1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses.  You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 *     Redistribution and use in source and binary forms, with or
13 *     without modification, are permitted provided that the following
14 *     conditions are met:
15 *
16 *      - Redistributions of source code must retain the above
17 *        copyright notice, this list of conditions and the following
18 *        disclaimer.
19 *
20 *      - Redistributions in binary form must reproduce the above
21 *        copyright notice, this list of conditions and the following
22 *        disclaimer in the documentation and/or other materials
23 *        provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35#include <linux/skbuff.h>
36#include <linux/netdevice.h>
37#include <linux/if.h>
38#include <linux/if_vlan.h>
39#include <linux/jhash.h>
40#include <linux/module.h>
41#include <linux/debugfs.h>
42#include <linux/seq_file.h>
43#include <net/neighbour.h>
44#include "cxgb4.h"
45#include "l2t.h"
46#include "t4_msg.h"
47#include "t4fw_api.h"
48#include "t4_regs.h"
49#include "t4_values.h"
50
51/* identifies sync vs async L2T_WRITE_REQs */
52#define SYNC_WR_S    12
53#define SYNC_WR_V(x) ((x) << SYNC_WR_S)
54#define SYNC_WR_F    SYNC_WR_V(1)
55
56struct l2t_data {
57	unsigned int l2t_start;     /* start index of our piece of the L2T */
58	unsigned int l2t_size;      /* number of entries in l2tab */
59	rwlock_t lock;
60	atomic_t nfree;             /* number of free entries */
61	struct l2t_entry *rover;    /* starting point for next allocation */
62	struct l2t_entry l2tab[] __counted_by(l2t_size);  /* MUST BE LAST */
63};
64
65static inline unsigned int vlan_prio(const struct l2t_entry *e)
66{
67	return e->vlan >> VLAN_PRIO_SHIFT;
68}
69
70static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e)
71{
72	if (atomic_add_return(1, &e->refcnt) == 1)  /* 0 -> 1 transition */
73		atomic_dec(&d->nfree);
74}
75
76/*
77 * To avoid having to check address families we do not allow v4 and v6
78 * neighbors to be on the same hash chain.  We keep v4 entries in the first
79 * half of available hash buckets and v6 in the second.  We need at least two
80 * entries in our L2T for this scheme to work.
81 */
82enum {
83	L2T_MIN_HASH_BUCKETS = 2,
84};
85
86static inline unsigned int arp_hash(struct l2t_data *d, const u32 *key,
87				    int ifindex)
88{
89	unsigned int l2t_size_half = d->l2t_size / 2;
90
91	return jhash_2words(*key, ifindex, 0) % l2t_size_half;
92}
93
94static inline unsigned int ipv6_hash(struct l2t_data *d, const u32 *key,
95				     int ifindex)
96{
97	unsigned int l2t_size_half = d->l2t_size / 2;
98	u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3];
99
100	return (l2t_size_half +
101		(jhash_2words(xor, ifindex, 0) % l2t_size_half));
102}
103
104static unsigned int addr_hash(struct l2t_data *d, const u32 *addr,
105			      int addr_len, int ifindex)
106{
107	return addr_len == 4 ? arp_hash(d, addr, ifindex) :
108			       ipv6_hash(d, addr, ifindex);
109}
110
111/*
112 * Checks if an L2T entry is for the given IP/IPv6 address.  It does not check
113 * whether the L2T entry and the address are of the same address family.
114 * Callers ensure an address is only checked against L2T entries of the same
115 * family, something made trivial by the separation of IP and IPv6 hash chains
116 * mentioned above.  Returns 0 if there's a match,
117 */
118static int addreq(const struct l2t_entry *e, const u32 *addr)
119{
120	if (e->v6)
121		return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) |
122		       (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]);
123	return e->addr[0] ^ addr[0];
124}
125
126static void neigh_replace(struct l2t_entry *e, struct neighbour *n)
127{
128	neigh_hold(n);
129	if (e->neigh)
130		neigh_release(e->neigh);
131	e->neigh = n;
132}
133
134/*
135 * Write an L2T entry.  Must be called with the entry locked.
136 * The write may be synchronous or asynchronous.
