1/*
2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *
18 *      - Redistributions in binary form must reproduce the above
19 *        copyright notice, this list of conditions and the following
20 *        disclaimer in the documentation and/or other materials
21 *        provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32#include <linux/skbuff.h>
33#include <linux/netdevice.h>
34#include <linux/if.h>
35#include <linux/if_vlan.h>
36#include <linux/jhash.h>
37#include <linux/slab.h>
38#include <linux/export.h>
39#include <net/neighbour.h>
40#include "common.h"
41#include "t3cdev.h"
42#include "cxgb3_defs.h"
43#include "l2t.h"
44#include "t3_cpl.h"
45#include "firmware_exports.h"
46
47#define VLAN_NONE 0xfff
48
49/*
50 * Module locking notes:  There is a RW lock protecting the L2 table as a
51 * whole plus a spinlock per L2T entry.  Entry lookups and allocations happen
52 * under the protection of the table lock, individual entry changes happen
53 * while holding that entry's spinlock.  The table lock nests outside the
54 * entry locks.  Allocations of new entries take the table lock as writers so
55 * no other lookups can happen while allocating new entries.  Entry updates
56 * take the table lock as readers so multiple entries can be updated in
57 * parallel.  An L2T entry can be dropped by decrementing its reference count
58 * and therefore can happen in parallel with entry allocation but no entry
59 * can change state or increment its ref count during allocation as both of
60 * these perform lookups.
61 */
62
63static inline unsigned int vlan_prio(const struct l2t_entry *e)
64{
65	return e->vlan >> 13;
66}
67
68static inline unsigned int arp_hash(u32 key, int ifindex,
69				    const struct l2t_data *d)
70{
71	return jhash_2words(key, ifindex, 0) & (d->nentries - 1);
72}
73
74static inline void neigh_replace(struct l2t_entry *e, struct neighbour *n)
75{
76	neigh_hold(n);
77	if (e->neigh)
78		neigh_release(e->neigh);
79	e->neigh = n;
80}
81
82/*
83 * Set up an L2T entry and send any packets waiting in the arp queue.  The
84 * supplied skb is used for the CPL_L2T_WRITE_REQ.  Must be called with the
85 * entry locked.
86 */
87static int setup_l2e_send_pending(struct t3cdev *dev, struct sk_buff *skb,
88				  struct l2t_entry *e)
89{
90	struct cpl_l2t_write_req *req;
91	struct sk_buff *tmp;
92
93	if (!skb) {
94		skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
95		if (!skb)
96			return -ENOMEM;
97	}
98
99	req = __skb_put(skb, sizeof(*req));
100	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
101	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, e->idx));
102	req->params = htonl(V_L2T_W_IDX(e->idx) | V_L2T_W_IFF(e->smt_idx) |
103			    V_L2T_W_VLAN(e->vlan & VLAN_VID_MASK) |
104			    V_L2T_W_PRIO(vlan_prio(e)));
105	memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac));
106	memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
107	skb->priority = CPL_PRIORITY_CONTROL;
108	cxgb3_ofld_send(dev, skb);
109
110	skb_queue_walk_safe(&e->arpq, skb, tmp) {
111		__skb_unlink(skb, &e->arpq);
112		cxgb3_ofld_send(dev, skb);
113	}
114	e->state = L2T_STATE_VALID;
115
116	return 0;
117}
118
119/*
120 * Add a packet to the an L2T entry's queue of packets awaiting resolution.
121 * Must be called with the entry's lock held.
