1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses.  You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 *     Redistribution and use in source and binary forms, with or
13 *     without modification, are permitted provided that the following
14 *     conditions are met:
15 *
16 *      - Redistributions of source code must retain the above
17 *        copyright notice, this list of conditions and the following
18 *        disclaimer.
19 *
20 *      - Redistributions in binary form must reproduce the above
21 *        copyright notice, this list of conditions and the following
22 *        disclaimer in the documentation and/or other materials
23 *        provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#include <linux/skbuff.h>
36#include <linux/netdevice.h>
37#include <linux/etherdevice.h>
38#include <linux/if_vlan.h>
39#include <linux/ip.h>
40#include <linux/dma-mapping.h>
41#include <linux/jiffies.h>
42#include <linux/prefetch.h>
43#include <linux/export.h>
44#include <net/xfrm.h>
45#include <net/ipv6.h>
46#include <net/tcp.h>
47#include <net/busy_poll.h>
48#ifdef CONFIG_CHELSIO_T4_FCOE
49#include <scsi/fc/fc_fcoe.h>
50#endif /* CONFIG_CHELSIO_T4_FCOE */
51#include "cxgb4.h"
52#include "t4_regs.h"
53#include "t4_values.h"
54#include "t4_msg.h"
55#include "t4fw_api.h"
56#include "cxgb4_ptp.h"
57#include "cxgb4_uld.h"
58#include "cxgb4_tc_mqprio.h"
59#include "sched.h"
60
61/*
62 * Rx buffer size.  We use largish buffers if possible but settle for single
63 * pages under memory shortage.
64 */
65#if PAGE_SHIFT >= 16
66# define FL_PG_ORDER 0
67#else
68# define FL_PG_ORDER (16 - PAGE_SHIFT)
69#endif
70
71/* RX_PULL_LEN should be <= RX_COPY_THRES */
72#define RX_COPY_THRES    256
73#define RX_PULL_LEN      128
74
75/*
76 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
77 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
78 */
79#define RX_PKT_SKB_LEN   512
80
81/*
82 * Max number of Tx descriptors we clean up at a time.  Should be modest as
83 * freeing skbs isn't cheap and it happens while holding locks.  We just need
84 * to free packets faster than they arrive, we eventually catch up and keep
85 * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.  It should
86 * also match the CIDX Flush Threshold.
87 */
88#define MAX_TX_RECLAIM 32
89
90/*
91 * Max number of Rx buffers we replenish at a time.  Again keep this modest,
92 * allocating buffers isn't cheap either.
93 */
94#define MAX_RX_REFILL 16U
95
96/*
97 * Period of the Rx queue check timer.  This timer is infrequent as it has
98 * something to do only when the system experiences severe memory shortage.
99 */
100#define RX_QCHECK_PERIOD (HZ / 2)
101
102/*
103 * Period of the Tx queue check timer.
104 */
105#define TX_QCHECK_PERIOD (HZ / 2)
106
107/*
108 * Max number of Tx descriptors to be reclaimed by the Tx timer.
109 */
110#define MAX_TIMER_TX_RECLAIM 100
111
112/*
113 * Timer index used when backing off due to memory shortage.
114 */
115#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
116
117/*
118 * Suspension threshold for non-Ethernet Tx queues.  We require enough room
119 * for a full sized WR.
120 */
121#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
122
123/*
124 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
125 * into a WR.
126 */
127#define MAX_IMM_TX_PKT_LEN 256
128
129/*
130 * Max size of a WR sent through a control Tx queue.
131 */
132#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
133
134struct rx_sw_desc {                /* SW state per Rx descriptor */
135	struct page *page;
136	dma_addr_t dma_addr;
137};
138
139/*
140 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
141 * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
142 * We could easily support more but there doesn't seem to be much need for
143 * that ...
144 */
145#define FL_MTU_SMALL 1500
146#define FL_MTU_LARGE 9000
147
148static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
149					  unsigned int mtu)
150{
151	struct sge *s = &adapter->sge;
152
153	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
154}
155
156#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
157#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
158
159/*
160 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
161 * these to specify the buffer size as an index into the SGE Free List Buffer
162 * Size register array.  We also use bit 4, when the buffer has been unmapped
163 * for DMA, but this is of course never sent to the hardware and is only used
164 * to prevent double unmappings.  All of the above requires that the Free List
165 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
166 * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
167 * Free List Buffer alignment is 32 bytes, this works out for us ...
168 */
169enum {
170	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
171	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
172	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
173
174	/*
175	 * XXX We shouldn't depend on being able to use these indices.
176	 * XXX Especially when some other Master PF has initialized the
177	 * XXX adapter or we use the Firmware Configuration File.  We
178	 * XXX should really search through the Host Buffer Size register
179	 * XXX array for the appropriately sized buffer indices.
180	 */
181	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
182	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
183
184	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
185	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
186};
187
188static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
189#define MIN_NAPI_WORK  1
190
191static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
192{
193	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
194}
195
196static inline bool is_buf_mapped(const struct rx_sw_desc *d)
197{
198	return !(d->dma_addr & RX_UNMAPPED_BUF);
199}
200
201/**
202 *	txq_avail - return the number of available slots in a Tx queue
203 *	@q: the Tx queue
204 *
205 *	Returns the number of descriptors in a Tx queue available to write new
206 *	packets.
207 */
208static inline unsigned int txq_avail(const struct sge_txq *q)
209{
210	return q->size - 1 - q->in_use;
211}
212
213/**
214 *	fl_cap - return the capacity of a free-buffer list
215 *	@fl: the FL
216 *
217 *	Returns the capacity of a free-buffer list.  The capacity is less than
218 *	the size because one descriptor needs to be left unpopulated, otherwise
219 *	HW will think the FL is empty.
220 */
221static inline unsigned int fl_cap(const struct sge_fl *fl)
222{
223	return fl->size - 8;   /* 1 descriptor = 8 buffers */
224}
225
226/**
227 *	fl_starving - return whether a Free List is starving.
228 *	@adapter: pointer to the adapter
229 *	@fl: the Free List
230 *
231 *	Tests specified Free List to see whether the number of buffers
232 *	available to the hardware has falled below our "starvation"
233 *	threshold.
234 */
235static inline bool fl_starving(const struct adapter *adapter,
236			       const struct sge_fl *fl)
237{
238	const struct sge *s = &adapter->sge;
239
240	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
241}
242
243int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
244		  dma_addr_t *addr)
245{
246	const skb_frag_t *fp, *end;
247	const struct skb_shared_info *si;
248
249	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
250	if (dma_mapping_error(dev, *addr))
251		goto out_err;
252
253	si = skb_shinfo(skb);
254	end = &si->frags[si->nr_frags];
255
256	for (fp = si->frags; fp < end; fp++) {
257		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
258					   DMA_TO_DEVICE);
259		if (dma_mapping_error(dev, *addr))
260			goto unwind;
261	}
262	return 0;
263
264unwind:
265	while (fp-- > si->frags)
266		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
267
268	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
269out_err:
270	return -ENOMEM;
271}
272EXPORT_SYMBOL(cxgb4_map_skb);
273
274static void unmap_skb(struct device *dev, const struct sk_buff *skb,
275		      const dma_addr_t *addr)
276{
277	const skb_frag_t *fp, *end;
278	const struct skb_shared_info *si;
279
280	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
281
282	si = skb_shinfo(skb);
283	end = &si->frags[si->nr_frags];
284	for (fp = si->frags; fp < end; fp++)
285		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
286}
287
288#ifdef CONFIG_NEED_DMA_MAP_STATE
289/**
290 *	deferred_unmap_destructor - unmap a packet when it is freed
291 *	@skb: the packet
292 *
293 *	This is the packet destructor used for Tx packets that need to remain
294 *	mapped until they are freed rather than until their Tx descriptors are
295 *	freed.
296 */
297static void deferred_unmap_destructor(struct sk_buff *skb)
298{
299	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
300}
301#endif
302
303/**
304 *	free_tx_desc - reclaims Tx descriptors and their buffers
305 *	@adap: the adapter
306 *	@q: the Tx queue to reclaim descriptors from
307 *	@n: the number of descriptors to reclaim
308 *	@unmap: whether the buffers should be unmapped for DMA
309 *
310 *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
311 *	Tx buffers.  Called with the Tx queue lock held.
312 */
313void free_tx_desc(struct adapter *adap, struct sge_txq *q,
314		  unsigned int n, bool unmap)
315{
316	unsigned int cidx = q->cidx;
317	struct tx_sw_desc *d;
318
319	d = &q->sdesc[cidx];
320	while (n--) {
321		if (d->skb) {                       /* an SGL is present */
322			if (unmap && d->addr[0]) {
323				unmap_skb(adap->pdev_dev, d->skb, d->addr);
324				memset(d->addr, 0, sizeof(d->addr));
325			}
326			dev_consume_skb_any(d->skb);
327			d->skb = NULL;
328		}
329		++d;
330		if (++cidx == q->size) {
331			cidx = 0;
332			d = q->sdesc;
333		}
334	}
335	q->cidx = cidx;
336}
337
338/*
339 * Return the number of reclaimable descriptors in a Tx queue.
340 */
341static inline int reclaimable(const struct sge_txq *q)
342{
343	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
344	hw_cidx -= q->cidx;
345	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
346}
347
348/**
349 *	reclaim_completed_tx - reclaims completed TX Descriptors
350 *	@adap: the adapter
351 *	@q: the Tx queue to reclaim completed descriptors from
352 *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
353 *	@unmap: whether the buffers should be unmapped for DMA
354 *
355 *	Reclaims Tx Descriptors that the SGE has indicated it has processed,
356 *	and frees the associated buffers if possible.  If @max == -1, then
357 *	we'll use a defaiult maximum.  Called with the TX Queue locked.
358 */
359static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
360				       int maxreclaim, bool unmap)
361{
362	int reclaim = reclaimable(q);
363
364	if (reclaim) {
365		/*
366		 * Limit the amount of clean up work we do at a time to keep
367		 * the Tx lock hold time O(1).
368		 */
369		if (maxreclaim < 0)
370			maxreclaim = MAX_TX_RECLAIM;
371		if (reclaim > maxreclaim)
372			reclaim = maxreclaim;
373
374		free_tx_desc(adap, q, reclaim, unmap);
375		q->in_use -= reclaim;
376	}
377
378	return reclaim;
379}
380
381/**
382 *	cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
383 *	@adap: the adapter
384 *	@q: the Tx queue to reclaim completed descriptors from
385 *	@unmap: whether the buffers should be unmapped for DMA
386 *
387 *	Reclaims Tx descriptors that the SGE has indicated it has processed,
388 *	and frees the associated buffers if possible.  Called with the Tx
389 *	queue locked.
390 */
391void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
392				bool unmap)
393{
394	(void)reclaim_completed_tx(adap, q, -1, unmap);
395}
396EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
397
398static inline int get_buf_size(struct adapter *adapter,
399			       const struct rx_sw_desc *d)
400{
401	struct sge *s = &adapter->sge;
402	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
403	int buf_size;
404
405	switch (rx_buf_size_idx) {
406	case RX_SMALL_PG_BUF:
407		buf_size = PAGE_SIZE;
408		break;
409
410	case RX_LARGE_PG_BUF:
411		buf_size = PAGE_SIZE << s->fl_pg_order;
412		break;
413
414	case RX_SMALL_MTU_BUF:
415		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
416		break;
417
418	case RX_LARGE_MTU_BUF:
419		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
420		break;
421
422	default:
423		BUG();
424	}
425
426	return buf_size;
427}
428
429/**
430 *	free_rx_bufs - free the Rx buffers on an SGE free list
431 *	@adap: the adapter
432 *	@q: the SGE free list to free buffers from
433 *	@n: how many buffers to free
434 *
435 *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
436 *	buffers must be made inaccessible to HW before calling this function.
437 */
438static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
439{
440	while (n--) {
441		struct rx_sw_desc *d = &q->sdesc[q->cidx];
442
443		if (is_buf_mapped(d))
444			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
445				       get_buf_size(adap, d),
446				       DMA_FROM_DEVICE);
447		put_page(d->page);
448		d->page = NULL;
449		if (++q->cidx == q->size)
450			q->cidx = 0;
451		q->avail--;
452	}
453}
454
455/**
456 *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
457 *	@adap: the adapter
458 *	@q: the SGE free list
459 *
460 *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
461 *	buffer must be made inaccessible to HW before calling this function.
462 *
463 *	This is similar to @free_rx_bufs above but does not free the buffer.
464 *	Do note that the FL still loses any further access to the buffer.
465 */
466static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
467{
468	struct rx_sw_desc *d = &q->sdesc[q->cidx];
469
470	if (is_buf_mapped(d))
471		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
472			       get_buf_size(adap, d), DMA_FROM_DEVICE);
473	d->page = NULL;
474	if (++q->cidx == q->size)
475		q->cidx = 0;
476	q->avail--;
477}
478
479static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
480{
481	if (q->pend_cred >= 8) {
482		u32 val = adap->params.arch.sge_fl_db;
483
484		if (is_t4(adap->params.chip))
485			val |= PIDX_V(q->pend_cred / 8);
486		else
487			val |= PIDX_T5_V(q->pend_cred / 8);
488
489		/* Make sure all memory writes to the Free List queue are
490		 * committed before we tell the hardware about them.
491		 */
492		wmb();
493
494		/* If we don't have access to the new User Doorbell (T5+), use
495		 * the old doorbell mechanism; otherwise use the new BAR2
496		 * mechanism.
497		 */
498		if (unlikely(q->bar2_addr == NULL)) {
499			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
500				     val | QID_V(q->cntxt_id));
501		} else {
502			writel(val | QID_V(q->bar2_qid),
503			       q->bar2_addr + SGE_UDB_KDOORBELL);
504
505			/* This Write memory Barrier will force the write to
506			 * the User Doorbell area to be flushed.
507			 */
508			wmb();
509		}
510		q->pend_cred &= 7;
511	}
512}
513
514static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
515				  dma_addr_t mapping)
516{
517	sd->page = pg;
518	sd->dma_addr = mapping;      /* includes size low bits */
519}
520
521/**
522 *	refill_fl - refill an SGE Rx buffer ring
523 *	@adap: the adapter
524 *	@q: the ring to refill
525 *	@n: the number of new buffers to allocate
526 *	@gfp: the gfp flags for the allocations
527 *
528 *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
529 *	allocated with the supplied gfp flags.  The caller must assure that
530 *	@n does not exceed the queue's capacity.  If afterwards the queue is
531 *	found critically low mark it as starving in the bitmap of starving FLs.
532 *
533 *	Returns the number of buffers allocated.
534 */
535static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
536			      gfp_t gfp)
537{
538	struct sge *s = &adap->sge;
539	struct page *pg;
540	dma_addr_t mapping;
541	unsigned int cred = q->avail;
542	__be64 *d = &q->desc[q->pidx];
543	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
544	int node;
545
546#ifdef CONFIG_DEBUG_FS
547	if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
548		goto out;
549#endif
550
551	gfp |= __GFP_NOWARN;
552	node = dev_to_node(adap->pdev_dev);
553
554	if (s->fl_pg_order == 0)
555		goto alloc_small_pages;
556
557	/*
558	 * Prefer large buffers
559	 */
560	while (n) {
561		pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
562		if (unlikely(!pg)) {
563			q->large_alloc_failed++;
564			break;       /* fall back to single pages */
565		}
566
567		mapping = dma_map_page(adap->pdev_dev, pg, 0,
568				       PAGE_SIZE << s->fl_pg_order,
569				       DMA_FROM_DEVICE);
570		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
571			__free_pages(pg, s->fl_pg_order);
572			q->mapping_err++;
573			goto out;   /* do not try small pages for this error */
574		}
575		mapping |= RX_LARGE_PG_BUF;
576		*d++ = cpu_to_be64(mapping);
577
578		set_rx_sw_desc(sd, pg, mapping);
579		sd++;
580
581		q->avail++;
582		if (++q->pidx == q->size) {
583			q->pidx = 0;
584			sd = q->sdesc;
585			d = q->desc;
586		}
587		n--;
588	}
589
590alloc_small_pages:
591	while (n--) {
592		pg = alloc_pages_node(node, gfp, 0);
593		if (unlikely(!pg)) {
594			q->alloc_failed++;
595			break;
596		}
597
598		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
599				       DMA_FROM_DEVICE);
600		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
601			put_page(pg);
602			q->mapping_err++;
603			goto out;
604		}
605		*d++ = cpu_to_be64(mapping);
606
607		set_rx_sw_desc(sd, pg, mapping);
608		sd++;
609
610		q->avail++;
611		if (++q->pidx == q->size) {
612			q->pidx = 0;
613			sd = q->sdesc;
614			d = q->desc;
615		}
616	}
617
618out:	cred = q->avail - cred;
619	q->pend_cred += cred;
620	ring_fl_db(adap, q);
621
622	if (unlikely(fl_starving(adap, q))) {
623		smp_wmb();
624		q->low++;
625		set_bit(q->cntxt_id - adap->sge.egr_start,
626			adap->sge.starving_fl);
627	}
628
629	return cred;
630}
631
632static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
633{
634	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
635		  GFP_ATOMIC);
636}
637
638/**
639 *	alloc_ring - allocate resources for an SGE descriptor ring
640 *	@dev: the PCI device's core device
641 *	@nelem: the number of descriptors
642 *	@elem_size: the size of each descriptor
643 *	@sw_size: the size of the SW state associated with each ring element
644 *	@phys: the physical address of the allocated ring
645 *	@metadata: address of the array holding the SW state for the ring
646 *	@stat_size: extra space in HW ring for status information
647 *	@node: preferred node for memory allocations
648 *
649 *	Allocates resources for an SGE descriptor ring, such as Tx queues,
650 *	free buffer lists, or response queues.  Each SGE ring requires
651 *	space for its HW descriptors plus, optionally, space for the SW state
652 *	associated with each HW entry (the metadata).  The function returns
653 *	three values: the virtual address for the HW ring (the return value
654 *	of the function), the bus address of the HW ring, and the address
655 *	of the SW ring.
656 */
657static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
658			size_t sw_size, dma_addr_t *phys, void *metadata,
659			size_t stat_size, int node)
660{
661	size_t len = nelem * elem_size + stat_size;
662	void *s = NULL;
663	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
664
665	if (!p)
666		return NULL;
667	if (sw_size) {
668		s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
669
670		if (!s) {
671			dma_free_coherent(dev, len, p, *phys);
672			return NULL;
673		}
674	}
675	if (metadata)
676		*(void **)metadata = s;
677	return p;
678}
679
680/**
681 *	sgl_len - calculates the size of an SGL of the given capacity
682 *	@n: the number of SGL entries
683 *
684 *	Calculates the number of flits needed for a scatter/gather list that
685 *	can hold the given number of entries.
686 */
687static inline unsigned int sgl_len(unsigned int n)
688{
689	/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
690	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
691	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
692	 * repeated sequences of { Length[i], Length[i+1], Address[i],
693	 * Address[i+1] } (this ensures that all addresses are on 64-bit
694	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
695	 * Address[N+1] is omitted.
696	 *
697	 * The following calculation incorporates all of the above.  It's
698	 * somewhat hard to follow but, briefly: the "+2" accounts for the
699	 * first two flits which include the DSGL header, Length0 and
700	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
701	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
702	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
703	 * (n-1) is odd ...
704	 */
705	n--;
706	return (3 * n) / 2 + (n & 1) + 2;
707}
708
709/**
710 *	flits_to_desc - returns the num of Tx descriptors for the given flits
711 *	@n: the number of flits
712 *
713 *	Returns the number of Tx descriptors needed for the supplied number
714 *	of flits.
715 */
716static inline unsigned int flits_to_desc(unsigned int n)
717{
718	BUG_ON(n > SGE_MAX_WR_LEN / 8);
719	return DIV_ROUND_UP(n, 8);
720}
721
722/**
723 *	is_eth_imm - can an Ethernet packet be sent as immediate data?
724 *	@skb: the packet
725 *	@chip_ver: chip version
726 *
727 *	Returns whether an Ethernet packet is small enough to fit as
728 *	immediate data. Return value corresponds to headroom required.
729 */
730static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
731{
732	int hdrlen = 0;
733
734	if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
735	    chip_ver > CHELSIO_T5) {
736		hdrlen = sizeof(struct cpl_tx_tnl_lso);
737		hdrlen += sizeof(struct cpl_tx_pkt_core);
738	} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
739		return 0;
740	} else {
741		hdrlen = skb_shinfo(skb)->gso_size ?
742			 sizeof(struct cpl_tx_pkt_lso_core) : 0;
743		hdrlen += sizeof(struct cpl_tx_pkt);
744	}
745	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
746		return hdrlen;
747	return 0;
748}
749
750/**
751 *	calc_tx_flits - calculate the number of flits for a packet Tx WR
752 *	@skb: the packet
753 *	@chip_ver: chip version
754 *
755 *	Returns the number of flits needed for a Tx WR for the given Ethernet
756 *	packet, including the needed WR and CPL headers.
757 */
758static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
759					 unsigned int chip_ver)
760{
761	unsigned int flits;
762	int hdrlen = is_eth_imm(skb, chip_ver);
763
764	/* If the skb is small enough, we can pump it out as a work request
765	 * with only immediate data.  In that case we just have to have the
766	 * TX Packet header plus the skb data in the Work Request.
767	 */
768
769	if (hdrlen)
770		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
771
772	/* Otherwise, we're going to have to construct a Scatter gather list
773	 * of the skb body and fragments.  We also include the flits necessary
774	 * for the TX Packet Work Request and CPL.  We always have a firmware
775	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
776	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
777	 * message or, if we're doing a Large Send Offload, an LSO CPL message
778	 * with an embedded TX Packet Write CPL message.
