base);
377}
378
379/*
380 * Coldfire does not support DMA coherent allocations, and has historically used
381 * a band-aid with a manual flush in fec_enet_rx_queue.
382 */
383#if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
384static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
385		gfp_t gfp)
386{
387	return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
388}
389
390static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
391		dma_addr_t handle)
392{
393	dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
394}
395#else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
396static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
397		gfp_t gfp)
398{
399	return dma_alloc_coherent(dev, size, handle, gfp);
400}
401
402static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
403		dma_addr_t handle)
404{
405	dma_free_coherent(dev, size, cpu_addr, handle);
406}
407#endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
408
409struct fec_dma_devres {
410	size_t		size;
411	void		*vaddr;
412	dma_addr_t	dma_handle;
413};
414
415static void fec_dmam_release(struct device *dev, void *res)
416{
417	struct fec_dma_devres *this = res;
418
419	fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
420}
421
422static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
423		gfp_t gfp)
424{
425	struct fec_dma_devres *dr;
426	void *vaddr;
427
428	dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
429	if (!dr)
430		return NULL;
431	vaddr = fec_dma_alloc(dev, size, handle, gfp);
432	if (!vaddr) {
433		devres_free(dr);
434		return NULL;
435	}
436	dr->vaddr = vaddr;
437	dr->dma_handle = *handle;
438	dr->size = size;
439	devres_add(dev, dr);
440	return vaddr;
441}
442
443static inline bool is_ipv4_pkt(struct sk_buff *skb)
444{
445	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
446}
447
448static int
449fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
450{
451	/* Only run for packets requiring a checksum. */
452	if (skb->ip_summed != CHECKSUM_PARTIAL)
453		return 0;
454
455	if (unlikely(skb_cow_head(skb, 0)))
456		return -1;
457
458	if (is_ipv4_pkt(skb))
459		ip_hdr(skb)->check = 0;
460	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
461
462	return 0;
463}
464
465static int
466fec_enet_create_page_pool(struct fec_enet_private *fep,
467			  struct fec_enet_priv_rx_q *rxq, int size)
468{
469	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
470	struct page_pool_params pp_params = {
471		.order = 0,
472		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
473		.pool_size = size,
474		.nid = dev_to_node(&fep->pdev->dev),
475		.dev = &fep->pdev->dev,
476		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
477		.offset = FEC_ENET_XDP_HEADROOM,
478		.max_len = FEC_ENET_RX_FRSIZE,
479	};
480	int err;
481
482	rxq->page_pool = page_pool_create(&pp_params);
483	if (IS_ERR(rxq->page_pool)) {
484		err = PTR_ERR(rxq->page_pool);
485		rxq->page_pool = NULL;
486		return err;
487	}
488
489	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
490	if (err < 0)
491		goto err_free_pp;
492
493	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
494					 rxq->page_pool);
495	if (err)
496		goto err_unregister_rxq;
497
498	return 0;
499
500err_unregister_rxq:
501	xdp_rxq_info_unreg(&rxq->xdp_rxq);
502err_free_pp:
503	page_pool_destroy(rxq->page_pool);
504	rxq->page_pool = NULL;
505	return err;
506}
507
508static struct bufdesc *
509fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
510			     struct sk_buff *skb,
511			     struct net_device *ndev)
512{
513	struct fec_enet_private *fep = netdev_priv(ndev);
514	struct bufdesc *bdp = txq->bd.cur;
515	struct bufdesc_ex *ebdp;
516	int nr_frags = skb_shinfo(skb)->nr_frags;
517	int frag, frag_len;
518	unsigned short status;
519	unsigned int estatus = 0;
520	skb_frag_t *this_frag;
521	unsigned int index;
522	void *bufaddr;
523	dma_addr_t addr;
524	int i;
525
526	for (frag = 0; frag < nr_frags; frag++) {
527		this_frag = &skb_shinfo(skb)->frags[frag];
528		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
529		ebdp = (struct bufdesc_ex *)bdp;
530
531		status = fec16_to_cpu(bdp->cbd_sc);
532		status &= ~BD_ENET_TX_STATS;
533		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
534		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
535
536		/* Handle the last BD specially */
537		if (frag == nr_frags - 1) {
538			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
539			if (fep->bufdesc_ex) {
540				estatus |= BD_ENET_TX_INT;
541				if (unlikely(skb_shinfo(skb)->tx_flags &
542					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
543					estatus |= BD_ENET_TX_TS;
544			}
545		}
546
547		if (fep->bufdesc_ex) {
548			if (fep->quirks & FEC_QUIRK_HAS_AVB)
549				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
550			if (skb->ip_summed == CHECKSUM_PARTIAL)
551				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
552
553			ebdp->cbd_bdu = 0;
554			ebdp->cbd_esc = cpu_to_fec32(estatus);
555		}
556
557		bufaddr = skb_frag_address(this_frag);
558
559		index = fec_enet_get_bd_index(bdp, &txq->bd);
560		if (((unsigned long) bufaddr) & fep->tx_align ||
561			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
562			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
563			bufaddr = txq->tx_bounce[index];
564
565			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
566				swap_buffer(bufaddr, frag_len);
567		}
568
569		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
570				      DMA_TO_DEVICE);
571		if (dma_mapping_error(&fep->pdev->dev, addr)) {
572			if (net_ratelimit())
573				netdev_err(ndev, "Tx DMA memory map failed\n");
574			goto dma_mapping_error;
575		}
576
577		bdp->cbd_bufaddr = cpu_to_fec32(addr);
578		bdp->cbd_datlen = cpu_to_fec16(frag_len);
579		/* Make sure the updates to rest of the descriptor are
580		 * performed before transferring ownership.
581		 */
582		wmb();
583		bdp->cbd_sc = cpu_to_fec16(status);
584	}
585
586	return bdp;
587dma_mapping_error:
588	bdp = txq->bd.cur;
589	for (i = 0; i < frag; i++) {
590		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
591		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
592				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
593	}
594	return ERR_PTR(-ENOMEM);
595}
596
597static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
598				   struct sk_buff *skb, struct net_device *ndev)
599{
600	struct fec_enet_private *fep = netdev_priv(ndev);
601	int nr_frags = skb_shinfo(skb)->nr_frags;
602	struct bufdesc *bdp, *last_bdp;
603	void *bufaddr;
604	dma_addr_t addr;
605	unsigned short status;
606	unsigned short buflen;
607	unsigned int estatus = 0;
608	unsigned int index;
609	int entries_free;
610
611	entries_free = fec_enet_get_free_txdesc_num(txq);
612	if (entries_free < MAX_SKB_FRAGS + 1) {
613		dev_kfree_skb_any(skb);
614		if (net_ratelimit())
615			netdev_err(ndev, "NOT enough BD for SG!\n");
616		return NETDEV_TX_OK;
617	}
618
619	/* Protocol checksum off-load for TCP and UDP. */
620	if (fec_enet_clear_csum(skb, ndev)) {
621		dev_kfree_skb_any(skb);
622		return NETDEV_TX_OK;
623	}
624
625	/* Fill in a Tx ring entry */
626	bdp = txq->bd.cur;
627	last_bdp = bdp;
628	status = fec16_to_cpu(bdp->cbd_sc);
629	status &= ~BD_ENET_TX_STATS;
630
631	/* Set buffer length and buffer pointer */
632	bufaddr = skb->data;
633	buflen = skb_headlen(skb);
634
635	index = fec_enet_get_bd_index(bdp, &txq->bd);
636	if (((unsigned long) bufaddr) & fep->tx_align ||
637		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
638		memcpy(txq->tx_bounce[index], skb->data, buflen);
639		bufaddr = txq->tx_bounce[index];
640
641		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
642			swap_buffer(bufaddr, buflen);
643	}
644
645	/* Push the data cache so the CPM does not get stale memory data. */
646	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
647	if (dma_mapping_error(&fep->pdev->dev, addr)) {
648		dev_kfree_skb_any(skb);
649		if (net_ratelimit())
650			netdev_err(ndev, "Tx DMA memory map failed\n");
651		return NETDEV_TX_OK;
652	}
653
654	if (nr_frags) {
655		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
656		if (IS_ERR(last_bdp)) {
657			dma_unmap_single(&fep->pdev->dev, addr,
658					 buflen, DMA_TO_DEVICE);
659			dev_kfree_skb_any(skb);
660			return NETDEV_TX_OK;
661		}
662	} else {
663		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
664		if (fep->bufdesc_ex) {
665			estatus = BD_ENET_TX_INT;
666			if (unlikely(skb_shinfo(skb)->tx_flags &
667				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
668				estatus |= BD_ENET_TX_TS;
669		}
670	}
671	bdp->cbd_bufaddr = cpu_to_fec32(addr);
672	bdp->cbd_datlen = cpu_to_fec16(buflen);
673
674	if (fep->bufdesc_ex) {
675
676		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
677
678		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
679			fep->hwts_tx_en))
680			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
681
682		if (fep->quirks & FEC_QUIRK_HAS_AVB)
683			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
684
685		if (skb->ip_summed == CHECKSUM_PARTIAL)
686			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
687
688		ebdp->cbd_bdu = 0;
689		ebdp->cbd_esc = cpu_to_fec32(estatus);
690	}
691
692	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
693	/* Save skb pointer */
694	txq->tx_buf[index].buf_p = skb;
695
696	/* Make sure the updates to rest of the descriptor are performed before
697	 * transferring ownership.
698	 */
699	wmb();
700
701	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
702	 * it's the last BD of the frame, and to put the CRC on the end.
703	 */
704	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
705	bdp->cbd_sc = cpu_to_fec16(status);
706
707	/* If this was the last BD in the ring, start at the beginning again. */
708	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
709
710	skb_tx_timestamp(skb);
711
712	/* Make sure the update to bdp is performed before txq->bd.cur. */
713	wmb();
714	txq->bd.cur = bdp;
715
716	/* Trigger transmission start */
717	writel(0, txq->bd.reg_desc_active);
718
719	return 0;
720}
721
722static int
723fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
724			  struct net_device *ndev,
725			  struct bufdesc *bdp, int index, char *data,
726			  int size, bool last_tcp, bool is_last)
727{
728	struct fec_enet_private *fep = netdev_priv(ndev);
729	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
730	unsigned short status;
731	unsigned int estatus = 0;
732	dma_addr_t addr;
733
734	status = fec16_to_cpu(bdp->cbd_sc);
735	status &= ~BD_ENET_TX_STATS;
736
737	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
738
739	if (((unsigned long) data) & fep->tx_align ||
740		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
741		memcpy(txq->tx_bounce[index], data, size);
742		data = txq->tx_bounce[index];
743
744		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
745			swap_buffer(data, size);
746	}
747
748	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
749	if (dma_mapping_error(&fep->pdev->dev, addr)) {
750		dev_kfree_skb_any(skb);
751		if (net_ratelimit())
752			netdev_err(ndev, "Tx DMA memory map failed\n");
753		return NETDEV_TX_OK;
754	}
755
756	bdp->cbd_datlen = cpu_to_fec16(size);
757	bdp->cbd_bufaddr = cpu_to_fec32(addr);
758
759	if (fep->bufdesc_ex) {
760		if (fep->quirks & FEC_QUIRK_HAS_AVB)
761			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
762		if (skb->ip_summed == CHECKSUM_PARTIAL)
763			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
764		ebdp->cbd_bdu = 0;
765		ebdp->cbd_esc = cpu_to_fec32(estatus);
766	}
767
768	/* Handle the last BD specially */
769	if (last_tcp)
770		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
771	if (is_last) {
772		status |= BD_ENET_TX_INTR;
773		if (fep->bufdesc_ex)
774			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
775	}
776
777	bdp->cbd_sc = cpu_to_fec16(status);
778
779	return 0;
780}
781
782static int
783fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
784			 struct sk_buff *skb, struct net_device *ndev,
785			 struct bufdesc *bdp, int index)
786{
787	struct fec_enet_private *fep = netdev_priv(ndev);
788	int hdr_len = skb_tcp_all_headers(skb);
789	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
790	void *bufaddr;
791	unsigned long dmabuf;
792	unsigned short status;
793	unsigned int estatus = 0;
794
795	status = fec16_to_cpu(bdp->cbd_sc);
796	status &= ~BD_ENET_TX_STATS;
797	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
798
799	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
800	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
801	if (((unsigned long)bufaddr) & fep->tx_align ||
802		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
803		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
804		bufaddr = txq->tx_bounce[index];
805
806		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
807			swap_buffer(bufaddr, hdr_len);
808
809		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
810					hdr_len, DMA_TO_DEVICE);
811		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
812			dev_kfree_skb_any(skb);
813			if (net_ratelimit())
814				netdev_err(ndev, "Tx DMA memory map failed\n");
815			return NETDEV_TX_OK;
816		}
817	}
818
819	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
820	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
821
822	if (fep->bufdesc_ex) {
823		if (fep->quirks & FEC_QUIRK_HAS_AVB)
824			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
825		if (skb->ip_summed == CHECKSUM_PARTIAL)
826			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
827		ebdp->cbd_bdu = 0;
828		ebdp->cbd_esc = cpu_to_fec32(estatus);
829	}
830
831	bdp->cbd_sc = cpu_to_fec16(status);
832
833	return 0;
834}
835
836static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
837				   struct sk_buff *skb,
838				   struct net_device *ndev)
839{
840	struct fec_enet_private *fep = netdev_priv(ndev);
841	int hdr_len, total_len, data_left;
842	struct bufdesc *bdp = txq->bd.cur;
843	struct tso_t tso;
844	unsigned int index = 0;
845	int ret;
846
847	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
848		dev_kfree_skb_any(skb);
849		if (net_ratelimit())
850			netdev_err(ndev, "NOT enough BD for TSO!\n");
851		return NETDEV_TX_OK;
852	}
853
854	/* Protocol checksum off-load for TCP and UDP. */
855	if (fec_enet_clear_csum(skb, ndev)) {
856		dev_kfree_skb_any(skb);
857		return NETDEV_TX_OK;
858	}
859
860	/* Initialize the TSO handler, and prepare the first payload */
861	hdr_len = tso_start(skb, &tso);
862
863	total_len = skb->len - hdr_len;
864	while (total_len > 0) {
865		char *hdr;
866
867		index = fec_enet_get_bd_index(bdp, &txq->bd);
868		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
869		total_len -= data_left;
870
871		/* prepare packet headers: MAC + IP + TCP */
872		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
873		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
874		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
875		if (ret)
876			goto err_release;
877
878		while (data_left > 0) {
879			int size;
880
881			size = min_t(int, tso.size, data_left);
882			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
883			index = fec_enet_get_bd_index(bdp, &txq->bd);
884			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
885							bdp, index,
886							tso.data, size,
887							size == data_left,
888							total_len == 0);
889			if (ret)
890				goto err_release;
891
892			data_left -= size;
893			tso_build_data(skb, &tso, size);
894		}
895
896		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
897	}
898
899	/* Save skb pointer */
900	txq->tx_buf[index].buf_p = skb;
901
902	skb_tx_timestamp(skb);
903	txq->bd.cur = bdp;
904
905	/* Trigger transmission start */
906	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
907	    !readl(txq->bd.reg_desc_active) ||
908	    !readl(txq->bd.reg_desc_active) ||
909	    !readl(txq->bd.reg_desc_active) ||
910	    !readl(txq->bd.reg_desc_active))
911		writel(0, txq->bd.reg_desc_active);
912
913	return 0;
914
915err_release:
916	/* TODO: Release all used data descriptors for TSO */
917	return ret;
918}
919
920static netdev_tx_t
921fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
922{
923	struct fec_enet_private *fep = netdev_priv(ndev);
924	int entries_free;
925	unsigned short queue;
926	struct fec_enet_priv_tx_q *txq;
927	struct netdev_queue *nq;
928	int ret;
929
930	queue = skb_get_queue_mapping(skb);
931	txq = fep->tx_queue[queue];
932	nq = netdev_get_tx_queue(ndev, queue);
933
934	if (skb_is_gso(skb))
935		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
936	else
937		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
938	if (ret)
939		return ret;
940
941	entries_free = fec_enet_get_free_txdesc_num(txq);
942	if (entries_free <= txq->tx_stop_threshold)
943		netif_tx_stop_queue(nq);
944
945	return NETDEV_TX_OK;
946}
947
948/* Init RX & TX buffer descriptors
949 */
950static void fec_enet_bd_init(struct net_device *dev)
951{
952	struct fec_enet_private *fep = netdev_priv(dev);
953	struct fec_enet_priv_tx_q *txq;
954	struct fec_enet_priv_rx_q *rxq;
955	struct bufdesc *bdp;
956	unsigned int i;
957	unsigned int q;
958
959	for (q = 0; q < fep->num_rx_queues; q++) {
960		/* Initialize the receive buffer descriptors. */
961		rxq = fep->rx_queue[q];
962		bdp = rxq->bd.base;
963
964		for (i = 0; i < rxq->bd.ring_size; i++) {
965
966			/* Initialize the BD for every fragment in the page. */
967			if (bdp->cbd_bufaddr)
968				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
969			else
970				bdp->cbd_sc = cpu_to_fec16(0);
971			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
972		}
973
974		/* Set the last buffer to wrap */
975		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
976		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
977
978		rxq->bd.cur = rxq->bd.base;
979	}
980
981	for (q = 0; q < fep->num_tx_queues; q++) {
982		/* ...and the same for transmit */
983		txq = fep->tx_queue[q];
984		bdp = txq->bd.base;
985		txq->bd.cur = bdp;
986
987		for (i = 0; i < txq->bd.ring_size; i++) {
988			/* Initialize the BD for every fragment in the page. */
989			bdp->cbd_sc = cpu_to_fec16(0);
990			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
991				if (bdp->cbd_bufaddr &&
992				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
993					dma_unmap_single(&fep->pdev->dev,
994							 fec32_to_cpu(bdp->cbd_bufaddr),
995							 fec16_to_cpu(bdp->cbd_datlen),
996							 DMA_TO_DEVICE);
997				if (txq->tx_buf[i].buf_p)
998					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
999			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
1000				if (bdp->cbd_bufaddr)
1001					dma_unmap_single(&fep->pdev->dev,
1002							 fec32_to_cpu(bdp->cbd_bufaddr),
1003							 fec16_to_cpu(bdp->cbd_datlen),
1004							 DMA_TO_DEVICE);
1005
1006				if (txq->tx_buf[i].buf_p)
1007					xdp_return_frame(txq->tx_buf[i].buf_p);
1008			} else {
1009				struct page *page = txq->tx_buf[i].buf_p;
1010
1011				if (page)
1012					page_pool_put_page(page->pp, page, 0, false);
1013			}
1014
1015			txq->tx_buf[i].buf_p = NULL;
1016			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1017			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1018			bdp->cbd_bufaddr = cpu_to_fec32(0);
1019			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1020		}
1021
1022		/* Set the last buffer to wrap */
1023		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1024		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1025		txq->dirty_tx = bdp;
1026	}
1027}
1028
1029static void fec_enet_active_rxring(struct net_device *ndev)
1030{
1031	struct fec_enet_private *fep = netdev_priv(ndev);
1032	int i;
1033
1034	for (i = 0; i < fep->num_rx_queues; i++)
1035		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1036}
1037
1038static void fec_enet_enable_ring(struct net_device *ndev)
1039{
1040	struct fec_enet_private *fep = netdev_priv(ndev);
1041	struct fec_enet_priv_tx_q *txq;
1042	struct fec_enet_priv_rx_q *rxq;
1043	int i;
1044
1045	for (i = 0; i < fep->num_rx_queues; i++) {
1046		rxq = fep->rx_queue[i];
1047		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1048		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1049
1050		/* enable DMA1/2 */
1051		if (i)
1052			writel(RCMR_MATCHEN | RCMR_CMP(i),
1053			       fep->hwp + FEC_RCMR(i));
1054	}
1055
1056	for (i = 0; i < fep->num_tx_queues; i++) {
1057		txq = fep->tx_queue[i];
1058		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1059
1060		/* enable DMA1/2 */
1061		if (i)
1062			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1063			       fep->hwp + FEC_DMA_CFG(i));
1064	}
1065}
1066
1067/*
1068 * This function is called to start or restart the FEC during a link
1069 * change, transmit timeout, or to reconfigure the FEC.  The network
1070 * packet processing for this device must be stopped before this call.