122 */
123static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb)
124{
125	__skb_queue_tail(&e->arpq, skb);
126}
127
128int t3_l2t_send_slow(struct t3cdev *dev, struct sk_buff *skb,
129		     struct l2t_entry *e)
130{
131again:
132	switch (e->state) {
133	case L2T_STATE_STALE:	/* entry is stale, kick off revalidation */
134		neigh_event_send(e->neigh, NULL);
135		spin_lock_bh(&e->lock);
136		if (e->state == L2T_STATE_STALE)
137			e->state = L2T_STATE_VALID;
138		spin_unlock_bh(&e->lock);
139		fallthrough;
140	case L2T_STATE_VALID:	/* fast-path, send the packet on */
141		return cxgb3_ofld_send(dev, skb);
142	case L2T_STATE_RESOLVING:
143		spin_lock_bh(&e->lock);
144		if (e->state != L2T_STATE_RESOLVING) {
145			/* ARP already completed */
146			spin_unlock_bh(&e->lock);
147			goto again;
148		}
149		arpq_enqueue(e, skb);
150		spin_unlock_bh(&e->lock);
151
152		/*
153		 * Only the first packet added to the arpq should kick off
154		 * resolution.  However, because the alloc_skb below can fail,
155		 * we allow each packet added to the arpq to retry resolution
156		 * as a way of recovering from transient memory exhaustion.
157		 * A better way would be to use a work request to retry L2T
158		 * entries when there's no memory.
159		 */
160		if (!neigh_event_send(e->neigh, NULL)) {
161			skb = alloc_skb(sizeof(struct cpl_l2t_write_req),
162					GFP_ATOMIC);
163			if (!skb)
164				break;
165
166			spin_lock_bh(&e->lock);
167			if (!skb_queue_empty(&e->arpq))
168				setup_l2e_send_pending(dev, skb, e);
169			else	/* we lost the race */
170				__kfree_skb(skb);
171			spin_unlock_bh(&e->lock);
172		}
173	}
174	return 0;
175}
176
177EXPORT_SYMBOL(t3_l2t_send_slow);
178
179void t3_l2t_send_event(struct t3cdev *dev, struct l2t_entry *e)
180{
181again:
182	switch (e->state) {
183	case L2T_STATE_STALE:	/* entry is stale, kick off revalidation */
184		neigh_event_send(e->neigh, NULL);
185		spin_lock_bh(&e->lock);
186		if (e->state == L2T_STATE_STALE) {
187			e->state = L2T_STATE_VALID;
188		}
189		spin_unlock_bh(&e->lock);
190		return;
191	case L2T_STATE_VALID:	/* fast-path, send the packet on */
192		return;
193	case L2T_STATE_RESOLVING:
194		spin_lock_bh(&e->lock);
195		if (e->state != L2T_STATE_RESOLVING) {
196			/* ARP already completed */
197			spin_unlock_bh(&e->lock);
198			goto again;
199		}
200		spin_unlock_bh(&e->lock);
201
202		/*
203		 * Only the first packet added to the arpq should kick off
204		 * resolution.  However, because the alloc_skb below can fail,
205		 * we allow each packet added to the arpq to retry resolution
206		 * as a way of recovering from transient memory exhaustion.
207		 * A better way would be to use a work request to retry L2T
208		 * entries when there's no memory.
209		 */
210		neigh_event_send(e->neigh, NULL);
211	}
212}
213
214EXPORT_SYMBOL(t3_l2t_send_event);
215
216/*
217 * Allocate a free L2T entry.  Must be called with l2t_data.lock held.
218 */
219static struct l2t_entry *alloc_l2e(struct l2t_data *d)
220{
221	struct l2t_entry *end, *e, **p;
222
223	if (!atomic_read(&d->nfree))
224		return NULL;
225
226	/* there's definitely a free entry */
227	for (e = d->rover, end = &d->l2tab[d->nentries]; e != end; ++e)
228		if (atomic_read(&e->refcnt) == 0)
229			goto found;
230
231	for (e = &d->l2tab[1]; atomic_read(&e->refcnt); ++e) ;
232found:
233	d->rover = e + 1;
234	atomic_dec(&d->nfree);
235
236	/*
237	 * The entry we found may be an inactive entry that is
238	 * presently in the hash table.  We need to remove it.