779	 */
780	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
781	if (skb_shinfo(skb)->gso_size) {
782		if (skb->encapsulation && chip_ver > CHELSIO_T5) {
783			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
784				 sizeof(struct cpl_tx_tnl_lso);
785		} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
786			u32 pkt_hdrlen;
787
788			pkt_hdrlen = eth_get_headlen(skb->dev, skb->data,
789						     skb_headlen(skb));
790			hdrlen = sizeof(struct fw_eth_tx_eo_wr) +
791				 round_up(pkt_hdrlen, 16);
792		} else {
793			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
794				 sizeof(struct cpl_tx_pkt_lso_core);
795		}
796
797		hdrlen += sizeof(struct cpl_tx_pkt_core);
798		flits += (hdrlen / sizeof(__be64));
799	} else {
800		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
801			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
802	}
803	return flits;
804}
805
806/**
807 *	cxgb4_write_sgl - populate a scatter/gather list for a packet
808 *	@skb: the packet
809 *	@q: the Tx queue we are writing into
810 *	@sgl: starting location for writing the SGL
811 *	@end: points right after the end of the SGL
812 *	@start: start offset into skb main-body data to include in the SGL
813 *	@addr: the list of bus addresses for the SGL elements
814 *
815 *	Generates a gather list for the buffers that make up a packet.
816 *	The caller must provide adequate space for the SGL that will be written.
817 *	The SGL includes all of the packet's page fragments and the data in its
818 *	main body except for the first @start bytes.  @sgl must be 16-byte
819 *	aligned and within a Tx descriptor with available space.  @end points
820 *	right after the end of the SGL but does not account for any potential
821 *	wrap around, i.e., @end > @sgl.
822 */
823void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
824		     struct ulptx_sgl *sgl, u64 *end, unsigned int start,
825		     const dma_addr_t *addr)
826{
827	unsigned int i, len;
828	struct ulptx_sge_pair *to;
829	const struct skb_shared_info *si = skb_shinfo(skb);
830	unsigned int nfrags = si->nr_frags;
831	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
832
833	len = skb_headlen(skb) - start;
834	if (likely(len)) {
835		sgl->len0 = htonl(len);
836		sgl->addr0 = cpu_to_be64(addr[0] + start);
837		nfrags++;
838	} else {
839		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
840		sgl->addr0 = cpu_to_be64(addr[1]);
841	}
842
843	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
844			      ULPTX_NSGE_V(nfrags));
845	if (likely(--nfrags == 0))
846		return;
847	/*
848	 * Most of the complexity below deals with the possibility we hit the
849	 * end of the queue in the middle of writing the SGL.  For this case
850	 * only we create the SGL in a temporary buffer and then copy it.
851	 */
852	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
853
854	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
855		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
856		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
857		to->addr[0] = cpu_to_be64(addr[i]);
858		to->addr[1] = cpu_to_be64(addr[++i]);
859	}
860	if (nfrags) {
861		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
862		to->len[1] = cpu_to_be32(0);
863		to->addr[0] = cpu_to_be64(addr[i + 1]);
864	}
865	if (unlikely((u8 *)end > (u8 *)q->stat)) {
866		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
867
868		if (likely(part0))
869			memcpy(sgl->sge, buf, part0);
870		part1 = (u8 *)end - (u8 *)q->stat;
871		memcpy(q->desc, (u8 *)buf + part0, part1);
872		end = (void *)q->desc + part1;
873	}
874	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
875		*end = 0;
876}
877EXPORT_SYMBOL(cxgb4_write_sgl);
878
879/*	cxgb4_write_partial_sgl - populate SGL for partial packet
880 *	@skb: the packet
881 *	@q: the Tx queue we are writing into
882 *	@sgl: starting location for writing the SGL
883 *	@end: points right after the end of the SGL
884 *	@addr: the list of bus addresses for the SGL elements
885 *	@start: start offset in the SKB where partial data starts
886 *	@len: length of data from @start to send out
887 *
888 *	This API will handle sending out partial data of a skb if required.
889 *	Unlike cxgb4_write_sgl, @start can be any offset into the skb data,
890 *	and @len will decide how much data after @start offset to send out.
891 */
892void cxgb4_write_partial_sgl(const struct sk_buff *skb, struct sge_txq *q,
893			     struct ulptx_sgl *sgl, u64 *end,
894			     const dma_addr_t *addr, u32 start, u32 len)
895{
896	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1] = {0}, *to;
897	u32 frag_size, skb_linear_data_len = skb_headlen(skb);
898	struct skb_shared_info *si = skb_shinfo(skb);
899	u8 i = 0, frag_idx = 0, nfrags = 0;
900	skb_frag_t *frag;
901
902	/* Fill the first SGL either from linear data or from partial
903	 * frag based on @start.
904	 */
905	if (unlikely(start < skb_linear_data_len)) {
906		frag_size = min(len, skb_linear_data_len - start);
907		sgl->len0 = htonl(frag_size);
908		sgl->addr0 = cpu_to_be64(addr[0] + start);
909		len -= frag_size;
910		nfrags++;
911	} else {
912		start -= skb_linear_data_len;
913		frag = &si->frags[frag_idx];
914		frag_size = skb_frag_size(frag);
915		/* find the first frag */
916		while (start >= frag_size) {
917			start -= frag_size;
918			frag_idx++;
919			frag = &si->frags[frag_idx];
920			frag_size = skb_frag_size(frag);
921		}
922
923		frag_size = min(len, skb_frag_size(frag) - start);
924		sgl->len0 = cpu_to_be32(frag_size);
925		sgl->addr0 = cpu_to_be64(addr[frag_idx + 1] + start);
926		len -= frag_size;
927		nfrags++;
928		frag_idx++;
929	}
930
931	/* If the entire partial data fit in one SGL, then send it out
932	 * now.
933	 */
934	if (!len)
935		goto done;
936
937	/* Most of the complexity below deals with the possibility we hit the
938	 * end of the queue in the middle of writing the SGL.  For this case
939	 * only we create the SGL in a temporary buffer and then copy it.
940	 */
941	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
942
943	/* If the skb couldn't fit in first SGL completely, fill the
944	 * rest of the frags in subsequent SGLs. Note that each SGL
945	 * pair can store 2 frags.
946	 */
947	while (len) {
948		frag_size = min(len, skb_frag_size(&si->frags[frag_idx]));
949		to->len[i & 1] = cpu_to_be32(frag_size);
950		to->addr[i & 1] = cpu_to_be64(addr[frag_idx + 1]);
951		if (i && (i & 1))
952			to++;
953		nfrags++;
954		frag_idx++;
955		i++;
956		len -= frag_size;
957	}
958
959	/* If we ended in an odd boundary, then set the second SGL's
960	 * length in the pair to 0.
961	 */
962	if (i & 1)
963		to->len[1] = cpu_to_be32(0);
964
965	/* Copy from temporary buffer to Tx ring, in case we hit the
966	 * end of the queue in the middle of writing the SGL.
967	 */
968	if (unlikely((u8 *)end > (u8 *)q->stat)) {
969		u32 part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
970
971		if (likely(part0))
972			memcpy(sgl->sge, buf, part0);
973		part1 = (u8 *)end - (u8 *)q->stat;
974		memcpy(q->desc, (u8 *)buf + part0, part1);
975		end = (void *)q->desc + part1;
976	}
977
978	/* 0-pad to multiple of 16 */
979	if ((uintptr_t)end & 8)
980		*end = 0;
981done:
982	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
983			ULPTX_NSGE_V(nfrags));
984}
985EXPORT_SYMBOL(cxgb4_write_partial_sgl);
986
987/* This function copies 64 byte coalesced work request to
988 * memory mapped BAR2 space. For coalesced WR SGE fetches
989 * data from the FIFO instead of from Host.
990 */
991static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
992{
993	int count = 8;
994
995	while (count) {
996		writeq(*src, dst);
997		src++;
998		dst++;
999		count--;
1000	}
1001}
1002
1003/**
1004 *	cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
1005 *	@adap: the adapter
1006 *	@q: the Tx queue
1007 *	@n: number of new descriptors to give to HW
1008 *
1009 *	Ring the doorbel for a Tx queue.
1010 */
1011inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
1012{
1013	/* Make sure that all writes to the TX Descriptors are committed
1014	 * before we tell the hardware about them.
1015	 */
1016	wmb();
1017
1018	/* If we don't have access to the new User Doorbell (T5+), use the old
1019	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
1020	 */
1021	if (unlikely(q->bar2_addr == NULL)) {
1022		u32 val = PIDX_V(n);
1023		unsigned long flags;
1024
1025		/* For T4 we need to participate in the Doorbell Recovery
1026		 * mechanism.
1027		 */
1028		spin_lock_irqsave(&q->db_lock, flags);
1029		if (!q->db_disabled)
1030			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1031				     QID_V(q->cntxt_id) | val);
1032		else
1033			q->db_pidx_inc += n;
1034		q->db_pidx = q->pidx;
1035		spin_unlock_irqrestore(&q->db_lock, flags);
1036	} else {
1037		u32 val = PIDX_T5_V(n);
1038
1039		/* T4 and later chips share the same PIDX field offset within
1040		 * the doorbell, but T5 and later shrank the field in order to
1041		 * gain a bit for Doorbell Priority.  The field was absurdly
1042		 * large in the first place (14 bits) so we just use the T5
1043		 * and later limits and warn if a Queue ID is too large.
1044		 */
1045		WARN_ON(val & DBPRIO_F);
1046
1047		/* If we're only writing a single TX Descriptor and we can use
1048		 * Inferred QID registers, we can use the Write Combining
1049		 * Gather Buffer; otherwise we use the simple doorbell.
1050		 */
1051		if (n == 1 && q->bar2_qid == 0) {
1052			int index = (q->pidx
1053				     ? (q->pidx - 1)
1054				     : (q->size - 1));
1055			u64 *wr = (u64 *)&q->desc[index];
1056
1057			cxgb_pio_copy((u64 __iomem *)
1058				      (q->bar2_addr + SGE_UDB_WCDOORBELL),
1059				      wr);
1060		} else {
1061			writel(val | QID_V(q->bar2_qid),
1062			       q->bar2_addr + SGE_UDB_KDOORBELL);
1063		}
1064
1065		/* This Write Memory Barrier will force the write to the User
1066		 * Doorbell area to be flushed.  This is needed to prevent
1067		 * writes on different CPUs for the same queue from hitting
1068		 * the adapter out of order.  This is required when some Work
1069		 * Requests take the Write Combine Gather Buffer path (user
1070		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1071		 * take the traditional path where we simply increment the
1072		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1073		 * hardware DMA read the actual Work Request.
1074		 */
1075		wmb();
1076	}
1077}
1078EXPORT_SYMBOL(cxgb4_ring_tx_db);
1079
1080/**
1081 *	cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
1082 *	@skb: the packet
1083 *	@q: the Tx queue where the packet will be inlined
1084 *	@pos: starting position in the Tx queue where to inline the packet
1085 *
1086 *	Inline a packet's contents directly into Tx descriptors, starting at
1087 *	the given position within the Tx DMA ring.
1088 *	Most of the complexity of this operation is dealing with wrap arounds
1089 *	in the middle of the packet we want to inline.
1090 */
1091void cxgb4_inline_tx_skb(const struct sk_buff *skb,
1092			 const struct sge_txq *q, void *pos)
1093{
1094	int left = (void *)q->stat - pos;
1095	u64 *p;
1096
1097	if (likely(skb->len <= left)) {
1098		if (likely(!skb->data_len))
1099			skb_copy_from_linear_data(skb, pos, skb->len);
1100		else
1101			skb_copy_bits(skb, 0, pos, skb->len);
1102		pos += skb->len;
1103	} else {
1104		skb_copy_bits(skb, 0, pos, left);
1105		skb_copy_bits(skb, left, q->desc, skb->len - left);
1106		pos = (void *)q->desc + (skb->len - left);
1107	}
1108
1109	/* 0-pad to multiple of 16 */
1110	p = PTR_ALIGN(pos, 8);
1111	if ((uintptr_t)p & 8)
1112		*p = 0;
1113}
1114EXPORT_SYMBOL(cxgb4_inline_tx_skb);
1115
1116static void *inline_tx_skb_header(const struct sk_buff *skb,
1117				  const struct sge_txq *q,  void *pos,
1118				  int length)
1119{
1120	u64 *p;
1121	int left = (void *)q->stat - pos;
1122
1123	if (likely(length <= left)) {
1124		memcpy(pos, skb->data, length);
1125		pos += length;
1126	} else {
1127		memcpy(pos, skb->data, left);
1128		memcpy(q->desc, skb->data + left, length - left);
1129		pos = (void *)q->desc + (length - left);
1130	}
1131	/* 0-pad to multiple of 16 */
1132	p = PTR_ALIGN(pos, 8);
1133	if ((uintptr_t)p & 8) {
1134		*p = 0;
1135		return p + 1;
1136	}
1137	return p;
1138}
1139
1140/*
1141 * Figure out what HW csum a packet wants and return the appropriate control
1142 * bits.
1143 */
1144static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1145{
1146	int csum_type;
1147	bool inner_hdr_csum = false;
1148	u16 proto, ver;
1149
1150	if (skb->encapsulation &&
1151	    (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
1152		inner_hdr_csum = true;
1153
1154	if (inner_hdr_csum) {
1155		ver = inner_ip_hdr(skb)->version;
1156		proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
1157			inner_ipv6_hdr(skb)->nexthdr;
1158	} else {
1159		ver = ip_hdr(skb)->version;
1160		proto = (ver == 4) ? ip_hdr(skb)->protocol :
1161			ipv6_hdr(skb)->nexthdr;
1162	}
1163
1164	if (ver == 4) {
1165		if (proto == IPPROTO_TCP)
1166			csum_type = TX_CSUM_TCPIP;
1167		else if (proto == IPPROTO_UDP)
1168			csum_type = TX_CSUM_UDPIP;
1169		else {
1170nocsum:			/*
1171			 * unknown protocol, disable HW csum
1172			 * and hope a bad packet is detected
1173			 */
1174			return TXPKT_L4CSUM_DIS_F;
1175		}
1176	} else {
1177		/*
1178		 * this doesn't work with extension headers
1179		 */
1180		if (proto == IPPROTO_TCP)
1181			csum_type = TX_CSUM_TCPIP6;
1182		else if (proto == IPPROTO_UDP)
1183			csum_type = TX_CSUM_UDPIP6;
1184		else
1185			goto nocsum;
1186	}
1187
1188	if (likely(csum_type >= TX_CSUM_TCPIP)) {
1189		int eth_hdr_len, l4_len;
1190		u64 hdr_len;
1191
1192		if (inner_hdr_csum) {
1193			/* This allows checksum offload for all encapsulated
1194			 * packets like GRE etc..
1195			 */
1196			l4_len = skb_inner_network_header_len(skb);
1197			eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
1198		} else {
1199			l4_len = skb_network_header_len(skb);
1200			eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1201		}
1202		hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
1203
1204		if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1205			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1206		else
1207			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1208		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1209	} else {
1210		int start = skb_transport_offset(skb);
1211
1212		return TXPKT_CSUM_TYPE_V(csum_type) |
1213			TXPKT_CSUM_START_V(start) |
1214			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1215	}
1216}
1217
1218static void eth_txq_stop(struct sge_eth_txq *q)
1219{
1220	netif_tx_stop_queue(q->txq);
1221	q->q.stops++;
1222}
1223
1224static inline void txq_advance(struct sge_txq *q, unsigned int n)
1225{
1226	q->in_use += n;
1227	q->pidx += n;
1228	if (q->pidx >= q->size)
1229		q->pidx -= q->size;
1230}
1231
1232#ifdef CONFIG_CHELSIO_T4_FCOE
1233static inline int
1234cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1235		  const struct port_info *pi, u64 *cntrl)
1236{
1237	const struct cxgb_fcoe *fcoe = &pi->fcoe;
1238
1239	if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1240		return 0;
1241
1242	if (skb->protocol != htons(ETH_P_FCOE))
1243		return 0;
1244
1245	skb_reset_mac_header(skb);
1246	skb->mac_len = sizeof(struct ethhdr);
1247
1248	skb_set_network_header(skb, skb->mac_len);
1249	skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1250
1251	if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1252		return -ENOTSUPP;
1253
1254	/* FC CRC offload */
1255	*cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1256		     TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1257		     TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1258		     TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1259		     TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1260	return 0;
1261}
1262#endif /* CONFIG_CHELSIO_T4_FCOE */
1263
1264/* Returns tunnel type if hardware supports offloading of the same.
1265 * It is called only for T5 and onwards.
1266 */
1267enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
1268{
1269	u8 l4_hdr = 0;
1270	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1271	struct port_info *pi = netdev_priv(skb->dev);
1272	struct adapter *adapter = pi->adapter;
1273
1274	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1275	    skb->inner_protocol != htons(ETH_P_TEB))
1276		return tnl_type;
1277
1278	switch (vlan_get_protocol(skb)) {
1279	case htons(ETH_P_IP):
1280		l4_hdr = ip_hdr(skb)->protocol;
1281		break;
1282	case htons(ETH_P_IPV6):
1283		l4_hdr = ipv6_hdr(skb)->nexthdr;
1284		break;
1285	default:
1286		return tnl_type;
1287	}
1288
1289	switch (l4_hdr) {
1290	case IPPROTO_UDP:
1291		if (adapter->vxlan_port == udp_hdr(skb)->dest)
1292			tnl_type = TX_TNL_TYPE_VXLAN;
1293		else if (adapter->geneve_port == udp_hdr(skb)->dest)
1294			tnl_type = TX_TNL_TYPE_GENEVE;
1295		break;
1296	default:
1297		return tnl_type;
1298	}
1299
1300	return tnl_type;
1301}
1302
1303static inline void t6_fill_tnl_lso(struct sk_buff *skb,
1304				   struct cpl_tx_tnl_lso *tnl_lso,
1305				   enum cpl_tx_tnl_lso_type tnl_type)
1306{
1307	u32 val;
1308	int in_eth_xtra_len;
1309	int l3hdr_len = skb_network_header_len(skb);
1310	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1311	const struct skb_shared_info *ssi = skb_shinfo(skb);
1312	bool v6 = (ip_hdr(skb)->version == 6);
1313
1314	val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
1315	      CPL_TX_TNL_LSO_FIRST_F |
1316	      CPL_TX_TNL_LSO_LAST_F |
1317	      (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
1318	      CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
1319	      CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
1320	      (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
1321	      CPL_TX_TNL_LSO_IPLENSETOUT_F |
1322	      (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
1323	tnl_lso->op_to_IpIdSplitOut = htonl(val);
1324
1325	tnl_lso->IpIdOffsetOut = 0;
1326
1327	/* Get the tunnel header length */
1328	val = skb_inner_mac_header(skb) - skb_mac_header(skb);
1329	in_eth_xtra_len = skb_inner_network_header(skb) -
1330			  skb_inner_mac_header(skb) - ETH_HLEN;
1331
1332	switch (tnl_type) {
1333	case TX_TNL_TYPE_VXLAN:
1334	case TX_TNL_TYPE_GENEVE:
1335		tnl_lso->UdpLenSetOut_to_TnlHdrLen =
1336			htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
1337			CPL_TX_TNL_LSO_UDPLENSETOUT_F);
1338		break;
1339	default:
1340		tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
1341		break;
1342	}
1343
1344	tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
1345		 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
1346		       CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
1347
1348	tnl_lso->r1 = 0;
1349
1350	val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
1351	      CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
1352	      CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
1353	      CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
1354	tnl_lso->Flow_to_TcpHdrLen = htonl(val);
1355
1356	tnl_lso->IpIdOffset = htons(0);
1357
1358	tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
1359	tnl_lso->TCPSeqOffset = htonl(0);
1360	tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
1361}
1362
1363static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb,
1364				 struct cpl_tx_pkt_lso_core *lso)
1365{
1366	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1367	int l3hdr_len = skb_network_header_len(skb);
1368	const struct skb_shared_info *ssi;
1369	bool ipv6 = false;
1370
1371	ssi = skb_shinfo(skb);
1372	if (ssi->gso_type & SKB_GSO_TCPV6)
1373		ipv6 = true;
1374
1375	lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1376			      LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1377			      LSO_IPV6_V(ipv6) |
1378			      LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1379			      LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1380			      LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1381	lso->ipid_ofst = htons(0);
1382	lso->mss = htons(ssi->gso_size);
1383	lso->seqno_offset = htonl(0);
1384	if (is_t4(adap->params.chip))
1385		lso->len = htonl(skb->len);
1386	else
1387		lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1388
1389	return (void *)(lso + 1);
1390}
1391
1392/**
1393 *	t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update
1394 *	@adap: the adapter
1395 *	@eq: the Ethernet TX Queue
1396 *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
1397 *
1398 *	We're typically called here to update the state of an Ethernet TX
1399 *	Queue with respect to the hardware's progress in consuming the TX
1400 *	Work Requests that we've put on that Egress Queue.  This happens
1401 *	when we get Egress Queue Update messages and also prophylactically
1402 *	in regular timer-based Ethernet TX Queue maintenance.
1403 */
1404int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq,
1405				 int maxreclaim)
1406{
1407	unsigned int reclaimed, hw_cidx;
1408	struct sge_txq *q = &eq->q;
1409	int hw_in_use;
1410
1411	if (!q->in_use || !__netif_tx_trylock(eq->txq))
1412		return 0;
1413
1414	/* Reclaim pending completed TX Descriptors. */
1415	reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true);
1416
1417	hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
1418	hw_in_use = q->pidx - hw_cidx;
1419	if (hw_in_use < 0)
1420		hw_in_use += q->size;
1421
1422	/* If the TX Queue is currently stopped and there's now more than half
1423	 * the queue available, restart it.  Otherwise bail out since the rest
1424	 * of what we want do here is with the possibility of shipping any
1425	 * currently buffered Coalesced TX Work Request.