137 */
138static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync)
139{
140	struct l2t_data *d = adap->l2t;
141	unsigned int l2t_idx = e->idx + d->l2t_start;
142	struct sk_buff *skb;
143	struct cpl_l2t_write_req *req;
144
145	skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
146	if (!skb)
147		return -ENOMEM;
148
149	req = __skb_put(skb, sizeof(*req));
150	INIT_TP_WR(req, 0);
151
152	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ,
153					l2t_idx | (sync ? SYNC_WR_F : 0) |
154					TID_QID_V(adap->sge.fw_evtq.abs_id)));
155	req->params = htons(L2T_W_PORT_V(e->lport) | L2T_W_NOREPLY_V(!sync));
156	req->l2t_idx = htons(l2t_idx);
157	req->vlan = htons(e->vlan);
158	if (e->neigh && !(e->neigh->dev->flags & IFF_LOOPBACK))
159		memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac));
160	memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
161
162	t4_mgmt_tx(adap, skb);
163
164	if (sync && e->state != L2T_STATE_SWITCHING)
165		e->state = L2T_STATE_SYNC_WRITE;
166	return 0;
167}
168
169/*
170 * Send packets waiting in an L2T entry's ARP queue.  Must be called with the
171 * entry locked.
172 */
173static void send_pending(struct adapter *adap, struct l2t_entry *e)
174{
175	struct sk_buff *skb;
176
177	while ((skb = __skb_dequeue(&e->arpq)) != NULL)
178		t4_ofld_send(adap, skb);
179}
180
181/*
182 * Process a CPL_L2T_WRITE_RPL.  Wake up the ARP queue if it completes a
183 * synchronous L2T_WRITE.  Note that the TID in the reply is really the L2T
184 * index it refers to.
185 */
186void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl)
187{
188	struct l2t_data *d = adap->l2t;
189	unsigned int tid = GET_TID(rpl);
190	unsigned int l2t_idx = tid % L2T_SIZE;
191
192	if (unlikely(rpl->status != CPL_ERR_NONE)) {
193		dev_err(adap->pdev_dev,
194			"Unexpected L2T_WRITE_RPL status %u for entry %u\n",
195			rpl->status, l2t_idx);
196		return;
197	}
198
199	if (tid & SYNC_WR_F) {
200		struct l2t_entry *e = &d->l2tab[l2t_idx - d->l2t_start];
201
202		spin_lock(&e->lock);
203		if (e->state != L2T_STATE_SWITCHING) {
204			send_pending(adap, e);
205			e->state = (e->neigh->nud_state & NUD_STALE) ?
206					L2T_STATE_STALE : L2T_STATE_VALID;
207		}
208		spin_unlock(&e->lock);
209	}
210}
211
212/*
213 * Add a packet to an L2T entry's queue of packets awaiting resolution.
214 * Must be called with the entry's lock held.
215 */
216static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb)
217{
218	__skb_queue_tail(&e->arpq, skb);
219}
220
221int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb,
222		   struct l2t_entry *e)
223{
224	struct adapter *adap = netdev2adap(dev);
225
226again:
227	switch (e->state) {
228	case L2T_STATE_STALE:     /* entry is stale, kick off revalidation */
229		neigh_event_send(e->neigh, NULL);
230		spin_lock_bh(&e->lock);
231		if (e->state == L2T_STATE_STALE)
232			e->state = L2T_STATE_VALID;
233		spin_unlock_bh(&e->lock);
234		fallthrough;
235	case L2T_STATE_VALID:     /* fast-path, send the packet on */
236		return t4_ofld_send(adap, skb);
237	case L2T_STATE_RESOLVING:
238	case L2T_STATE_SYNC_WRITE:
239		spin_lock_bh(&e->lock);
240		if (e->state != L2T_STATE_SYNC_WRITE &&
241		    e->state != L2T_STATE_RESOLVING) {
242			spin_unlock_bh(&e->lock);
243			goto again;
244		}
245		arpq_enqueue(e, skb);
246		spin_unlock_bh(&e->lock);
247
248		if (e->state == L2T_STATE_RESOLVING &&
249		    !neigh_event_send(e->neigh, NULL)) {
250			spin_lock_bh(&e->lock);
251			if (e->state == L2T_STATE_RESOLVING &&
252			    !skb_queue_empty(&e->arpq))
253				write_l2e(adap, e, 1);
254			spin_unlock_bh(&e->lock);
255		}
256	}
257	return 0;
258}
259EXPORT_SYMBOL(cxgb4_l2t_send);
260
261/*
262 * Allocate a free L2T entry.  Must be called with l2t_data.lock held.