1071 */
1072static void
1073fec_restart(struct net_device *ndev)
1074{
1075	struct fec_enet_private *fep = netdev_priv(ndev);
1076	u32 temp_mac[2];
1077	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1078	u32 ecntl = FEC_ECR_ETHEREN;
1079
1080	/* Whack a reset.  We should wait for this.
1081	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1082	 * instead of reset MAC itself.
1083	 */
1084	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1085	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1086		writel(0, fep->hwp + FEC_ECNTRL);
1087	} else {
1088		writel(1, fep->hwp + FEC_ECNTRL);
1089		udelay(10);
1090	}
1091
1092	/*
1093	 * enet-mac reset will reset mac address registers too,
1094	 * so need to reconfigure it.
1095	 */
1096	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1097	writel((__force u32)cpu_to_be32(temp_mac[0]),
1098	       fep->hwp + FEC_ADDR_LOW);
1099	writel((__force u32)cpu_to_be32(temp_mac[1]),
1100	       fep->hwp + FEC_ADDR_HIGH);
1101
1102	/* Clear any outstanding interrupt, except MDIO. */
1103	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1104
1105	fec_enet_bd_init(ndev);
1106
1107	fec_enet_enable_ring(ndev);
1108
1109	/* Enable MII mode */
1110	if (fep->full_duplex == DUPLEX_FULL) {
1111		/* FD enable */
1112		writel(0x04, fep->hwp + FEC_X_CNTRL);
1113	} else {
1114		/* No Rcv on Xmit */
1115		rcntl |= 0x02;
1116		writel(0x0, fep->hwp + FEC_X_CNTRL);
1117	}
1118
1119	/* Set MII speed */
1120	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1121
1122#if !defined(CONFIG_M5272)
1123	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1124		u32 val = readl(fep->hwp + FEC_RACC);
1125
1126		/* align IP header */
1127		val |= FEC_RACC_SHIFT16;
1128		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1129			/* set RX checksum */
1130			val |= FEC_RACC_OPTIONS;
1131		else
1132			val &= ~FEC_RACC_OPTIONS;
1133		writel(val, fep->hwp + FEC_RACC);
1134		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1135	}
1136#endif
1137
1138	/*
1139	 * The phy interface and speed need to get configured
1140	 * differently on enet-mac.
1141	 */
1142	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1143		/* Enable flow control and length check */
1144		rcntl |= 0x40000000 | 0x00000020;
1145
1146		/* RGMII, RMII or MII */
1147		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1148		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1149		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1150		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1151			rcntl |= (1 << 6);
1152		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1153			rcntl |= FEC_RCR_RMII;
1154		else
1155			rcntl &= ~FEC_RCR_RMII;
1156
1157		/* 1G, 100M or 10M */
1158		if (ndev->phydev) {
1159			if (ndev->phydev->speed == SPEED_1000)
1160				ecntl |= (1 << 5);
1161			else if (ndev->phydev->speed == SPEED_100)
1162				rcntl &= ~FEC_RCR_10BASET;
1163			else
1164				rcntl |= FEC_RCR_10BASET;
1165		}
1166	} else {
1167#ifdef FEC_MIIGSK_ENR
1168		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1169			u32 cfgr;
1170			/* disable the gasket and wait */
1171			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1172			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1173				udelay(1);
1174
1175			/*
1176			 * configure the gasket:
1177			 *   RMII, 50 MHz, no loopback, no echo
1178			 *   MII, 25 MHz, no loopback, no echo
1179			 */
1180			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1181				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1182			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1183				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1184			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1185
1186			/* re-enable the gasket */
1187			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1188		}
1189#endif
1190	}
1191
1192#if !defined(CONFIG_M5272)
1193	/* enable pause frame*/
1194	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1195	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1196	     ndev->phydev && ndev->phydev->pause)) {
1197		rcntl |= FEC_RCR_FLOWCTL;
1198
1199		/* set FIFO threshold parameter to reduce overrun */
1200		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1201		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1202		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1203		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1204
1205		/* OPD */
1206		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1207	} else {
1208		rcntl &= ~FEC_RCR_FLOWCTL;
1209	}
1210#endif /* !defined(CONFIG_M5272) */
1211
1212	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1213
1214	/* Setup multicast filter. */
1215	set_multicast_list(ndev);
1216#ifndef CONFIG_M5272
1217	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1218	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1219#endif
1220
1221	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1222		/* enable ENET endian swap */
1223		ecntl |= FEC_ECR_BYTESWP;
1224		/* enable ENET store and forward mode */
1225		writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1226	}
1227
1228	if (fep->bufdesc_ex)
1229		ecntl |= FEC_ECR_EN1588;
1230
1231	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1232	    fep->rgmii_txc_dly)
1233		ecntl |= FEC_ENET_TXC_DLY;
1234	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1235	    fep->rgmii_rxc_dly)
1236		ecntl |= FEC_ENET_RXC_DLY;
1237
1238#ifndef CONFIG_M5272
1239	/* Enable the MIB statistic event counters */
1240	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1241#endif
1242
1243	/* And last, enable the transmit and receive processing */
1244	writel(ecntl, fep->hwp + FEC_ECNTRL);
1245	fec_enet_active_rxring(ndev);
1246
1247	if (fep->bufdesc_ex)
1248		fec_ptp_start_cyclecounter(ndev);
1249
1250	/* Enable interrupts we wish to service */
1251	if (fep->link)
1252		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1253	else
1254		writel(0, fep->hwp + FEC_IMASK);
1255
1256	/* Init the interrupt coalescing */
1257	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1258		fec_enet_itr_coal_set(ndev);
1259}
1260
1261static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1262{
1263	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1264	      of_machine_is_compatible("fsl,imx8qxp") ||
1265	      of_machine_is_compatible("fsl,imx8dxl")))
1266		return 0;
1267
1268	return imx_scu_get_handle(&fep->ipc_handle);
1269}
1270
1271static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1272{
1273	struct device_node *np = fep->pdev->dev.of_node;
1274	u32 rsrc_id, val;
1275	int idx;
1276
1277	if (!np || !fep->ipc_handle)
1278		return;
1279
1280	idx = of_alias_get_id(np, "ethernet");
1281	if (idx < 0)
1282		idx = 0;
1283	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1284
1285	val = enabled ? 1 : 0;
1286	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1287}
1288
1289static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1290{
1291	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1292	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1293
1294	if (stop_gpr->gpr) {
1295		if (enabled)
1296			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1297					   BIT(stop_gpr->bit),
1298					   BIT(stop_gpr->bit));
1299		else
1300			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1301					   BIT(stop_gpr->bit), 0);
1302	} else if (pdata && pdata->sleep_mode_enable) {
1303		pdata->sleep_mode_enable(enabled);
1304	} else {
1305		fec_enet_ipg_stop_set(fep, enabled);
1306	}
1307}
1308
1309static void fec_irqs_disable(struct net_device *ndev)
1310{
1311	struct fec_enet_private *fep = netdev_priv(ndev);
1312
1313	writel(0, fep->hwp + FEC_IMASK);
1314}
1315
1316static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1317{
1318	struct fec_enet_private *fep = netdev_priv(ndev);
1319
1320	writel(0, fep->hwp + FEC_IMASK);
1321	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1322}
1323
1324static void
1325fec_stop(struct net_device *ndev)
1326{
1327	struct fec_enet_private *fep = netdev_priv(ndev);
1328	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1329	u32 val;
1330
1331	/* We cannot expect a graceful transmit stop without link !!! */
1332	if (fep->link) {
1333		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1334		udelay(10);
1335		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1336			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1337	}
1338
1339	/* Whack a reset.  We should wait for this.
1340	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1341	 * instead of reset MAC itself.
1342	 */
1343	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1344		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1345			writel(0, fep->hwp + FEC_ECNTRL);
1346		} else {
1347			writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1348			udelay(10);
1349		}
1350	} else {
1351		val = readl(fep->hwp + FEC_ECNTRL);
1352		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1353		writel(val, fep->hwp + FEC_ECNTRL);
1354	}
1355	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1356	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1357
1358	/* We have to keep ENET enabled to have MII interrupt stay working */
1359	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1360		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1361		writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1362		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1363	}
1364}
1365
1366static void
1367fec_timeout(struct net_device *ndev, unsigned int txqueue)
1368{
1369	struct fec_enet_private *fep = netdev_priv(ndev);
1370
1371	fec_dump(ndev);
1372
1373	ndev->stats.tx_errors++;
1374
1375	schedule_work(&fep->tx_timeout_work);
1376}
1377
1378static void fec_enet_timeout_work(struct work_struct *work)
1379{
1380	struct fec_enet_private *fep =
1381		container_of(work, struct fec_enet_private, tx_timeout_work);
1382	struct net_device *ndev = fep->netdev;
1383
1384	rtnl_lock();
1385	if (netif_device_present(ndev) || netif_running(ndev)) {
1386		napi_disable(&fep->napi);
1387		netif_tx_lock_bh(ndev);
1388		fec_restart(ndev);
1389		netif_tx_wake_all_queues(ndev);
1390		netif_tx_unlock_bh(ndev);
1391		napi_enable(&fep->napi);
1392	}
1393	rtnl_unlock();
1394}
1395
1396static void
1397fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1398	struct skb_shared_hwtstamps *hwtstamps)
1399{
1400	unsigned long flags;
1401	u64 ns;
1402
1403	spin_lock_irqsave(&fep->tmreg_lock, flags);
1404	ns = timecounter_cyc2time(&fep->tc, ts);
1405	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1406
1407	memset(hwtstamps, 0, sizeof(*hwtstamps));
1408	hwtstamps->hwtstamp = ns_to_ktime(ns);
1409}
1410
1411static void
1412fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1413{
1414	struct	fec_enet_private *fep;
1415	struct xdp_frame *xdpf;
1416	struct bufdesc *bdp;
1417	unsigned short status;
1418	struct	sk_buff	*skb;
1419	struct fec_enet_priv_tx_q *txq;
1420	struct netdev_queue *nq;
1421	int	index = 0;
1422	int	entries_free;
1423	struct page *page;
1424	int frame_len;
1425
1426	fep = netdev_priv(ndev);
1427
1428	txq = fep->tx_queue[queue_id];
1429	/* get next bdp of dirty_tx */
1430	nq = netdev_get_tx_queue(ndev, queue_id);
1431	bdp = txq->dirty_tx;
1432
1433	/* get next bdp of dirty_tx */
1434	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1435
1436	while (bdp != READ_ONCE(txq->bd.cur)) {
1437		/* Order the load of bd.cur and cbd_sc */
1438		rmb();
1439		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1440		if (status & BD_ENET_TX_READY)
1441			break;
1442
1443		index = fec_enet_get_bd_index(bdp, &txq->bd);
1444
1445		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1446			skb = txq->tx_buf[index].buf_p;
1447			if (bdp->cbd_bufaddr &&
1448			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1449				dma_unmap_single(&fep->pdev->dev,
1450						 fec32_to_cpu(bdp->cbd_bufaddr),
1451						 fec16_to_cpu(bdp->cbd_datlen),
1452						 DMA_TO_DEVICE);
1453			bdp->cbd_bufaddr = cpu_to_fec32(0);
1454			if (!skb)
1455				goto tx_buf_done;
1456		} else {
1457			/* Tx processing cannot call any XDP (or page pool) APIs if
1458			 * the "budget" is 0. Because NAPI is called with budget of
1459			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1460			 * however, we can't use the page pool from IRQ context.
1461			 */
1462			if (unlikely(!budget))
1463				break;
1464
1465			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1466				xdpf = txq->tx_buf[index].buf_p;
1467				if (bdp->cbd_bufaddr)
1468					dma_unmap_single(&fep->pdev->dev,
1469							 fec32_to_cpu(bdp->cbd_bufaddr),
1470							 fec16_to_cpu(bdp->cbd_datlen),
1471							 DMA_TO_DEVICE);
1472			} else {
1473				page = txq->tx_buf[index].buf_p;
1474			}
1475
1476			bdp->cbd_bufaddr = cpu_to_fec32(0);
1477			if (unlikely(!txq->tx_buf[index].buf_p)) {
1478				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1479				goto tx_buf_done;
1480			}
1481
1482			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1483		}
1484
1485		/* Check for errors. */
1486		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1487				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1488				   BD_ENET_TX_CSL)) {
1489			ndev->stats.tx_errors++;
1490			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1491				ndev->stats.tx_heartbeat_errors++;
1492			if (status & BD_ENET_TX_LC)  /* Late collision */
1493				ndev->stats.tx_window_errors++;
1494			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1495				ndev->stats.tx_aborted_errors++;
1496			if (status & BD_ENET_TX_UN)  /* Underrun */
1497				ndev->stats.tx_fifo_errors++;
1498			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1499				ndev->stats.tx_carrier_errors++;
1500		} else {
1501			ndev->stats.tx_packets++;
1502
1503			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1504				ndev->stats.tx_bytes += skb->len;
1505			else
1506				ndev->stats.tx_bytes += frame_len;
1507		}
1508
1509		/* Deferred means some collisions occurred during transmit,
1510		 * but we eventually sent the packet OK.