1426	 */
1427	if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) {
1428		netif_tx_wake_queue(eq->txq);
1429		eq->q.restarts++;
1430	}
1431
1432	__netif_tx_unlock(eq->txq);
1433	return reclaimed;
1434}
1435
1436static inline int cxgb4_validate_skb(struct sk_buff *skb,
1437				     struct net_device *dev,
1438				     u32 min_pkt_len)
1439{
1440	u32 max_pkt_len;
1441
1442	/* The chip min packet length is 10 octets but some firmware
1443	 * commands have a minimum packet length requirement. So, play
1444	 * safe and reject anything shorter than @min_pkt_len.
1445	 */
1446	if (unlikely(skb->len < min_pkt_len))
1447		return -EINVAL;
1448
1449	/* Discard the packet if the length is greater than mtu */
1450	max_pkt_len = ETH_HLEN + dev->mtu;
1451
1452	if (skb_vlan_tagged(skb))
1453		max_pkt_len += VLAN_HLEN;
1454
1455	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1456		return -EINVAL;
1457
1458	return 0;
1459}
1460
1461static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
1462			     u32 hdr_len)
1463{
1464	wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
1465	wr->u.udpseg.ethlen = skb_network_offset(skb);
1466	wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
1467	wr->u.udpseg.udplen = sizeof(struct udphdr);
1468	wr->u.udpseg.rtplen = 0;
1469	wr->u.udpseg.r4 = 0;
1470	if (skb_shinfo(skb)->gso_size)
1471		wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
1472	else
1473		wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len);
1474	wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
1475	wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len);
1476
1477	return (void *)(wr + 1);
1478}
1479
1480/**
1481 *	cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
1482 *	@skb: the packet
1483 *	@dev: the egress net device
1484 *
1485 *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
1486 */
1487static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1488{
1489	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1490	bool ptp_enabled = is_ptp_enabled(skb, dev);
1491	unsigned int last_desc, flits, ndesc;
1492	u32 wr_mid, ctrl0, op, sgl_off = 0;
1493	const struct skb_shared_info *ssi;
1494	int len, qidx, credits, ret, left;
1495	struct tx_sw_desc *sgl_sdesc;
1496	struct fw_eth_tx_eo_wr *eowr;
1497	struct fw_eth_tx_pkt_wr *wr;
1498	struct cpl_tx_pkt_core *cpl;
1499	const struct port_info *pi;
1500	bool immediate = false;
1501	u64 cntrl, *end, *sgl;
1502	struct sge_eth_txq *q;
1503	unsigned int chip_ver;
1504	struct adapter *adap;
1505
1506	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
1507	if (ret)
1508		goto out_free;
1509
1510	pi = netdev_priv(dev);
1511	adap = pi->adapter;
1512	ssi = skb_shinfo(skb);
1513#if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
1514	if (xfrm_offload(skb) && !ssi->gso_size)
1515		return adap->uld[CXGB4_ULD_IPSEC].tx_handler(skb, dev);
1516#endif /* CHELSIO_IPSEC_INLINE */
1517
1518#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
1519	if (tls_is_skb_tx_device_offloaded(skb) &&
1520	    (skb->len - skb_tcp_all_headers(skb)))
1521		return adap->uld[CXGB4_ULD_KTLS].tx_handler(skb, dev);
1522#endif /* CHELSIO_TLS_DEVICE */
1523
1524	qidx = skb_get_queue_mapping(skb);
1525	if (ptp_enabled) {
1526		if (!(adap->ptp_tx_skb)) {
1527			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1528			adap->ptp_tx_skb = skb_get(skb);
1529		} else {
1530			goto out_free;
1531		}
1532		q = &adap->sge.ptptxq;
1533	} else {
1534		q = &adap->sge.ethtxq[qidx + pi->first_qset];
1535	}
1536	skb_tx_timestamp(skb);
1537
1538	reclaim_completed_tx(adap, &q->q, -1, true);
1539	cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1540
1541#ifdef CONFIG_CHELSIO_T4_FCOE
1542	ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1543	if (unlikely(ret == -EOPNOTSUPP))
1544		goto out_free;
1545#endif /* CONFIG_CHELSIO_T4_FCOE */
1546
1547	chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1548	flits = calc_tx_flits(skb, chip_ver);
1549	ndesc = flits_to_desc(flits);
1550	credits = txq_avail(&q->q) - ndesc;
1551
1552	if (unlikely(credits < 0)) {
1553		eth_txq_stop(q);
1554		dev_err(adap->pdev_dev,
1555			"%s: Tx ring %u full while queue awake!\n",
1556			dev->name, qidx);
1557		return NETDEV_TX_BUSY;
1558	}
1559
1560	if (is_eth_imm(skb, chip_ver))
1561		immediate = true;
1562
1563	if (skb->encapsulation && chip_ver > CHELSIO_T5)
1564		tnl_type = cxgb_encap_offload_supported(skb);
1565
1566	last_desc = q->q.pidx + ndesc - 1;
1567	if (last_desc >= q->q.size)
1568		last_desc -= q->q.size;
1569	sgl_sdesc = &q->q.sdesc[last_desc];
1570
1571	if (!immediate &&
1572	    unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) {
1573		memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1574		q->mapping_err++;
1575		goto out_free;
1576	}
1577
1578	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1579	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1580		/* After we're done injecting the Work Request for this
1581		 * packet, we'll be below our "stop threshold" so stop the TX
1582		 * Queue now and schedule a request for an SGE Egress Queue
1583		 * Update message. The queue will get started later on when
1584		 * the firmware processes this Work Request and sends us an
1585		 * Egress Queue Status Update message indicating that space
1586		 * has opened up.
1587		 */
1588		eth_txq_stop(q);
1589		if (chip_ver > CHELSIO_T5)
1590			wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1591	}
1592
1593	wr = (void *)&q->q.desc[q->q.pidx];
1594	eowr = (void *)&q->q.desc[q->q.pidx];
1595	wr->equiq_to_len16 = htonl(wr_mid);
1596	wr->r3 = cpu_to_be64(0);
1597	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
1598		end = (u64 *)eowr + flits;
1599	else
1600		end = (u64 *)wr + flits;
1601
1602	len = immediate ? skb->len : 0;
1603	len += sizeof(*cpl);
1604	if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) {
1605		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1606		struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
1607
1608		if (tnl_type)
1609			len += sizeof(*tnl_lso);
1610		else
1611			len += sizeof(*lso);
1612
1613		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1614				       FW_WR_IMMDLEN_V(len));
1615		if (tnl_type) {
1616			struct iphdr *iph = ip_hdr(skb);
1617
1618			t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
1619			cpl = (void *)(tnl_lso + 1);
1620			/* Driver is expected to compute partial checksum that
1621			 * does not include the IP Total Length.
1622			 */
1623			if (iph->version == 4) {
1624				iph->check = 0;
1625				iph->tot_len = 0;
1626				iph->check = ~ip_fast_csum((u8 *)iph, iph->ihl);
1627			}
1628			if (skb->ip_summed == CHECKSUM_PARTIAL)
1629				cntrl = hwcsum(adap->params.chip, skb);
1630		} else {
1631			cpl = write_tso_wr(adap, skb, lso);
1632			cntrl = hwcsum(adap->params.chip, skb);
1633		}
1634		sgl = (u64 *)(cpl + 1); /* sgl start here */
1635		q->tso++;
1636		q->tx_cso += ssi->gso_segs;
1637	} else if (ssi->gso_size) {
1638		u64 *start;
1639		u32 hdrlen;
1640
1641		hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb));
1642		len += hdrlen;
1643		wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
1644					     FW_ETH_TX_EO_WR_IMMDLEN_V(len));
1645		cpl = write_eo_udp_wr(skb, eowr, hdrlen);
1646		cntrl = hwcsum(adap->params.chip, skb);
1647
1648		start = (u64 *)(cpl + 1);
1649		sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start,
1650						  hdrlen);
1651		if (unlikely(start > sgl)) {
1652			left = (u8 *)end - (u8 *)q->q.stat;
1653			end = (void *)q->q.desc + left;
1654		}
1655		sgl_off = hdrlen;
1656		q->uso++;
1657		q->tx_cso += ssi->gso_segs;
1658	} else {
1659		if (ptp_enabled)
1660			op = FW_PTP_TX_PKT_WR;
1661		else
1662			op = FW_ETH_TX_PKT_WR;
1663		wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1664				       FW_WR_IMMDLEN_V(len));
1665		cpl = (void *)(wr + 1);
1666		sgl = (u64 *)(cpl + 1);
1667		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1668			cntrl = hwcsum(adap->params.chip, skb) |
1669				TXPKT_IPCSUM_DIS_F;
1670			q->tx_cso++;
1671		}
1672	}
1673
1674	if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
1675		/* If current position is already at the end of the
1676		 * txq, reset the current to point to start of the queue
1677		 * and update the end ptr as well.
1678		 */
1679		left = (u8 *)end - (u8 *)q->q.stat;
1680		end = (void *)q->q.desc + left;
1681		sgl = (void *)q->q.desc;
1682	}
1683
1684	if (skb_vlan_tag_present(skb)) {
1685		q->vlan_ins++;
1686		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1687#ifdef CONFIG_CHELSIO_T4_FCOE
1688		if (skb->protocol == htons(ETH_P_FCOE))
1689			cntrl |= TXPKT_VLAN_V(
1690				 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1691#endif /* CONFIG_CHELSIO_T4_FCOE */
1692	}
1693
1694	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1695		TXPKT_PF_V(adap->pf);
1696	if (ptp_enabled)
1697		ctrl0 |= TXPKT_TSTAMP_F;
1698#ifdef CONFIG_CHELSIO_T4_DCB
1699	if (is_t4(adap->params.chip))
1700		ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1701	else
1702		ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1703#endif
1704	cpl->ctrl0 = htonl(ctrl0);
1705	cpl->pack = htons(0);
1706	cpl->len = htons(skb->len);
1707	cpl->ctrl1 = cpu_to_be64(cntrl);
1708
1709	if (immediate) {
1710		cxgb4_inline_tx_skb(skb, &q->q, sgl);
1711		dev_consume_skb_any(skb);
1712	} else {
1713		cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off,
1714				sgl_sdesc->addr);
1715		skb_orphan(skb);
1716		sgl_sdesc->skb = skb;
1717	}
1718
1719	txq_advance(&q->q, ndesc);
1720
1721	cxgb4_ring_tx_db(adap, &q->q, ndesc);
1722	return NETDEV_TX_OK;
1723
1724out_free:
1725	dev_kfree_skb_any(skb);
1726	return NETDEV_TX_OK;
1727}
1728
1729/* Constants ... */
1730enum {
1731	/* Egress Queue sizes, producer and consumer indices are all in units
1732	 * of Egress Context Units bytes.  Note that as far as the hardware is
1733	 * concerned, the free list is an Egress Queue (the host produces free
1734	 * buffers which the hardware consumes) and free list entries are
1735	 * 64-bit PCI DMA addresses.
1736	 */
1737	EQ_UNIT = SGE_EQ_IDXSIZE,
1738	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1739	TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1740
1741	T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1742			       sizeof(struct cpl_tx_pkt_lso_core) +
1743			       sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
1744};
1745
1746/**
1747 *	t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
1748 *	@skb: the packet
1749 *
1750 *	Returns whether an Ethernet packet is small enough to fit completely as
1751 *	immediate data.
1752 */
1753static inline int t4vf_is_eth_imm(const struct sk_buff *skb)
1754{
1755	/* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
1756	 * which does not accommodate immediate data.  We could dike out all
1757	 * of the support code for immediate data but that would tie our hands
1758	 * too much if we ever want to enhace the firmware.  It would also
1759	 * create more differences between the PF and VF Drivers.
1760	 */
1761	return false;
1762}
1763
1764/**
1765 *	t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
1766 *	@skb: the packet
1767 *
1768 *	Returns the number of flits needed for a TX Work Request for the
1769 *	given Ethernet packet, including the needed WR and CPL headers.
1770 */
1771static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb)
1772{
1773	unsigned int flits;
1774
1775	/* If the skb is small enough, we can pump it out as a work request
1776	 * with only immediate data.  In that case we just have to have the
1777	 * TX Packet header plus the skb data in the Work Request.
1778	 */
1779	if (t4vf_is_eth_imm(skb))
1780		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
1781				    sizeof(__be64));
1782
1783	/* Otherwise, we're going to have to construct a Scatter gather list
1784	 * of the skb body and fragments.  We also include the flits necessary
1785	 * for the TX Packet Work Request and CPL.  We always have a firmware
1786	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
1787	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
1788	 * message or, if we're doing a Large Send Offload, an LSO CPL message
1789	 * with an embedded TX Packet Write CPL message.
1790	 */
1791	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
1792	if (skb_shinfo(skb)->gso_size)
1793		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1794			  sizeof(struct cpl_tx_pkt_lso_core) +
1795			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1796	else
1797		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1798			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1799	return flits;
1800}
1801
1802/**
1803 *	cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
1804 *	@skb: the packet
1805 *	@dev: the egress net device
1806 *
1807 *	Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
1808 */
1809static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb,
1810				     struct net_device *dev)
1811{
1812	unsigned int last_desc, flits, ndesc;
1813	const struct skb_shared_info *ssi;
1814	struct fw_eth_tx_pkt_vm_wr *wr;
1815	struct tx_sw_desc *sgl_sdesc;
1816	struct cpl_tx_pkt_core *cpl;
1817	const struct port_info *pi;
1818	struct sge_eth_txq *txq;
1819	struct adapter *adapter;
1820	int qidx, credits, ret;
1821	size_t fw_hdr_copy_len;
1822	unsigned int chip_ver;
1823	u64 cntrl, *end;
1824	u32 wr_mid;
1825
1826	/* The chip minimum packet length is 10 octets but the firmware
1827	 * command that we are using requires that we copy the Ethernet header
1828	 * (including the VLAN tag) into the header so we reject anything
1829	 * smaller than that ...
1830	 */
1831	BUILD_BUG_ON(sizeof(wr->firmware) !=
1832		     (sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) +
1833		      sizeof(wr->ethtype) + sizeof(wr->vlantci)));
1834	fw_hdr_copy_len = sizeof(wr->firmware);
1835	ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len);
1836	if (ret)
1837		goto out_free;
1838
1839	/* Figure out which TX Queue we're going to use. */
1840	pi = netdev_priv(dev);
1841	adapter = pi->adapter;
1842	qidx = skb_get_queue_mapping(skb);
1843	WARN_ON(qidx >= pi->nqsets);
1844	txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1845
1846	/* Take this opportunity to reclaim any TX Descriptors whose DMA
1847	 * transfers have completed.
1848	 */
1849	reclaim_completed_tx(adapter, &txq->q, -1, true);
1850
1851	/* Calculate the number of flits and TX Descriptors we're going to
1852	 * need along with how many TX Descriptors will be left over after
1853	 * we inject our Work Request.
1854	 */
1855	flits = t4vf_calc_tx_flits(skb);
1856	ndesc = flits_to_desc(flits);
1857	credits = txq_avail(&txq->q) - ndesc;
1858
1859	if (unlikely(credits < 0)) {
1860		/* Not enough room for this packet's Work Request.  Stop the
1861		 * TX Queue and return a "busy" condition.  The queue will get
1862		 * started later on when the firmware informs us that space
1863		 * has opened up.
1864		 */
1865		eth_txq_stop(txq);
1866		dev_err(adapter->pdev_dev,
1867			"%s: TX ring %u full while queue awake!\n",
1868			dev->name, qidx);
1869		return NETDEV_TX_BUSY;
1870	}
1871
1872	last_desc = txq->q.pidx + ndesc - 1;
1873	if (last_desc >= txq->q.size)
1874		last_desc -= txq->q.size;
1875	sgl_sdesc = &txq->q.sdesc[last_desc];
1876
1877	if (!t4vf_is_eth_imm(skb) &&
1878	    unlikely(cxgb4_map_skb(adapter->pdev_dev, skb,
1879				   sgl_sdesc->addr) < 0)) {
1880		/* We need to map the skb into PCI DMA space (because it can't
1881		 * be in-lined directly into the Work Request) and the mapping
1882		 * operation failed.  Record the error and drop the packet.
1883		 */
1884		memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1885		txq->mapping_err++;
1886		goto out_free;
1887	}
1888
1889	chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
1890	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1891	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1892		/* After we're done injecting the Work Request for this
1893		 * packet, we'll be below our "stop threshold" so stop the TX
1894		 * Queue now and schedule a request for an SGE Egress Queue
1895		 * Update message.  The queue will get started later on when
1896		 * the firmware processes this Work Request and sends us an
1897		 * Egress Queue Status Update message indicating that space
1898		 * has opened up.
1899		 */
1900		eth_txq_stop(txq);
1901		if (chip_ver > CHELSIO_T5)
1902			wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1903	}
1904
1905	/* Start filling in our Work Request.  Note that we do _not_ handle
1906	 * the WR Header wrapping around the TX Descriptor Ring.  If our
1907	 * maximum header size ever exceeds one TX Descriptor, we'll need to
1908	 * do something else here.
1909	 */
1910	WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1911	wr = (void *)&txq->q.desc[txq->q.pidx];
1912	wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1913	wr->r3[0] = cpu_to_be32(0);
1914	wr->r3[1] = cpu_to_be32(0);
1915	skb_copy_from_linear_data(skb, &wr->firmware, fw_hdr_copy_len);
1916	end = (u64 *)wr + flits;
1917
1918	/* If this is a Large Send Offload packet we'll put in an LSO CPL
1919	 * message with an encapsulated TX Packet CPL message.  Otherwise we
1920	 * just use a TX Packet CPL message.
1921	 */
1922	ssi = skb_shinfo(skb);
1923	if (ssi->gso_size) {
1924		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1925		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1926		int l3hdr_len = skb_network_header_len(skb);
1927		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1928
1929		wr->op_immdlen =
1930			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1931				    FW_WR_IMMDLEN_V(sizeof(*lso) +
1932						    sizeof(*cpl)));
1933		 /* Fill in the LSO CPL message. */
1934		lso->lso_ctrl =
1935			cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1936				    LSO_FIRST_SLICE_F |
1937				    LSO_LAST_SLICE_F |
1938				    LSO_IPV6_V(v6) |
1939				    LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1940				    LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1941				    LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1942		lso->ipid_ofst = cpu_to_be16(0);
1943		lso->mss = cpu_to_be16(ssi->gso_size);
1944		lso->seqno_offset = cpu_to_be32(0);
1945		if (is_t4(adapter->params.chip))
1946			lso->len = cpu_to_be32(skb->len);
1947		else
1948			lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1949
1950		/* Set up TX Packet CPL pointer, control word and perform
1951		 * accounting.
1952		 */
1953		cpl = (void *)(lso + 1);
1954
1955		if (chip_ver <= CHELSIO_T5)
1956			cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1957		else
1958			cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1959
1960		cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1961					   TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1962			 TXPKT_IPHDR_LEN_V(l3hdr_len);
1963		txq->tso++;
1964		txq->tx_cso += ssi->gso_segs;
1965	} else {
1966		int len;
1967
1968		len = (t4vf_is_eth_imm(skb)
1969		       ? skb->len + sizeof(*cpl)
1970		       : sizeof(*cpl));
1971		wr->op_immdlen =
1972			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1973				    FW_WR_IMMDLEN_V(len));
1974
1975		/* Set up TX Packet CPL pointer, control word and perform
1976		 * accounting.
1977		 */
1978		cpl = (void *)(wr + 1);
1979		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1980			cntrl = hwcsum(adapter->params.chip, skb) |
1981				TXPKT_IPCSUM_DIS_F;
1982			txq->tx_cso++;
1983		} else {
1984			cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1985		}
1986	}
1987
1988	/* If there's a VLAN tag present, add that to the list of things to
1989	 * do in this Work Request.
1990	 */
1991	if (skb_vlan_tag_present(skb)) {
1992		txq->vlan_ins++;
1993		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1994	}
1995
1996	 /* Fill in the TX Packet CPL message header. */
1997	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
1998				 TXPKT_INTF_V(pi->port_id) |
1999				 TXPKT_PF_V(0));
2000	cpl->pack = cpu_to_be16(0);
2001	cpl->len = cpu_to_be16(skb->len);
2002	cpl->ctrl1 = cpu_to_be64(cntrl);
2003
2004	/* Fill in the body of the TX Packet CPL message with either in-lined
2005	 * data or a Scatter/Gather List.
2006	 */
2007	if (t4vf_is_eth_imm(skb)) {
2008		/* In-line the packet's data and free the skb since we don't
2009		 * need it any longer.
2010		 */
2011		cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1);
2012		dev_consume_skb_any(skb);
2013	} else {
2014		/* Write the skb's Scatter/Gather list into the TX Packet CPL
2015		 * message and retain a pointer to the skb so we can free it
2016		 * later when its DMA completes.  (We store the skb pointer
2017		 * in the Software Descriptor corresponding to the last TX
2018		 * Descriptor used by the Work Request.)
2019		 *
2020		 * The retained skb will be freed when the corresponding TX
2021		 * Descriptors are reclaimed after their DMAs complete.
2022		 * However, this could take quite a while since, in general,
2023		 * the hardware is set up to be lazy about sending DMA
2024		 * completion notifications to us and we mostly perform TX
2025		 * reclaims in the transmit routine.