263 */
264static struct l2t_entry *alloc_l2e(struct l2t_data *d)
265{
266	struct l2t_entry *end, *e, **p;
267
268	if (!atomic_read(&d->nfree))
269		return NULL;
270
271	/* there's definitely a free entry */
272	for (e = d->rover, end = &d->l2tab[d->l2t_size]; e != end; ++e)
273		if (atomic_read(&e->refcnt) == 0)
274			goto found;
275
276	for (e = d->l2tab; atomic_read(&e->refcnt); ++e)
277		;
278found:
279	d->rover = e + 1;
280	atomic_dec(&d->nfree);
281
282	/*
283	 * The entry we found may be an inactive entry that is
284	 * presently in the hash table.  We need to remove it.
285	 */
286	if (e->state < L2T_STATE_SWITCHING)
287		for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next)
288			if (*p == e) {
289				*p = e->next;
290				e->next = NULL;
291				break;
292			}
293
294	e->state = L2T_STATE_UNUSED;
295	return e;
296}
297
298static struct l2t_entry *find_or_alloc_l2e(struct l2t_data *d, u16 vlan,
299					   u8 port, u8 *dmac)
300{
301	struct l2t_entry *end, *e, **p;
302	struct l2t_entry *first_free = NULL;
303
304	for (e = &d->l2tab[0], end = &d->l2tab[d->l2t_size]; e != end; ++e) {
305		if (atomic_read(&e->refcnt) == 0) {
306			if (!first_free)
307				first_free = e;
308		} else {
309			if (e->state == L2T_STATE_SWITCHING) {
310				if (ether_addr_equal(e->dmac, dmac) &&
311				    (e->vlan == vlan) && (e->lport == port))
312					goto exists;
313			}
314		}
315	}
316
317	if (first_free) {
318		e = first_free;
319		goto found;
320	}
321
322	return NULL;
323
324found:
325	/* The entry we found may be an inactive entry that is
326	 * presently in the hash table.  We need to remove it.
327	 */
328	if (e->state < L2T_STATE_SWITCHING)
329		for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next)
330			if (*p == e) {
331				*p = e->next;
332				e->next = NULL;
333				break;
334			}
335	e->state = L2T_STATE_UNUSED;
336
337exists:
338	return e;
339}
340
341/* Called when an L2T entry has no more users.  The entry is left in the hash
342 * table since it is likely to be reused but we also bump nfree to indicate
343 * that the entry can be reallocated for a different neighbor.  We also drop
344 * the existing neighbor reference in case the neighbor is going away and is
345 * waiting on our reference.
346 *
347 * Because entries can be reallocated to other neighbors once their ref count
348 * drops to 0 we need to take the entry's lock to avoid races with a new
349 * incarnation.
350 */
351static void _t4_l2e_free(struct l2t_entry *e)
352{
353	struct l2t_data *d;
354
355	if (atomic_read(&e->refcnt) == 0) {  /* hasn't been recycled */
356		if (e->neigh) {
357			neigh_release(e->neigh);
358			e->neigh = NULL;
359		}
360		__skb_queue_purge(&e->arpq);
361	}
362
363	d = container_of(e, struct l2t_data, l2tab[e->idx]);
364	atomic_inc(&d->nfree);
365}
366
367/* Locked version of _t4_l2e_free */
368static void t4_l2e_free(struct l2t_entry *e)
369{
370	struct l2t_data *d;
371
372	spin_lock_bh(&e->lock);
373	if (atomic_read(&e->refcnt) == 0) {  /* hasn't been recycled */
374		if (e->neigh) {
375			neigh_release(e->neigh);
376			e->neigh = NULL;
377		}
378		__skb_queue_purge(&e->arpq);
379	}
380	spin_unlock_bh(&e->lock);
381
382	d = container_of(e, struct l2t_data, l2tab[e->idx]);
383	atomic_inc(&d->nfree);
384}
385
386void cxgb4_l2t_release(struct l2t_entry *e)
387{
388	if (atomic_dec_and_test(&e->refcnt))
389		t4_l2e_free(e);
390}
391EXPORT_SYMBOL(cxgb4_l2t_release);
392
393/*
394 * Update an L2T entry that was previously used for the same next hop as neigh.
395 * Must be called with softirqs disabled.