1511		 */
1512		if (status & BD_ENET_TX_DEF)
1513			ndev->stats.collisions++;
1514
1515		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1516			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1517			 * are to time stamp the packet, so we still need to check time
1518			 * stamping enabled flag.
1519			 */
1520			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1521				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1522				struct skb_shared_hwtstamps shhwtstamps;
1523				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1524
1525				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1526				skb_tstamp_tx(skb, &shhwtstamps);
1527			}
1528
1529			/* Free the sk buffer associated with this last transmit */
1530			napi_consume_skb(skb, budget);
1531		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1532			xdp_return_frame_rx_napi(xdpf);
1533		} else { /* recycle pages of XDP_TX frames */
1534			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1535			page_pool_put_page(page->pp, page, 0, true);
1536		}
1537
1538		txq->tx_buf[index].buf_p = NULL;
1539		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1540		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1541
1542tx_buf_done:
1543		/* Make sure the update to bdp and tx_buf are performed
1544		 * before dirty_tx
1545		 */
1546		wmb();
1547		txq->dirty_tx = bdp;
1548
1549		/* Update pointer to next buffer descriptor to be transmitted */
1550		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1551
1552		/* Since we have freed up a buffer, the ring is no longer full
1553		 */
1554		if (netif_tx_queue_stopped(nq)) {
1555			entries_free = fec_enet_get_free_txdesc_num(txq);
1556			if (entries_free >= txq->tx_wake_threshold)
1557				netif_tx_wake_queue(nq);
1558		}
1559	}
1560
1561	/* ERR006358: Keep the transmitter going */
1562	if (bdp != txq->bd.cur &&
1563	    readl(txq->bd.reg_desc_active) == 0)
1564		writel(0, txq->bd.reg_desc_active);
1565}
1566
1567static void fec_enet_tx(struct net_device *ndev, int budget)
1568{
1569	struct fec_enet_private *fep = netdev_priv(ndev);
1570	int i;
1571
1572	/* Make sure that AVB queues are processed first. */
1573	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1574		fec_enet_tx_queue(ndev, i, budget);
1575}
1576
1577static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1578				struct bufdesc *bdp, int index)
1579{
1580	struct page *new_page;
1581	dma_addr_t phys_addr;
1582
1583	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1584	WARN_ON(!new_page);
1585	rxq->rx_skb_info[index].page = new_page;
1586
1587	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1588	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1589	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1590}
1591
1592static u32
1593fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1594		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1595{
1596	unsigned int sync, len = xdp->data_end - xdp->data;
1597	u32 ret = FEC_ENET_XDP_PASS;
1598	struct page *page;
1599	int err;
1600	u32 act;
1601
1602	act = bpf_prog_run_xdp(prog, xdp);
1603
1604	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1605	 * max len CPU touch
1606	 */
1607	sync = xdp->data_end - xdp->data;
1608	sync = max(sync, len);
1609
1610	switch (act) {
1611	case XDP_PASS:
1612		rxq->stats[RX_XDP_PASS]++;
1613		ret = FEC_ENET_XDP_PASS;
1614		break;
1615
1616	case XDP_REDIRECT:
1617		rxq->stats[RX_XDP_REDIRECT]++;
1618		err = xdp_do_redirect(fep->netdev, xdp, prog);
1619		if (unlikely(err))
1620			goto xdp_err;
1621
1622		ret = FEC_ENET_XDP_REDIR;
1623		break;
1624
1625	case XDP_TX:
1626		rxq->stats[RX_XDP_TX]++;
1627		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1628		if (unlikely(err)) {
1629			rxq->stats[RX_XDP_TX_ERRORS]++;
1630			goto xdp_err;
1631		}
1632
1633		ret = FEC_ENET_XDP_TX;
1634		break;
1635
1636	default:
1637		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1638		fallthrough;
1639
1640	case XDP_ABORTED:
1641		fallthrough;    /* handle aborts by dropping packet */
1642
1643	case XDP_DROP:
1644		rxq->stats[RX_XDP_DROP]++;
1645xdp_err:
1646		ret = FEC_ENET_XDP_CONSUMED;
1647		page = virt_to_head_page(xdp->data);
1648		page_pool_put_page(rxq->page_pool, page, sync, true);
1649		if (act != XDP_DROP)
1650			trace_xdp_exception(fep->netdev, prog, act);
1651		break;
1652	}
1653
1654	return ret;
1655}
1656
1657/* During a receive, the bd_rx.cur points to the current incoming buffer.
1658 * When we update through the ring, if the next incoming buffer has
1659 * not been given to the system, we just set the empty indicator,
1660 * effectively tossing the packet.
1661 */
1662static int
1663fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1664{
1665	struct fec_enet_private *fep = netdev_priv(ndev);
1666	struct fec_enet_priv_rx_q *rxq;
1667	struct bufdesc *bdp;
1668	unsigned short status;
1669	struct  sk_buff *skb;
1670	ushort	pkt_len;
1671	__u8 *data;
1672	int	pkt_received = 0;
1673	struct	bufdesc_ex *ebdp = NULL;
1674	bool	vlan_packet_rcvd = false;
1675	u16	vlan_tag;
1676	int	index = 0;
1677	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1678	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1679	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1680	u32 data_start = FEC_ENET_XDP_HEADROOM;
1681	int cpu = smp_processor_id();
1682	struct xdp_buff xdp;
1683	struct page *page;
1684	u32 sub_len = 4;
1685
1686#if !defined(CONFIG_M5272)
1687	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1688	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1689	 */
1690	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1691		data_start += 2;
1692		sub_len += 2;
1693	}
1694#endif
1695
1696#if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1697	/*
1698	 * Hacky flush of all caches instead of using the DMA API for the TSO
1699	 * headers.
1700	 */
1701	flush_cache_all();
1702#endif
1703	rxq = fep->rx_queue[queue_id];
1704
1705	/* First, grab all of the stats for the incoming packet.
1706	 * These get messed up if we get called due to a busy condition.
1707	 */
1708	bdp = rxq->bd.cur;
1709	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1710
1711	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1712
1713		if (pkt_received >= budget)
1714			break;
1715		pkt_received++;
1716
1717		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1718
1719		/* Check for errors. */
1720		status ^= BD_ENET_RX_LAST;
1721		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1722			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1723			   BD_ENET_RX_CL)) {
1724			ndev->stats.rx_errors++;
1725			if (status & BD_ENET_RX_OV) {
1726				/* FIFO overrun */
1727				ndev->stats.rx_fifo_errors++;
1728				goto rx_processing_done;
1729			}
1730			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1731						| BD_ENET_RX_LAST)) {
1732				/* Frame too long or too short. */
1733				ndev->stats.rx_length_errors++;
1734				if (status & BD_ENET_RX_LAST)
1735					netdev_err(ndev, "rcv is not +last\n");
1736			}
1737			if (status & BD_ENET_RX_CR)	/* CRC Error */
1738				ndev->stats.rx_crc_errors++;
1739			/* Report late collisions as a frame error. */
1740			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1741				ndev->stats.rx_frame_errors++;
1742			goto rx_processing_done;
1743		}
1744
1745		/* Process the incoming frame. */
1746		ndev->stats.rx_packets++;
1747		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1748		ndev->stats.rx_bytes += pkt_len;
1749
1750		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1751		page = rxq->rx_skb_info[index].page;
1752		dma_sync_single_for_cpu(&fep->pdev->dev,
1753					fec32_to_cpu(bdp->cbd_bufaddr),
1754					pkt_len,
1755					DMA_FROM_DEVICE);
1756		prefetch(page_address(page));
1757		fec_enet_update_cbd(rxq, bdp, index);
1758
1759		if (xdp_prog) {
1760			xdp_buff_clear_frags_flag(&xdp);
1761			/* subtract 16bit shift and FCS */
1762			xdp_prepare_buff(&xdp, page_address(page),
1763					 data_start, pkt_len - sub_len, false);
1764			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1765			xdp_result |= ret;
1766			if (ret != FEC_ENET_XDP_PASS)
1767				goto rx_processing_done;
1768		}
1769
1770		/* The packet length includes FCS, but we don't want to
1771		 * include that when passing upstream as it messes up
1772		 * bridging applications.
1773		 */
1774		skb = build_skb(page_address(page), PAGE_SIZE);
1775		if (unlikely(!skb)) {
1776			page_pool_recycle_direct(rxq->page_pool, page);
1777			ndev->stats.rx_dropped++;
1778
1779			netdev_err_once(ndev, "build_skb failed!\n");
1780			goto rx_processing_done;
1781		}
1782
1783		skb_reserve(skb, data_start);
1784		skb_put(skb, pkt_len - sub_len);
1785		skb_mark_for_recycle(skb);
1786
1787		if (unlikely(need_swap)) {
1788			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1789			swap_buffer(data, pkt_len);
1790		}
1791		data = skb->data;
1792
1793		/* Extract the enhanced buffer descriptor */
1794		ebdp = NULL;
1795		if (fep->bufdesc_ex)
1796			ebdp = (struct bufdesc_ex *)bdp;
1797
1798		/* If this is a VLAN packet remove the VLAN Tag */
1799		vlan_packet_rcvd = false;
1800		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1801		    fep->bufdesc_ex &&
1802		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1803			/* Push and remove the vlan tag */
1804			struct vlan_hdr *vlan_header =
1805					(struct vlan_hdr *) (data + ETH_HLEN);
1806			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1807
1808			vlan_packet_rcvd = true;
1809
1810			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1811			skb_pull(skb, VLAN_HLEN);
1812		}
1813
1814		skb->protocol = eth_type_trans(skb, ndev);
1815
1816		/* Get receive timestamp from the skb */
1817		if (fep->hwts_rx_en && fep->bufdesc_ex)
1818			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1819					  skb_hwtstamps(skb));
1820
1821		if (fep->bufdesc_ex &&
1822		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1823			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1824				/* don't check it */
1825				skb->ip_summed = CHECKSUM_UNNECESSARY;
1826			} else {
1827				skb_checksum_none_assert(skb);
1828			}
1829		}
1830
1831		/* Handle received VLAN packets */
1832		if (vlan_packet_rcvd)
1833			__vlan_hwaccel_put_tag(skb,
1834					       htons(ETH_P_8021Q),
1835					       vlan_tag);
1836
1837		skb_record_rx_queue(skb, queue_id);
1838		napi_gro_receive(&fep->napi, skb);
1839
1840rx_processing_done:
1841		/* Clear the status flags for this buffer */
1842		status &= ~BD_ENET_RX_STATS;
1843
1844		/* Mark the buffer empty */
1845		status |= BD_ENET_RX_EMPTY;
1846
1847		if (fep->bufdesc_ex) {
1848			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1849
1850			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1851			ebdp->cbd_prot = 0;
1852			ebdp->cbd_bdu = 0;
1853		}
1854		/* Make sure the updates to rest of the descriptor are
1855		 * performed before transferring ownership.
1856		 */
1857		wmb();
1858		bdp->cbd_sc = cpu_to_fec16(status);
1859
1860		/* Update BD pointer to next entry */
1861		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1862
1863		/* Doing this here will keep the FEC running while we process
1864		 * incoming frames.  On a heavily loaded network, we should be
1865		 * able to keep up at the expense of system resources.
1866		 */
1867		writel(0, rxq->bd.reg_desc_active);
1868	}
1869	rxq->bd.cur = bdp;
1870
1871	if (xdp_result & FEC_ENET_XDP_REDIR)
1872		xdp_do_flush();
1873
1874	return pkt_received;
1875}
1876
1877static int fec_enet_rx(struct net_device *ndev, int budget)
1878{
1879	struct fec_enet_private *fep = netdev_priv(ndev);
1880	int i, done = 0;
1881
1882	/* Make sure that AVB queues are processed first. */
1883	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1884		done += fec_enet_rx_queue(ndev, budget - done, i);
1885
1886	return done;
1887}
1888
1889static bool fec_enet_collect_events(struct fec_enet_private *fep)
1890{
1891	uint int_events;
1892
1893	int_events = readl(fep->hwp + FEC_IEVENT);
1894
1895	/* Don't clear MDIO events, we poll for those */
1896	int_events &= ~FEC_ENET_MII;
1897
1898	writel(int_events, fep->hwp + FEC_IEVENT);
1899
1900	return int_events != 0;
1901}
1902
1903static irqreturn_t
1904fec_enet_interrupt(int irq, void *dev_id)
1905{
1906	struct net_device *ndev = dev_id;
1907	struct fec_enet_private *fep = netdev_priv(ndev);
1908	irqreturn_t ret = IRQ_NONE;
1909
1910	if (fec_enet_collect_events(fep) && fep->link) {
1911		ret = IRQ_HANDLED;
1912
1913		if (napi_schedule_prep(&fep->napi)) {
1914			/* Disable interrupts */
1915			writel(0, fep->hwp + FEC_IMASK);
1916			__napi_schedule(&fep->napi);
1917		}
1918	}
1919
1920	return ret;
1921}
1922
1923static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1924{
1925	struct net_device *ndev = napi->dev;
1926	struct fec_enet_private *fep = netdev_priv(ndev);
1927	int done = 0;
1928
1929	do {
1930		done += fec_enet_rx(ndev, budget - done);
1931		fec_enet_tx(ndev, budget);
1932	} while ((done < budget) && fec_enet_collect_events(fep));
1933
1934	if (done < budget) {
1935		napi_complete_done(napi, done);
1936		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1937	}
1938
1939	return done;
1940}
1941
1942/* ------------------------------------------------------------------------- */
1943static int fec_get_mac(struct net_device *ndev)
1944{
1945	struct fec_enet_private *fep = netdev_priv(ndev);
1946	unsigned char *iap, tmpaddr[ETH_ALEN];
1947	int ret;
1948
1949	/*
1950	 * try to get mac address in following order:
1951	 *
1952	 * 1) module parameter via kernel command line in form
1953	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1954	 */
1955	iap = macaddr;
1956
1957	/*
1958	 * 2) from device tree data
1959	 */
1960	if (!is_valid_ether_addr(iap)) {
1961		struct device_node *np = fep->pdev->dev.of_node;
1962		if (np) {
1963			ret = of_get_mac_address(np, tmpaddr);
1964			if (!ret)
1965				iap = tmpaddr;
1966			else if (ret == -EPROBE_DEFER)
1967				return ret;
1968		}
1969	}
1970
1971	/*
1972	 * 3) from flash or fuse (via platform data)
1973	 */
1974	if (!is_valid_ether_addr(iap)) {
1975#ifdef CONFIG_M5272
1976		if (FEC_FLASHMAC)
1977			iap = (unsigned char *)FEC_FLASHMAC;
1978#else
1979		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1980
1981		if (pdata)
1982			iap = (unsigned char *)&pdata->mac;
1983#endif
1984	}
1985
1986	/*
1987	 * 4) FEC mac registers set by bootloader
1988	 */
1989	if (!is_valid_ether_addr(iap)) {
1990		*((__be32 *) &tmpaddr[0]) =
1991			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1992		*((__be16 *) &tmpaddr[4]) =
1993			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1994		iap = &tmpaddr[0];
1995	}
1996
1997	/*
1998	 * 5) random mac address
1999	 */
2000	if (!is_valid_ether_addr(iap)) {
2001		/* Report it and use a random ethernet address instead */
2002		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
2003		eth_hw_addr_random(ndev);
2004		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
2005			 ndev->dev_addr);
2006		return 0;
2007	}
2008
2009	/* Adjust MAC if using macaddr */
2010	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2011
2012	return 0;
2013}
2014
2015/* ------------------------------------------------------------------------- */
2016
2017/*
2018 * Phy section
2019 */
2020
2021/* LPI Sleep Ts count base on tx clk (clk_ref).
2022 * The lpi sleep cnt value = X us / (cycle_ns).