2026		 *
2027		 * This is good for performamce but means that we rely on new
2028		 * TX packets arriving to run the destructors of completed
2029		 * packets, which open up space in their sockets' send queues.
2030		 * Sometimes we do not get such new packets causing TX to
2031		 * stall.  A single UDP transmitter is a good example of this
2032		 * situation.  We have a clean up timer that periodically
2033		 * reclaims completed packets but it doesn't run often enough
2034		 * (nor do we want it to) to prevent lengthy stalls.  A
2035		 * solution to this problem is to run the destructor early,
2036		 * after the packet is queued but before it's DMAd.  A con is
2037		 * that we lie to socket memory accounting, but the amount of
2038		 * extra memory is reasonable (limited by the number of TX
2039		 * descriptors), the packets do actually get freed quickly by
2040		 * new packets almost always, and for protocols like TCP that
2041		 * wait for acks to really free up the data the extra memory
2042		 * is even less.  On the positive side we run the destructors
2043		 * on the sending CPU rather than on a potentially different
2044		 * completing CPU, usually a good thing.
2045		 *
2046		 * Run the destructor before telling the DMA engine about the
2047		 * packet to make sure it doesn't complete and get freed
2048		 * prematurely.
2049		 */
2050		struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
2051		struct sge_txq *tq = &txq->q;
2052
2053		/* If the Work Request header was an exact multiple of our TX
2054		 * Descriptor length, then it's possible that the starting SGL
2055		 * pointer lines up exactly with the end of our TX Descriptor
2056		 * ring.  If that's the case, wrap around to the beginning
2057		 * here ...
2058		 */
2059		if (unlikely((void *)sgl == (void *)tq->stat)) {
2060			sgl = (void *)tq->desc;
2061			end = (void *)((void *)tq->desc +
2062				       ((void *)end - (void *)tq->stat));
2063		}
2064
2065		cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr);
2066		skb_orphan(skb);
2067		sgl_sdesc->skb = skb;
2068	}
2069
2070	/* Advance our internal TX Queue state, tell the hardware about
2071	 * the new TX descriptors and return success.
2072	 */
2073	txq_advance(&txq->q, ndesc);
2074
2075	cxgb4_ring_tx_db(adapter, &txq->q, ndesc);
2076	return NETDEV_TX_OK;
2077
2078out_free:
2079	/* An error of some sort happened.  Free the TX skb and tell the
2080	 * OS that we've "dealt" with the packet ...
2081	 */
2082	dev_kfree_skb_any(skb);
2083	return NETDEV_TX_OK;
2084}
2085
2086/**
2087 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
2088 * @q: the SGE control Tx queue
2089 *
2090 * This is a variant of cxgb4_reclaim_completed_tx() that is used
2091 * for Tx queues that send only immediate data (presently just
2092 * the control queues) and	thus do not have any sk_buffs to release.
2093 */
2094static inline void reclaim_completed_tx_imm(struct sge_txq *q)
2095{
2096	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
2097	int reclaim = hw_cidx - q->cidx;
2098
2099	if (reclaim < 0)
2100		reclaim += q->size;
2101
2102	q->in_use -= reclaim;
2103	q->cidx = hw_cidx;
2104}
2105
2106static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max)
2107{
2108	u32 val = *idx + n;
2109
2110	if (val >= max)
2111		val -= max;
2112
2113	*idx = val;
2114}
2115
2116void cxgb4_eosw_txq_free_desc(struct adapter *adap,
2117			      struct sge_eosw_txq *eosw_txq, u32 ndesc)
2118{
2119	struct tx_sw_desc *d;
2120
2121	d = &eosw_txq->desc[eosw_txq->last_cidx];
2122	while (ndesc--) {
2123		if (d->skb) {
2124			if (d->addr[0]) {
2125				unmap_skb(adap->pdev_dev, d->skb, d->addr);
2126				memset(d->addr, 0, sizeof(d->addr));
2127			}
2128			dev_consume_skb_any(d->skb);
2129			d->skb = NULL;
2130		}
2131		eosw_txq_advance_index(&eosw_txq->last_cidx, 1,
2132				       eosw_txq->ndesc);
2133		d = &eosw_txq->desc[eosw_txq->last_cidx];
2134	}
2135}
2136
2137static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n)
2138{
2139	eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc);
2140	eosw_txq->inuse += n;
2141}
2142
2143static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq,
2144				   struct sk_buff *skb)
2145{
2146	if (eosw_txq->inuse == eosw_txq->ndesc)
2147		return -ENOMEM;
2148
2149	eosw_txq->desc[eosw_txq->pidx].skb = skb;
2150	return 0;
2151}
2152
2153static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq)
2154{
2155	return eosw_txq->desc[eosw_txq->last_pidx].skb;
2156}
2157
2158static inline u8 ethofld_calc_tx_flits(struct adapter *adap,
2159				       struct sk_buff *skb, u32 hdr_len)
2160{
2161	u8 flits, nsgl = 0;
2162	u32 wrlen;
2163
2164	wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core);
2165	if (skb_shinfo(skb)->gso_size &&
2166	    !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2167		wrlen += sizeof(struct cpl_tx_pkt_lso_core);
2168
2169	wrlen += roundup(hdr_len, 16);
2170
2171	/* Packet headers + WR + CPLs */
2172	flits = DIV_ROUND_UP(wrlen, 8);
2173
2174	if (skb_shinfo(skb)->nr_frags > 0) {
2175		if (skb_headlen(skb) - hdr_len)
2176			nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1);
2177		else
2178			nsgl = sgl_len(skb_shinfo(skb)->nr_frags);
2179	} else if (skb->len - hdr_len) {
2180		nsgl = sgl_len(1);
2181	}
2182
2183	return flits + nsgl;
2184}
2185
2186static void *write_eo_wr(struct adapter *adap, struct sge_eosw_txq *eosw_txq,
2187			 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
2188			 u32 hdr_len, u32 wrlen)
2189{
2190	const struct skb_shared_info *ssi = skb_shinfo(skb);
2191	struct cpl_tx_pkt_core *cpl;
2192	u32 immd_len, wrlen16;
2193	bool compl = false;
2194	u8 ver, proto;
2195
2196	ver = ip_hdr(skb)->version;
2197	proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol;
2198
2199	wrlen16 = DIV_ROUND_UP(wrlen, 16);
2200	immd_len = sizeof(struct cpl_tx_pkt_core);
2201	if (skb_shinfo(skb)->gso_size &&
2202	    !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2203		immd_len += sizeof(struct cpl_tx_pkt_lso_core);
2204	immd_len += hdr_len;
2205
2206	if (!eosw_txq->ncompl ||
2207	    (eosw_txq->last_compl + wrlen16) >=
2208	    (adap->params.ofldq_wr_cred / 2)) {
2209		compl = true;
2210		eosw_txq->ncompl++;
2211		eosw_txq->last_compl = 0;
2212	}
2213
2214	wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
2215				     FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) |
2216				     FW_WR_COMPL_V(compl));
2217	wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) |
2218					 FW_WR_FLOWID_V(eosw_txq->hwtid));
2219	wr->r3 = 0;
2220	if (proto == IPPROTO_UDP) {
2221		cpl = write_eo_udp_wr(skb, wr, hdr_len);
2222	} else {
2223		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
2224		wr->u.tcpseg.ethlen = skb_network_offset(skb);
2225		wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
2226		wr->u.tcpseg.tcplen = tcp_hdrlen(skb);
2227		wr->u.tcpseg.tsclk_tsoff = 0;
2228		wr->u.tcpseg.r4 = 0;
2229		wr->u.tcpseg.r5 = 0;
2230		wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len);
2231
2232		if (ssi->gso_size) {
2233			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2234
2235			wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size);
2236			cpl = write_tso_wr(adap, skb, lso);
2237		} else {
2238			wr->u.tcpseg.mss = cpu_to_be16(0xffff);
2239			cpl = (void *)(wr + 1);
2240		}
2241	}
2242
2243	eosw_txq->cred -= wrlen16;
2244	eosw_txq->last_compl += wrlen16;
2245	return cpl;
2246}
2247
2248static int ethofld_hard_xmit(struct net_device *dev,
2249			     struct sge_eosw_txq *eosw_txq)
2250{
2251	struct port_info *pi = netdev2pinfo(dev);
2252	struct adapter *adap = netdev2adap(dev);
2253	u32 wrlen, wrlen16, hdr_len, data_len;
2254	enum sge_eosw_state next_state;
2255	u64 cntrl, *start, *end, *sgl;
2256	struct sge_eohw_txq *eohw_txq;
2257	struct cpl_tx_pkt_core *cpl;
2258	struct fw_eth_tx_eo_wr *wr;
2259	bool skip_eotx_wr = false;
2260	struct tx_sw_desc *d;
2261	struct sk_buff *skb;
2262	int left, ret = 0;
2263	u8 flits, ndesc;
2264
2265	eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid];
2266	spin_lock(&eohw_txq->lock);
2267	reclaim_completed_tx_imm(&eohw_txq->q);
2268
2269	d = &eosw_txq->desc[eosw_txq->last_pidx];
2270	skb = d->skb;
2271	skb_tx_timestamp(skb);
2272
2273	wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx];
2274	if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE &&
2275		     eosw_txq->last_pidx == eosw_txq->flowc_idx)) {
2276		hdr_len = skb->len;
2277		data_len = 0;
2278		flits = DIV_ROUND_UP(hdr_len, 8);
2279		if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND)
2280			next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY;
2281		else
2282			next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY;
2283		skip_eotx_wr = true;
2284	} else {
2285		hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb));
2286		data_len = skb->len - hdr_len;
2287		flits = ethofld_calc_tx_flits(adap, skb, hdr_len);
2288	}
2289	ndesc = flits_to_desc(flits);
2290	wrlen = flits * 8;
2291	wrlen16 = DIV_ROUND_UP(wrlen, 16);
2292
2293	left = txq_avail(&eohw_txq->q) - ndesc;
2294
2295	/* If there are no descriptors left in hardware queues or no
2296	 * CPL credits left in software queues, then wait for them
2297	 * to come back and retry again. Note that we always request
2298	 * for credits update via interrupt for every half credits
2299	 * consumed. So, the interrupt will eventually restore the
2300	 * credits and invoke the Tx path again.
2301	 */
2302	if (unlikely(left < 0 || wrlen16 > eosw_txq->cred)) {
2303		ret = -ENOMEM;
2304		goto out_unlock;
2305	}
2306
2307	if (unlikely(skip_eotx_wr)) {
2308		start = (u64 *)wr;
2309		eosw_txq->state = next_state;
2310		eosw_txq->cred -= wrlen16;
2311		eosw_txq->ncompl++;
2312		eosw_txq->last_compl = 0;
2313		goto write_wr_headers;
2314	}
2315
2316	cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen);
2317	cntrl = hwcsum(adap->params.chip, skb);
2318	if (skb_vlan_tag_present(skb))
2319		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
2320
2321	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
2322				 TXPKT_INTF_V(pi->tx_chan) |
2323				 TXPKT_PF_V(adap->pf));
2324	cpl->pack = 0;
2325	cpl->len = cpu_to_be16(skb->len);
2326	cpl->ctrl1 = cpu_to_be64(cntrl);
2327
2328	start = (u64 *)(cpl + 1);
2329
2330write_wr_headers:
2331	sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start,
2332					  hdr_len);
2333	if (data_len) {
2334		ret = cxgb4_map_skb(adap->pdev_dev, skb, d->addr);
2335		if (unlikely(ret)) {
2336			memset(d->addr, 0, sizeof(d->addr));
2337			eohw_txq->mapping_err++;
2338			goto out_unlock;
2339		}
2340
2341		end = (u64 *)wr + flits;
2342		if (unlikely(start > sgl)) {
2343			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2344			end = (void *)eohw_txq->q.desc + left;
2345		}
2346
2347		if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) {
2348			/* If current position is already at the end of the
2349			 * txq, reset the current to point to start of the queue
2350			 * and update the end ptr as well.
2351			 */
2352			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2353
2354			end = (void *)eohw_txq->q.desc + left;
2355			sgl = (void *)eohw_txq->q.desc;
2356		}
2357
2358		cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len,
2359				d->addr);
2360	}
2361
2362	if (skb_shinfo(skb)->gso_size) {
2363		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
2364			eohw_txq->uso++;
2365		else
2366			eohw_txq->tso++;
2367		eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs;
2368	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2369		eohw_txq->tx_cso++;
2370	}
2371
2372	if (skb_vlan_tag_present(skb))
2373		eohw_txq->vlan_ins++;
2374
2375	txq_advance(&eohw_txq->q, ndesc);
2376	cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc);
2377	eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc);
2378
2379out_unlock:
2380	spin_unlock(&eohw_txq->lock);
2381	return ret;
2382}
2383
2384static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq)
2385{
2386	struct sk_buff *skb;
2387	int pktcount, ret;
2388
2389	switch (eosw_txq->state) {
2390	case CXGB4_EO_STATE_ACTIVE:
2391	case CXGB4_EO_STATE_FLOWC_OPEN_SEND:
2392	case CXGB4_EO_STATE_FLOWC_CLOSE_SEND:
2393		pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2394		if (pktcount < 0)
2395			pktcount += eosw_txq->ndesc;
2396		break;
2397	case CXGB4_EO_STATE_FLOWC_OPEN_REPLY:
2398	case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY:
2399	case CXGB4_EO_STATE_CLOSED:
2400	default:
2401		return;
2402	}
2403
2404	while (pktcount--) {
2405		skb = eosw_txq_peek(eosw_txq);
2406		if (!skb) {
2407			eosw_txq_advance_index(&eosw_txq->last_pidx, 1,
2408					       eosw_txq->ndesc);
2409			continue;
2410		}
2411
2412		ret = ethofld_hard_xmit(dev, eosw_txq);
2413		if (ret)
2414			break;
2415	}
2416}
2417
2418static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb,
2419				      struct net_device *dev)
2420{
2421	struct cxgb4_tc_port_mqprio *tc_port_mqprio;
2422	struct port_info *pi = netdev2pinfo(dev);
2423	struct adapter *adap = netdev2adap(dev);
2424	struct sge_eosw_txq *eosw_txq;
2425	u32 qid;
2426	int ret;
2427
2428	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
2429	if (ret)
2430		goto out_free;
2431
2432	tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
2433	qid = skb_get_queue_mapping(skb) - pi->nqsets;
2434	eosw_txq = &tc_port_mqprio->eosw_txq[qid];
2435	spin_lock_bh(&eosw_txq->lock);
2436	if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2437		goto out_unlock;
2438
2439	ret = eosw_txq_enqueue(eosw_txq, skb);
2440	if (ret)
2441		goto out_unlock;
2442
2443	/* SKB is queued for processing until credits are available.
2444	 * So, call the destructor now and we'll free the skb later
2445	 * after it has been successfully transmitted.
2446	 */
2447	skb_orphan(skb);
2448
2449	eosw_txq_advance(eosw_txq, 1);
2450	ethofld_xmit(dev, eosw_txq);
2451	spin_unlock_bh(&eosw_txq->lock);
2452	return NETDEV_TX_OK;
2453
2454out_unlock:
2455	spin_unlock_bh(&eosw_txq->lock);
2456out_free:
2457	dev_kfree_skb_any(skb);
2458	return NETDEV_TX_OK;
2459}
2460
2461netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev)
2462{
2463	struct port_info *pi = netdev_priv(dev);
2464	u16 qid = skb_get_queue_mapping(skb);
2465
2466	if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM))
2467		return cxgb4_vf_eth_xmit(skb, dev);
2468
2469	if (unlikely(qid >= pi->nqsets))
2470		return cxgb4_ethofld_xmit(skb, dev);
2471
2472	if (is_ptp_enabled(skb, dev)) {
2473		struct adapter *adap = netdev2adap(dev);
2474		netdev_tx_t ret;
2475
2476		spin_lock(&adap->ptp_lock);
2477		ret = cxgb4_eth_xmit(skb, dev);
2478		spin_unlock(&adap->ptp_lock);
2479		return ret;
2480	}
2481
2482	return cxgb4_eth_xmit(skb, dev);
2483}
2484
2485static void eosw_txq_flush_pending_skbs(struct sge_eosw_txq *eosw_txq)
2486{
2487	int pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2488	int pidx = eosw_txq->pidx;
2489	struct sk_buff *skb;
2490
2491	if (!pktcount)
2492		return;
2493
2494	if (pktcount < 0)
2495		pktcount += eosw_txq->ndesc;
2496
2497	while (pktcount--) {
2498		pidx--;
2499		if (pidx < 0)
2500			pidx += eosw_txq->ndesc;
2501
2502		skb = eosw_txq->desc[pidx].skb;
2503		if (skb) {
2504			dev_consume_skb_any(skb);
2505			eosw_txq->desc[pidx].skb = NULL;
2506			eosw_txq->inuse--;
2507		}
2508	}
2509
2510	eosw_txq->pidx = eosw_txq->last_pidx + 1;
2511}
2512
2513/**
2514 * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc.
2515 * @dev: netdevice
2516 * @eotid: ETHOFLD tid to bind/unbind
2517 * @tc: traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid
2518 *
2519 * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class.
2520 * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from
2521 * a traffic class.
2522 */
2523int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc)
2524{
2525	struct port_info *pi = netdev2pinfo(dev);
2526	struct adapter *adap = netdev2adap(dev);
2527	enum sge_eosw_state next_state;
2528	struct sge_eosw_txq *eosw_txq;
2529	u32 len, len16, nparams = 6;
2530	struct fw_flowc_wr *flowc;
2531	struct eotid_entry *entry;
2532	struct sge_ofld_rxq *rxq;
2533	struct sk_buff *skb;
2534	int ret = 0;
2535
2536	len = struct_size(flowc, mnemval, nparams);
2537	len16 = DIV_ROUND_UP(len, 16);
2538
2539	entry = cxgb4_lookup_eotid(&adap->tids, eotid);
2540	if (!entry)
2541		return -ENOMEM;
2542
2543	eosw_txq = (struct sge_eosw_txq *)entry->data;
2544	if (!eosw_txq)
2545		return -ENOMEM;
2546
2547	if (!(adap->flags & CXGB4_FW_OK)) {
2548		/* Don't stall caller when access to FW is lost */
2549		complete(&eosw_txq->completion);
2550		return -EIO;
2551	}
2552
2553	skb = alloc_skb(len, GFP_KERNEL);
2554	if (!skb)
2555		return -ENOMEM;
2556
2557	spin_lock_bh(&eosw_txq->lock);
2558	if (tc != FW_SCHED_CLS_NONE) {
2559		if (eosw_txq->state != CXGB4_EO_STATE_CLOSED)
2560			goto out_free_skb;
2561
2562		next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND;
2563	} else {
2564		if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2565			goto out_free_skb;
2566
2567		next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND;
2568	}
2569
2570	flowc = __skb_put(skb, len);
2571	memset(flowc, 0, len);
2572
2573	rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid];
2574	flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) |
2575					  FW_WR_FLOWID_V(eosw_txq->hwtid));
2576	flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
2577					   FW_FLOWC_WR_NPARAMS_V(nparams) |
2578					   FW_WR_COMPL_V(1));
2579	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
2580	flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf));
2581	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
2582	flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan);
2583	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
2584	flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan);
2585	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
2586	flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id);
2587	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
2588	flowc->mnemval[4].val = cpu_to_be32(tc);
2589	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE;
2590	flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ?
2591					    FW_FLOWC_MNEM_EOSTATE_CLOSING :
2592					    FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
2593
2594	/* Free up any pending skbs to ensure there's room for
2595	 * termination FLOWC.
2596	 */
2597	if (tc == FW_SCHED_CLS_NONE)
2598		eosw_txq_flush_pending_skbs(eosw_txq);
2599
2600	ret = eosw_txq_enqueue(eosw_txq, skb);
2601	if (ret)
2602		goto out_free_skb;
2603
2604	eosw_txq->state = next_state;
2605	eosw_txq->flowc_idx = eosw_txq->pidx;
2606	eosw_txq_advance(eosw_txq, 1);
2607	ethofld_xmit(dev, eosw_txq);
2608
2609	spin_unlock_bh(&eosw_txq->lock);
2610	return 0;
2611
2612out_free_skb:
2613	dev_consume_skb_any(skb);
2614	spin_unlock_bh(&eosw_txq->lock);
2615	return ret;
2616}
2617
2618/**
2619 *	is_imm - check whether a packet can be sent as immediate data
2620 *	@skb: the packet
2621 *
2622 *	Returns true if a packet can be sent as a WR with immediate data.
2623 */
2624static inline int is_imm(const struct sk_buff *skb)
2625{
2626	return skb->len <= MAX_CTRL_WR_LEN;
2627}
2628
2629/**
2630 *	ctrlq_check_stop - check if a control queue is full and should stop
2631 *	@q: the queue
2632 *	@wr: most recent WR written to the queue
2633 *
2634 *	Check if a control queue has become full and should be stopped.
2635 *	We clean up control queue descriptors very lazily, only when we are out.
2636 *	If the queue is still full after reclaiming any completed descriptors
2637 *	we suspend it and have the last WR wake it up.