239	 */
240	if (e->state != L2T_STATE_UNUSED) {
241		int hash = arp_hash(e->addr, e->ifindex, d);
242
243		for (p = &d->l2tab[hash].first; *p; p = &(*p)->next)
244			if (*p == e) {
245				*p = e->next;
246				break;
247			}
248		e->state = L2T_STATE_UNUSED;
249	}
250	return e;
251}
252
253/*
254 * Called when an L2T entry has no more users.  The entry is left in the hash
255 * table since it is likely to be reused but we also bump nfree to indicate
256 * that the entry can be reallocated for a different neighbor.  We also drop
257 * the existing neighbor reference in case the neighbor is going away and is
258 * waiting on our reference.
259 *
260 * Because entries can be reallocated to other neighbors once their ref count
261 * drops to 0 we need to take the entry's lock to avoid races with a new
262 * incarnation.
263 */
264void t3_l2e_free(struct l2t_data *d, struct l2t_entry *e)
265{
266	spin_lock_bh(&e->lock);
267	if (atomic_read(&e->refcnt) == 0) {	/* hasn't been recycled */
268		if (e->neigh) {
269			neigh_release(e->neigh);
270			e->neigh = NULL;
271		}
272	}
273	spin_unlock_bh(&e->lock);
274	atomic_inc(&d->nfree);
275}
276
277EXPORT_SYMBOL(t3_l2e_free);
278
279/*
280 * Update an L2T entry that was previously used for the same next hop as neigh.
281 * Must be called with softirqs disabled.
282 */
283static inline void reuse_entry(struct l2t_entry *e, struct neighbour *neigh)
284{
285	unsigned int nud_state;
286
287	spin_lock(&e->lock);	/* avoid race with t3_l2t_free */
288
289	if (neigh != e->neigh)
290		neigh_replace(e, neigh);
291	nud_state = neigh->nud_state;
292	if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) ||
293	    !(nud_state & NUD_VALID))
294		e->state = L2T_STATE_RESOLVING;
295	else if (nud_state & NUD_CONNECTED)
296		e->state = L2T_STATE_VALID;
297	else
298		e->state = L2T_STATE_STALE;
299	spin_unlock(&e->lock);
300}
301
302struct l2t_entry *t3_l2t_get(struct t3cdev *cdev, struct dst_entry *dst,
303			     struct net_device *dev, const void *daddr)
304{
305	struct l2t_entry *e = NULL;
306	struct neighbour *neigh;
307	struct port_info *p;
308	struct l2t_data *d;
309	int hash;
310	u32 addr;
311	int ifidx;
312	int smt_idx;
313
314	rcu_read_lock();
315	neigh = dst_neigh_lookup(dst, daddr);
316	if (!neigh)
317		goto done_rcu;
318
319	addr = *(u32 *) neigh->primary_key;
320	ifidx = neigh->dev->ifindex;
321
322	if (!dev)
323		dev = neigh->dev;
324	p = netdev_priv(dev);
325	smt_idx = p->port_id;
326
327	d = L2DATA(cdev);
328	if (!d)
329		goto done_rcu;
330
331	hash = arp_hash(addr, ifidx, d);
332
333	write_lock_bh(&d->lock);
334	for (e = d->l2tab[hash].first; e; e = e->next)
335		if (e->addr == addr && e->ifindex == ifidx &&
336		    e->smt_idx == smt_idx) {
337			l2t_hold(d, e);
338			if (atomic_read(&e->refcnt) == 1)
339				reuse_entry(e, neigh);
340			goto done_unlock;
341		}
342
343	/* Need to allocate a new entry */
344	e = alloc_l2e(d);
345	if (e) {
346		spin_lock(&e->lock);	/* avoid race with t3_l2t_free */
347		e->next = d->l2tab[hash].first;
348		d->l2tab[hash].first = e;
349		e->state = L2T_STATE_RESOLVING;
350		e->addr = addr;
351		e->ifindex = ifidx;
352		e->smt_idx = smt_idx;
353		atomic_set(&e->refcnt, 1);
354		neigh_replace(e, neigh);
355		if (is_vlan_dev(neigh->dev))
356			e->vlan = vlan_dev_vlan_id(neigh->dev);
357		else
358			e->vlan = VLAN_NONE;
359		spin_unlock(&e->lock);
360	}
361done_unlock:
362	write_unlock_bh(&d->lock);
363done_rcu:
364	if (neigh)
365		neigh_release(neigh);
366	rcu_read_unlock();
367	return e;
368}
369
370EXPORT_SYMBOL(t3_l2t_get);
371
372/*
373 * Called when address resolution fails for an L2T entry to handle packets
374 * on the arpq head.  If a packet specifies a failure handler it is invoked,
375 * otherwise the packets is sent to the offload device.