2023 */
2024static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2025{
2026	struct fec_enet_private *fep = netdev_priv(ndev);
2027
2028	return us * (fep->clk_ref_rate / 1000) / 1000;
2029}
2030
2031static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
2032{
2033	struct fec_enet_private *fep = netdev_priv(ndev);
2034	struct ethtool_keee *p = &fep->eee;
2035	unsigned int sleep_cycle, wake_cycle;
2036
2037	if (enable) {
2038		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
2039		wake_cycle = sleep_cycle;
2040	} else {
2041		sleep_cycle = 0;
2042		wake_cycle = 0;
2043	}
2044
2045	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2046	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2047
2048	return 0;
2049}
2050
2051static void fec_enet_adjust_link(struct net_device *ndev)
2052{
2053	struct fec_enet_private *fep = netdev_priv(ndev);
2054	struct phy_device *phy_dev = ndev->phydev;
2055	int status_change = 0;
2056
2057	/*
2058	 * If the netdev is down, or is going down, we're not interested
2059	 * in link state events, so just mark our idea of the link as down
2060	 * and ignore the event.
2061	 */
2062	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2063		fep->link = 0;
2064	} else if (phy_dev->link) {
2065		if (!fep->link) {
2066			fep->link = phy_dev->link;
2067			status_change = 1;
2068		}
2069
2070		if (fep->full_duplex != phy_dev->duplex) {
2071			fep->full_duplex = phy_dev->duplex;
2072			status_change = 1;
2073		}
2074
2075		if (phy_dev->speed != fep->speed) {
2076			fep->speed = phy_dev->speed;
2077			status_change = 1;
2078		}
2079
2080		/* if any of the above changed restart the FEC */
2081		if (status_change) {
2082			netif_stop_queue(ndev);
2083			napi_disable(&fep->napi);
2084			netif_tx_lock_bh(ndev);
2085			fec_restart(ndev);
2086			netif_tx_wake_all_queues(ndev);
2087			netif_tx_unlock_bh(ndev);
2088			napi_enable(&fep->napi);
2089		}
2090		if (fep->quirks & FEC_QUIRK_HAS_EEE)
2091			fec_enet_eee_mode_set(ndev, phy_dev->enable_tx_lpi);
2092	} else {
2093		if (fep->link) {
2094			netif_stop_queue(ndev);
2095			napi_disable(&fep->napi);
2096			netif_tx_lock_bh(ndev);
2097			fec_stop(ndev);
2098			netif_tx_unlock_bh(ndev);
2099			napi_enable(&fep->napi);
2100			fep->link = phy_dev->link;
2101			status_change = 1;
2102		}
2103	}
2104
2105	if (status_change)
2106		phy_print_status(phy_dev);
2107}
2108
2109static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2110{
2111	uint ievent;
2112	int ret;
2113
2114	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2115					ievent & FEC_ENET_MII, 2, 30000);
2116
2117	if (!ret)
2118		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2119
2120	return ret;
2121}
2122
2123static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2124{
2125	struct fec_enet_private *fep = bus->priv;
2126	struct device *dev = &fep->pdev->dev;
2127	int ret = 0, frame_start, frame_addr, frame_op;
2128
2129	ret = pm_runtime_resume_and_get(dev);
2130	if (ret < 0)
2131		return ret;
2132
2133	/* C22 read */
2134	frame_op = FEC_MMFR_OP_READ;
2135	frame_start = FEC_MMFR_ST;
2136	frame_addr = regnum;
2137
2138	/* start a read op */
2139	writel(frame_start | frame_op |
2140	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2141	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2142
2143	/* wait for end of transfer */
2144	ret = fec_enet_mdio_wait(fep);
2145	if (ret) {
2146		netdev_err(fep->netdev, "MDIO read timeout\n");
2147		goto out;
2148	}
2149
2150	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2151
2152out:
2153	pm_runtime_mark_last_busy(dev);
2154	pm_runtime_put_autosuspend(dev);
2155
2156	return ret;
2157}
2158
2159static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2160				  int devad, int regnum)
2161{
2162	struct fec_enet_private *fep = bus->priv;
2163	struct device *dev = &fep->pdev->dev;
2164	int ret = 0, frame_start, frame_op;
2165
2166	ret = pm_runtime_resume_and_get(dev);
2167	if (ret < 0)
2168		return ret;
2169
2170	frame_start = FEC_MMFR_ST_C45;
2171
2172	/* write address */
2173	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2174	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2175	       FEC_MMFR_TA | (regnum & 0xFFFF),
2176	       fep->hwp + FEC_MII_DATA);
2177
2178	/* wait for end of transfer */
2179	ret = fec_enet_mdio_wait(fep);
2180	if (ret) {
2181		netdev_err(fep->netdev, "MDIO address write timeout\n");
2182		goto out;
2183	}
2184
2185	frame_op = FEC_MMFR_OP_READ_C45;
2186
2187	/* start a read op */
2188	writel(frame_start | frame_op |
2189	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2190	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2191
2192	/* wait for end of transfer */
2193	ret = fec_enet_mdio_wait(fep);
2194	if (ret) {
2195		netdev_err(fep->netdev, "MDIO read timeout\n");
2196		goto out;
2197	}
2198
2199	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2200
2201out:
2202	pm_runtime_mark_last_busy(dev);
2203	pm_runtime_put_autosuspend(dev);
2204
2205	return ret;
2206}
2207
2208static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2209				   u16 value)
2210{
2211	struct fec_enet_private *fep = bus->priv;
2212	struct device *dev = &fep->pdev->dev;
2213	int ret, frame_start, frame_addr;
2214
2215	ret = pm_runtime_resume_and_get(dev);
2216	if (ret < 0)
2217		return ret;
2218
2219	/* C22 write */
2220	frame_start = FEC_MMFR_ST;
2221	frame_addr = regnum;
2222
2223	/* start a write op */
2224	writel(frame_start | FEC_MMFR_OP_WRITE |
2225	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2226	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2227	       fep->hwp + FEC_MII_DATA);
2228
2229	/* wait for end of transfer */
2230	ret = fec_enet_mdio_wait(fep);
2231	if (ret)
2232		netdev_err(fep->netdev, "MDIO write timeout\n");
2233
2234	pm_runtime_mark_last_busy(dev);
2235	pm_runtime_put_autosuspend(dev);
2236
2237	return ret;
2238}
2239
2240static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2241				   int devad, int regnum, u16 value)
2242{
2243	struct fec_enet_private *fep = bus->priv;
2244	struct device *dev = &fep->pdev->dev;
2245	int ret, frame_start;
2246
2247	ret = pm_runtime_resume_and_get(dev);
2248	if (ret < 0)
2249		return ret;
2250
2251	frame_start = FEC_MMFR_ST_C45;
2252
2253	/* write address */
2254	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2255	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2256	       FEC_MMFR_TA | (regnum & 0xFFFF),
2257	       fep->hwp + FEC_MII_DATA);
2258
2259	/* wait for end of transfer */
2260	ret = fec_enet_mdio_wait(fep);
2261	if (ret) {
2262		netdev_err(fep->netdev, "MDIO address write timeout\n");
2263		goto out;
2264	}
2265
2266	/* start a write op */
2267	writel(frame_start | FEC_MMFR_OP_WRITE |
2268	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2269	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2270	       fep->hwp + FEC_MII_DATA);
2271
2272	/* wait for end of transfer */
2273	ret = fec_enet_mdio_wait(fep);
2274	if (ret)
2275		netdev_err(fep->netdev, "MDIO write timeout\n");
2276
2277out:
2278	pm_runtime_mark_last_busy(dev);
2279	pm_runtime_put_autosuspend(dev);
2280
2281	return ret;
2282}
2283
2284static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2285{
2286	struct fec_enet_private *fep = netdev_priv(ndev);
2287	struct phy_device *phy_dev = ndev->phydev;
2288
2289	if (phy_dev) {
2290		phy_reset_after_clk_enable(phy_dev);
2291	} else if (fep->phy_node) {
2292		/*
2293		 * If the PHY still is not bound to the MAC, but there is
2294		 * OF PHY node and a matching PHY device instance already,
2295		 * use the OF PHY node to obtain the PHY device instance,
2296		 * and then use that PHY device instance when triggering
2297		 * the PHY reset.
2298		 */
2299		phy_dev = of_phy_find_device(fep->phy_node);
2300		phy_reset_after_clk_enable(phy_dev);
2301		put_device(&phy_dev->mdio.dev);
2302	}
2303}
2304
2305static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2306{
2307	struct fec_enet_private *fep = netdev_priv(ndev);
2308	int ret;
2309
2310	if (enable) {
2311		ret = clk_prepare_enable(fep->clk_enet_out);
2312		if (ret)
2313			return ret;
2314
2315		if (fep->clk_ptp) {
2316			mutex_lock(&fep->ptp_clk_mutex);
2317			ret = clk_prepare_enable(fep->clk_ptp);
2318			if (ret) {
2319				mutex_unlock(&fep->ptp_clk_mutex);
2320				goto failed_clk_ptp;
2321			} else {
2322				fep->ptp_clk_on = true;
2323			}
2324			mutex_unlock(&fep->ptp_clk_mutex);
2325		}
2326
2327		ret = clk_prepare_enable(fep->clk_ref);
2328		if (ret)
2329			goto failed_clk_ref;
2330
2331		ret = clk_prepare_enable(fep->clk_2x_txclk);
2332		if (ret)
2333			goto failed_clk_2x_txclk;
2334
2335		fec_enet_phy_reset_after_clk_enable(ndev);
2336	} else {
2337		clk_disable_unprepare(fep->clk_enet_out);
2338		if (fep->clk_ptp) {
2339			mutex_lock(&fep->ptp_clk_mutex);
2340			clk_disable_unprepare(fep->clk_ptp);
2341			fep->ptp_clk_on = false;
2342			mutex_unlock(&fep->ptp_clk_mutex);
2343		}
2344		clk_disable_unprepare(fep->clk_ref);
2345		clk_disable_unprepare(fep->clk_2x_txclk);
2346	}
2347
2348	return 0;
2349
2350failed_clk_2x_txclk:
2351	if (fep->clk_ref)
2352		clk_disable_unprepare(fep->clk_ref);
2353failed_clk_ref:
2354	if (fep->clk_ptp) {
2355		mutex_lock(&fep->ptp_clk_mutex);
2356		clk_disable_unprepare(fep->clk_ptp);
2357		fep->ptp_clk_on = false;
2358		mutex_unlock(&fep->ptp_clk_mutex);
2359	}
2360failed_clk_ptp:
2361	clk_disable_unprepare(fep->clk_enet_out);
2362
2363	return ret;
2364}
2365
2366static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2367				      struct device_node *np)
2368{
2369	u32 rgmii_tx_delay, rgmii_rx_delay;
2370
2371	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2372	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2373		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2374			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2375			return -EINVAL;
2376		} else if (rgmii_tx_delay == 2000) {
2377			fep->rgmii_txc_dly = true;
2378		}
2379	}
2380
2381	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2382	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2383		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2384			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2385			return -EINVAL;
2386		} else if (rgmii_rx_delay == 2000) {
2387			fep->rgmii_rxc_dly = true;
2388		}
2389	}
2390
2391	return 0;
2392}
2393
2394static int fec_enet_mii_probe(struct net_device *ndev)
2395{
2396	struct fec_enet_private *fep = netdev_priv(ndev);
2397	struct phy_device *phy_dev = NULL;
2398	char mdio_bus_id[MII_BUS_ID_SIZE];
2399	char phy_name[MII_BUS_ID_SIZE + 3];
2400	int phy_id;
2401	int dev_id = fep->dev_id;
2402
2403	if (fep->phy_node) {
2404		phy_dev = of_phy_connect(ndev, fep->phy_node,
2405					 &fec_enet_adjust_link, 0,
2406					 fep->phy_interface);
2407		if (!phy_dev) {
2408			netdev_err(ndev, "Unable to connect to phy\n");
2409			return -ENODEV;
2410		}
2411	} else {
2412		/* check for attached phy */
2413		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2414			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2415				continue;
2416			if (dev_id--)
2417				continue;
2418			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2419			break;
2420		}
2421
2422		if (phy_id >= PHY_MAX_ADDR) {
2423			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2424			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2425			phy_id = 0;
2426		}
2427
2428		snprintf(phy_name, sizeof(phy_name),
2429			 PHY_ID_FMT, mdio_bus_id, phy_id);
2430		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2431				      fep->phy_interface);
2432	}
2433
2434	if (IS_ERR(phy_dev)) {
2435		netdev_err(ndev, "could not attach to PHY\n");
2436		return PTR_ERR(phy_dev);
2437	}
2438
2439	/* mask with MAC supported features */
2440	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2441		phy_set_max_speed(phy_dev, 1000);
2442		phy_remove_link_mode(phy_dev,
2443				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2444#if !defined(CONFIG_M5272)
2445		phy_support_sym_pause(phy_dev);
2446#endif
2447	}
2448	else
2449		phy_set_max_speed(phy_dev, 100);
2450
2451	if (fep->quirks & FEC_QUIRK_HAS_EEE)
2452		phy_support_eee(phy_dev);
2453
2454	fep->link = 0;
2455	fep->full_duplex = 0;
2456
2457	phy_attached_info(phy_dev);
2458
2459	return 0;
2460}
2461
2462static int fec_enet_mii_init(struct platform_device *pdev)
2463{
2464	static struct mii_bus *fec0_mii_bus;
2465	struct net_device *ndev = platform_get_drvdata(pdev);
2466	struct fec_enet_private *fep = netdev_priv(ndev);
2467	bool suppress_preamble = false;
2468	struct phy_device *phydev;
2469	struct device_node *node;
2470	int err = -ENXIO;
2471	u32 mii_speed, holdtime;
2472	u32 bus_freq;
2473	int addr;
2474
2475	/*
2476	 * The i.MX28 dual fec interfaces are not equal.
2477	 * Here are the differences:
2478	 *
2479	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2480	 *  - fec0 acts as the 1588 time master while fec1 is slave
2481	 *  - external phys can only be configured by fec0
2482	 *
2483	 * That is to say fec1 can not work independently. It only works
2484	 * when fec0 is working. The reason behind this design is that the
2485	 * second interface is added primarily for Switch mode.
2486	 *
2487	 * Because of the last point above, both phys are attached on fec0
2488	 * mdio interface in board design, and need to be configured by
2489	 * fec0 mii_bus.
2490	 */
2491	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2492		/* fec1 uses fec0 mii_bus */
2493		if (mii_cnt && fec0_mii_bus) {
2494			fep->mii_bus = fec0_mii_bus;
2495			mii_cnt++;
2496			return 0;
2497		}
2498		return -ENOENT;
2499	}
2500
2501	bus_freq = 2500000; /* 2.5MHz by default */
2502	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2503	if (node) {
2504		of_property_read_u32(node, "clock-frequency", &bus_freq);
2505		suppress_preamble = of_property_read_bool(node,
2506							  "suppress-preamble");
2507	}
2508
2509	/*
2510	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2511	 *
2512	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2513	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2514	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2515	 * document.
2516	 */
2517	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2518	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2519		mii_speed--;
2520	if (mii_speed > 63) {
2521		dev_err(&pdev->dev,
2522			"fec clock (%lu) too fast to get right mii speed\n",
2523			clk_get_rate(fep->clk_ipg));
2524		err = -EINVAL;
2525		goto err_out;
2526	}
2527
2528	/*
2529	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2530	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2531	 * versions are RAZ there, so just ignore the difference and write the
2532	 * register always.
2533	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2534	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2535	 * output.
2536	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2537	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2538	 * holdtime cannot result in a value greater than 3.