2638 */
2639static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
2640{
2641	reclaim_completed_tx_imm(&q->q);
2642	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2643		wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2644		q->q.stops++;
2645		q->full = 1;
2646	}
2647}
2648
2649#define CXGB4_SELFTEST_LB_STR "CHELSIO_SELFTEST"
2650
2651int cxgb4_selftest_lb_pkt(struct net_device *netdev)
2652{
2653	struct port_info *pi = netdev_priv(netdev);
2654	struct adapter *adap = pi->adapter;
2655	struct cxgb4_ethtool_lb_test *lb;
2656	int ret, i = 0, pkt_len, credits;
2657	struct fw_eth_tx_pkt_wr *wr;
2658	struct cpl_tx_pkt_core *cpl;
2659	u32 ctrl0, ndesc, flits;
2660	struct sge_eth_txq *q;
2661	u8 *sgl;
2662
2663	pkt_len = ETH_HLEN + sizeof(CXGB4_SELFTEST_LB_STR);
2664
2665	flits = DIV_ROUND_UP(pkt_len + sizeof(*cpl) + sizeof(*wr),
2666			     sizeof(__be64));
2667	ndesc = flits_to_desc(flits);
2668
2669	lb = &pi->ethtool_lb;
2670	lb->loopback = 1;
2671
2672	q = &adap->sge.ethtxq[pi->first_qset];
2673	__netif_tx_lock(q->txq, smp_processor_id());
2674
2675	reclaim_completed_tx(adap, &q->q, -1, true);
2676	credits = txq_avail(&q->q) - ndesc;
2677	if (unlikely(credits < 0)) {
2678		__netif_tx_unlock(q->txq);
2679		return -ENOMEM;
2680	}
2681
2682	wr = (void *)&q->q.desc[q->q.pidx];
2683	memset(wr, 0, sizeof(struct tx_desc));
2684
2685	wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
2686			       FW_WR_IMMDLEN_V(pkt_len +
2687			       sizeof(*cpl)));
2688	wr->equiq_to_len16 = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)));
2689	wr->r3 = cpu_to_be64(0);
2690
2691	cpl = (void *)(wr + 1);
2692	sgl = (u8 *)(cpl + 1);
2693
2694	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_PF_V(adap->pf) |
2695		TXPKT_INTF_V(pi->tx_chan + 4);
2696
2697	cpl->ctrl0 = htonl(ctrl0);
2698	cpl->pack = htons(0);
2699	cpl->len = htons(pkt_len);
2700	cpl->ctrl1 = cpu_to_be64(TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F);
2701
2702	eth_broadcast_addr(sgl);
2703	i += ETH_ALEN;
2704	ether_addr_copy(&sgl[i], netdev->dev_addr);
2705	i += ETH_ALEN;
2706
2707	snprintf(&sgl[i], sizeof(CXGB4_SELFTEST_LB_STR), "%s",
2708		 CXGB4_SELFTEST_LB_STR);
2709
2710	init_completion(&lb->completion);
2711	txq_advance(&q->q, ndesc);
2712	cxgb4_ring_tx_db(adap, &q->q, ndesc);
2713	__netif_tx_unlock(q->txq);
2714
2715	/* wait for the pkt to return */
2716	ret = wait_for_completion_timeout(&lb->completion, 10 * HZ);
2717	if (!ret)
2718		ret = -ETIMEDOUT;
2719	else
2720		ret = lb->result;
2721
2722	lb->loopback = 0;
2723
2724	return ret;
2725}
2726
2727/**
2728 *	ctrl_xmit - send a packet through an SGE control Tx queue
2729 *	@q: the control queue
2730 *	@skb: the packet
2731 *
2732 *	Send a packet through an SGE control Tx queue.  Packets sent through
2733 *	a control queue must fit entirely as immediate data.
2734 */
2735static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
2736{
2737	unsigned int ndesc;
2738	struct fw_wr_hdr *wr;
2739
2740	if (unlikely(!is_imm(skb))) {
2741		WARN_ON(1);
2742		dev_kfree_skb(skb);
2743		return NET_XMIT_DROP;
2744	}
2745
2746	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
2747	spin_lock(&q->sendq.lock);
2748
2749	if (unlikely(q->full)) {
2750		skb->priority = ndesc;                  /* save for restart */
2751		__skb_queue_tail(&q->sendq, skb);
2752		spin_unlock(&q->sendq.lock);
2753		return NET_XMIT_CN;
2754	}
2755
2756	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2757	cxgb4_inline_tx_skb(skb, &q->q, wr);
2758
2759	txq_advance(&q->q, ndesc);
2760	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
2761		ctrlq_check_stop(q, wr);
2762
2763	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2764	spin_unlock(&q->sendq.lock);
2765
2766	kfree_skb(skb);
2767	return NET_XMIT_SUCCESS;
2768}
2769
2770/**
2771 *	restart_ctrlq - restart a suspended control queue
2772 *	@t: pointer to the tasklet associated with this handler
2773 *
2774 *	Resumes transmission on a suspended Tx control queue.
2775 */
2776static void restart_ctrlq(struct tasklet_struct *t)
2777{
2778	struct sk_buff *skb;
2779	unsigned int written = 0;
2780	struct sge_ctrl_txq *q = from_tasklet(q, t, qresume_tsk);
2781
2782	spin_lock(&q->sendq.lock);
2783	reclaim_completed_tx_imm(&q->q);
2784	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
2785
2786	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
2787		struct fw_wr_hdr *wr;
2788		unsigned int ndesc = skb->priority;     /* previously saved */
2789
2790		written += ndesc;
2791		/* Write descriptors and free skbs outside the lock to limit
2792		 * wait times.  q->full is still set so new skbs will be queued.
2793		 */
2794		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2795		txq_advance(&q->q, ndesc);
2796		spin_unlock(&q->sendq.lock);
2797
2798		cxgb4_inline_tx_skb(skb, &q->q, wr);
2799		kfree_skb(skb);
2800
2801		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2802			unsigned long old = q->q.stops;
2803
2804			ctrlq_check_stop(q, wr);
2805			if (q->q.stops != old) {          /* suspended anew */
2806				spin_lock(&q->sendq.lock);
2807				goto ringdb;
2808			}
2809		}
2810		if (written > 16) {
2811			cxgb4_ring_tx_db(q->adap, &q->q, written);
2812			written = 0;
2813		}
2814		spin_lock(&q->sendq.lock);
2815	}
2816	q->full = 0;
2817ringdb:
2818	if (written)
2819		cxgb4_ring_tx_db(q->adap, &q->q, written);
2820	spin_unlock(&q->sendq.lock);
2821}
2822
2823/**
2824 *	t4_mgmt_tx - send a management message
2825 *	@adap: the adapter
2826 *	@skb: the packet containing the management message
2827 *
2828 *	Send a management message through control queue 0.
2829 */
2830int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
2831{
2832	int ret;
2833
2834	local_bh_disable();
2835	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
2836	local_bh_enable();
2837	return ret;
2838}
2839
2840/**
2841 *	is_ofld_imm - check whether a packet can be sent as immediate data
2842 *	@skb: the packet
2843 *
2844 *	Returns true if a packet can be sent as an offload WR with immediate
2845 *	data.
2846 *	FW_OFLD_TX_DATA_WR limits the payload to 255 bytes due to 8-bit field.
2847 *      However, FW_ULPTX_WR commands have a 256 byte immediate only
2848 *      payload limit.
2849 */
2850static inline int is_ofld_imm(const struct sk_buff *skb)
2851{
2852	struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
2853	unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
2854
2855	if (unlikely(opcode == FW_ULPTX_WR))
2856		return skb->len <= MAX_IMM_ULPTX_WR_LEN;
2857	else if (opcode == FW_CRYPTO_LOOKASIDE_WR)
2858		return skb->len <= SGE_MAX_WR_LEN;
2859	else
2860		return skb->len <= MAX_IMM_OFLD_TX_DATA_WR_LEN;
2861}
2862
2863/**
2864 *	calc_tx_flits_ofld - calculate # of flits for an offload packet
2865 *	@skb: the packet
2866 *
2867 *	Returns the number of flits needed for the given offload packet.
2868 *	These packets are already fully constructed and no additional headers
2869 *	will be added.
2870 */
2871static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
2872{
2873	unsigned int flits, cnt;
2874
2875	if (is_ofld_imm(skb))
2876		return DIV_ROUND_UP(skb->len, 8);
2877
2878	flits = skb_transport_offset(skb) / 8U;   /* headers */
2879	cnt = skb_shinfo(skb)->nr_frags;
2880	if (skb_tail_pointer(skb) != skb_transport_header(skb))
2881		cnt++;
2882	return flits + sgl_len(cnt);
2883}
2884
2885/**
2886 *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
2887 *	@q: the queue to stop
2888 *
2889 *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
2890 *	inability to map packets.  A periodic timer attempts to restart
2891 *	queues so marked.
2892 */
2893static void txq_stop_maperr(struct sge_uld_txq *q)
2894{
2895	q->mapping_err++;
2896	q->q.stops++;
2897	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
2898		q->adap->sge.txq_maperr);
2899}
2900
2901/**
2902 *	ofldtxq_stop - stop an offload Tx queue that has become full
2903 *	@q: the queue to stop
2904 *	@wr: the Work Request causing the queue to become full
2905 *
2906 *	Stops an offload Tx queue that has become full and modifies the packet
2907 *	being written to request a wakeup.
2908 */
2909static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
2910{
2911	wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2912	q->q.stops++;
2913	q->full = 1;
2914}
2915
2916/**
2917 *	service_ofldq - service/restart a suspended offload queue
2918 *	@q: the offload queue
2919 *
2920 *	Services an offload Tx queue by moving packets from its Pending Send
2921 *	Queue to the Hardware TX ring.  The function starts and ends with the
2922 *	Send Queue locked, but drops the lock while putting the skb at the
2923 *	head of the Send Queue onto the Hardware TX Ring.  Dropping the lock
2924 *	allows more skbs to be added to the Send Queue by other threads.
2925 *	The packet being processed at the head of the Pending Send Queue is
2926 *	left on the queue in case we experience DMA Mapping errors, etc.
2927 *	and need to give up and restart later.
2928 *
2929 *	service_ofldq() can be thought of as a task which opportunistically
2930 *	uses other threads execution contexts.  We use the Offload Queue
2931 *	boolean "service_ofldq_running" to make sure that only one instance
2932 *	is ever running at a time ...
2933 */
2934static void service_ofldq(struct sge_uld_txq *q)
2935	__must_hold(&q->sendq.lock)
2936{
2937	u64 *pos, *before, *end;
2938	int credits;
2939	struct sk_buff *skb;
2940	struct sge_txq *txq;
2941	unsigned int left;
2942	unsigned int written = 0;
2943	unsigned int flits, ndesc;
2944
2945	/* If another thread is currently in service_ofldq() processing the
2946	 * Pending Send Queue then there's nothing to do. Otherwise, flag
2947	 * that we're doing the work and continue.  Examining/modifying
2948	 * the Offload Queue boolean "service_ofldq_running" must be done
2949	 * while holding the Pending Send Queue Lock.
2950	 */
2951	if (q->service_ofldq_running)
2952		return;
2953	q->service_ofldq_running = true;
2954
2955	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
2956		/* We drop the lock while we're working with the skb at the
2957		 * head of the Pending Send Queue.  This allows more skbs to
2958		 * be added to the Pending Send Queue while we're working on
2959		 * this one.  We don't need to lock to guard the TX Ring
2960		 * updates because only one thread of execution is ever
2961		 * allowed into service_ofldq() at a time.
2962		 */
2963		spin_unlock(&q->sendq.lock);
2964
2965		cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
2966
2967		flits = skb->priority;                /* previously saved */
2968		ndesc = flits_to_desc(flits);
2969		credits = txq_avail(&q->q) - ndesc;
2970		BUG_ON(credits < 0);
2971		if (unlikely(credits < TXQ_STOP_THRES))
2972			ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
2973
2974		pos = (u64 *)&q->q.desc[q->q.pidx];
2975		if (is_ofld_imm(skb))
2976			cxgb4_inline_tx_skb(skb, &q->q, pos);
2977		else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
2978				       (dma_addr_t *)skb->head)) {
2979			txq_stop_maperr(q);
2980			spin_lock(&q->sendq.lock);
2981			break;
2982		} else {
2983			int last_desc, hdr_len = skb_transport_offset(skb);
2984
2985			/* The WR headers  may not fit within one descriptor.
2986			 * So we need to deal with wrap-around here.
2987			 */
2988			before = (u64 *)pos;
2989			end = (u64 *)pos + flits;
2990			txq = &q->q;
2991			pos = (void *)inline_tx_skb_header(skb, &q->q,
2992							   (void *)pos,
2993							   hdr_len);
2994			if (before > (u64 *)pos) {
2995				left = (u8 *)end - (u8 *)txq->stat;
2996				end = (void *)txq->desc + left;
2997			}
2998
2999			/* If current position is already at the end of the
3000			 * ofld queue, reset the current to point to
3001			 * start of the queue and update the end ptr as well.
3002			 */
3003			if (pos == (u64 *)txq->stat) {
3004				left = (u8 *)end - (u8 *)txq->stat;
3005				end = (void *)txq->desc + left;
3006				pos = (void *)txq->desc;
3007			}
3008
3009			cxgb4_write_sgl(skb, &q->q, (void *)pos,
3010					end, hdr_len,
3011					(dma_addr_t *)skb->head);
3012#ifdef CONFIG_NEED_DMA_MAP_STATE
3013			skb->dev = q->adap->port[0];
3014			skb->destructor = deferred_unmap_destructor;
3015#endif
3016			last_desc = q->q.pidx + ndesc - 1;
3017			if (last_desc >= q->q.size)
3018				last_desc -= q->q.size;
3019			q->q.sdesc[last_desc].skb = skb;
3020		}
3021
3022		txq_advance(&q->q, ndesc);
3023		written += ndesc;
3024		if (unlikely(written > 32)) {
3025			cxgb4_ring_tx_db(q->adap, &q->q, written);
3026			written = 0;
3027		}
3028
3029		/* Reacquire the Pending Send Queue Lock so we can unlink the
3030		 * skb we've just successfully transferred to the TX Ring and
3031		 * loop for the next skb which may be at the head of the
3032		 * Pending Send Queue.
3033		 */
3034		spin_lock(&q->sendq.lock);
3035		__skb_unlink(skb, &q->sendq);
3036		if (is_ofld_imm(skb))
3037			kfree_skb(skb);
3038	}
3039	if (likely(written))
3040		cxgb4_ring_tx_db(q->adap, &q->q, written);
3041
3042	/*Indicate that no thread is processing the Pending Send Queue
3043	 * currently.
3044	 */
3045	q->service_ofldq_running = false;
3046}
3047
3048/**
3049 *	ofld_xmit - send a packet through an offload queue
3050 *	@q: the Tx offload queue
3051 *	@skb: the packet
3052 *
3053 *	Send an offload packet through an SGE offload queue.
3054 */
3055static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
3056{
3057	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
3058	spin_lock(&q->sendq.lock);
3059
3060	/* Queue the new skb onto the Offload Queue's Pending Send Queue.  If
3061	 * that results in this new skb being the only one on the queue, start
3062	 * servicing it.  If there are other skbs already on the list, then
3063	 * either the queue is currently being processed or it's been stopped
3064	 * for some reason and it'll be restarted at a later time.  Restart
3065	 * paths are triggered by events like experiencing a DMA Mapping Error
3066	 * or filling the Hardware TX Ring.
3067	 */
3068	__skb_queue_tail(&q->sendq, skb);
3069	if (q->sendq.qlen == 1)
3070		service_ofldq(q);
3071
3072	spin_unlock(&q->sendq.lock);
3073	return NET_XMIT_SUCCESS;
3074}
3075
3076/**
3077 *	restart_ofldq - restart a suspended offload queue
3078 *	@t: pointer to the tasklet associated with this handler
3079 *
3080 *	Resumes transmission on a suspended Tx offload queue.
3081 */
3082static void restart_ofldq(struct tasklet_struct *t)
3083{
3084	struct sge_uld_txq *q = from_tasklet(q, t, qresume_tsk);
3085
3086	spin_lock(&q->sendq.lock);
3087	q->full = 0;            /* the queue actually is completely empty now */
3088	service_ofldq(q);
3089	spin_unlock(&q->sendq.lock);
3090}
3091
3092/**
3093 *	skb_txq - return the Tx queue an offload packet should use
3094 *	@skb: the packet
3095 *
3096 *	Returns the Tx queue an offload packet should use as indicated by bits
3097 *	1-15 in the packet's queue_mapping.
3098 */
3099static inline unsigned int skb_txq(const struct sk_buff *skb)
3100{
3101	return skb->queue_mapping >> 1;
3102}
3103
3104/**
3105 *	is_ctrl_pkt - return whether an offload packet is a control packet
3106 *	@skb: the packet
3107 *
3108 *	Returns whether an offload packet should use an OFLD or a CTRL
3109 *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
3110 */
3111static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
3112{
3113	return skb->queue_mapping & 1;
3114}
3115
3116static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
3117			   unsigned int tx_uld_type)
3118{
3119	struct sge_uld_txq_info *txq_info;
3120	struct sge_uld_txq *txq;
3121	unsigned int idx = skb_txq(skb);
3122
3123	if (unlikely(is_ctrl_pkt(skb))) {
3124		/* Single ctrl queue is a requirement for LE workaround path */
3125		if (adap->tids.nsftids)
3126			idx = 0;
3127		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
3128	}
3129
3130	txq_info = adap->sge.uld_txq_info[tx_uld_type];
3131	if (unlikely(!txq_info)) {
3132		WARN_ON(true);
3133		kfree_skb(skb);
3134		return NET_XMIT_DROP;
3135	}
3136
3137	txq = &txq_info->uldtxq[idx];
3138	return ofld_xmit(txq, skb);
3139}
3140
3141/**
3142 *	t4_ofld_send - send an offload packet
3143 *	@adap: the adapter
3144 *	@skb: the packet
3145 *
3146 *	Sends an offload packet.  We use the packet queue_mapping to select the
3147 *	appropriate Tx queue as follows: bit 0 indicates whether the packet
3148 *	should be sent as regular or control, bits 1-15 select the queue.
3149 */
3150int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
3151{
3152	int ret;
3153
3154	local_bh_disable();
3155	ret = uld_send(adap, skb, CXGB4_TX_OFLD);
3156	local_bh_enable();
3157	return ret;
3158}
3159
3160/**
3161 *	cxgb4_ofld_send - send an offload packet
3162 *	@dev: the net device
3163 *	@skb: the packet
3164 *
3165 *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
3166 *	intended for ULDs.
3167 */
3168int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
3169{
3170	return t4_ofld_send(netdev2adap(dev), skb);
3171}
3172EXPORT_SYMBOL(cxgb4_ofld_send);
3173
3174static void *inline_tx_header(const void *src,
3175			      const struct sge_txq *q,
3176			      void *pos, int length)
3177{
3178	int left = (void *)q->stat - pos;
3179	u64 *p;
3180
3181	if (likely(length <= left)) {
3182		memcpy(pos, src, length);
3183		pos += length;
3184	} else {
3185		memcpy(pos, src, left);
3186		memcpy(q->desc, src + left, length - left);
3187		pos = (void *)q->desc + (length - left);
3188	}
3189	/* 0-pad to multiple of 16 */
3190	p = PTR_ALIGN(pos, 8);
3191	if ((uintptr_t)p & 8) {
3192		*p = 0;
3193		return p + 1;
3194	}
3195	return p;
3196}
3197
3198/**
3199 *      ofld_xmit_direct - copy a WR into offload queue
3200 *      @q: the Tx offload queue
3201 *      @src: location of WR
3202 *      @len: WR length
3203 *
3204 *      Copy an immediate WR into an uncontended SGE offload queue.
3205 */
3206static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
3207			    unsigned int len)
3208{
3209	unsigned int ndesc;
3210	int credits;
3211	u64 *pos;
3212
3213	/* Use the lower limit as the cut-off */
3214	if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
3215		WARN_ON(1);
3216		return NET_XMIT_DROP;
3217	}
3218
3219	/* Don't return NET_XMIT_CN here as the current
3220	 * implementation doesn't queue the request
3221	 * using an skb when the following conditions not met
3222	 */
3223	if (!spin_trylock(&q->sendq.lock))
3224		return NET_XMIT_DROP;
3225
3226	if (q->full || !skb_queue_empty(&q->sendq) ||
3227	    q->service_ofldq_running) {
3228		spin_unlock(&q->sendq.lock);
3229		return NET_XMIT_DROP;
3230	}
3231	ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
3232	credits = txq_avail(&q->q) - ndesc;
3233	pos = (u64 *)&q->q.desc[q->q.pidx];
3234
3235	/* ofldtxq_stop modifies WR header in-situ */
3236	inline_tx_header(src, &q->q, pos, len);
3237	if (unlikely(credits < TXQ_STOP_THRES))
3238		ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
3239	txq_advance(&q->q, ndesc);
3240	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
3241
3242	spin_unlock(&q->sendq.lock);
3243	return NET_XMIT_SUCCESS;
3244}
3245
3246int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
3247		       const void *src, unsigned int len)
3248{
3249	struct sge_uld_txq_info *txq_info;
3250	struct sge_uld_txq *txq;
3251	struct adapter *adap;
3252	int ret;
3253
3254	adap = netdev2adap(dev);
3255
3256	local_bh_disable();
3257	txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
3258	if (unlikely(!txq_info)) {
3259		WARN_ON(true);
3260		local_bh_enable();
3261		return NET_XMIT_DROP;
3262	}
3263	txq = &txq_info->uldtxq[idx];
3264
3265	ret = ofld_xmit_direct(txq, src, len);
3266	local_bh_enable();
3267	return net_xmit_eval(ret);
3268}
3269EXPORT_SYMBOL(cxgb4_immdata_send);
3270
3271/**
3272 *	t4_crypto_send - send crypto packet
3273 *	@adap: the adapter
3274 *	@skb: the packet
3275 *
3276 *	Sends crypto packet.  We use the packet queue_mapping to select the
3277 *	appropriate Tx queue as follows: bit 0 indicates whether the packet
3278 *	should be sent as regular or control, bits 1-15 select the queue.
