1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
4 * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
5 * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
6 *
7 * Derived from Intel e1000 driver
8 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
9 *
10 * Contact Information:
11 * Xiong Huang <xiong.huang@atheros.com>
12 * Jie Yang <jie.yang@atheros.com>
13 * Chris Snook <csnook@redhat.com>
14 * Jay Cliburn <jcliburn@gmail.com>
15 *
16 * This version is adapted from the Attansic reference driver.
17 *
18 * TODO:
19 * Add more ethtool functions.
20 * Fix abstruse irq enable/disable condition described here:
21 *	http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
22 *
23 * NEEDS TESTING:
24 * VLAN
25 * multicast
26 * promiscuous mode
27 * interrupt coalescing
28 * SMP torture testing
29 */
30
31#include <linux/atomic.h>
32#include <asm/byteorder.h>
33
34#include <linux/compiler.h>
35#include <linux/crc32.h>
36#include <linux/delay.h>
37#include <linux/dma-mapping.h>
38#include <linux/etherdevice.h>
39#include <linux/hardirq.h>
40#include <linux/if_ether.h>
41#include <linux/if_vlan.h>
42#include <linux/in.h>
43#include <linux/interrupt.h>
44#include <linux/ip.h>
45#include <linux/irqflags.h>
46#include <linux/irqreturn.h>
47#include <linux/jiffies.h>
48#include <linux/mii.h>
49#include <linux/module.h>
50#include <linux/net.h>
51#include <linux/netdevice.h>
52#include <linux/pci.h>
53#include <linux/pci_ids.h>
54#include <linux/pm.h>
55#include <linux/skbuff.h>
56#include <linux/slab.h>
57#include <linux/spinlock.h>
58#include <linux/string.h>
59#include <linux/tcp.h>
60#include <linux/timer.h>
61#include <linux/types.h>
62#include <linux/workqueue.h>
63
64#include <net/checksum.h>
65
66#include "atl1.h"
67
68MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, "
69	      "Chris Snook <csnook@redhat.com>, "
70	      "Jay Cliburn <jcliburn@gmail.com>");
71MODULE_LICENSE("GPL");
72
73/* Temporary hack for merging atl1 and atl2 */
74#include "atlx.c"
75
76static const struct ethtool_ops atl1_ethtool_ops;
77
78/*
79 * This is the only thing that needs to be changed to adjust the
80 * maximum number of ports that the driver can manage.
81 */
82#define ATL1_MAX_NIC 4
83
84#define OPTION_UNSET    -1
85#define OPTION_DISABLED 0
86#define OPTION_ENABLED  1
87
88#define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
89
90/*
91 * Interrupt Moderate Timer in units of 2 us
92 *
93 * Valid Range: 10-65535
94 *
95 * Default Value: 100 (200us)
96 */
97static int int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
98static unsigned int num_int_mod_timer;
99module_param_array_named(int_mod_timer, int_mod_timer, int,
100	&num_int_mod_timer, 0);
101MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
102
103#define DEFAULT_INT_MOD_CNT	100	/* 200us */
104#define MAX_INT_MOD_CNT		65000
105#define MIN_INT_MOD_CNT		50
106
107struct atl1_option {
108	enum { enable_option, range_option, list_option } type;
109	char *name;
110	char *err;
111	int def;
112	union {
113		struct {	/* range_option info */
114			int min;
115			int max;
116		} r;
117		struct {	/* list_option info */
118			int nr;
119			struct atl1_opt_list {
120				int i;
121				char *str;
122			} *p;
123		} l;
124	} arg;
125};
126
127static int atl1_validate_option(int *value, struct atl1_option *opt,
128				struct pci_dev *pdev)
129{
130	if (*value == OPTION_UNSET) {
131		*value = opt->def;
132		return 0;
133	}
134
135	switch (opt->type) {
136	case enable_option:
137		switch (*value) {
138		case OPTION_ENABLED:
139			dev_info(&pdev->dev, "%s enabled\n", opt->name);
140			return 0;
141		case OPTION_DISABLED:
142			dev_info(&pdev->dev, "%s disabled\n", opt->name);
143			return 0;
144		}
145		break;
146	case range_option:
147		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
148			dev_info(&pdev->dev, "%s set to %i\n", opt->name,
149				*value);
150			return 0;
151		}
152		break;
153	case list_option:{
154			int i;
155			struct atl1_opt_list *ent;
156
157			for (i = 0; i < opt->arg.l.nr; i++) {
158				ent = &opt->arg.l.p[i];
159				if (*value == ent->i) {
160					if (ent->str[0] != '\0')
161						dev_info(&pdev->dev, "%s\n",
162							ent->str);
163					return 0;
164				}
165			}
166		}
167		break;
168
169	default:
170		break;
171	}
172
173	dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
174		opt->name, *value, opt->err);
175	*value = opt->def;
176	return -1;
177}
178
179/**
180 * atl1_check_options - Range Checking for Command Line Parameters
181 * @adapter: board private structure
182 *
183 * This routine checks all command line parameters for valid user
184 * input.  If an invalid value is given, or if no user specified
185 * value exists, a default value is used.  The final value is stored
186 * in a variable in the adapter structure.