2539	 */
2540	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2541
2542	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2543
2544	if (suppress_preamble)
2545		fep->phy_speed |= BIT(7);
2546
2547	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2548		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2549		 * MII event generation condition:
2550		 * - writing MSCR:
2551		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2552		 *	  mscr_reg_data_in[7:0] != 0
2553		 * - writing MMFR:
2554		 *	- mscr[7:0]_not_zero
2555		 */
2556		writel(0, fep->hwp + FEC_MII_DATA);
2557	}
2558
2559	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2560
2561	/* Clear any pending transaction complete indication */
2562	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2563
2564	fep->mii_bus = mdiobus_alloc();
2565	if (fep->mii_bus == NULL) {
2566		err = -ENOMEM;
2567		goto err_out;
2568	}
2569
2570	fep->mii_bus->name = "fec_enet_mii_bus";
2571	fep->mii_bus->read = fec_enet_mdio_read_c22;
2572	fep->mii_bus->write = fec_enet_mdio_write_c22;
2573	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2574		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2575		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2576	}
2577	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2578		pdev->name, fep->dev_id + 1);
2579	fep->mii_bus->priv = fep;
2580	fep->mii_bus->parent = &pdev->dev;
2581
2582	err = of_mdiobus_register(fep->mii_bus, node);
2583	if (err)
2584		goto err_out_free_mdiobus;
2585	of_node_put(node);
2586
2587	/* find all the PHY devices on the bus and set mac_managed_pm to true */
2588	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2589		phydev = mdiobus_get_phy(fep->mii_bus, addr);
2590		if (phydev)
2591			phydev->mac_managed_pm = true;
2592	}
2593
2594	mii_cnt++;
2595
2596	/* save fec0 mii_bus */
2597	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2598		fec0_mii_bus = fep->mii_bus;
2599
2600	return 0;
2601
2602err_out_free_mdiobus:
2603	mdiobus_free(fep->mii_bus);
2604err_out:
2605	of_node_put(node);
2606	return err;
2607}
2608
2609static void fec_enet_mii_remove(struct fec_enet_private *fep)
2610{
2611	if (--mii_cnt == 0) {
2612		mdiobus_unregister(fep->mii_bus);
2613		mdiobus_free(fep->mii_bus);
2614	}
2615}
2616
2617static void fec_enet_get_drvinfo(struct net_device *ndev,
2618				 struct ethtool_drvinfo *info)
2619{
2620	struct fec_enet_private *fep = netdev_priv(ndev);
2621
2622	strscpy(info->driver, fep->pdev->dev.driver->name,
2623		sizeof(info->driver));
2624	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2625}
2626
2627static int fec_enet_get_regs_len(struct net_device *ndev)
2628{
2629	struct fec_enet_private *fep = netdev_priv(ndev);
2630	struct resource *r;
2631	int s = 0;
2632
2633	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2634	if (r)
2635		s = resource_size(r);
2636
2637	return s;
2638}
2639
2640/* List of registers that can be safety be read to dump them with ethtool */
2641#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2642	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2643	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2644static __u32 fec_enet_register_version = 2;
2645static u32 fec_enet_register_offset[] = {
2646	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2647	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2648	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2649	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2650	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2651	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2652	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2653	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2654	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2655	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2656	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2657	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2658	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2659	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2660	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2661	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2662	RMON_T_P_GTE2048, RMON_T_OCTETS,
2663	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2664	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2665	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2666	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2667	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2668	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2669	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2670	RMON_R_P_GTE2048, RMON_R_OCTETS,
2671	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2672	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2673};
2674/* for i.MX6ul */
2675static u32 fec_enet_register_offset_6ul[] = {
2676	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2677	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2678	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2679	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2680	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2681	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2682	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2683	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2684	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2685	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2686	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2687	RMON_T_P_GTE2048, RMON_T_OCTETS,
2688	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2689	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2690	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2691	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2692	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2693	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2694	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2695	RMON_R_P_GTE2048, RMON_R_OCTETS,
2696	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2697	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2698};
2699#else
2700static __u32 fec_enet_register_version = 1;
2701static u32 fec_enet_register_offset[] = {
2702	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2703	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2704	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2705	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2706	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2707	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2708	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2709	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2710	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2711};
2712#endif
2713
2714static void fec_enet_get_regs(struct net_device *ndev,
2715			      struct ethtool_regs *regs, void *regbuf)
2716{
2717	struct fec_enet_private *fep = netdev_priv(ndev);
2718	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2719	struct device *dev = &fep->pdev->dev;
2720	u32 *buf = (u32 *)regbuf;
2721	u32 i, off;
2722	int ret;
2723#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2724	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2725	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2726	u32 *reg_list;
2727	u32 reg_cnt;
2728
2729	if (!of_machine_is_compatible("fsl,imx6ul")) {
2730		reg_list = fec_enet_register_offset;
2731		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2732	} else {
2733		reg_list = fec_enet_register_offset_6ul;
2734		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2735	}
2736#else
2737	/* coldfire */
2738	static u32 *reg_list = fec_enet_register_offset;
2739	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2740#endif
2741	ret = pm_runtime_resume_and_get(dev);
2742	if (ret < 0)
2743		return;
2744
2745	regs->version = fec_enet_register_version;
2746
2747	memset(buf, 0, regs->len);
2748
2749	for (i = 0; i < reg_cnt; i++) {
2750		off = reg_list[i];
2751
2752		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2753		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2754			continue;
2755
2756		off >>= 2;
2757		buf[off] = readl(&theregs[off]);
2758	}
2759
2760	pm_runtime_mark_last_busy(dev);
2761	pm_runtime_put_autosuspend(dev);
2762}
2763
2764static int fec_enet_get_ts_info(struct net_device *ndev,
2765				struct ethtool_ts_info *info)
2766{
2767	struct fec_enet_private *fep = netdev_priv(ndev);
2768
2769	if (fep->bufdesc_ex) {
2770
2771		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2772					SOF_TIMESTAMPING_RX_SOFTWARE |
2773					SOF_TIMESTAMPING_SOFTWARE |
2774					SOF_TIMESTAMPING_TX_HARDWARE |
2775					SOF_TIMESTAMPING_RX_HARDWARE |
2776					SOF_TIMESTAMPING_RAW_HARDWARE;
2777		if (fep->ptp_clock)
2778			info->phc_index = ptp_clock_index(fep->ptp_clock);
2779		else
2780			info->phc_index = -1;
2781
2782		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2783				 (1 << HWTSTAMP_TX_ON);
2784
2785		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2786				   (1 << HWTSTAMP_FILTER_ALL);
2787		return 0;
2788	} else {
2789		return ethtool_op_get_ts_info(ndev, info);
2790	}
2791}
2792
2793#if !defined(CONFIG_M5272)
2794
2795static void fec_enet_get_pauseparam(struct net_device *ndev,
2796				    struct ethtool_pauseparam *pause)
2797{
2798	struct fec_enet_private *fep = netdev_priv(ndev);
2799
2800	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2801	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2802	pause->rx_pause = pause->tx_pause;
2803}
2804
2805static int fec_enet_set_pauseparam(struct net_device *ndev,
2806				   struct ethtool_pauseparam *pause)
2807{
2808	struct fec_enet_private *fep = netdev_priv(ndev);
2809
2810	if (!ndev->phydev)
2811		return -ENODEV;
2812
2813	if (pause->tx_pause != pause->rx_pause) {
2814		netdev_info(ndev,
2815			"hardware only support enable/disable both tx and rx");
2816		return -EINVAL;
2817	}
2818
2819	fep->pause_flag = 0;
2820
2821	/* tx pause must be same as rx pause */
2822	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2823	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2824
2825	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2826			  pause->autoneg);
2827
2828	if (pause->autoneg) {
2829		if (netif_running(ndev))
2830			fec_stop(ndev);
2831		phy_start_aneg(ndev->phydev);
2832	}
2833	if (netif_running(ndev)) {
2834		napi_disable(&fep->napi);
2835		netif_tx_lock_bh(ndev);
2836		fec_restart(ndev);
2837		netif_tx_wake_all_queues(ndev);
2838		netif_tx_unlock_bh(ndev);
2839		napi_enable(&fep->napi);
2840	}
2841
2842	return 0;
2843}
2844
2845static const struct fec_stat {
2846	char name[ETH_GSTRING_LEN];
2847	u16 offset;
2848} fec_stats[] = {
2849	/* RMON TX */
2850	{ "tx_dropped", RMON_T_DROP },
2851	{ "tx_packets", RMON_T_PACKETS },
2852	{ "tx_broadcast", RMON_T_BC_PKT },
2853	{ "tx_multicast", RMON_T_MC_PKT },
2854	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2855	{ "tx_undersize", RMON_T_UNDERSIZE },
2856	{ "tx_oversize", RMON_T_OVERSIZE },
2857	{ "tx_fragment", RMON_T_FRAG },
2858	{ "tx_jabber", RMON_T_JAB },
2859	{ "tx_collision", RMON_T_COL },
2860	{ "tx_64byte", RMON_T_P64 },
2861	{ "tx_65to127byte", RMON_T_P65TO127 },
2862	{ "tx_128to255byte", RMON_T_P128TO255 },
2863	{ "tx_256to511byte", RMON_T_P256TO511 },
2864	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2865	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2866	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2867	{ "tx_octets", RMON_T_OCTETS },
2868
2869	/* IEEE TX */
2870	{ "IEEE_tx_drop", IEEE_T_DROP },
2871	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2872	{ "IEEE_tx_1col", IEEE_T_1COL },
2873	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2874	{ "IEEE_tx_def", IEEE_T_DEF },
2875	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2876	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2877	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2878	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2879	{ "IEEE_tx_sqe", IEEE_T_SQE },
2880	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2881	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2882
2883	/* RMON RX */
2884	{ "rx_packets", RMON_R_PACKETS },
2885	{ "rx_broadcast", RMON_R_BC_PKT },
2886	{ "rx_multicast", RMON_R_MC_PKT },
2887	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2888	{ "rx_undersize", RMON_R_UNDERSIZE },
2889	{ "rx_oversize", RMON_R_OVERSIZE },
2890	{ "rx_fragment", RMON_R_FRAG },
2891	{ "rx_jabber", RMON_R_JAB },
2892	{ "rx_64byte", RMON_R_P64 },
2893	{ "rx_65to127byte", RMON_R_P65TO127 },
2894	{ "rx_128to255byte", RMON_R_P128TO255 },
2895	{ "rx_256to511byte", RMON_R_P256TO511 },
2896	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2897	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2898	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2899	{ "rx_octets", RMON_R_OCTETS },
2900
2901	/* IEEE RX */
2902	{ "IEEE_rx_drop", IEEE_R_DROP },
2903	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2904	{ "IEEE_rx_crc", IEEE_R_CRC },
2905	{ "IEEE_rx_align", IEEE_R_ALIGN },
2906	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2907	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2908	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2909};
2910
2911#define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2912
2913static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2914	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2915	"rx_xdp_pass",               /* RX_XDP_PASS, */
2916	"rx_xdp_drop",               /* RX_XDP_DROP, */
2917	"rx_xdp_tx",                 /* RX_XDP_TX, */
2918	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2919	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2920	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2921};
2922
2923static void fec_enet_update_ethtool_stats(struct net_device *dev)
2924{
2925	struct fec_enet_private *fep = netdev_priv(dev);
2926	int i;
2927
2928	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2929		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2930}
2931
2932static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2933{
2934	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2935	struct fec_enet_priv_rx_q *rxq;
2936	int i, j;
2937
2938	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2939		rxq = fep->rx_queue[i];
2940
2941		for (j = 0; j < XDP_STATS_TOTAL; j++)
2942			xdp_stats[j] += rxq->stats[j];
2943	}
2944
2945	memcpy(data, xdp_stats, sizeof(xdp_stats));
2946}
2947
2948static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2949{
2950#ifdef CONFIG_PAGE_POOL_STATS
2951	struct page_pool_stats stats = {};
2952	struct fec_enet_priv_rx_q *rxq;
2953	int i;
2954
2955	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2956		rxq = fep->rx_queue[i];
2957
2958		if (!rxq->page_pool)
2959			continue;
2960
2961		page_pool_get_stats(rxq->page_pool, &stats);
2962	}
2963
2964	page_pool_ethtool_stats_get(data, &stats);
2965#endif
2966}
2967
2968static void fec_enet_get_ethtool_stats(struct net_device *dev,
2969				       struct ethtool_stats *stats, u64 *data)
2970{
2971	struct fec_enet_private *fep = netdev_priv(dev);
2972
2973	if (netif_running(dev))
2974		fec_enet_update_ethtool_stats(dev);
2975
2976	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2977	data += FEC_STATS_SIZE / sizeof(u64);
2978
2979	fec_enet_get_xdp_stats(fep, data);
2980	data += XDP_STATS_TOTAL;
2981
2982	fec_enet_page_pool_stats(fep, data);
2983}
2984
2985static void fec_enet_get_strings(struct net_device *netdev,
2986	u32 stringset, u8 *data)
2987{
2988	int i;
2989	switch (stringset) {
2990	case ETH_SS_STATS:
2991		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
2992			ethtool_puts(&data, fec_stats[i].name);
2993		}
2994		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
2995			ethtool_puts(&data, fec_xdp_stat_strs[i]);
2996		}
2997		page_pool_ethtool_stats_get_strings(data);
2998
2999		break;
3000	case ETH_SS_TEST:
3001		net_selftest_get_strings(data);
3002		break;
3003	}
3004}
3005
3006static int fec_enet_get_sset_count(struct net_device *dev, int sset)
3007{
3008	int count;
3009
3010	switch (sset) {
3011	case ETH_SS_STATS:
3012		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
3013		count += page_pool_ethtool_stats_get_count();
3014		return count;
3015
3016	case ETH_SS_TEST:
3017		return net_selftest_get_count();
3018	default:
3019		return -EOPNOTSUPP;
3020	}
3021}
3022
3023static void fec_enet_clear_ethtool_stats(struct net_device *dev)
3024{
3025	struct fec_enet_private *fep = netdev_priv(dev);
3026	struct fec_enet_priv_rx_q *rxq;
3027	int i, j;
3028
3029	/* Disable MIB statistics counters */
3030	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
3031
3032	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
3033		writel(0, fep->hwp + fec_stats[i].offset);
3034
3035	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
3036		rxq = fep->rx_queue[i];
3037		for (j = 0; j < XDP_STATS_TOTAL; j++)
3038			rxq->stats[j] = 0;
3039	}
3040
3041	/* Don't disable MIB statistics counters */
3042	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3043}
3044
3045#else	/* !defined(CONFIG_M5272) */
3046#define FEC_STATS_SIZE	0
3047static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3048{
3049}
3050
3051static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3052{
3053}
3054#endif /* !defined(CONFIG_M5272) */
3055
3056/* ITR clock source is enet system clock (clk_ahb).