3279 */
3280static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
3281{
3282	int ret;
3283
3284	local_bh_disable();
3285	ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
3286	local_bh_enable();
3287	return ret;
3288}
3289
3290/**
3291 *	cxgb4_crypto_send - send crypto packet
3292 *	@dev: the net device
3293 *	@skb: the packet
3294 *
3295 *	Sends crypto packet.  This is an exported version of @t4_crypto_send,
3296 *	intended for ULDs.
3297 */
3298int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
3299{
3300	return t4_crypto_send(netdev2adap(dev), skb);
3301}
3302EXPORT_SYMBOL(cxgb4_crypto_send);
3303
3304static inline void copy_frags(struct sk_buff *skb,
3305			      const struct pkt_gl *gl, unsigned int offset)
3306{
3307	int i;
3308
3309	/* usually there's just one frag */
3310	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
3311			     gl->frags[0].offset + offset,
3312			     gl->frags[0].size - offset);
3313	skb_shinfo(skb)->nr_frags = gl->nfrags;
3314	for (i = 1; i < gl->nfrags; i++)
3315		__skb_fill_page_desc(skb, i, gl->frags[i].page,
3316				     gl->frags[i].offset,
3317				     gl->frags[i].size);
3318
3319	/* get a reference to the last page, we don't own it */
3320	get_page(gl->frags[gl->nfrags - 1].page);
3321}
3322
3323/**
3324 *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
3325 *	@gl: the gather list
3326 *	@skb_len: size of sk_buff main body if it carries fragments
3327 *	@pull_len: amount of data to move to the sk_buff's main body
3328 *
3329 *	Builds an sk_buff from the given packet gather list.  Returns the
3330 *	sk_buff or %NULL if sk_buff allocation failed.
3331 */
3332struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
3333				   unsigned int skb_len, unsigned int pull_len)
3334{
3335	struct sk_buff *skb;
3336
3337	/*
3338	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
3339	 * size, which is expected since buffers are at least PAGE_SIZEd.
3340	 * In this case packets up to RX_COPY_THRES have only one fragment.
3341	 */
3342	if (gl->tot_len <= RX_COPY_THRES) {
3343		skb = dev_alloc_skb(gl->tot_len);
3344		if (unlikely(!skb))
3345			goto out;
3346		__skb_put(skb, gl->tot_len);
3347		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
3348	} else {
3349		skb = dev_alloc_skb(skb_len);
3350		if (unlikely(!skb))
3351			goto out;
3352		__skb_put(skb, pull_len);
3353		skb_copy_to_linear_data(skb, gl->va, pull_len);
3354
3355		copy_frags(skb, gl, pull_len);
3356		skb->len = gl->tot_len;
3357		skb->data_len = skb->len - pull_len;
3358		skb->truesize += skb->data_len;
3359	}
3360out:	return skb;
3361}
3362EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
3363
3364/**
3365 *	t4_pktgl_free - free a packet gather list
3366 *	@gl: the gather list
3367 *
3368 *	Releases the pages of a packet gather list.  We do not own the last
3369 *	page on the list and do not free it.
3370 */
3371static void t4_pktgl_free(const struct pkt_gl *gl)
3372{
3373	int n;
3374	const struct page_frag *p;
3375
3376	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
3377		put_page(p->page);
3378}
3379
3380/*
3381 * Process an MPS trace packet.  Give it an unused protocol number so it won't
3382 * be delivered to anyone and send it to the stack for capture.
3383 */
3384static noinline int handle_trace_pkt(struct adapter *adap,
3385				     const struct pkt_gl *gl)
3386{
3387	struct sk_buff *skb;
3388
3389	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
3390	if (unlikely(!skb)) {
3391		t4_pktgl_free(gl);
3392		return 0;
3393	}
3394
3395	if (is_t4(adap->params.chip))
3396		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
3397	else
3398		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
3399
3400	skb_reset_mac_header(skb);
3401	skb->protocol = htons(0xffff);
3402	skb->dev = adap->port[0];
3403	netif_receive_skb(skb);
3404	return 0;
3405}
3406
3407/**
3408 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
3409 * @adap: the adapter
3410 * @hwtstamps: time stamp structure to update
3411 * @sgetstamp: 60bit iqe timestamp
3412 *
3413 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
3414 * which is in Core Clock ticks into ktime_t and assign it
3415 **/
3416static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
3417				     struct skb_shared_hwtstamps *hwtstamps,
3418				     u64 sgetstamp)
3419{
3420	u64 ns;
3421	u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
3422
3423	ns = div_u64(tmp, adap->params.vpd.cclk);
3424
3425	memset(hwtstamps, 0, sizeof(*hwtstamps));
3426	hwtstamps->hwtstamp = ns_to_ktime(ns);
3427}
3428
3429static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
3430		   const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
3431{
3432	struct adapter *adapter = rxq->rspq.adap;
3433	struct sge *s = &adapter->sge;
3434	struct port_info *pi;
3435	int ret;
3436	struct sk_buff *skb;
3437
3438	skb = napi_get_frags(&rxq->rspq.napi);
3439	if (unlikely(!skb)) {
3440		t4_pktgl_free(gl);
3441		rxq->stats.rx_drops++;
3442		return;
3443	}
3444
3445	copy_frags(skb, gl, s->pktshift);
3446	if (tnl_hdr_len)
3447		skb->csum_level = 1;
3448	skb->len = gl->tot_len - s->pktshift;
3449	skb->data_len = skb->len;
3450	skb->truesize += skb->data_len;
3451	skb->ip_summed = CHECKSUM_UNNECESSARY;
3452	skb_record_rx_queue(skb, rxq->rspq.idx);
3453	pi = netdev_priv(skb->dev);
3454	if (pi->rxtstamp)
3455		cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
3456					 gl->sgetstamp);
3457	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
3458		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3459			     PKT_HASH_TYPE_L3);
3460
3461	if (unlikely(pkt->vlan_ex)) {
3462		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3463		rxq->stats.vlan_ex++;
3464	}
3465	ret = napi_gro_frags(&rxq->rspq.napi);
3466	if (ret == GRO_HELD)
3467		rxq->stats.lro_pkts++;
3468	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
3469		rxq->stats.lro_merged++;
3470	rxq->stats.pkts++;
3471	rxq->stats.rx_cso++;
3472}
3473
3474enum {
3475	RX_NON_PTP_PKT = 0,
3476	RX_PTP_PKT_SUC = 1,
3477	RX_PTP_PKT_ERR = 2
3478};
3479
3480/**
3481 *     t4_systim_to_hwstamp - read hardware time stamp
3482 *     @adapter: the adapter
3483 *     @skb: the packet
3484 *
3485 *     Read Time Stamp from MPS packet and insert in skb which
3486 *     is forwarded to PTP application
3487 */
3488static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
3489					 struct sk_buff *skb)
3490{
3491	struct skb_shared_hwtstamps *hwtstamps;
3492	struct cpl_rx_mps_pkt *cpl = NULL;
3493	unsigned char *data;
3494	int offset;
3495
3496	cpl = (struct cpl_rx_mps_pkt *)skb->data;
3497	if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
3498	     X_CPL_RX_MPS_PKT_TYPE_PTP))
3499		return RX_PTP_PKT_ERR;
3500
3501	data = skb->data + sizeof(*cpl);
3502	skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
3503	offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
3504	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
3505		return RX_PTP_PKT_ERR;
3506
3507	hwtstamps = skb_hwtstamps(skb);
3508	memset(hwtstamps, 0, sizeof(*hwtstamps));
3509	hwtstamps->hwtstamp = ns_to_ktime(get_unaligned_be64(data));
3510
3511	return RX_PTP_PKT_SUC;
3512}
3513
3514/**
3515 *     t4_rx_hststamp - Recv PTP Event Message
3516 *     @adapter: the adapter
3517 *     @rsp: the response queue descriptor holding the RX_PKT message
3518 *     @rxq: the response queue holding the RX_PKT message
3519 *     @skb: the packet
3520 *
3521 *     PTP enabled and MPS packet, read HW timestamp
3522 */
3523static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
3524			  struct sge_eth_rxq *rxq, struct sk_buff *skb)
3525{
3526	int ret;
3527
3528	if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
3529		     !is_t4(adapter->params.chip))) {
3530		ret = t4_systim_to_hwstamp(adapter, skb);
3531		if (ret == RX_PTP_PKT_ERR) {
3532			kfree_skb(skb);
3533			rxq->stats.rx_drops++;
3534		}
3535		return ret;
3536	}
3537	return RX_NON_PTP_PKT;
3538}
3539
3540/**
3541 *      t4_tx_hststamp - Loopback PTP Transmit Event Message
3542 *      @adapter: the adapter
3543 *      @skb: the packet
3544 *      @dev: the ingress net device
3545 *
3546 *      Read hardware timestamp for the loopback PTP Tx event message
3547 */
3548static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
3549			  struct net_device *dev)
3550{
3551	struct port_info *pi = netdev_priv(dev);
3552
3553	if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
3554		cxgb4_ptp_read_hwstamp(adapter, pi);
3555		kfree_skb(skb);
3556		return 0;
3557	}
3558	return 1;
3559}
3560
3561/**
3562 *	t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages
3563 *	@rspq: Ethernet RX Response Queue associated with Ethernet TX Queue
3564 *	@rsp: Response Entry pointer into Response Queue
3565 *	@gl: Gather List pointer
3566 *
3567 *	For adapters which support the SGE Doorbell Queue Timer facility,
3568 *	we configure the Ethernet TX Queues to send CIDX Updates to the
3569 *	Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE
3570 *	messages.  This adds a small load to PCIe Link RX bandwidth and,
3571 *	potentially, higher CPU Interrupt load, but allows us to respond
3572 *	much more quickly to the CIDX Updates.  This is important for
3573 *	Upper Layer Software which isn't willing to have a large amount
3574 *	of TX Data outstanding before receiving DMA Completions.
3575 */
3576static void t4_tx_completion_handler(struct sge_rspq *rspq,
3577				     const __be64 *rsp,
3578				     const struct pkt_gl *gl)
3579{
3580	u8 opcode = ((const struct rss_header *)rsp)->opcode;
3581	struct port_info *pi = netdev_priv(rspq->netdev);
3582	struct adapter *adapter = rspq->adap;
3583	struct sge *s = &adapter->sge;
3584	struct sge_eth_txq *txq;
3585
3586	/* skip RSS header */
3587	rsp++;
3588
3589	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
3590	 */
3591	if (unlikely(opcode == CPL_FW4_MSG &&
3592		     ((const struct cpl_fw4_msg *)rsp)->type ==
3593							FW_TYPE_RSSCPL)) {
3594		rsp++;
3595		opcode = ((const struct rss_header *)rsp)->opcode;
3596		rsp++;
3597	}
3598
3599	if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) {
3600		pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n",
3601			__func__, opcode);
3602		return;
3603	}
3604
3605	txq = &s->ethtxq[pi->first_qset + rspq->idx];
3606
3607	/* We've got the Hardware Consumer Index Update in the Egress Update
3608	 * message. These Egress Update messages will be our sole CIDX Updates
3609	 * we get since we don't want to chew up PCIe bandwidth for both Ingress
3610	 * Messages and Status Page writes.  However, The code which manages
3611	 * reclaiming successfully DMA'ed TX Work Requests uses the CIDX value
3612	 * stored in the Status Page at the end of the TX Queue.  It's easiest
3613	 * to simply copy the CIDX Update value from the Egress Update message
3614	 * to the Status Page.  Also note that no Endian issues need to be
3615	 * considered here since both are Big Endian and we're just copying
3616	 * bytes consistently ...
3617	 */
3618	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
3619		struct cpl_sge_egr_update *egr;
3620
3621		egr = (struct cpl_sge_egr_update *)rsp;
3622		WRITE_ONCE(txq->q.stat->cidx, egr->cidx);
3623	}
3624
3625	t4_sge_eth_txq_egress_update(adapter, txq, -1);
3626}
3627
3628static int cxgb4_validate_lb_pkt(struct port_info *pi, const struct pkt_gl *si)
3629{
3630	struct adapter *adap = pi->adapter;
3631	struct cxgb4_ethtool_lb_test *lb;
3632	struct sge *s = &adap->sge;
3633	struct net_device *netdev;
3634	u8 *data;
3635	int i;
3636
3637	netdev = adap->port[pi->port_id];
3638	lb = &pi->ethtool_lb;
3639	data = si->va + s->pktshift;
3640
3641	i = ETH_ALEN;
3642	if (!ether_addr_equal(data + i, netdev->dev_addr))
3643		return -1;
3644
3645	i += ETH_ALEN;
3646	if (strcmp(&data[i], CXGB4_SELFTEST_LB_STR))
3647		lb->result = -EIO;
3648
3649	complete(&lb->completion);
3650	return 0;
3651}
3652
3653/**
3654 *	t4_ethrx_handler - process an ingress ethernet packet
3655 *	@q: the response queue that received the packet
3656 *	@rsp: the response queue descriptor holding the RX_PKT message
3657 *	@si: the gather list of packet fragments
3658 *
3659 *	Process an ingress ethernet packet and deliver it to the stack.
3660 */
3661int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
3662		     const struct pkt_gl *si)
3663{
3664	bool csum_ok;
3665	struct sk_buff *skb;
3666	const struct cpl_rx_pkt *pkt;
3667	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3668	struct adapter *adapter = q->adap;
3669	struct sge *s = &q->adap->sge;
3670	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
3671			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
3672	u16 err_vec, tnl_hdr_len = 0;
3673	struct port_info *pi;
3674	int ret = 0;
3675
3676	pi = netdev_priv(q->netdev);
3677	/* If we're looking at TX Queue CIDX Update, handle that separately
3678	 * and return.
3679	 */
3680	if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) ||
3681		     (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) {
3682		t4_tx_completion_handler(q, rsp, si);
3683		return 0;
3684	}
3685
3686	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
3687		return handle_trace_pkt(q->adap, si);
3688
3689	pkt = (const struct cpl_rx_pkt *)rsp;
3690	/* Compressed error vector is enabled for T6 only */
3691	if (q->adap->params.tp.rx_pkt_encap) {
3692		err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
3693		tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
3694	} else {
3695		err_vec = be16_to_cpu(pkt->err_vec);
3696	}
3697
3698	csum_ok = pkt->csum_calc && !err_vec &&
3699		  (q->netdev->features & NETIF_F_RXCSUM);
3700
3701	if (err_vec)
3702		rxq->stats.bad_rx_pkts++;
3703
3704	if (unlikely(pi->ethtool_lb.loopback && pkt->iff >= NCHAN)) {
3705		ret = cxgb4_validate_lb_pkt(pi, si);
3706		if (!ret)
3707			return 0;
3708	}
3709
3710	if (((pkt->l2info & htonl(RXF_TCP_F)) ||
3711	     tnl_hdr_len) &&
3712	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
3713		do_gro(rxq, si, pkt, tnl_hdr_len);
3714		return 0;
3715	}
3716
3717	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
3718	if (unlikely(!skb)) {
3719		t4_pktgl_free(si);
3720		rxq->stats.rx_drops++;
3721		return 0;
3722	}
3723
3724	/* Handle PTP Event Rx packet */
3725	if (unlikely(pi->ptp_enable)) {
3726		ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
3727		if (ret == RX_PTP_PKT_ERR)
3728			return 0;
3729	}
3730	if (likely(!ret))
3731		__skb_pull(skb, s->pktshift); /* remove ethernet header pad */
3732
3733	/* Handle the PTP Event Tx Loopback packet */
3734	if (unlikely(pi->ptp_enable && !ret &&
3735		     (pkt->l2info & htonl(RXF_UDP_F)) &&
3736		     cxgb4_ptp_is_ptp_rx(skb))) {
3737		if (!t4_tx_hststamp(adapter, skb, q->netdev))
3738			return 0;
3739	}
3740
3741	skb->protocol = eth_type_trans(skb, q->netdev);
3742	skb_record_rx_queue(skb, q->idx);
3743	if (skb->dev->features & NETIF_F_RXHASH)
3744		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3745			     PKT_HASH_TYPE_L3);
3746
3747	rxq->stats.pkts++;
3748
3749	if (pi->rxtstamp)
3750		cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
3751					 si->sgetstamp);
3752	if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
3753		if (!pkt->ip_frag) {
3754			skb->ip_summed = CHECKSUM_UNNECESSARY;
3755			rxq->stats.rx_cso++;
3756		} else if (pkt->l2info & htonl(RXF_IP_F)) {
3757			__sum16 c = (__force __sum16)pkt->csum;
3758			skb->csum = csum_unfold(c);
3759
3760			if (tnl_hdr_len) {
3761				skb->ip_summed = CHECKSUM_UNNECESSARY;
3762				skb->csum_level = 1;
3763			} else {
3764				skb->ip_summed = CHECKSUM_COMPLETE;
3765			}
3766			rxq->stats.rx_cso++;
3767		}
3768	} else {
3769		skb_checksum_none_assert(skb);
3770#ifdef CONFIG_CHELSIO_T4_FCOE
3771#define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
3772			  RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
3773
3774		if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
3775			if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
3776			    (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
3777				if (q->adap->params.tp.rx_pkt_encap)
3778					csum_ok = err_vec &
3779						  T6_COMPR_RXERR_SUM_F;
3780				else
3781					csum_ok = err_vec & RXERR_CSUM_F;
3782				if (!csum_ok)
3783					skb->ip_summed = CHECKSUM_UNNECESSARY;
3784			}
3785		}
3786
3787#undef CPL_RX_PKT_FLAGS
3788#endif /* CONFIG_CHELSIO_T4_FCOE */
3789	}
3790
3791	if (unlikely(pkt->vlan_ex)) {
3792		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3793		rxq->stats.vlan_ex++;
3794	}
3795	skb_mark_napi_id(skb, &q->napi);
3796	netif_receive_skb(skb);
3797	return 0;
3798}
3799
3800/**
3801 *	restore_rx_bufs - put back a packet's Rx buffers
3802 *	@si: the packet gather list
3803 *	@q: the SGE free list
3804 *	@frags: number of FL buffers to restore
3805 *
3806 *	Puts back on an FL the Rx buffers associated with @si.  The buffers
3807 *	have already been unmapped and are left unmapped, we mark them so to
3808 *	prevent further unmapping attempts.
3809 *
3810 *	This function undoes a series of @unmap_rx_buf calls when we find out
3811 *	that the current packet can't be processed right away afterall and we
3812 *	need to come back to it later.  This is a very rare event and there's
3813 *	no effort to make this particularly efficient.
3814 */
3815static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
3816			    int frags)
3817{
3818	struct rx_sw_desc *d;
3819
3820	while (frags--) {
3821		if (q->cidx == 0)
3822			q->cidx = q->size - 1;
3823		else
3824			q->cidx--;
3825		d = &q->sdesc[q->cidx];
3826		d->page = si->frags[frags].page;
3827		d->dma_addr |= RX_UNMAPPED_BUF;
3828		q->avail++;
3829	}
3830}
3831
3832/**
3833 *	is_new_response - check if a response is newly written
3834 *	@r: the response descriptor
3835 *	@q: the response queue
3836 *
3837 *	Returns true if a response descriptor contains a yet unprocessed
3838 *	response.
3839 */
3840static inline bool is_new_response(const struct rsp_ctrl *r,
3841				   const struct sge_rspq *q)
3842{
3843	return (r->type_gen >> RSPD_GEN_S) == q->gen;
3844}
3845
3846/**
3847 *	rspq_next - advance to the next entry in a response queue
3848 *	@q: the queue
3849 *
3850 *	Updates the state of a response queue to advance it to the next entry.
3851 */
3852static inline void rspq_next(struct sge_rspq *q)
3853{
3854	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
3855	if (unlikely(++q->cidx == q->size)) {
3856		q->cidx = 0;
3857		q->gen ^= 1;
3858		q->cur_desc = q->desc;
3859	}
3860}
3861
3862/**
3863 *	process_responses - process responses from an SGE response queue
3864 *	@q: the ingress queue to process
3865 *	@budget: how many responses can be processed in this round
3866 *
3867 *	Process responses from an SGE response queue up to the supplied budget.
3868 *	Responses include received packets as well as control messages from FW
3869 *	or HW.
3870 *
3871 *	Additionally choose the interrupt holdoff time for the next interrupt
3872 *	on this queue.  If the system is under memory shortage use a fairly
3873 *	long delay to help recovery.
3874 */
3875static int process_responses(struct sge_rspq *q, int budget)
3876{
3877	int ret, rsp_type;
3878	int budget_left = budget;
3879	const struct rsp_ctrl *rc;
3880	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3881	struct adapter *adapter = q->adap;
3882	struct sge *s = &adapter->sge;
3883
3884	while (likely(budget_left)) {
3885		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3886		if (!is_new_response(rc, q)) {
3887			if (q->flush_handler)
3888				q->flush_handler(q);
3889			break;
3890		}
3891
3892		dma_rmb();
3893		rsp_type = RSPD_TYPE_G(rc->type_gen);
3894		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
3895			struct page_frag *fp;
3896			struct pkt_gl si;
3897			const struct rx_sw_desc *rsd;
3898			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
3899
3900			if (len & RSPD_NEWBUF_F) {
3901				if (likely(q->offset > 0)) {
3902					free_rx_bufs(q->adap, &rxq->fl, 1);
3903					q->offset = 0;
3904				}
3905				len = RSPD_LEN_G(len);
3906			}
3907			si.tot_len = len;
3908
3909			/* gather packet fragments */
3910			for (frags = 0, fp = si.frags; ; frags++, fp++) {
3911				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
3912				bufsz = get_buf_size(adapter, rsd);
3913				fp->page = rsd->page;
3914				fp->offset = q->offset;
3915				fp->size = min(bufsz, len);
3916				len -= fp->size;
3917				if (!len)
3918					break;
3919				unmap_rx_buf(q->adap, &rxq->fl);
3920			}
3921
3922			si.sgetstamp = SGE_TIMESTAMP_G(
3923					be64_to_cpu(rc->last_flit));
3924			/*
3925			 * Last buffer remains mapped so explicitly make it
3926			 * coherent for CPU access.