396 */
397static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh)
398{
399	unsigned int nud_state;
400
401	spin_lock(&e->lock);                /* avoid race with t4_l2t_free */
402	if (neigh != e->neigh)
403		neigh_replace(e, neigh);
404	nud_state = neigh->nud_state;
405	if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) ||
406	    !(nud_state & NUD_VALID))
407		e->state = L2T_STATE_RESOLVING;
408	else if (nud_state & NUD_CONNECTED)
409		e->state = L2T_STATE_VALID;
410	else
411		e->state = L2T_STATE_STALE;
412	spin_unlock(&e->lock);
413}
414
415struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh,
416				const struct net_device *physdev,
417				unsigned int priority)
418{
419	u8 lport;
420	u16 vlan;
421	struct l2t_entry *e;
422	unsigned int addr_len = neigh->tbl->key_len;
423	u32 *addr = (u32 *)neigh->primary_key;
424	int ifidx = neigh->dev->ifindex;
425	int hash = addr_hash(d, addr, addr_len, ifidx);
426
427	if (neigh->dev->flags & IFF_LOOPBACK)
428		lport = netdev2pinfo(physdev)->tx_chan + 4;
429	else
430		lport = netdev2pinfo(physdev)->lport;
431
432	if (is_vlan_dev(neigh->dev)) {
433		vlan = vlan_dev_vlan_id(neigh->dev);
434		vlan |= vlan_dev_get_egress_qos_mask(neigh->dev, priority);
435	} else {
436		vlan = VLAN_NONE;
437	}
438
439	write_lock_bh(&d->lock);
440	for (e = d->l2tab[hash].first; e; e = e->next)
441		if (!addreq(e, addr) && e->ifindex == ifidx &&
442		    e->vlan == vlan && e->lport == lport) {
443			l2t_hold(d, e);
444			if (atomic_read(&e->refcnt) == 1)
445				reuse_entry(e, neigh);
446			goto done;
447		}
448
449	/* Need to allocate a new entry */
450	e = alloc_l2e(d);
451	if (e) {
452		spin_lock(&e->lock);          /* avoid race with t4_l2t_free */
453		e->state = L2T_STATE_RESOLVING;
454		if (neigh->dev->flags & IFF_LOOPBACK)
455			memcpy(e->dmac, physdev->dev_addr, sizeof(e->dmac));
456		memcpy(e->addr, addr, addr_len);
457		e->ifindex = ifidx;
458		e->hash = hash;
459		e->lport = lport;
460		e->v6 = addr_len == 16;
461		atomic_set(&e->refcnt, 1);
462		neigh_replace(e, neigh);
463		e->vlan = vlan;
464		e->next = d->l2tab[hash].first;
465		d->l2tab[hash].first = e;
466		spin_unlock(&e->lock);
467	}
468done:
469	write_unlock_bh(&d->lock);
470	return e;
471}
472EXPORT_SYMBOL(cxgb4_l2t_get);
473
474u64 cxgb4_select_ntuple(struct net_device *dev,
475			const struct l2t_entry *l2t)
476{
477	struct adapter *adap = netdev2adap(dev);
478	struct tp_params *tp = &adap->params.tp;
479	u64 ntuple = 0;
480
481	/* Initialize each of the fields which we care about which are present
482	 * in the Compressed Filter Tuple.
483	 */
484	if (tp->vlan_shift >= 0 && l2t->vlan != VLAN_NONE)
485		ntuple |= (u64)(FT_VLAN_VLD_F | l2t->vlan) << tp->vlan_shift;
486
487	if (tp->port_shift >= 0)
488		ntuple |= (u64)l2t->lport << tp->port_shift;
489
490	if (tp->protocol_shift >= 0)
491		ntuple |= (u64)IPPROTO_TCP << tp->protocol_shift;
492
493	if (tp->vnic_shift >= 0 && (tp->ingress_config & VNIC_F)) {
494		struct port_info *pi = (struct port_info *)netdev_priv(dev);
495
496		ntuple |= (u64)(FT_VNID_ID_VF_V(pi->vin) |
497				FT_VNID_ID_PF_V(adap->pf) |
498				FT_VNID_ID_VLD_V(pi->vivld)) << tp->vnic_shift;
499	}
500
501	return ntuple;
502}
503EXPORT_SYMBOL(cxgb4_select_ntuple);
504
505/*
506 * Called when the host's neighbor layer makes a change to some entry that is
507 * loaded into the HW L2 table.