3057 * TCTT unit is cycle_ns * 64 cycle
3058 * So, the ICTT value = X us / (cycle_ns * 64)
3059 */
3060static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3061{
3062	struct fec_enet_private *fep = netdev_priv(ndev);
3063
3064	return us * (fep->itr_clk_rate / 64000) / 1000;
3065}
3066
3067/* Set threshold for interrupt coalescing */
3068static void fec_enet_itr_coal_set(struct net_device *ndev)
3069{
3070	struct fec_enet_private *fep = netdev_priv(ndev);
3071	int rx_itr, tx_itr;
3072
3073	/* Must be greater than zero to avoid unpredictable behavior */
3074	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3075	    !fep->tx_time_itr || !fep->tx_pkts_itr)
3076		return;
3077
3078	/* Select enet system clock as Interrupt Coalescing
3079	 * timer Clock Source
3080	 */
3081	rx_itr = FEC_ITR_CLK_SEL;
3082	tx_itr = FEC_ITR_CLK_SEL;
3083
3084	/* set ICFT and ICTT */
3085	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3086	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3087	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3088	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3089
3090	rx_itr |= FEC_ITR_EN;
3091	tx_itr |= FEC_ITR_EN;
3092
3093	writel(tx_itr, fep->hwp + FEC_TXIC0);
3094	writel(rx_itr, fep->hwp + FEC_RXIC0);
3095	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3096		writel(tx_itr, fep->hwp + FEC_TXIC1);
3097		writel(rx_itr, fep->hwp + FEC_RXIC1);
3098		writel(tx_itr, fep->hwp + FEC_TXIC2);
3099		writel(rx_itr, fep->hwp + FEC_RXIC2);
3100	}
3101}
3102
3103static int fec_enet_get_coalesce(struct net_device *ndev,
3104				 struct ethtool_coalesce *ec,
3105				 struct kernel_ethtool_coalesce *kernel_coal,
3106				 struct netlink_ext_ack *extack)
3107{
3108	struct fec_enet_private *fep = netdev_priv(ndev);
3109
3110	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3111		return -EOPNOTSUPP;
3112
3113	ec->rx_coalesce_usecs = fep->rx_time_itr;
3114	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3115
3116	ec->tx_coalesce_usecs = fep->tx_time_itr;
3117	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3118
3119	return 0;
3120}
3121
3122static int fec_enet_set_coalesce(struct net_device *ndev,
3123				 struct ethtool_coalesce *ec,
3124				 struct kernel_ethtool_coalesce *kernel_coal,
3125				 struct netlink_ext_ack *extack)
3126{
3127	struct fec_enet_private *fep = netdev_priv(ndev);
3128	struct device *dev = &fep->pdev->dev;
3129	unsigned int cycle;
3130
3131	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3132		return -EOPNOTSUPP;
3133
3134	if (ec->rx_max_coalesced_frames > 255) {
3135		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3136		return -EINVAL;
3137	}
3138
3139	if (ec->tx_max_coalesced_frames > 255) {
3140		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3141		return -EINVAL;
3142	}
3143
3144	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3145	if (cycle > 0xFFFF) {
3146		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3147		return -EINVAL;
3148	}
3149
3150	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3151	if (cycle > 0xFFFF) {
3152		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3153		return -EINVAL;
3154	}
3155
3156	fep->rx_time_itr = ec->rx_coalesce_usecs;
3157	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3158
3159	fep->tx_time_itr = ec->tx_coalesce_usecs;
3160	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3161
3162	fec_enet_itr_coal_set(ndev);
3163
3164	return 0;
3165}
3166
3167static int
3168fec_enet_get_eee(struct net_device *ndev, struct ethtool_keee *edata)
3169{
3170	struct fec_enet_private *fep = netdev_priv(ndev);
3171	struct ethtool_keee *p = &fep->eee;
3172
3173	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3174		return -EOPNOTSUPP;
3175
3176	if (!netif_running(ndev))
3177		return -ENETDOWN;
3178
3179	edata->tx_lpi_timer = p->tx_lpi_timer;
3180
3181	return phy_ethtool_get_eee(ndev->phydev, edata);
3182}
3183
3184static int
3185fec_enet_set_eee(struct net_device *ndev, struct ethtool_keee *edata)
3186{
3187	struct fec_enet_private *fep = netdev_priv(ndev);
3188	struct ethtool_keee *p = &fep->eee;
3189
3190	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3191		return -EOPNOTSUPP;
3192
3193	if (!netif_running(ndev))
3194		return -ENETDOWN;
3195
3196	p->tx_lpi_timer = edata->tx_lpi_timer;
3197
3198	return phy_ethtool_set_eee(ndev->phydev, edata);
3199}
3200
3201static void
3202fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3203{
3204	struct fec_enet_private *fep = netdev_priv(ndev);
3205
3206	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3207		wol->supported = WAKE_MAGIC;
3208		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3209	} else {
3210		wol->supported = wol->wolopts = 0;
3211	}
3212}
3213
3214static int
3215fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3216{
3217	struct fec_enet_private *fep = netdev_priv(ndev);
3218
3219	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3220		return -EINVAL;
3221
3222	if (wol->wolopts & ~WAKE_MAGIC)
3223		return -EINVAL;
3224
3225	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3226	if (device_may_wakeup(&ndev->dev))
3227		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3228	else
3229		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3230
3231	return 0;
3232}
3233
3234static const struct ethtool_ops fec_enet_ethtool_ops = {
3235	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3236				     ETHTOOL_COALESCE_MAX_FRAMES,
3237	.get_drvinfo		= fec_enet_get_drvinfo,
3238	.get_regs_len		= fec_enet_get_regs_len,
3239	.get_regs		= fec_enet_get_regs,
3240	.nway_reset		= phy_ethtool_nway_reset,
3241	.get_link		= ethtool_op_get_link,
3242	.get_coalesce		= fec_enet_get_coalesce,
3243	.set_coalesce		= fec_enet_set_coalesce,
3244#ifndef CONFIG_M5272
3245	.get_pauseparam		= fec_enet_get_pauseparam,
3246	.set_pauseparam		= fec_enet_set_pauseparam,
3247	.get_strings		= fec_enet_get_strings,
3248	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3249	.get_sset_count		= fec_enet_get_sset_count,
3250#endif
3251	.get_ts_info		= fec_enet_get_ts_info,
3252	.get_wol		= fec_enet_get_wol,
3253	.set_wol		= fec_enet_set_wol,
3254	.get_eee		= fec_enet_get_eee,
3255	.set_eee		= fec_enet_set_eee,
3256	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3257	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3258	.self_test		= net_selftest,
3259};
3260
3261static void fec_enet_free_buffers(struct net_device *ndev)
3262{
3263	struct fec_enet_private *fep = netdev_priv(ndev);
3264	unsigned int i;
3265	struct fec_enet_priv_tx_q *txq;
3266	struct fec_enet_priv_rx_q *rxq;
3267	unsigned int q;
3268
3269	for (q = 0; q < fep->num_rx_queues; q++) {
3270		rxq = fep->rx_queue[q];
3271		for (i = 0; i < rxq->bd.ring_size; i++)
3272			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3273
3274		for (i = 0; i < XDP_STATS_TOTAL; i++)
3275			rxq->stats[i] = 0;
3276
3277		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3278			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3279		page_pool_destroy(rxq->page_pool);
3280		rxq->page_pool = NULL;
3281	}
3282
3283	for (q = 0; q < fep->num_tx_queues; q++) {
3284		txq = fep->tx_queue[q];
3285		for (i = 0; i < txq->bd.ring_size; i++) {
3286			kfree(txq->tx_bounce[i]);
3287			txq->tx_bounce[i] = NULL;
3288
3289			if (!txq->tx_buf[i].buf_p) {
3290				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3291				continue;
3292			}
3293
3294			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3295				dev_kfree_skb(txq->tx_buf[i].buf_p);
3296			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3297				xdp_return_frame(txq->tx_buf[i].buf_p);
3298			} else {
3299				struct page *page = txq->tx_buf[i].buf_p;
3300
3301				page_pool_put_page(page->pp, page, 0, false);
3302			}
3303
3304			txq->tx_buf[i].buf_p = NULL;
3305			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3306		}
3307	}
3308}
3309
3310static void fec_enet_free_queue(struct net_device *ndev)
3311{
3312	struct fec_enet_private *fep = netdev_priv(ndev);
3313	int i;
3314	struct fec_enet_priv_tx_q *txq;
3315
3316	for (i = 0; i < fep->num_tx_queues; i++)
3317		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3318			txq = fep->tx_queue[i];
3319			fec_dma_free(&fep->pdev->dev,
3320				     txq->bd.ring_size * TSO_HEADER_SIZE,
3321				     txq->tso_hdrs, txq->tso_hdrs_dma);
3322		}
3323
3324	for (i = 0; i < fep->num_rx_queues; i++)
3325		kfree(fep->rx_queue[i]);
3326	for (i = 0; i < fep->num_tx_queues; i++)
3327		kfree(fep->tx_queue[i]);
3328}
3329
3330static int fec_enet_alloc_queue(struct net_device *ndev)
3331{
3332	struct fec_enet_private *fep = netdev_priv(ndev);
3333	int i;
3334	int ret = 0;
3335	struct fec_enet_priv_tx_q *txq;
3336
3337	for (i = 0; i < fep->num_tx_queues; i++) {
3338		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3339		if (!txq) {
3340			ret = -ENOMEM;
3341			goto alloc_failed;
3342		}
3343
3344		fep->tx_queue[i] = txq;
3345		txq->bd.ring_size = TX_RING_SIZE;
3346		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3347
3348		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3349		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3350
3351		txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3352					txq->bd.ring_size * TSO_HEADER_SIZE,
3353					&txq->tso_hdrs_dma, GFP_KERNEL);
3354		if (!txq->tso_hdrs) {
3355			ret = -ENOMEM;
3356			goto alloc_failed;
3357		}
3358	}
3359
3360	for (i = 0; i < fep->num_rx_queues; i++) {
3361		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3362					   GFP_KERNEL);
3363		if (!fep->rx_queue[i]) {
3364			ret = -ENOMEM;
3365			goto alloc_failed;
3366		}
3367
3368		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3369		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3370	}
3371	return ret;
3372
3373alloc_failed:
3374	fec_enet_free_queue(ndev);
3375	return ret;
3376}
3377
3378static int
3379fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3380{
3381	struct fec_enet_private *fep = netdev_priv(ndev);
3382	struct fec_enet_priv_rx_q *rxq;
3383	dma_addr_t phys_addr;
3384	struct bufdesc	*bdp;
3385	struct page *page;
3386	int i, err;
3387
3388	rxq = fep->rx_queue[queue];
3389	bdp = rxq->bd.base;
3390
3391	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3392	if (err < 0) {
3393		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3394		return err;
3395	}
3396
3397	for (i = 0; i < rxq->bd.ring_size; i++) {
3398		page = page_pool_dev_alloc_pages(rxq->page_pool);
3399		if (!page)
3400			goto err_alloc;
3401
3402		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3403		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3404
3405		rxq->rx_skb_info[i].page = page;
3406		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3407		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3408
3409		if (fep->bufdesc_ex) {
3410			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3411			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3412		}
3413
3414		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3415	}
3416
3417	/* Set the last buffer to wrap. */
3418	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3419	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3420	return 0;
3421
3422 err_alloc:
3423	fec_enet_free_buffers(ndev);
3424	return -ENOMEM;
3425}
3426
3427static int
3428fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3429{
3430	struct fec_enet_private *fep = netdev_priv(ndev);
3431	unsigned int i;
3432	struct bufdesc  *bdp;
3433	struct fec_enet_priv_tx_q *txq;
3434
3435	txq = fep->tx_queue[queue];
3436	bdp = txq->bd.base;
3437	for (i = 0; i < txq->bd.ring_size; i++) {
3438		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3439		if (!txq->tx_bounce[i])
3440			goto err_alloc;
3441
3442		bdp->cbd_sc = cpu_to_fec16(0);
3443		bdp->cbd_bufaddr = cpu_to_fec32(0);
3444
3445		if (fep->bufdesc_ex) {
3446			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3447			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3448		}
3449
3450		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3451	}
3452
3453	/* Set the last buffer to wrap. */
3454	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3455	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3456
3457	return 0;
3458
3459 err_alloc:
3460	fec_enet_free_buffers(ndev);
3461	return -ENOMEM;
3462}
3463
3464static int fec_enet_alloc_buffers(struct net_device *ndev)
3465{
3466	struct fec_enet_private *fep = netdev_priv(ndev);
3467	unsigned int i;
3468
3469	for (i = 0; i < fep->num_rx_queues; i++)
3470		if (fec_enet_alloc_rxq_buffers(ndev, i))
3471			return -ENOMEM;
3472
3473	for (i = 0; i < fep->num_tx_queues; i++)
3474		if (fec_enet_alloc_txq_buffers(ndev, i))
3475			return -ENOMEM;
3476	return 0;
3477}
3478
3479static int
3480fec_enet_open(struct net_device *ndev)
3481{
3482	struct fec_enet_private *fep = netdev_priv(ndev);
3483	int ret;
3484	bool reset_again;
3485
3486	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3487	if (ret < 0)
3488		return ret;
3489
3490	pinctrl_pm_select_default_state(&fep->pdev->dev);
3491	ret = fec_enet_clk_enable(ndev, true);
3492	if (ret)
3493		goto clk_enable;
3494
3495	/* During the first fec_enet_open call the PHY isn't probed at this
3496	 * point. Therefore the phy_reset_after_clk_enable() call within
3497	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3498	 * sure the PHY is working correctly we check if we need to reset again
3499	 * later when the PHY is probed
3500	 */
3501	if (ndev->phydev && ndev->phydev->drv)
3502		reset_again = false;
3503	else
3504		reset_again = true;
3505
3506	/* I should reset the ring buffers here, but I don't yet know
3507	 * a simple way to do that.
3508	 */
3509
3510	ret = fec_enet_alloc_buffers(ndev);
3511	if (ret)
3512		goto err_enet_alloc;
3513
3514	/* Init MAC prior to mii bus probe */
3515	fec_restart(ndev);
3516
3517	/* Call phy_reset_after_clk_enable() again if it failed during
3518	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3519	 */
3520	if (reset_again)
3521		fec_enet_phy_reset_after_clk_enable(ndev);
3522
3523	/* Probe and connect to PHY when open the interface */
3524	ret = fec_enet_mii_probe(ndev);
3525	if (ret)
3526		goto err_enet_mii_probe;
3527
3528	if (fep->quirks & FEC_QUIRK_ERR006687)
3529		imx6q_cpuidle_fec_irqs_used();
3530
3531	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3532		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3533
3534	napi_enable(&fep->napi);
3535	phy_start(ndev->phydev);
3536	netif_tx_start_all_queues(ndev);
3537
3538	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3539				 FEC_WOL_FLAG_ENABLE);
3540
3541	return 0;
3542
3543err_enet_mii_probe:
3544	fec_enet_free_buffers(ndev);
3545err_enet_alloc:
3546	fec_enet_clk_enable(ndev, false);
3547clk_enable:
3548	pm_runtime_mark_last_busy(&fep->pdev->dev);
3549	pm_runtime_put_autosuspend(&fep->pdev->dev);
3550	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3551	return ret;
3552}
3553
3554static int
3555fec_enet_close(struct net_device *ndev)
3556{
3557	struct fec_enet_private *fep = netdev_priv(ndev);
3558
3559	phy_stop(ndev->phydev);
3560
3561	if (netif_device_present(ndev)) {
3562		napi_disable(&fep->napi);
3563		netif_tx_disable(ndev);
3564		fec_stop(ndev);
3565	}
3566
3567	phy_disconnect(ndev->phydev);
3568
3569	if (fep->quirks & FEC_QUIRK_ERR006687)
3570		imx6q_cpuidle_fec_irqs_unused();
3571
3572	fec_enet_update_ethtool_stats(ndev);
3573
3574	fec_enet_clk_enable(ndev, false);
3575	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3576		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3577
3578	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3579	pm_runtime_mark_last_busy(&fep->pdev->dev);
3580	pm_runtime_put_autosuspend(&fep->pdev->dev);
3581
3582	fec_enet_free_buffers(ndev);
3583
3584	return 0;
3585}
3586
3587/* Set or clear the multicast filter for this adaptor.
3588 * Skeleton taken from sunlance driver.
3589 * The CPM Ethernet implementation allows Multicast as well as individual
3590 * MAC address filtering.  Some of the drivers check to make sure it is
3591 * a group multicast address, and discard those that are not.  I guess I
3592 * will do the same for now, but just remove the test if you want
3593 * individual filtering as well (do the upper net layers want or support
3594 * this kind of feature?).
3595 */
3596
3597#define FEC_HASH_BITS	6		/* #bits in hash */
3598
3599static void set_multicast_list(struct net_device *ndev)
3600{
3601	struct fec_enet_private *fep = netdev_priv(ndev);
3602	struct netdev_hw_addr *ha;
3603	unsigned int crc, tmp;
3604	unsigned char hash;
3605	unsigned int hash_high = 0, hash_low = 0;
3606
3607	if (ndev->flags & IFF_PROMISC) {
3608		tmp = readl(fep->hwp + FEC_R_CNTRL);
3609		tmp |= 0x8;
3610		writel(tmp, fep->hwp + FEC_R_CNTRL);
3611		return;
3612	}
3613
3614	tmp = readl(fep->hwp + FEC_R_CNTRL);
3615	tmp &= ~0x8;
3616	writel(tmp, fep->hwp + FEC_R_CNTRL);
3617
3618	if (ndev->flags & IFF_ALLMULTI) {
3619		/* Catch all multicast addresses, so set the
3620		 * filter to all 1's
3621		 */
3622		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3623		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3624
3625		return;
3626	}
3627
3628	/* Add the addresses in hash register */
3629	netdev_for_each_mc_addr(ha, ndev) {
3630		/* calculate crc32 value of mac address */
3631		crc = ether_crc_le(ndev->addr_len, ha->addr);
3632
3633		/* only upper 6 bits (FEC_HASH_BITS) are used
3634		 * which point to specific bit in the hash registers
3635		 */
3636		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3637
3638		if (hash > 31)
3639			hash_high |= 1 << (hash - 32);
3640		else
3641			hash_low |= 1 << hash;
3642	}
3643
3644	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3645	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3646}
3647
3648/* Set a MAC change in hardware. */
3649static int
3650fec_set_mac_address(struct net_device *ndev, void *p)
3651{
3652	struct fec_enet_private *fep = netdev_priv(ndev);
3653	struct sockaddr *addr = p;
3654
3655	if (addr) {
3656		if (!is_valid_ether_addr(addr->sa_data))
3657			return -EADDRNOTAVAIL;
3658		eth_hw_addr_set(ndev, addr->sa_data);
3659	}
3660
3661	/* Add netif status check here to avoid system hang in below case:
3662	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3663	 * After ethx down, fec all clocks are gated off and then register
3664	 * access causes system hang.