3927			 */
3928			dma_sync_single_for_cpu(q->adap->pdev_dev,
3929						get_buf_addr(rsd),
3930						fp->size, DMA_FROM_DEVICE);
3931
3932			si.va = page_address(si.frags[0].page) +
3933				si.frags[0].offset;
3934			prefetch(si.va);
3935
3936			si.nfrags = frags + 1;
3937			ret = q->handler(q, q->cur_desc, &si);
3938			if (likely(ret == 0))
3939				q->offset += ALIGN(fp->size, s->fl_align);
3940			else
3941				restore_rx_bufs(&si, &rxq->fl, frags);
3942		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
3943			ret = q->handler(q, q->cur_desc, NULL);
3944		} else {
3945			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
3946		}
3947
3948		if (unlikely(ret)) {
3949			/* couldn't process descriptor, back off for recovery */
3950			q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
3951			break;
3952		}
3953
3954		rspq_next(q);
3955		budget_left--;
3956	}
3957
3958	if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
3959		__refill_fl(q->adap, &rxq->fl);
3960	return budget - budget_left;
3961}
3962
3963/**
3964 *	napi_rx_handler - the NAPI handler for Rx processing
3965 *	@napi: the napi instance
3966 *	@budget: how many packets we can process in this round
3967 *
3968 *	Handler for new data events when using NAPI.  This does not need any
3969 *	locking or protection from interrupts as data interrupts are off at
3970 *	this point and other adapter interrupts do not interfere (the latter
3971 *	in not a concern at all with MSI-X as non-data interrupts then have
3972 *	a separate handler).
3973 */
3974static int napi_rx_handler(struct napi_struct *napi, int budget)
3975{
3976	unsigned int params;
3977	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
3978	int work_done;
3979	u32 val;
3980
3981	work_done = process_responses(q, budget);
3982	if (likely(work_done < budget)) {
3983		int timer_index;
3984
3985		napi_complete_done(napi, work_done);
3986		timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
3987
3988		if (q->adaptive_rx) {
3989			if (work_done > max(timer_pkt_quota[timer_index],
3990					    MIN_NAPI_WORK))
3991				timer_index = (timer_index + 1);
3992			else
3993				timer_index = timer_index - 1;
3994
3995			timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
3996			q->next_intr_params =
3997					QINTR_TIMER_IDX_V(timer_index) |
3998					QINTR_CNT_EN_V(0);
3999			params = q->next_intr_params;
4000		} else {
4001			params = q->next_intr_params;
4002			q->next_intr_params = q->intr_params;
4003		}
4004	} else
4005		params = QINTR_TIMER_IDX_V(7);
4006
4007	val = CIDXINC_V(work_done) | SEINTARM_V(params);
4008
4009	/* If we don't have access to the new User GTS (T5+), use the old
4010	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
4011	 */
4012	if (unlikely(q->bar2_addr == NULL)) {
4013		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
4014			     val | INGRESSQID_V((u32)q->cntxt_id));
4015	} else {
4016		writel(val | INGRESSQID_V(q->bar2_qid),
4017		       q->bar2_addr + SGE_UDB_GTS);
4018		wmb();
4019	}
4020	return work_done;
4021}
4022
4023void cxgb4_ethofld_restart(struct tasklet_struct *t)
4024{
4025	struct sge_eosw_txq *eosw_txq = from_tasklet(eosw_txq, t,
4026						     qresume_tsk);
4027	int pktcount;
4028
4029	spin_lock(&eosw_txq->lock);
4030	pktcount = eosw_txq->cidx - eosw_txq->last_cidx;
4031	if (pktcount < 0)
4032		pktcount += eosw_txq->ndesc;
4033
4034	if (pktcount) {
4035		cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev),
4036					 eosw_txq, pktcount);
4037		eosw_txq->inuse -= pktcount;
4038	}
4039
4040	/* There may be some packets waiting for completions. So,
4041	 * attempt to send these packets now.
4042	 */
4043	ethofld_xmit(eosw_txq->netdev, eosw_txq);
4044	spin_unlock(&eosw_txq->lock);
4045}
4046
4047/* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions
4048 * @q: the response queue that received the packet
4049 * @rsp: the response queue descriptor holding the CPL message
4050 * @si: the gather list of packet fragments
4051 *
4052 * Process a ETHOFLD Tx completion. Increment the cidx here, but
4053 * free up the descriptors in a tasklet later.
4054 */
4055int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp,
4056			     const struct pkt_gl *si)
4057{
4058	u8 opcode = ((const struct rss_header *)rsp)->opcode;
4059
4060	/* skip RSS header */
4061	rsp++;
4062
4063	if (opcode == CPL_FW4_ACK) {
4064		const struct cpl_fw4_ack *cpl;
4065		struct sge_eosw_txq *eosw_txq;
4066		struct eotid_entry *entry;
4067		struct sk_buff *skb;
4068		u32 hdr_len, eotid;
4069		u8 flits, wrlen16;
4070		int credits;
4071
4072		cpl = (const struct cpl_fw4_ack *)rsp;
4073		eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) -
4074			q->adap->tids.eotid_base;
4075		entry = cxgb4_lookup_eotid(&q->adap->tids, eotid);
4076		if (!entry)
4077			goto out_done;
4078
4079		eosw_txq = (struct sge_eosw_txq *)entry->data;
4080		if (!eosw_txq)
4081			goto out_done;
4082
4083		spin_lock(&eosw_txq->lock);
4084		credits = cpl->credits;
4085		while (credits > 0) {
4086			skb = eosw_txq->desc[eosw_txq->cidx].skb;
4087			if (!skb)
4088				break;
4089
4090			if (unlikely((eosw_txq->state ==
4091				      CXGB4_EO_STATE_FLOWC_OPEN_REPLY ||
4092				      eosw_txq->state ==
4093				      CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) &&
4094				     eosw_txq->cidx == eosw_txq->flowc_idx)) {
4095				flits = DIV_ROUND_UP(skb->len, 8);
4096				if (eosw_txq->state ==
4097				    CXGB4_EO_STATE_FLOWC_OPEN_REPLY)
4098					eosw_txq->state = CXGB4_EO_STATE_ACTIVE;
4099				else
4100					eosw_txq->state = CXGB4_EO_STATE_CLOSED;
4101				complete(&eosw_txq->completion);
4102			} else {
4103				hdr_len = eth_get_headlen(eosw_txq->netdev,
4104							  skb->data,
4105							  skb_headlen(skb));
4106				flits = ethofld_calc_tx_flits(q->adap, skb,
4107							      hdr_len);
4108			}
4109			eosw_txq_advance_index(&eosw_txq->cidx, 1,
4110					       eosw_txq->ndesc);
4111			wrlen16 = DIV_ROUND_UP(flits * 8, 16);
4112			credits -= wrlen16;
4113		}
4114
4115		eosw_txq->cred += cpl->credits;
4116		eosw_txq->ncompl--;
4117
4118		spin_unlock(&eosw_txq->lock);
4119
4120		/* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx,
4121		 * if there were packets waiting for completion.
4122		 */
4123		tasklet_schedule(&eosw_txq->qresume_tsk);
4124	}
4125
4126out_done:
4127	return 0;
4128}
4129
4130/*
4131 * The MSI-X interrupt handler for an SGE response queue.
4132 */
4133irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
4134{
4135	struct sge_rspq *q = cookie;
4136
4137	napi_schedule(&q->napi);
4138	return IRQ_HANDLED;
4139}
4140
4141/*
4142 * Process the indirect interrupt entries in the interrupt queue and kick off
4143 * NAPI for each queue that has generated an entry.
4144 */
4145static unsigned int process_intrq(struct adapter *adap)
4146{
4147	unsigned int credits;
4148	const struct rsp_ctrl *rc;
4149	struct sge_rspq *q = &adap->sge.intrq;
4150	u32 val;
4151
4152	spin_lock(&adap->sge.intrq_lock);
4153	for (credits = 0; ; credits++) {
4154		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
4155		if (!is_new_response(rc, q))
4156			break;
4157
4158		dma_rmb();
4159		if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
4160			unsigned int qid = ntohl(rc->pldbuflen_qid);
4161
4162			qid -= adap->sge.ingr_start;
4163			napi_schedule(&adap->sge.ingr_map[qid]->napi);
4164		}
4165
4166		rspq_next(q);
4167	}
4168
4169	val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
4170
4171	/* If we don't have access to the new User GTS (T5+), use the old
4172	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
4173	 */
4174	if (unlikely(q->bar2_addr == NULL)) {
4175		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
4176			     val | INGRESSQID_V(q->cntxt_id));
4177	} else {
4178		writel(val | INGRESSQID_V(q->bar2_qid),
4179		       q->bar2_addr + SGE_UDB_GTS);
4180		wmb();
4181	}
4182	spin_unlock(&adap->sge.intrq_lock);
4183	return credits;
4184}
4185
4186/*
4187 * The MSI interrupt handler, which handles data events from SGE response queues
4188 * as well as error and other async events as they all use the same MSI vector.
4189 */
4190static irqreturn_t t4_intr_msi(int irq, void *cookie)
4191{
4192	struct adapter *adap = cookie;
4193
4194	if (adap->flags & CXGB4_MASTER_PF)
4195		t4_slow_intr_handler(adap);
4196	process_intrq(adap);
4197	return IRQ_HANDLED;
4198}
4199
4200/*
4201 * Interrupt handler for legacy INTx interrupts.
4202 * Handles data events from SGE response queues as well as error and other
4203 * async events as they all use the same interrupt line.
4204 */
4205static irqreturn_t t4_intr_intx(int irq, void *cookie)
4206{
4207	struct adapter *adap = cookie;
4208
4209	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
4210	if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) |
4211	    process_intrq(adap))
4212		return IRQ_HANDLED;
4213	return IRQ_NONE;             /* probably shared interrupt */
4214}
4215
4216/**
4217 *	t4_intr_handler - select the top-level interrupt handler
4218 *	@adap: the adapter
4219 *
4220 *	Selects the top-level interrupt handler based on the type of interrupts
4221 *	(MSI-X, MSI, or INTx).
4222 */
4223irq_handler_t t4_intr_handler(struct adapter *adap)
4224{
4225	if (adap->flags & CXGB4_USING_MSIX)
4226		return t4_sge_intr_msix;
4227	if (adap->flags & CXGB4_USING_MSI)
4228		return t4_intr_msi;
4229	return t4_intr_intx;
4230}
4231
4232static void sge_rx_timer_cb(struct timer_list *t)
4233{
4234	unsigned long m;
4235	unsigned int i;
4236	struct adapter *adap = from_timer(adap, t, sge.rx_timer);
4237	struct sge *s = &adap->sge;
4238
4239	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
4240		for (m = s->starving_fl[i]; m; m &= m - 1) {
4241			struct sge_eth_rxq *rxq;
4242			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
4243			struct sge_fl *fl = s->egr_map[id];
4244
4245			clear_bit(id, s->starving_fl);
4246			smp_mb__after_atomic();
4247
4248			if (fl_starving(adap, fl)) {
4249				rxq = container_of(fl, struct sge_eth_rxq, fl);
4250				if (napi_schedule(&rxq->rspq.napi))
4251					fl->starving++;
4252				else
4253					set_bit(id, s->starving_fl);
4254			}
4255		}
4256	/* The remainder of the SGE RX Timer Callback routine is dedicated to
4257	 * global Master PF activities like checking for chip ingress stalls,
4258	 * etc.
4259	 */
4260	if (!(adap->flags & CXGB4_MASTER_PF))
4261		goto done;
4262
4263	t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
4264
4265done:
4266	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
4267}
4268
4269static void sge_tx_timer_cb(struct timer_list *t)
4270{
4271	struct adapter *adap = from_timer(adap, t, sge.tx_timer);
4272	struct sge *s = &adap->sge;
4273	unsigned long m, period;
4274	unsigned int i, budget;
4275
4276	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
4277		for (m = s->txq_maperr[i]; m; m &= m - 1) {
4278			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
4279			struct sge_uld_txq *txq = s->egr_map[id];
4280
4281			clear_bit(id, s->txq_maperr);
4282			tasklet_schedule(&txq->qresume_tsk);
4283		}
4284
4285	if (!is_t4(adap->params.chip)) {
4286		struct sge_eth_txq *q = &s->ptptxq;
4287		int avail;
4288
4289		spin_lock(&adap->ptp_lock);
4290		avail = reclaimable(&q->q);
4291
4292		if (avail) {
4293			free_tx_desc(adap, &q->q, avail, false);
4294			q->q.in_use -= avail;
4295		}
4296		spin_unlock(&adap->ptp_lock);
4297	}
4298
4299	budget = MAX_TIMER_TX_RECLAIM;
4300	i = s->ethtxq_rover;
4301	do {
4302		budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i],
4303						       budget);
4304		if (!budget)
4305			break;
4306
4307		if (++i >= s->ethqsets)
4308			i = 0;
4309	} while (i != s->ethtxq_rover);
4310	s->ethtxq_rover = i;
4311
4312	if (budget == 0) {
4313		/* If we found too many reclaimable packets schedule a timer
4314		 * in the near future to continue where we left off.
4315		 */
4316		period = 2;
4317	} else {
4318		/* We reclaimed all reclaimable TX Descriptors, so reschedule
4319		 * at the normal period.
4320		 */
4321		period = TX_QCHECK_PERIOD;
4322	}
4323
4324	mod_timer(&s->tx_timer, jiffies + period);
4325}
4326
4327/**
4328 *	bar2_address - return the BAR2 address for an SGE Queue's Registers
4329 *	@adapter: the adapter
4330 *	@qid: the SGE Queue ID
4331 *	@qtype: the SGE Queue Type (Egress or Ingress)
4332 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
4333 *
4334 *	Returns the BAR2 address for the SGE Queue Registers associated with
4335 *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
4336 *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
4337 *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
4338 *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
4339 */
4340static void __iomem *bar2_address(struct adapter *adapter,
4341				  unsigned int qid,
4342				  enum t4_bar2_qtype qtype,
4343				  unsigned int *pbar2_qid)
4344{
4345	u64 bar2_qoffset;
4346	int ret;
4347
4348	ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
4349				&bar2_qoffset, pbar2_qid);
4350	if (ret)
4351		return NULL;
4352
4353	return adapter->bar2 + bar2_qoffset;
4354}
4355
4356/* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
4357 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
4358 */
4359int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
4360		     struct net_device *dev, int intr_idx,
4361		     struct sge_fl *fl, rspq_handler_t hnd,
4362		     rspq_flush_handler_t flush_hnd, int cong)
4363{
4364	int ret, flsz = 0;
4365	struct fw_iq_cmd c;
4366	struct sge *s = &adap->sge;
4367	struct port_info *pi = netdev_priv(dev);
4368	int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING);
4369
4370	/* Size needs to be multiple of 16, including status entry. */
4371	iq->size = roundup(iq->size, 16);
4372
4373	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
4374			      &iq->phys_addr, NULL, 0,
4375			      dev_to_node(adap->pdev_dev));
4376	if (!iq->desc)
4377		return -ENOMEM;
4378
4379	memset(&c, 0, sizeof(c));
4380	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
4381			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4382			    FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
4383	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
4384				 FW_LEN16(c));
4385	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
4386		FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
4387		FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
4388		FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
4389		FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
4390							-intr_idx - 1));
4391	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
4392		FW_IQ_CMD_IQGTSMODE_F |
4393		FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
4394		FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
4395	c.iqsize = htons(iq->size);
4396	c.iqaddr = cpu_to_be64(iq->phys_addr);
4397	if (cong >= 0)
4398		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F |
4399				FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC
4400							:  FW_IQ_IQTYPE_OFLD));
4401
4402	if (fl) {
4403		unsigned int chip_ver =
4404			CHELSIO_CHIP_VERSION(adap->params.chip);
4405
4406		/* Allocate the ring for the hardware free list (with space
4407		 * for its status page) along with the associated software
4408		 * descriptor ring.  The free list size needs to be a multiple
4409		 * of the Egress Queue Unit and at least 2 Egress Units larger
4410		 * than the SGE's Egress Congrestion Threshold
4411		 * (fl_starve_thres - 1).
4412		 */
4413		if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
4414			fl->size = s->fl_starve_thres - 1 + 2 * 8;
4415		fl->size = roundup(fl->size, 8);
4416		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
4417				      sizeof(struct rx_sw_desc), &fl->addr,
4418				      &fl->sdesc, s->stat_len,
4419				      dev_to_node(adap->pdev_dev));
4420		if (!fl->desc)
4421			goto fl_nomem;
4422
4423		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
4424		c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
4425					     FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
4426					     FW_IQ_CMD_FL0DATARO_V(relaxed) |
4427					     FW_IQ_CMD_FL0PADEN_F);
4428		if (cong >= 0)
4429			c.iqns_to_fl0congen |=
4430				htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
4431				      FW_IQ_CMD_FL0CONGCIF_F |
4432				      FW_IQ_CMD_FL0CONGEN_F);
4433		/* In T6, for egress queue type FL there is internal overhead
4434		 * of 16B for header going into FLM module.  Hence the maximum
4435		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
4436		 * doesn't coalesce fetch requests if more than 64 bytes of
4437		 * Free List pointers are provided, so we use a 128-byte Fetch
4438		 * Burst Minimum there (T6 implements coalescing so we can use
4439		 * the smaller 64-byte value there).
4440		 */
4441		c.fl0dcaen_to_fl0cidxfthresh =
4442			htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ?
4443						   FETCHBURSTMIN_128B_X :
4444						   FETCHBURSTMIN_64B_T6_X) |
4445			      FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
4446						   FETCHBURSTMAX_512B_X :
4447						   FETCHBURSTMAX_256B_X));
4448		c.fl0size = htons(flsz);
4449		c.fl0addr = cpu_to_be64(fl->addr);
4450	}
4451
4452	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4453	if (ret)
4454		goto err;
4455
4456	netif_napi_add(dev, &iq->napi, napi_rx_handler);
4457	iq->cur_desc = iq->desc;
4458	iq->cidx = 0;
4459	iq->gen = 1;
4460	iq->next_intr_params = iq->intr_params;
4461	iq->cntxt_id = ntohs(c.iqid);
4462	iq->abs_id = ntohs(c.physiqid);
4463	iq->bar2_addr = bar2_address(adap,
4464				     iq->cntxt_id,
4465				     T4_BAR2_QTYPE_INGRESS,
4466				     &iq->bar2_qid);
4467	iq->size--;                           /* subtract status entry */
4468	iq->netdev = dev;
4469	iq->handler = hnd;
4470	iq->flush_handler = flush_hnd;
4471
4472	memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
4473	skb_queue_head_init(&iq->lro_mgr.lroq);
4474
4475	/* set offset to -1 to distinguish ingress queues without FL */
4476	iq->offset = fl ? 0 : -1;
4477
4478	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
4479
4480	if (fl) {
4481		fl->cntxt_id = ntohs(c.fl0id);
4482		fl->avail = fl->pend_cred = 0;
4483		fl->pidx = fl->cidx = 0;
4484		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
4485		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
4486
4487		/* Note, we must initialize the BAR2 Free List User Doorbell
4488		 * information before refilling the Free List!
4489		 */
4490		fl->bar2_addr = bar2_address(adap,
4491					     fl->cntxt_id,
4492					     T4_BAR2_QTYPE_EGRESS,
4493					     &fl->bar2_qid);
4494		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
4495	}
4496
4497	/* For T5 and later we attempt to set up the Congestion Manager values
4498	 * of the new RX Ethernet Queue.  This should really be handled by
4499	 * firmware because it's more complex than any host driver wants to
4500	 * get involved with and it's different per chip and this is almost
4501	 * certainly wrong.  Firmware would be wrong as well, but it would be
4502	 * a lot easier to fix in one place ...  For now we do something very
4503	 * simple (and hopefully less wrong).