508 */
509void t4_l2t_update(struct adapter *adap, struct neighbour *neigh)
510{
511	unsigned int addr_len = neigh->tbl->key_len;
512	u32 *addr = (u32 *) neigh->primary_key;
513	int hash, ifidx = neigh->dev->ifindex;
514	struct sk_buff_head *arpq = NULL;
515	struct l2t_data *d = adap->l2t;
516	struct l2t_entry *e;
517
518	hash = addr_hash(d, addr, addr_len, ifidx);
519	read_lock_bh(&d->lock);
520	for (e = d->l2tab[hash].first; e; e = e->next)
521		if (!addreq(e, addr) && e->ifindex == ifidx) {
522			spin_lock(&e->lock);
523			if (atomic_read(&e->refcnt))
524				goto found;
525			spin_unlock(&e->lock);
526			break;
527		}
528	read_unlock_bh(&d->lock);
529	return;
530
531 found:
532	read_unlock(&d->lock);
533
534	if (neigh != e->neigh)
535		neigh_replace(e, neigh);
536
537	if (e->state == L2T_STATE_RESOLVING) {
538		if (neigh->nud_state & NUD_FAILED) {
539			arpq = &e->arpq;
540		} else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) &&
541			   !skb_queue_empty(&e->arpq)) {
542			write_l2e(adap, e, 1);
543		}
544	} else {
545		e->state = neigh->nud_state & NUD_CONNECTED ?
546			L2T_STATE_VALID : L2T_STATE_STALE;
547		if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)))
548			write_l2e(adap, e, 0);
549	}
550
551	if (arpq) {
552		struct sk_buff *skb;
553
554		/* Called when address resolution fails for an L2T
555		 * entry to handle packets on the arpq head. If a
556		 * packet specifies a failure handler it is invoked,
557		 * otherwise the packet is sent to the device.
558		 */
559		while ((skb = __skb_dequeue(&e->arpq)) != NULL) {
560			const struct l2t_skb_cb *cb = L2T_SKB_CB(skb);
561
562			spin_unlock(&e->lock);
563			if (cb->arp_err_handler)
564				cb->arp_err_handler(cb->handle, skb);
565			else
566				t4_ofld_send(adap, skb);
567			spin_lock(&e->lock);
568		}
569	}
570	spin_unlock_bh(&e->lock);
571}
572
573/* Allocate an L2T entry for use by a switching rule.  Such need to be
574 * explicitly freed and while busy they are not on any hash chain, so normal
575 * address resolution updates do not see them.
576 */
577struct l2t_entry *t4_l2t_alloc_switching(struct adapter *adap, u16 vlan,
578					 u8 port, u8 *eth_addr)
579{
580	struct l2t_data *d = adap->l2t;
581	struct l2t_entry *e;
582	int ret;
583
584	write_lock_bh(&d->lock);
585	e = find_or_alloc_l2e(d, vlan, port, eth_addr);
586	if (e) {
587		spin_lock(&e->lock);          /* avoid race with t4_l2t_free */
588		if (!atomic_read(&e->refcnt)) {
589			e->state = L2T_STATE_SWITCHING;
590			e->vlan = vlan;
591			e->lport = port;
592			ether_addr_copy(e->dmac, eth_addr);
593			atomic_set(&e->refcnt, 1);
594			ret = write_l2e(adap, e, 0);
595			if (ret < 0) {
596				_t4_l2e_free(e);
597				spin_unlock(&e->lock);
598				write_unlock_bh(&d->lock);
599				return NULL;
600			}
601		} else {
602			atomic_inc(&e->refcnt);
603		}
604
605		spin_unlock(&e->lock);
606	}
607	write_unlock_bh(&d->lock);
608	return e;
609}
610
611/**
612 * cxgb4_l2t_alloc_switching - Allocates an L2T entry for switch filters
613 * @dev: net_device pointer
614 * @vlan: VLAN Id
615 * @port: Associated port
616 * @dmac: Destination MAC address to add to L2T
617 * Returns pointer to the allocated l2t entry
618 *
619 * Allocates an L2T entry for use by switching rule of a filter
620 */
621struct l2t_entry *cxgb4_l2t_alloc_switching(struct net_device *dev, u16 vlan,
622					    u8 port, u8 *dmac)
623{
624	struct adapter *adap = netdev2adap(dev);
625
626	return t4_l2t_alloc_switching(adap, vlan, port, dmac);