376 *
377 * XXX: maybe we should abandon the latter behavior and just require a failure
378 * handler.
379 */
380static void handle_failed_resolution(struct t3cdev *dev, struct sk_buff_head *arpq)
381{
382	struct sk_buff *skb, *tmp;
383
384	skb_queue_walk_safe(arpq, skb, tmp) {
385		struct l2t_skb_cb *cb = L2T_SKB_CB(skb);
386
387		__skb_unlink(skb, arpq);
388		if (cb->arp_failure_handler)
389			cb->arp_failure_handler(dev, skb);
390		else
391			cxgb3_ofld_send(dev, skb);
392	}
393}
394
395/*
396 * Called when the host's ARP layer makes a change to some entry that is
397 * loaded into the HW L2 table.
398 */
399void t3_l2t_update(struct t3cdev *dev, struct neighbour *neigh)
400{
401	struct sk_buff_head arpq;
402	struct l2t_entry *e;
403	struct l2t_data *d = L2DATA(dev);
404	u32 addr = *(u32 *) neigh->primary_key;
405	int ifidx = neigh->dev->ifindex;
406	int hash = arp_hash(addr, ifidx, d);
407
408	read_lock_bh(&d->lock);
409	for (e = d->l2tab[hash].first; e; e = e->next)
410		if (e->addr == addr && e->ifindex == ifidx) {
411			spin_lock(&e->lock);
412			goto found;
413		}
414	read_unlock_bh(&d->lock);
415	return;
416
417found:
418	__skb_queue_head_init(&arpq);
419
420	read_unlock(&d->lock);
421	if (atomic_read(&e->refcnt)) {
422		if (neigh != e->neigh)
423			neigh_replace(e, neigh);
424
425		if (e->state == L2T_STATE_RESOLVING) {
426			if (neigh->nud_state & NUD_FAILED) {
427				skb_queue_splice_init(&e->arpq, &arpq);
428			} else if (neigh->nud_state & (NUD_CONNECTED|NUD_STALE))
429				setup_l2e_send_pending(dev, NULL, e);
430		} else {
431			e->state = neigh->nud_state & NUD_CONNECTED ?
432			    L2T_STATE_VALID : L2T_STATE_STALE;
433			if (!ether_addr_equal(e->dmac, neigh->ha))
434				setup_l2e_send_pending(dev, NULL, e);
435		}
436	}
437	spin_unlock_bh(&e->lock);
438
439	if (!skb_queue_empty(&arpq))
440		handle_failed_resolution(dev, &arpq);
441}
442
443struct l2t_data *t3_init_l2t(unsigned int l2t_capacity)
444{
445	struct l2t_data *d;
446	int i;
447
448	d = kvzalloc(struct_size(d, l2tab, l2t_capacity), GFP_KERNEL);
449	if (!d)
450		return NULL;
451
452	d->nentries = l2t_capacity;
453	d->rover = &d->l2tab[1];	/* entry 0 is not used */
454	atomic_set(&d->nfree, l2t_capacity - 1);
455	rwlock_init(&d->lock);
456
457	for (i = 0; i < l2t_capacity; ++i) {
458		d->l2tab[i].idx = i;
459		d->l2tab[i].state = L2T_STATE_UNUSED;
460		__skb_queue_head_init(&d->l2tab[i].arpq);
461		spin_lock_init(&d->l2tab[i].lock);
462		atomic_set(&d->l2tab[i].refcnt, 0);
463	}
464	return d;
465}
466