4504	 */
4505	if (!is_t4(adap->params.chip) && cong >= 0) {
4506		u32 param, val, ch_map = 0;
4507		int i;
4508		u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
4509
4510		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4511			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
4512			 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
4513		if (cong == 0) {
4514			val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
4515		} else {
4516			val =
4517			    CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
4518			for (i = 0; i < 4; i++) {
4519				if (cong & (1 << i))
4520					ch_map |= 1 << (i << cng_ch_bits_log);
4521			}
4522			val |= CONMCTXT_CNGCHMAP_V(ch_map);
4523		}
4524		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
4525				    &param, &val);
4526		if (ret)
4527			dev_warn(adap->pdev_dev, "Failed to set Congestion"
4528				 " Manager Context for Ingress Queue %d: %d\n",
4529				 iq->cntxt_id, -ret);
4530	}
4531
4532	return 0;
4533
4534fl_nomem:
4535	ret = -ENOMEM;
4536err:
4537	if (iq->desc) {
4538		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
4539				  iq->desc, iq->phys_addr);
4540		iq->desc = NULL;
4541	}
4542	if (fl && fl->desc) {
4543		kfree(fl->sdesc);
4544		fl->sdesc = NULL;
4545		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
4546				  fl->desc, fl->addr);
4547		fl->desc = NULL;
4548	}
4549	return ret;
4550}
4551
4552static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
4553{
4554	q->cntxt_id = id;
4555	q->bar2_addr = bar2_address(adap,
4556				    q->cntxt_id,
4557				    T4_BAR2_QTYPE_EGRESS,
4558				    &q->bar2_qid);
4559	q->in_use = 0;
4560	q->cidx = q->pidx = 0;
4561	q->stops = q->restarts = 0;
4562	q->stat = (void *)&q->desc[q->size];
4563	spin_lock_init(&q->db_lock);
4564	adap->sge.egr_map[id - adap->sge.egr_start] = q;
4565}
4566
4567/**
4568 *	t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue
4569 *	@adap: the adapter
4570 *	@txq: the SGE Ethernet TX Queue to initialize
4571 *	@dev: the Linux Network Device
4572 *	@netdevq: the corresponding Linux TX Queue
4573 *	@iqid: the Ingress Queue to which to deliver CIDX Update messages
4574 *	@dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers
4575 */
4576int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
4577			 struct net_device *dev, struct netdev_queue *netdevq,
4578			 unsigned int iqid, u8 dbqt)
4579{
4580	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4581	struct port_info *pi = netdev_priv(dev);
4582	struct sge *s = &adap->sge;
4583	struct fw_eq_eth_cmd c;
4584	int ret, nentries;
4585
4586	/* Add status entries */
4587	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4588
4589	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
4590			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
4591			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
4592			netdev_queue_numa_node_read(netdevq));
4593	if (!txq->q.desc)
4594		return -ENOMEM;
4595
4596	memset(&c, 0, sizeof(c));
4597	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
4598			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4599			    FW_EQ_ETH_CMD_PFN_V(adap->pf) |
4600			    FW_EQ_ETH_CMD_VFN_V(0));
4601	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
4602				 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
4603
4604	/* For TX Ethernet Queues using the SGE Doorbell Queue Timer
4605	 * mechanism, we use Ingress Queue messages for Hardware Consumer
4606	 * Index Updates on the TX Queue.  Otherwise we have the Hardware
4607	 * write the CIDX Updates into the Status Page at the end of the
4608	 * TX Queue.
4609	 */
4610	c.autoequiqe_to_viid = htonl(((chip_ver <= CHELSIO_T5) ?
4611				      FW_EQ_ETH_CMD_AUTOEQUIQE_F :
4612				      FW_EQ_ETH_CMD_AUTOEQUEQE_F) |
4613				     FW_EQ_ETH_CMD_VIID_V(pi->viid));
4614
4615	c.fetchszm_to_iqid =
4616		htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V((chip_ver <= CHELSIO_T5) ?
4617						 HOSTFCMODE_INGRESS_QUEUE_X :
4618						 HOSTFCMODE_STATUS_PAGE_X) |
4619		      FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
4620		      FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
4621
4622	/* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */
4623	c.dcaen_to_eqsize =
4624		htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4625					    ? FETCHBURSTMIN_64B_X
4626					    : FETCHBURSTMIN_64B_T6_X) |
4627		      FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4628		      FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4629		      FW_EQ_ETH_CMD_CIDXFTHRESHO_V(chip_ver == CHELSIO_T5) |
4630		      FW_EQ_ETH_CMD_EQSIZE_V(nentries));
4631
4632	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4633
4634	/* If we're using the SGE Doorbell Queue Timer mechanism, pass in the
4635	 * currently configured Timer Index.  THis can be changed later via an
4636	 * ethtool -C tx-usecs {Timer Val} command.  Note that the SGE
4637	 * Doorbell Queue mode is currently automatically enabled in the
4638	 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ...
4639	 */
4640	if (dbqt)
4641		c.timeren_timerix =
4642			cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F |
4643				    FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix));
4644
4645	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4646	if (ret) {
4647		kfree(txq->q.sdesc);
4648		txq->q.sdesc = NULL;
4649		dma_free_coherent(adap->pdev_dev,
4650				  nentries * sizeof(struct tx_desc),
4651				  txq->q.desc, txq->q.phys_addr);
4652		txq->q.desc = NULL;
4653		return ret;
4654	}
4655
4656	txq->q.q_type = CXGB4_TXQ_ETH;
4657	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
4658	txq->txq = netdevq;
4659	txq->tso = 0;
4660	txq->uso = 0;
4661	txq->tx_cso = 0;
4662	txq->vlan_ins = 0;
4663	txq->mapping_err = 0;
4664	txq->dbqt = dbqt;
4665
4666	return 0;
4667}
4668
4669int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
4670			  struct net_device *dev, unsigned int iqid,
4671			  unsigned int cmplqid)
4672{
4673	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4674	struct port_info *pi = netdev_priv(dev);
4675	struct sge *s = &adap->sge;
4676	struct fw_eq_ctrl_cmd c;
4677	int ret, nentries;
4678
4679	/* Add status entries */
4680	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4681
4682	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
4683				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
4684				 NULL, 0, dev_to_node(adap->pdev_dev));
4685	if (!txq->q.desc)
4686		return -ENOMEM;
4687
4688	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
4689			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4690			    FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
4691			    FW_EQ_CTRL_CMD_VFN_V(0));
4692	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
4693				 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
4694	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
4695	c.physeqid_pkd = htonl(0);
4696	c.fetchszm_to_iqid =
4697		htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4698		      FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
4699		      FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
4700	c.dcaen_to_eqsize =
4701		htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4702					     ? FETCHBURSTMIN_64B_X
4703					     : FETCHBURSTMIN_64B_T6_X) |
4704		      FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4705		      FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4706		      FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
4707	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4708
4709	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4710	if (ret) {
4711		dma_free_coherent(adap->pdev_dev,
4712				  nentries * sizeof(struct tx_desc),
4713				  txq->q.desc, txq->q.phys_addr);
4714		txq->q.desc = NULL;
4715		return ret;
4716	}
4717
4718	txq->q.q_type = CXGB4_TXQ_CTRL;
4719	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
4720	txq->adap = adap;
4721	skb_queue_head_init(&txq->sendq);
4722	tasklet_setup(&txq->qresume_tsk, restart_ctrlq);
4723	txq->full = 0;
4724	return 0;
4725}
4726
4727int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
4728			unsigned int cmplqid)
4729{
4730	u32 param, val;
4731
4732	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4733		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
4734		 FW_PARAMS_PARAM_YZ_V(eqid));
4735	val = cmplqid;
4736	return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
4737}
4738
4739static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q,
4740				 struct net_device *dev, u32 cmd, u32 iqid)
4741{
4742	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4743	struct port_info *pi = netdev_priv(dev);
4744	struct sge *s = &adap->sge;
4745	struct fw_eq_ofld_cmd c;
4746	u32 fb_min, nentries;
4747	int ret;
4748
4749	/* Add status entries */
4750	nentries = q->size + s->stat_len / sizeof(struct tx_desc);
4751	q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc),
4752			     sizeof(struct tx_sw_desc), &q->phys_addr,
4753			     &q->sdesc, s->stat_len, NUMA_NO_NODE);
4754	if (!q->desc)
4755		return -ENOMEM;
4756
4757	if (chip_ver <= CHELSIO_T5)
4758		fb_min = FETCHBURSTMIN_64B_X;
4759	else
4760		fb_min = FETCHBURSTMIN_64B_T6_X;
4761
4762	memset(&c, 0, sizeof(c));
4763	c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
4764			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4765			    FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
4766			    FW_EQ_OFLD_CMD_VFN_V(0));
4767	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
4768				 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
4769	c.fetchszm_to_iqid =
4770		htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4771		      FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
4772		      FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
4773	c.dcaen_to_eqsize =
4774		htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) |
4775		      FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4776		      FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4777		      FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
4778	c.eqaddr = cpu_to_be64(q->phys_addr);
4779
4780	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4781	if (ret) {
4782		kfree(q->sdesc);
4783		q->sdesc = NULL;
4784		dma_free_coherent(adap->pdev_dev,
4785				  nentries * sizeof(struct tx_desc),
4786				  q->desc, q->phys_addr);
4787		q->desc = NULL;
4788		return ret;
4789	}
4790
4791	init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
4792	return 0;
4793}
4794
4795int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
4796			 struct net_device *dev, unsigned int iqid,
4797			 unsigned int uld_type)
4798{
4799	u32 cmd = FW_EQ_OFLD_CMD;
4800	int ret;
4801
4802	if (unlikely(uld_type == CXGB4_TX_CRYPTO))
4803		cmd = FW_EQ_CTRL_CMD;
4804
4805	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid);
4806	if (ret)
4807		return ret;
4808
4809	txq->q.q_type = CXGB4_TXQ_ULD;
4810	txq->adap = adap;
4811	skb_queue_head_init(&txq->sendq);
4812	tasklet_setup(&txq->qresume_tsk, restart_ofldq);
4813	txq->full = 0;
4814	txq->mapping_err = 0;
4815	return 0;
4816}
4817
4818int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq,
4819			     struct net_device *dev, u32 iqid)
4820{
4821	int ret;
4822
4823	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid);
4824	if (ret)
4825		return ret;
4826
4827	txq->q.q_type = CXGB4_TXQ_ULD;
4828	spin_lock_init(&txq->lock);
4829	txq->adap = adap;
4830	txq->tso = 0;
4831	txq->uso = 0;
4832	txq->tx_cso = 0;
4833	txq->vlan_ins = 0;
4834	txq->mapping_err = 0;
4835	return 0;
4836}
4837
4838void free_txq(struct adapter *adap, struct sge_txq *q)
4839{
4840	struct sge *s = &adap->sge;
4841
4842	dma_free_coherent(adap->pdev_dev,
4843			  q->size * sizeof(struct tx_desc) + s->stat_len,
4844			  q->desc, q->phys_addr);
4845	q->cntxt_id = 0;
4846	q->sdesc = NULL;
4847	q->desc = NULL;
4848}
4849
4850void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
4851		  struct sge_fl *fl)
4852{
4853	struct sge *s = &adap->sge;
4854	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
4855
4856	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
4857	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
4858		   rq->cntxt_id, fl_id, 0xffff);
4859	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
4860			  rq->desc, rq->phys_addr);
4861	netif_napi_del(&rq->napi);
4862	rq->netdev = NULL;
4863	rq->cntxt_id = rq->abs_id = 0;
4864	rq->desc = NULL;
4865
4866	if (fl) {
4867		free_rx_bufs(adap, fl, fl->avail);
4868		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
4869				  fl->desc, fl->addr);
4870		kfree(fl->sdesc);
4871		fl->sdesc = NULL;
4872		fl->cntxt_id = 0;
4873		fl->desc = NULL;
4874	}
4875}
4876
4877/**
4878 *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
4879 *      @adap: the adapter
4880 *      @n: number of queues
4881 *      @q: pointer to first queue
4882 *
4883 *      Release the resources of a consecutive block of offload Rx queues.
4884 */
4885void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
4886{
4887	for ( ; n; n--, q++)
4888		if (q->rspq.desc)
4889			free_rspq_fl(adap, &q->rspq,
4890				     q->fl.size ? &q->fl : NULL);
4891}
4892
4893void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq)
4894{
4895	if (txq->q.desc) {
4896		t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
4897				txq->q.cntxt_id);
4898		free_tx_desc(adap, &txq->q, txq->q.in_use, false);
4899		kfree(txq->q.sdesc);
4900		free_txq(adap, &txq->q);
4901	}
4902}
4903
4904/**
4905 *	t4_free_sge_resources - free SGE resources
4906 *	@adap: the adapter
4907 *
4908 *	Frees resources used by the SGE queue sets.
4909 */
4910void t4_free_sge_resources(struct adapter *adap)
4911{
4912	int i;
4913	struct sge_eth_rxq *eq;
4914	struct sge_eth_txq *etq;
4915
4916	/* stop all Rx queues in order to start them draining */
4917	for (i = 0; i < adap->sge.ethqsets; i++) {
4918		eq = &adap->sge.ethrxq[i];
4919		if (eq->rspq.desc)
4920			t4_iq_stop(adap, adap->mbox, adap->pf, 0,
4921				   FW_IQ_TYPE_FL_INT_CAP,
4922				   eq->rspq.cntxt_id,
4923				   eq->fl.size ? eq->fl.cntxt_id : 0xffff,
4924				   0xffff);
4925	}
4926
4927	/* clean up Ethernet Tx/Rx queues */
4928	for (i = 0; i < adap->sge.ethqsets; i++) {
4929		eq = &adap->sge.ethrxq[i];
4930		if (eq->rspq.desc)
4931			free_rspq_fl(adap, &eq->rspq,
4932				     eq->fl.size ? &eq->fl : NULL);
4933		if (eq->msix) {
4934			cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx);
4935			eq->msix = NULL;
4936		}
4937
4938		etq = &adap->sge.ethtxq[i];
4939		if (etq->q.desc) {
4940			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4941				       etq->q.cntxt_id);
4942			__netif_tx_lock_bh(etq->txq);
4943			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4944			__netif_tx_unlock_bh(etq->txq);
4945			kfree(etq->q.sdesc);
4946			free_txq(adap, &etq->q);
4947		}
4948	}
4949
4950	/* clean up control Tx queues */
4951	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
4952		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
4953
4954		if (cq->q.desc) {
4955			tasklet_kill(&cq->qresume_tsk);
4956			t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
4957					cq->q.cntxt_id);
4958			__skb_queue_purge(&cq->sendq);
4959			free_txq(adap, &cq->q);
4960		}
4961	}
4962
4963	if (adap->sge.fw_evtq.desc) {
4964		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
4965		if (adap->sge.fwevtq_msix_idx >= 0)
4966			cxgb4_free_msix_idx_in_bmap(adap,
4967						    adap->sge.fwevtq_msix_idx);
4968	}
4969
4970	if (adap->sge.nd_msix_idx >= 0)
4971		cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx);
4972
4973	if (adap->sge.intrq.desc)
4974		free_rspq_fl(adap, &adap->sge.intrq, NULL);
4975
4976	if (!is_t4(adap->params.chip)) {
4977		etq = &adap->sge.ptptxq;
4978		if (etq->q.desc) {
4979			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4980				       etq->q.cntxt_id);
4981			spin_lock_bh(&adap->ptp_lock);
4982			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4983			spin_unlock_bh(&adap->ptp_lock);
4984			kfree(etq->q.sdesc);
4985			free_txq(adap, &etq->q);
4986		}
4987	}
4988
4989	/* clear the reverse egress queue map */
4990	memset(adap->sge.egr_map, 0,
4991	       adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
4992}
4993
4994void t4_sge_start(struct adapter *adap)
4995{
4996	adap->sge.ethtxq_rover = 0;
4997	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
4998	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
4999}
5000
5001/**
5002 *	t4_sge_stop - disable SGE operation
5003 *	@adap: the adapter
5004 *
5005 *	Stop tasklets and timers associated with the DMA engine.  Note that
5006 *	this is effective only if measures have been taken to disable any HW
5007 *	events that may restart them.
5008 */
5009void t4_sge_stop(struct adapter *adap)
5010{
5011	int i;
5012	struct sge *s = &adap->sge;
5013
5014	if (s->rx_timer.function)
5015		del_timer_sync(&s->rx_timer);
5016	if (s->tx_timer.function)
5017		del_timer_sync(&s->tx_timer);
5018
5019	if (is_offload(adap)) {
5020		struct sge_uld_txq_info *txq_info;
5021
5022		txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
5023		if (txq_info) {
5024			struct sge_uld_txq *txq = txq_info->uldtxq;
5025
5026			for_each_ofldtxq(&adap->sge, i) {
5027				if (txq->q.desc)
5028					tasklet_kill(&txq->qresume_tsk);
5029			}
5030		}
5031	}
5032
5033	if (is_pci_uld(adap)) {
5034		struct sge_uld_txq_info *txq_info;
5035
5036		txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
5037		if (txq_info) {
5038			struct sge_uld_txq *txq = txq_info->uldtxq;
5039
5040			for_each_ofldtxq(&adap->sge, i) {
5041				if (txq->q.desc)
5042					tasklet_kill(&txq->qresume_tsk);
5043			}
5044		}
5045	}
5046
5047	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
5048		struct sge_ctrl_txq *cq = &s->ctrlq[i];
5049
5050		if (cq->q.desc)
5051			tasklet_kill(&cq->qresume_tsk);
5052	}
5053}
5054
5055/**
5056 *	t4_sge_init_soft - grab core SGE values needed by SGE code
5057 *	@adap: the adapter
5058 *
5059 *	We need to grab the SGE operating parameters that we need to have
5060 *	in order to do our job and make sure we can live with them.
5061 */
5062
5063static int t4_sge_init_soft(struct adapter *adap)
5064{
5065	struct sge *s = &adap->sge;
5066	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
5067	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
5068	u32 ingress_rx_threshold;
5069
5070	/*
5071	 * Verify that CPL messages are going to the Ingress Queue for
5072	 * process_responses() and that only packet data is going to the
5073	 * Free Lists.
5074	 */
5075	if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
5076	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
5077		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
5078		return -EINVAL;
5079	}
5080
5081	/*
5082	 * Validate the Host Buffer Register Array indices that we want to
5083	 * use ...
5084	 *
5085	 * XXX Note that we should really read through the Host Buffer Size
5086	 * XXX register array and find the indices of the Buffer Sizes which
5087	 * XXX meet our needs!
5088	 */
5089	#define READ_FL_BUF(x) \
5090		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
5091
5092	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
5093	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
5094	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
5095	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
5096
5097	/* We only bother using the Large Page logic if the Large Page Buffer
5098	 * is larger than our Page Size Buffer.
5099	 */
5100	if (fl_large_pg <= fl_small_pg)
5101		fl_large_pg = 0;
5102
5103	#undef READ_FL_BUF
5104
5105	/* The Page Size Buffer must be exactly equal to our Page Size and the
5106	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
5107	 */
5108	if (fl_small_pg != PAGE_SIZE ||
5109	    (fl_large_pg & (fl_large_pg-1)) != 0) {
5110		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
5111			fl_small_pg, fl_large_pg);
5112		return -EINVAL;
5113	}
5114	if (fl_large_pg)
5115		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
5116
5117	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
5118	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
5119		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
5120			fl_small_mtu, fl_large_mtu);
5121		return -EINVAL;
5122	}
5123
5124	/*
5125	 * Retrieve our RX interrupt holdoff timer values and counter
5126	 * threshold values from the SGE parameters.
5127	 */
5128	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
5129	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
5130	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
5131	s->timer_val[0] = core_ticks_to_us(adap,
5132		TIMERVALUE0_G(timer_value_0_and_1));
5133	s->timer_val[1] = core_ticks_to_us(adap,
5134		TIMERVALUE1_G(timer_value_0_and_1));
5135	s->timer_val[2] = core_ticks_to_us(adap,
5136		TIMERVALUE2_G(timer_value_2_and_3));
5137	s->timer_val[3] = core_ticks_to_us(adap,
5138		TIMERVALUE3_G(timer_value_2_and_3));
5139	s->timer_val[4] = core_ticks_to_us(adap,
5140		TIMERVALUE4_G(timer_value_4_and_5));
5141	s->timer_val[5] = core_ticks_to_us(adap,
5142		TIMERVALUE5_G(timer_value_4_and_5));
5143
5144	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
5145	s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
5146	s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
5147	s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
5148	s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
5149
5150	return 0;
5151}
5152
5153/**
5154 *     t4_sge_init - initialize SGE
5155 *     @adap: the adapter
5156 *
5157 *     Perform low-level SGE code initialization needed every time after a
5158 *     chip reset.
5159 */
5160int t4_sge_init(struct adapter *adap)
5161{
5162	struct sge *s = &adap->sge;
5163	u32 sge_control, sge_conm_ctrl;
5164	int ret, egress_threshold;
5165
5166	/*
5167	 * Ingress Padding Boundary and Egress Status Page Size are set up by
5168	 * t4_fixup_host_params().
5169	 */
5170	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
5171	s->pktshift = PKTSHIFT_G(sge_control);
5172	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
5173
5174	s->fl_align = t4_fl_pkt_align(adap);
5175	ret = t4_sge_init_soft(adap);
5176	if (ret < 0)
5177		return ret;
5178
5179	/*
5180	 * A FL with <= fl_starve_thres buffers is starving and a periodic
5181	 * timer will attempt to refill it.  This needs to be larger than the
5182	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
5183	 * stuck waiting for new packets while the SGE is waiting for us to
5184	 * give it more Free List entries.  (Note that the SGE's Egress
5185	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
5186	 * there was only a single field to control this.  For T5 there's the
5187	 * original field which now only applies to Unpacked Mode Free List
5188	 * buffers and a new field which only applies to Packed Mode Free List
5189	 * buffers.
5190	 */
5191	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
5192	switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
5193	case CHELSIO_T4:
5194		egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
5195		break;
5196	case CHELSIO_T5:
5197		egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
5198		break;
5199	case CHELSIO_T6:
5200		egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
5201		break;
5202	default:
5203		dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
5204			CHELSIO_CHIP_VERSION(adap->params.chip));
5205		return -EINVAL;
5206	}
5207	s->fl_starve_thres = 2*egress_threshold + 1;
5208
5209	t4_idma_monitor_init(adap, &s->idma_monitor);
5210
5211	/* Set up timers used for recuring callbacks to process RX and TX
5212	 * administrative tasks.
5213	 */
5214	timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
5215	timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
5216
5217	spin_lock_init(&s->intrq_lock);
5218
5219	return 0;
5220}
5221