187 */
188static void atl1_check_options(struct atl1_adapter *adapter)
189{
190	struct pci_dev *pdev = adapter->pdev;
191	int bd = adapter->bd_number;
192	if (bd >= ATL1_MAX_NIC) {
193		dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
194		dev_notice(&pdev->dev, "using defaults for all values\n");
195	}
196	{			/* Interrupt Moderate Timer */
197		struct atl1_option opt = {
198			.type = range_option,
199			.name = "Interrupt Moderator Timer",
200			.err = "using default of "
201				__MODULE_STRING(DEFAULT_INT_MOD_CNT),
202			.def = DEFAULT_INT_MOD_CNT,
203			.arg = {.r = {.min = MIN_INT_MOD_CNT,
204					.max = MAX_INT_MOD_CNT} }
205		};
206		int val;
207		if (num_int_mod_timer > bd) {
208			val = int_mod_timer[bd];
209			atl1_validate_option(&val, &opt, pdev);
210			adapter->imt = (u16) val;
211		} else
212			adapter->imt = (u16) (opt.def);
213	}
214}
215
216/*
217 * atl1_pci_tbl - PCI Device ID Table
218 */
219static const struct pci_device_id atl1_pci_tbl[] = {
220	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
221	/* required last entry */
222	{0,}
223};
224MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
225
226static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
227	NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
228
229static int debug = -1;
230module_param(debug, int, 0);
231MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
232
233/*
234 * Reset the transmit and receive units; mask and clear all interrupts.
235 * hw - Struct containing variables accessed by shared code
236 * return : 0  or  idle status (if error)
237 */
238static s32 atl1_reset_hw(struct atl1_hw *hw)
239{
240	struct pci_dev *pdev = hw->back->pdev;
241	struct atl1_adapter *adapter = hw->back;
242	u32 icr;
243	int i;
244
245	/*
246	 * Clear Interrupt mask to stop board from generating
247	 * interrupts & Clear any pending interrupt events
248	 */
249	/*
250	 * atlx_irq_disable(adapter);
251	 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
252	 */
253
254	/*
255	 * Issue Soft Reset to the MAC.  This will reset the chip's
256	 * transmit, receive, DMA.  It will not effect
257	 * the current PCI configuration.  The global reset bit is self-
258	 * clearing, and should clear within a microsecond.
259	 */
260	iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
261	ioread32(hw->hw_addr + REG_MASTER_CTRL);
262
263	iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
264	ioread16(hw->hw_addr + REG_PHY_ENABLE);
265
266	/* delay about 1ms */
267	msleep(1);
268
269	/* Wait at least 10ms for All module to be Idle */
270	for (i = 0; i < 10; i++) {
271		icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
272		if (!icr)
273			break;
274		/* delay 1 ms */
275		msleep(1);
276		/* FIXME: still the right way to do this? */
277		cpu_relax();
278	}
279
280	if (icr) {
281		if (netif_msg_hw(adapter))
282			dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
283		return icr;
284	}
285
286	return 0;
287}
288
289/* function about EEPROM
290 *
291 * check_eeprom_exist
292 * return 0 if eeprom exist
293 */
294static int atl1_check_eeprom_exist(struct atl1_hw *hw)
295{
296	u32 value;
297	value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
298	if (value & SPI_FLASH_CTRL_EN_VPD) {
299		value &= ~SPI_FLASH_CTRL_EN_VPD;
300		iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
301	}
302
303	value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
304	return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
305}
306
307static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
308{
309	int i;
310	u32 control;
311
312	if (offset & 3)
313		/* address do not align */
314		return false;
315
316	iowrite32(0, hw->hw_addr + REG_VPD_DATA);
317	control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
318	iowrite32(control, hw->hw_addr + REG_VPD_CAP);
319	ioread32(hw->hw_addr + REG_VPD_CAP);
320
321	for (i = 0; i < 10; i++) {
322		msleep(2);
323		control = ioread32(hw->hw_addr + REG_VPD_CAP);
324		if (control & VPD_CAP_VPD_FLAG)
325			break;
326	}
327	if (control & VPD_CAP_VPD_FLAG) {
328		*p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
329		return true;
330	}
331	/* timeout */
332	return false;
333}
334
335/*
336 * Reads the value from a PHY register
337 * hw - Struct containing variables accessed by shared code
338 * reg_addr - address of the PHY register to read
339 */
340static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
341{
342	u32 val;
343	int i;
344
345	val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
346		MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
347		MDIO_CLK_SEL_SHIFT;