3665	 */
3666	if (!netif_running(ndev))
3667		return 0;
3668
3669	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3670		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3671		fep->hwp + FEC_ADDR_LOW);
3672	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3673		fep->hwp + FEC_ADDR_HIGH);
3674	return 0;
3675}
3676
3677#ifdef CONFIG_NET_POLL_CONTROLLER
3678/**
3679 * fec_poll_controller - FEC Poll controller function
3680 * @dev: The FEC network adapter
3681 *
3682 * Polled functionality used by netconsole and others in non interrupt mode
3683 *
3684 */
3685static void fec_poll_controller(struct net_device *dev)
3686{
3687	int i;
3688	struct fec_enet_private *fep = netdev_priv(dev);
3689
3690	for (i = 0; i < FEC_IRQ_NUM; i++) {
3691		if (fep->irq[i] > 0) {
3692			disable_irq(fep->irq[i]);
3693			fec_enet_interrupt(fep->irq[i], dev);
3694			enable_irq(fep->irq[i]);
3695		}
3696	}
3697}
3698#endif
3699
3700static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3701	netdev_features_t features)
3702{
3703	struct fec_enet_private *fep = netdev_priv(netdev);
3704	netdev_features_t changed = features ^ netdev->features;
3705
3706	netdev->features = features;
3707
3708	/* Receive checksum has been changed */
3709	if (changed & NETIF_F_RXCSUM) {
3710		if (features & NETIF_F_RXCSUM)
3711			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3712		else
3713			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3714	}
3715}
3716
3717static int fec_set_features(struct net_device *netdev,
3718	netdev_features_t features)
3719{
3720	struct fec_enet_private *fep = netdev_priv(netdev);
3721	netdev_features_t changed = features ^ netdev->features;
3722
3723	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3724		napi_disable(&fep->napi);
3725		netif_tx_lock_bh(netdev);
3726		fec_stop(netdev);
3727		fec_enet_set_netdev_features(netdev, features);
3728		fec_restart(netdev);
3729		netif_tx_wake_all_queues(netdev);
3730		netif_tx_unlock_bh(netdev);
3731		napi_enable(&fep->napi);
3732	} else {
3733		fec_enet_set_netdev_features(netdev, features);
3734	}
3735
3736	return 0;
3737}
3738
3739static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3740				 struct net_device *sb_dev)
3741{
3742	struct fec_enet_private *fep = netdev_priv(ndev);
3743	u16 vlan_tag = 0;
3744
3745	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3746		return netdev_pick_tx(ndev, skb, NULL);
3747
3748	/* VLAN is present in the payload.*/
3749	if (eth_type_vlan(skb->protocol)) {
3750		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3751
3752		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3753	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3754	} else if (skb_vlan_tag_present(skb)) {
3755		vlan_tag = skb->vlan_tci;
3756	} else {
3757		return vlan_tag;
3758	}
3759
3760	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3761}
3762
3763static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3764{
3765	struct fec_enet_private *fep = netdev_priv(dev);
3766	bool is_run = netif_running(dev);
3767	struct bpf_prog *old_prog;
3768
3769	switch (bpf->command) {
3770	case XDP_SETUP_PROG:
3771		/* No need to support the SoCs that require to
3772		 * do the frame swap because the performance wouldn't be
3773		 * better than the skb mode.
3774		 */
3775		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3776			return -EOPNOTSUPP;
3777
3778		if (!bpf->prog)
3779			xdp_features_clear_redirect_target(dev);
3780
3781		if (is_run) {
3782			napi_disable(&fep->napi);
3783			netif_tx_disable(dev);
3784		}
3785
3786		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3787		if (old_prog)
3788			bpf_prog_put(old_prog);
3789
3790		fec_restart(dev);
3791
3792		if (is_run) {
3793			napi_enable(&fep->napi);
3794			netif_tx_start_all_queues(dev);
3795		}
3796
3797		if (bpf->prog)
3798			xdp_features_set_redirect_target(dev, false);
3799
3800		return 0;
3801
3802	case XDP_SETUP_XSK_POOL:
3803		return -EOPNOTSUPP;
3804
3805	default:
3806		return -EOPNOTSUPP;
3807	}
3808}
3809
3810static int
3811fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3812{
3813	if (unlikely(index < 0))
3814		return 0;
3815
3816	return (index % fep->num_tx_queues);
3817}
3818
3819static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3820				   struct fec_enet_priv_tx_q *txq,
3821				   void *frame, u32 dma_sync_len,
3822				   bool ndo_xmit)
3823{
3824	unsigned int index, status, estatus;
3825	struct bufdesc *bdp;
3826	dma_addr_t dma_addr;
3827	int entries_free;
3828	u16 frame_len;
3829
3830	entries_free = fec_enet_get_free_txdesc_num(txq);
3831	if (entries_free < MAX_SKB_FRAGS + 1) {
3832		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3833		return -EBUSY;
3834	}
3835
3836	/* Fill in a Tx ring entry */
3837	bdp = txq->bd.cur;
3838	status = fec16_to_cpu(bdp->cbd_sc);
3839	status &= ~BD_ENET_TX_STATS;
3840
3841	index = fec_enet_get_bd_index(bdp, &txq->bd);
3842
3843	if (ndo_xmit) {
3844		struct xdp_frame *xdpf = frame;
3845
3846		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3847					  xdpf->len, DMA_TO_DEVICE);
3848		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3849			return -ENOMEM;
3850
3851		frame_len = xdpf->len;
3852		txq->tx_buf[index].buf_p = xdpf;
3853		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3854	} else {
3855		struct xdp_buff *xdpb = frame;
3856		struct page *page;
3857
3858		page = virt_to_page(xdpb->data);
3859		dma_addr = page_pool_get_dma_addr(page) +
3860			   (xdpb->data - xdpb->data_hard_start);
3861		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3862					   dma_sync_len, DMA_BIDIRECTIONAL);
3863		frame_len = xdpb->data_end - xdpb->data;
3864		txq->tx_buf[index].buf_p = page;
3865		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3866	}
3867
3868	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3869	if (fep->bufdesc_ex)
3870		estatus = BD_ENET_TX_INT;
3871
3872	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3873	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3874
3875	if (fep->bufdesc_ex) {
3876		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3877
3878		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3879			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3880
3881		ebdp->cbd_bdu = 0;
3882		ebdp->cbd_esc = cpu_to_fec32(estatus);
3883	}
3884
3885	/* Make sure the updates to rest of the descriptor are performed before
3886	 * transferring ownership.
3887	 */
3888	dma_wmb();
3889
3890	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3891	 * it's the last BD of the frame, and to put the CRC on the end.
3892	 */
3893	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3894	bdp->cbd_sc = cpu_to_fec16(status);
3895
3896	/* If this was the last BD in the ring, start at the beginning again. */
3897	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3898
3899	/* Make sure the update to bdp are performed before txq->bd.cur. */
3900	dma_wmb();
3901
3902	txq->bd.cur = bdp;
3903
3904	/* Trigger transmission start */
3905	writel(0, txq->bd.reg_desc_active);
3906
3907	return 0;
3908}
3909
3910static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3911				int cpu, struct xdp_buff *xdp,
3912				u32 dma_sync_len)
3913{
3914	struct fec_enet_priv_tx_q *txq;
3915	struct netdev_queue *nq;
3916	int queue, ret;
3917
3918	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3919	txq = fep->tx_queue[queue];
3920	nq = netdev_get_tx_queue(fep->netdev, queue);
3921
3922	__netif_tx_lock(nq, cpu);
3923
3924	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3925	txq_trans_cond_update(nq);
3926	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3927
3928	__netif_tx_unlock(nq);
3929
3930	return ret;
3931}
3932
3933static int fec_enet_xdp_xmit(struct net_device *dev,
3934			     int num_frames,
3935			     struct xdp_frame **frames,
3936			     u32 flags)
3937{
3938	struct fec_enet_private *fep = netdev_priv(dev);
3939	struct fec_enet_priv_tx_q *txq;
3940	int cpu = smp_processor_id();
3941	unsigned int sent_frames = 0;
3942	struct netdev_queue *nq;
3943	unsigned int queue;
3944	int i;
3945
3946	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3947	txq = fep->tx_queue[queue];
3948	nq = netdev_get_tx_queue(fep->netdev, queue);
3949
3950	__netif_tx_lock(nq, cpu);
3951
3952	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3953	txq_trans_cond_update(nq);
3954	for (i = 0; i < num_frames; i++) {
3955		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3956			break;
3957		sent_frames++;
3958	}
3959
3960	__netif_tx_unlock(nq);
3961
3962	return sent_frames;
3963}
3964
3965static int fec_hwtstamp_get(struct net_device *ndev,
3966			    struct kernel_hwtstamp_config *config)
3967{
3968	struct fec_enet_private *fep = netdev_priv(ndev);
3969
3970	if (!netif_running(ndev))
3971		return -EINVAL;
3972
3973	if (!fep->bufdesc_ex)
3974		return -EOPNOTSUPP;
3975
3976	fec_ptp_get(ndev, config);
3977
3978	return 0;
3979}
3980
3981static int fec_hwtstamp_set(struct net_device *ndev,
3982			    struct kernel_hwtstamp_config *config,
3983			    struct netlink_ext_ack *extack)
3984{
3985	struct fec_enet_private *fep = netdev_priv(ndev);
3986
3987	if (!netif_running(ndev))
3988		return -EINVAL;
3989
3990	if (!fep->bufdesc_ex)
3991		return -EOPNOTSUPP;
3992
3993	return fec_ptp_set(ndev, config, extack);
3994}
3995
3996static const struct net_device_ops fec_netdev_ops = {
3997	.ndo_open		= fec_enet_open,
3998	.ndo_stop		= fec_enet_close,
3999	.ndo_start_xmit		= fec_enet_start_xmit,
4000	.ndo_select_queue       = fec_enet_select_queue,
4001	.ndo_set_rx_mode	= set_multicast_list,
4002	.ndo_validate_addr	= eth_validate_addr,
4003	.ndo_tx_timeout		= fec_timeout,
4004	.ndo_set_mac_address	= fec_set_mac_address,
4005	.ndo_eth_ioctl		= phy_do_ioctl_running,
4006#ifdef CONFIG_NET_POLL_CONTROLLER
4007	.ndo_poll_controller	= fec_poll_controller,
4008#endif
4009	.ndo_set_features	= fec_set_features,
4010	.ndo_bpf		= fec_enet_bpf,
4011	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
4012	.ndo_hwtstamp_get	= fec_hwtstamp_get,
4013	.ndo_hwtstamp_set	= fec_hwtstamp_set,
4014};
4015
4016static const unsigned short offset_des_active_rxq[] = {
4017	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4018};
4019
4020static const unsigned short offset_des_active_txq[] = {
4021	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4022};
4023
4024 /*
4025  * XXX:  We need to clean up on failure exits here.
4026  *
4027  */
4028static int fec_enet_init(struct net_device *ndev)
4029{
4030	struct fec_enet_private *fep = netdev_priv(ndev);
4031	struct bufdesc *cbd_base;
4032	dma_addr_t bd_dma;
4033	int bd_size;
4034	unsigned int i;
4035	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4036			sizeof(struct bufdesc);
4037	unsigned dsize_log2 = __fls(dsize);
4038	int ret;
4039
4040	WARN_ON(dsize != (1 << dsize_log2));
4041#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4042	fep->rx_align = 0xf;
4043	fep->tx_align = 0xf;
4044#else
4045	fep->rx_align = 0x3;
4046	fep->tx_align = 0x3;
4047#endif
4048	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4049	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4050	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4051	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4052
4053	/* Check mask of the streaming and coherent API */
4054	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4055	if (ret < 0) {
4056		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4057		return ret;
4058	}
4059
4060	ret = fec_enet_alloc_queue(ndev);
4061	if (ret)
4062		return ret;
4063
4064	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4065
4066	/* Allocate memory for buffer descriptors. */
4067	cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4068				  GFP_KERNEL);
4069	if (!cbd_base) {
4070		ret = -ENOMEM;
4071		goto free_queue_mem;
4072	}
4073
4074	/* Get the Ethernet address */
4075	ret = fec_get_mac(ndev);
4076	if (ret)
4077		goto free_queue_mem;
4078
4079	/* Set receive and transmit descriptor base. */
4080	for (i = 0; i < fep->num_rx_queues; i++) {
4081		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4082		unsigned size = dsize * rxq->bd.ring_size;
4083
4084		rxq->bd.qid = i;
4085		rxq->bd.base = cbd_base;
4086		rxq->bd.cur = cbd_base;
4087		rxq->bd.dma = bd_dma;
4088		rxq->bd.dsize = dsize;
4089		rxq->bd.dsize_log2 = dsize_log2;
4090		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4091		bd_dma += size;
4092		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4093		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4094	}
4095
4096	for (i = 0; i < fep->num_tx_queues; i++) {
4097		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4098		unsigned size = dsize * txq->bd.ring_size;
4099
4100		txq->bd.qid = i;
4101		txq->bd.base = cbd_base;
4102		txq->bd.cur = cbd_base;
4103		txq->bd.dma = bd_dma;
4104		txq->bd.dsize = dsize;
4105		txq->bd.dsize_log2 = dsize_log2;
4106		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4107		bd_dma += size;
4108		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4109		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4110	}
4111
4112
4113	/* The FEC Ethernet specific entries in the device structure */
4114	ndev->watchdog_timeo = TX_TIMEOUT;
4115	ndev->netdev_ops = &fec_netdev_ops;
4116	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4117
4118	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4119	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4120
4121	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4122		/* enable hw VLAN support */
4123		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4124
4125	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4126		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4127
4128		/* enable hw accelerator */
4129		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4130				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4131		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4132	}
4133
4134	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4135		fep->tx_align = 0;
4136		fep->rx_align = 0x3f;
4137	}
4138
4139	ndev->hw_features = ndev->features;
4140
4141	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4142		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4143				     NETDEV_XDP_ACT_REDIRECT;
4144
4145	fec_restart(ndev);
4146
4147	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4148		fec_enet_clear_ethtool_stats(ndev);
4149	else
4150		fec_enet_update_ethtool_stats(ndev);
4151
4152	return 0;
4153
4154free_queue_mem:
4155	fec_enet_free_queue(ndev);
4156	return ret;
4157}
4158
4159#ifdef CONFIG_OF
4160static int fec_reset_phy(struct platform_device *pdev)
4161{
4162	struct gpio_desc *phy_reset;
4163	int msec = 1, phy_post_delay = 0;
4164	struct device_node *np = pdev->dev.of_node;
4165	int err;
4166
4167	if (!np)
4168		return 0;
4169
4170	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4171	/* A sane reset duration should not be longer than 1s */
4172	if (!err && msec > 1000)
4173		msec = 1;
4174
4175	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4176	/* valid reset duration should be less than 1s */
4177	if (!err && phy_post_delay > 1000)
4178		return -EINVAL;
4179
4180	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4181					    GPIOD_OUT_HIGH);
4182	if (IS_ERR(phy_reset))
4183		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4184				     "failed to get phy-reset-gpios\n");
4185
4186	if (!phy_reset)
4187		return 0;
4188
4189	if (msec > 20)
4190		msleep(msec);
4191	else
4192		usleep_range(msec * 1000, msec * 1000 + 1000);
4193
4194	gpiod_set_value_cansleep(phy_reset, 0);
4195
4196	if (!phy_post_delay)
4197		return 0;
4198
4199	if (phy_post_delay > 20)
4200		msleep(phy_post_delay);
4201	else
4202		usleep_range(phy_post_delay * 1000,
4203			     phy_post_delay * 1000 + 1000);
4204
4205	return 0;
4206}
4207#else /* CONFIG_OF */
4208static int fec_reset_phy(struct platform_device *pdev)
4209{
4210	/*
4211	 * In case of platform probe, the reset has been done
4212	 * by machine code.