627}
628EXPORT_SYMBOL(cxgb4_l2t_alloc_switching);
629
630struct l2t_data *t4_init_l2t(unsigned int l2t_start, unsigned int l2t_end)
631{
632	unsigned int l2t_size;
633	int i;
634	struct l2t_data *d;
635
636	if (l2t_start >= l2t_end || l2t_end >= L2T_SIZE)
637		return NULL;
638	l2t_size = l2t_end - l2t_start + 1;
639	if (l2t_size < L2T_MIN_HASH_BUCKETS)
640		return NULL;
641
642	d = kvzalloc(struct_size(d, l2tab, l2t_size), GFP_KERNEL);
643	if (!d)
644		return NULL;
645
646	d->l2t_start = l2t_start;
647	d->l2t_size = l2t_size;
648
649	d->rover = d->l2tab;
650	atomic_set(&d->nfree, l2t_size);
651	rwlock_init(&d->lock);
652
653	for (i = 0; i < d->l2t_size; ++i) {
654		d->l2tab[i].idx = i;
655		d->l2tab[i].state = L2T_STATE_UNUSED;
656		spin_lock_init(&d->l2tab[i].lock);
657		atomic_set(&d->l2tab[i].refcnt, 0);
658		skb_queue_head_init(&d->l2tab[i].arpq);
659	}
660	return d;
661}
662
663static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos)
664{
665	struct l2t_data *d = seq->private;
666
667	return pos >= d->l2t_size ? NULL : &d->l2tab[pos];
668}
669
670static void *l2t_seq_start(struct seq_file *seq, loff_t *pos)
671{
672	return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
673}
674
675static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos)
676{
677	v = l2t_get_idx(seq, *pos);
678	++(*pos);
679	return v;
680}
681
682static void l2t_seq_stop(struct seq_file *seq, void *v)
683{
684}
685
686static char l2e_state(const struct l2t_entry *e)
687{
688	switch (e->state) {
689	case L2T_STATE_VALID: return 'V';
690	case L2T_STATE_STALE: return 'S';
691	case L2T_STATE_SYNC_WRITE: return 'W';
692	case L2T_STATE_RESOLVING:
693		return skb_queue_empty(&e->arpq) ? 'R' : 'A';
694	case L2T_STATE_SWITCHING: return 'X';
695	default:
696		return 'U';
697	}
698}
699
700bool cxgb4_check_l2t_valid(struct l2t_entry *e)
701{
702	bool valid;
703
704	spin_lock(&e->lock);
705	valid = (e->state == L2T_STATE_VALID);
706	spin_unlock(&e->lock);
707	return valid;
708}
709EXPORT_SYMBOL(cxgb4_check_l2t_valid);
710
711static int l2t_seq_show(struct seq_file *seq, void *v)
712{
713	if (v == SEQ_START_TOKEN)
714		seq_puts(seq, " Idx IP address                "
715			 "Ethernet address  VLAN/P LP State Users Port\n");
716	else {
717		char ip[60];
718		struct l2t_data *d = seq->private;
719		struct l2t_entry *e = v;
720
721		spin_lock_bh(&e->lock);
722		if (e->state == L2T_STATE_SWITCHING)
723			ip[0] = '\0';
724		else
725			sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr);
726		seq_printf(seq, "%4u %-25s %17pM %4d %u %2u   %c   %5u %s\n",
727			   e->idx + d->l2t_start, ip, e->dmac,
728			   e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport,
729			   l2e_state(e), atomic_read(&e->refcnt),
730			   e->neigh ? e->neigh->dev->name : "");
731		spin_unlock_bh(&e->lock);
732	}
733	return 0;
734}
735
736static const struct seq_operations l2t_seq_ops = {
737	.start = l2t_seq_start,
738	.next = l2t_seq_next,
739	.stop = l2t_seq_stop,
740	.show = l2t_seq_show
741};
742
743static int l2t_seq_open(struct inode *inode, struct file *file)
744{
745	int rc = seq_open(file, &l2t_seq_ops);
746
747	if (!rc) {
748		struct adapter *adap = inode->i_private;
749		struct seq_file *seq = file->private_data;
750
751		seq->private = adap->l2t;
752	}
753	return rc;
754}
755
756const struct file_operations t4_l2t_fops = {
757	.owner = THIS_MODULE,
758	.open = l2t_seq_open,
759	.read = seq_read,
760	.llseek = seq_lseek,
761	.release = seq_release,
762};
763