4213	 */
4214	return 0;
4215}
4216#endif /* CONFIG_OF */
4217
4218static void
4219fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4220{
4221	struct device_node *np = pdev->dev.of_node;
4222
4223	*num_tx = *num_rx = 1;
4224
4225	if (!np || !of_device_is_available(np))
4226		return;
4227
4228	/* parse the num of tx and rx queues */
4229	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4230
4231	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4232
4233	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4234		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4235			 *num_tx);
4236		*num_tx = 1;
4237		return;
4238	}
4239
4240	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4241		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4242			 *num_rx);
4243		*num_rx = 1;
4244		return;
4245	}
4246
4247}
4248
4249static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4250{
4251	int irq_cnt = platform_irq_count(pdev);
4252
4253	if (irq_cnt > FEC_IRQ_NUM)
4254		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4255	else if (irq_cnt == 2)
4256		irq_cnt = 1;	/* last for pps */
4257	else if (irq_cnt <= 0)
4258		irq_cnt = 1;	/* At least 1 irq is needed */
4259	return irq_cnt;
4260}
4261
4262static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4263{
4264	struct net_device *ndev = platform_get_drvdata(pdev);
4265	struct fec_enet_private *fep = netdev_priv(ndev);
4266
4267	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4268		fep->wake_irq = fep->irq[2];
4269	else
4270		fep->wake_irq = fep->irq[0];
4271}
4272
4273static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4274				   struct device_node *np)
4275{
4276	struct device_node *gpr_np;
4277	u32 out_val[3];
4278	int ret = 0;
4279
4280	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4281	if (!gpr_np)
4282		return 0;
4283
4284	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4285					 ARRAY_SIZE(out_val));
4286	if (ret) {
4287		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4288		goto out;
4289	}
4290
4291	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4292	if (IS_ERR(fep->stop_gpr.gpr)) {
4293		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4294		ret = PTR_ERR(fep->stop_gpr.gpr);
4295		fep->stop_gpr.gpr = NULL;
4296		goto out;
4297	}
4298
4299	fep->stop_gpr.reg = out_val[1];
4300	fep->stop_gpr.bit = out_val[2];
4301
4302out:
4303	of_node_put(gpr_np);
4304
4305	return ret;
4306}
4307
4308static int
4309fec_probe(struct platform_device *pdev)
4310{
4311	struct fec_enet_private *fep;
4312	struct fec_platform_data *pdata;
4313	phy_interface_t interface;
4314	struct net_device *ndev;
4315	int i, irq, ret = 0;
4316	static int dev_id;
4317	struct device_node *np = pdev->dev.of_node, *phy_node;
4318	int num_tx_qs;
4319	int num_rx_qs;
4320	char irq_name[8];
4321	int irq_cnt;
4322	const struct fec_devinfo *dev_info;
4323
4324	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4325
4326	/* Init network device */
4327	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4328				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4329	if (!ndev)
4330		return -ENOMEM;
4331
4332	SET_NETDEV_DEV(ndev, &pdev->dev);
4333
4334	/* setup board info structure */
4335	fep = netdev_priv(ndev);
4336
4337	dev_info = device_get_match_data(&pdev->dev);
4338	if (!dev_info)
4339		dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4340	if (dev_info)
4341		fep->quirks = dev_info->quirks;
4342
4343	fep->netdev = ndev;
4344	fep->num_rx_queues = num_rx_qs;
4345	fep->num_tx_queues = num_tx_qs;
4346
4347#if !defined(CONFIG_M5272)
4348	/* default enable pause frame auto negotiation */
4349	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4350		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4351#endif
4352
4353	/* Select default pin state */
4354	pinctrl_pm_select_default_state(&pdev->dev);
4355
4356	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4357	if (IS_ERR(fep->hwp)) {
4358		ret = PTR_ERR(fep->hwp);
4359		goto failed_ioremap;
4360	}
4361
4362	fep->pdev = pdev;
4363	fep->dev_id = dev_id++;
4364
4365	platform_set_drvdata(pdev, ndev);
4366
4367	if ((of_machine_is_compatible("fsl,imx6q") ||
4368	     of_machine_is_compatible("fsl,imx6dl")) &&
4369	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4370		fep->quirks |= FEC_QUIRK_ERR006687;
4371
4372	ret = fec_enet_ipc_handle_init(fep);
4373	if (ret)
4374		goto failed_ipc_init;
4375
4376	if (of_property_read_bool(np, "fsl,magic-packet"))
4377		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4378
4379	ret = fec_enet_init_stop_mode(fep, np);
4380	if (ret)
4381		goto failed_stop_mode;
4382
4383	phy_node = of_parse_phandle(np, "phy-handle", 0);
4384	if (!phy_node && of_phy_is_fixed_link(np)) {
4385		ret = of_phy_register_fixed_link(np);
4386		if (ret < 0) {
4387			dev_err(&pdev->dev,
4388				"broken fixed-link specification\n");
4389			goto failed_phy;
4390		}
4391		phy_node = of_node_get(np);
4392	}
4393	fep->phy_node = phy_node;
4394
4395	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4396	if (ret) {
4397		pdata = dev_get_platdata(&pdev->dev);
4398		if (pdata)
4399			fep->phy_interface = pdata->phy;
4400		else
4401			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4402	} else {
4403		fep->phy_interface = interface;
4404	}
4405
4406	ret = fec_enet_parse_rgmii_delay(fep, np);
4407	if (ret)
4408		goto failed_rgmii_delay;
4409
4410	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4411	if (IS_ERR(fep->clk_ipg)) {
4412		ret = PTR_ERR(fep->clk_ipg);
4413		goto failed_clk;
4414	}
4415
4416	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4417	if (IS_ERR(fep->clk_ahb)) {
4418		ret = PTR_ERR(fep->clk_ahb);
4419		goto failed_clk;
4420	}
4421
4422	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4423
4424	/* enet_out is optional, depends on board */
4425	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4426	if (IS_ERR(fep->clk_enet_out)) {
4427		ret = PTR_ERR(fep->clk_enet_out);
4428		goto failed_clk;
4429	}
4430
4431	fep->ptp_clk_on = false;
4432	mutex_init(&fep->ptp_clk_mutex);
4433
4434	/* clk_ref is optional, depends on board */
4435	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4436	if (IS_ERR(fep->clk_ref)) {
4437		ret = PTR_ERR(fep->clk_ref);
4438		goto failed_clk;
4439	}
4440	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4441
4442	/* clk_2x_txclk is optional, depends on board */
4443	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4444		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4445		if (IS_ERR(fep->clk_2x_txclk))
4446			fep->clk_2x_txclk = NULL;
4447	}
4448
4449	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4450	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4451	if (IS_ERR(fep->clk_ptp)) {
4452		fep->clk_ptp = NULL;
4453		fep->bufdesc_ex = false;
4454	}
4455
4456	ret = fec_enet_clk_enable(ndev, true);
4457	if (ret)
4458		goto failed_clk;
4459
4460	ret = clk_prepare_enable(fep->clk_ipg);
4461	if (ret)
4462		goto failed_clk_ipg;
4463	ret = clk_prepare_enable(fep->clk_ahb);
4464	if (ret)
4465		goto failed_clk_ahb;
4466
4467	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4468	if (!IS_ERR(fep->reg_phy)) {
4469		ret = regulator_enable(fep->reg_phy);
4470		if (ret) {
4471			dev_err(&pdev->dev,
4472				"Failed to enable phy regulator: %d\n", ret);
4473			goto failed_regulator;
4474		}
4475	} else {
4476		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4477			ret = -EPROBE_DEFER;
4478			goto failed_regulator;
4479		}
4480		fep->reg_phy = NULL;
4481	}
4482
4483	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4484	pm_runtime_use_autosuspend(&pdev->dev);
4485	pm_runtime_get_noresume(&pdev->dev);
4486	pm_runtime_set_active(&pdev->dev);
4487	pm_runtime_enable(&pdev->dev);
4488
4489	ret = fec_reset_phy(pdev);
4490	if (ret)
4491		goto failed_reset;
4492
4493	irq_cnt = fec_enet_get_irq_cnt(pdev);
4494	if (fep->bufdesc_ex)
4495		fec_ptp_init(pdev, irq_cnt);
4496
4497	ret = fec_enet_init(ndev);
4498	if (ret)
4499		goto failed_init;
4500
4501	for (i = 0; i < irq_cnt; i++) {
4502		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4503		irq = platform_get_irq_byname_optional(pdev, irq_name);
4504		if (irq < 0)
4505			irq = platform_get_irq(pdev, i);
4506		if (irq < 0) {
4507			ret = irq;
4508			goto failed_irq;
4509		}
4510		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4511				       0, pdev->name, ndev);
4512		if (ret)
4513			goto failed_irq;
4514
4515		fep->irq[i] = irq;
4516	}
4517
4518	/* Decide which interrupt line is wakeup capable */
4519	fec_enet_get_wakeup_irq(pdev);
4520
4521	ret = fec_enet_mii_init(pdev);
4522	if (ret)
4523		goto failed_mii_init;
4524
4525	/* Carrier starts down, phylib will bring it up */
4526	netif_carrier_off(ndev);
4527	fec_enet_clk_enable(ndev, false);
4528	pinctrl_pm_select_sleep_state(&pdev->dev);
4529
4530	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4531
4532	ret = register_netdev(ndev);
4533	if (ret)
4534		goto failed_register;
4535
4536	device_init_wakeup(&ndev->dev, fep->wol_flag &
4537			   FEC_WOL_HAS_MAGIC_PACKET);
4538
4539	if (fep->bufdesc_ex && fep->ptp_clock)
4540		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4541
4542	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4543
4544	pm_runtime_mark_last_busy(&pdev->dev);
4545	pm_runtime_put_autosuspend(&pdev->dev);
4546
4547	return 0;
4548
4549failed_register:
4550	fec_enet_mii_remove(fep);
4551failed_mii_init:
4552failed_irq:
4553failed_init:
4554	fec_ptp_stop(pdev);
4555failed_reset:
4556	pm_runtime_put_noidle(&pdev->dev);
4557	pm_runtime_disable(&pdev->dev);
4558	if (fep->reg_phy)
4559		regulator_disable(fep->reg_phy);
4560failed_regulator:
4561	clk_disable_unprepare(fep->clk_ahb);
4562failed_clk_ahb:
4563	clk_disable_unprepare(fep->clk_ipg);
4564failed_clk_ipg:
4565	fec_enet_clk_enable(ndev, false);
4566failed_clk:
4567failed_rgmii_delay:
4568	if (of_phy_is_fixed_link(np))
4569		of_phy_deregister_fixed_link(np);
4570	of_node_put(phy_node);
4571failed_stop_mode:
4572failed_ipc_init:
4573failed_phy:
4574	dev_id--;
4575failed_ioremap:
4576	free_netdev(ndev);
4577
4578	return ret;
4579}
4580
4581static void
4582fec_drv_remove(struct platform_device *pdev)
4583{
4584	struct net_device *ndev = platform_get_drvdata(pdev);
4585	struct fec_enet_private *fep = netdev_priv(ndev);
4586	struct device_node *np = pdev->dev.of_node;
4587	int ret;
4588
4589	ret = pm_runtime_get_sync(&pdev->dev);
4590	if (ret < 0)
4591		dev_err(&pdev->dev,
4592			"Failed to resume device in remove callback (%pe)\n",
4593			ERR_PTR(ret));
4594
4595	cancel_work_sync(&fep->tx_timeout_work);
4596	fec_ptp_stop(pdev);
4597	unregister_netdev(ndev);
4598	fec_enet_mii_remove(fep);
4599	if (fep->reg_phy)
4600		regulator_disable(fep->reg_phy);
4601
4602	if (of_phy_is_fixed_link(np))
4603		of_phy_deregister_fixed_link(np);
4604	of_node_put(fep->phy_node);
4605
4606	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4607	 * disabling them again.
4608	 */
4609	if (ret >= 0) {
4610		clk_disable_unprepare(fep->clk_ahb);
4611		clk_disable_unprepare(fep->clk_ipg);
4612	}
4613	pm_runtime_put_noidle(&pdev->dev);
4614	pm_runtime_disable(&pdev->dev);
4615
4616	free_netdev(ndev);
4617}
4618
4619static int __maybe_unused fec_suspend(struct device *dev)
4620{
4621	struct net_device *ndev = dev_get_drvdata(dev);
4622	struct fec_enet_private *fep = netdev_priv(ndev);
4623	int ret;
4624
4625	rtnl_lock();
4626	if (netif_running(ndev)) {
4627		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4628			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4629		phy_stop(ndev->phydev);
4630		napi_disable(&fep->napi);
4631		netif_tx_lock_bh(ndev);
4632		netif_device_detach(ndev);
4633		netif_tx_unlock_bh(ndev);
4634		fec_stop(ndev);
4635		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4636			fec_irqs_disable(ndev);
4637			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4638		} else {
4639			fec_irqs_disable_except_wakeup(ndev);
4640			if (fep->wake_irq > 0) {
4641				disable_irq(fep->wake_irq);
4642				enable_irq_wake(fep->wake_irq);
4643			}
4644			fec_enet_stop_mode(fep, true);
4645		}
4646		/* It's safe to disable clocks since interrupts are masked */
4647		fec_enet_clk_enable(ndev, false);
4648
4649		fep->rpm_active = !pm_runtime_status_suspended(dev);
4650		if (fep->rpm_active) {
4651			ret = pm_runtime_force_suspend(dev);
4652			if (ret < 0) {
4653				rtnl_unlock();
4654				return ret;
4655			}
4656		}
4657	}
4658	rtnl_unlock();
4659
4660	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4661		regulator_disable(fep->reg_phy);
4662
4663	/* SOC supply clock to phy, when clock is disabled, phy link down
4664	 * SOC control phy regulator, when regulator is disabled, phy link down
4665	 */
4666	if (fep->clk_enet_out || fep->reg_phy)
4667		fep->link = 0;
4668
4669	return 0;
4670}
4671
4672static int __maybe_unused fec_resume(struct device *dev)
4673{
4674	struct net_device *ndev = dev_get_drvdata(dev);
4675	struct fec_enet_private *fep = netdev_priv(ndev);
4676	int ret;
4677	int val;
4678
4679	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4680		ret = regulator_enable(fep->reg_phy);
4681		if (ret)
4682			return ret;
4683	}
4684
4685	rtnl_lock();
4686	if (netif_running(ndev)) {
4687		if (fep->rpm_active)
4688			pm_runtime_force_resume(dev);
4689
4690		ret = fec_enet_clk_enable(ndev, true);
4691		if (ret) {
4692			rtnl_unlock();
4693			goto failed_clk;
4694		}
4695		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4696			fec_enet_stop_mode(fep, false);
4697			if (fep->wake_irq) {
4698				disable_irq_wake(fep->wake_irq);
4699				enable_irq(fep->wake_irq);
4700			}
4701
4702			val = readl(fep->hwp + FEC_ECNTRL);
4703			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4704			writel(val, fep->hwp + FEC_ECNTRL);
4705			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4706		} else {
4707			pinctrl_pm_select_default_state(&fep->pdev->dev);
4708		}
4709		fec_restart(ndev);
4710		netif_tx_lock_bh(ndev);
4711		netif_device_attach(ndev);
4712		netif_tx_unlock_bh(ndev);
4713		napi_enable(&fep->napi);
4714		phy_init_hw(ndev->phydev);
4715		phy_start(ndev->phydev);
4716	}
4717	rtnl_unlock();
4718
4719	return 0;
4720
4721failed_clk:
4722	if (fep->reg_phy)
4723		regulator_disable(fep->reg_phy);
4724	return ret;
4725}
4726
4727static int __maybe_unused fec_runtime_suspend(struct device *dev)
4728{
4729	struct net_device *ndev = dev_get_drvdata(dev);
4730	struct fec_enet_private *fep = netdev_priv(ndev);
4731
4732	clk_disable_unprepare(fep->clk_ahb);
4733	clk_disable_unprepare(fep->clk_ipg);
4734
4735	return 0;
4736}
4737
4738static int __maybe_unused fec_runtime_resume(struct device *dev)
4739{
4740	struct net_device *ndev = dev_get_drvdata(dev);
4741	struct fec_enet_private *fep = netdev_priv(ndev);
4742	int ret;
4743
4744	ret = clk_prepare_enable(fep->clk_ahb);
4745	if (ret)
4746		return ret;
4747	ret = clk_prepare_enable(fep->clk_ipg);
4748	if (ret)
4749		goto failed_clk_ipg;
4750
4751	return 0;
4752
4753failed_clk_ipg:
4754	clk_disable_unprepare(fep->clk_ahb);
4755	return ret;
4756}
4757
4758static const struct dev_pm_ops fec_pm_ops = {
4759	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4760	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4761};
4762
4763static struct platform_driver fec_driver = {
4764	.driver	= {
4765		.name	= DRIVER_NAME,
4766		.pm	= &fec_pm_ops,
4767		.of_match_table = fec_dt_ids,
4768		.suppress_bind_attrs = true,
4769	},
4770	.id_table = fec_devtype,
4771	.probe	= fec_probe,
4772	.remove_new = fec_drv_remove,
4773};
4774
4775module_platform_driver(fec_driver);
4776
4777MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4778MODULE_LICENSE("GPL");
4779