348	iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
349	ioread32(hw->hw_addr + REG_MDIO_CTRL);
350
351	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
352		udelay(2);
353		val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
354		if (!(val & (MDIO_START | MDIO_BUSY)))
355			break;
356	}
357	if (!(val & (MDIO_START | MDIO_BUSY))) {
358		*phy_data = (u16) val;
359		return 0;
360	}
361	return ATLX_ERR_PHY;
362}
363
364#define CUSTOM_SPI_CS_SETUP	2
365#define CUSTOM_SPI_CLK_HI	2
366#define CUSTOM_SPI_CLK_LO	2
367#define CUSTOM_SPI_CS_HOLD	2
368#define CUSTOM_SPI_CS_HI	3
369
370static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
371{
372	int i;
373	u32 value;
374
375	iowrite32(0, hw->hw_addr + REG_SPI_DATA);
376	iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
377
378	value = SPI_FLASH_CTRL_WAIT_READY |
379	    (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
380	    SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
381					     SPI_FLASH_CTRL_CLK_HI_MASK) <<
382	    SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
383					   SPI_FLASH_CTRL_CLK_LO_MASK) <<
384	    SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
385					   SPI_FLASH_CTRL_CS_HOLD_MASK) <<
386	    SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
387					    SPI_FLASH_CTRL_CS_HI_MASK) <<
388	    SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
389	    SPI_FLASH_CTRL_INS_SHIFT;
390
391	iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
392
393	value |= SPI_FLASH_CTRL_START;
394	iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
395	ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
396
397	for (i = 0; i < 10; i++) {
398		msleep(1);
399		value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
400		if (!(value & SPI_FLASH_CTRL_START))
401			break;
402	}
403
404	if (value & SPI_FLASH_CTRL_START)
405		return false;
406
407	*buf = ioread32(hw->hw_addr + REG_SPI_DATA);
408
409	return true;
410}
411
412/*
413 * get_permanent_address
414 * return 0 if get valid mac address,
415 */
416static int atl1_get_permanent_address(struct atl1_hw *hw)
417{
418	u32 addr[2];
419	u32 i, control;
420	u16 reg;
421	u8 eth_addr[ETH_ALEN];
422	bool key_valid;
423
424	if (is_valid_ether_addr(hw->perm_mac_addr))
425		return 0;
426
427	/* init */
428	addr[0] = addr[1] = 0;
429
430	if (!atl1_check_eeprom_exist(hw)) {
431		reg = 0;
432		key_valid = false;
433		/* Read out all EEPROM content */
434		i = 0;
435		while (1) {
436			if (atl1_read_eeprom(hw, i + 0x100, &control)) {
437				if (key_valid) {
438					if (reg == REG_MAC_STA_ADDR)
439						addr[0] = control;
440					else if (reg == (REG_MAC_STA_ADDR + 4))
441						addr[1] = control;
442					key_valid = false;
443				} else if ((control & 0xff) == 0x5A) {
444					key_valid = true;
445					reg = (u16) (control >> 16);
446				} else
447					break;
448			} else
449				/* read error */
450				break;
451			i += 4;
452		}
453
454		*(u32 *) &eth_addr[2] = swab32(addr[0]);
455		*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
456		if (is_valid_ether_addr(eth_addr)) {
457			memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
458			return 0;
459		}
460	}
461
462	/* see if SPI FLAGS exist ? */
463	addr[0] = addr[1] = 0;
464	reg = 0;
465	key_valid = false;
466	i = 0;
467	while (1) {
468		if (atl1_spi_read(hw, i + 0x1f000, &control)) {
469			if (key_valid) {
470				if (reg == REG_MAC_STA_ADDR)
471					addr[0] = control;
472				else if (reg == (REG_MAC_STA_ADDR + 4))
473					addr[1] = control;
474				key_valid = false;
475			} else if ((control & 0xff) == 0x5A) {
476				key_valid = true;
477				reg = (u16) (control >> 16);
478			} else
479				/* data end */
480				break;
481		} else
482			/* read error */
483			break;
484		i += 4;
485	}
486
487	*(u32 *) &eth_addr[2] = swab32(addr[0]);
488	*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
489	if (is_valid_ether_addr(eth_addr)) {
490		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
491		return 0;
492	}
493
494	/*
495	 * On some motherboards, the MAC address is written by the
496	 * BIOS directly to the MAC register during POST, and is
497	 * not stored in eeprom.  If all else thus far has failed
498	 * to fetch the permanent MAC address, try reading it directly.
499	 */
500	addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
501	addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
502	*(u32 *) &eth_addr[2] = swab32(addr[0]);
503	*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
504	if (is_valid_ether_addr(eth_addr)) {
505		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
506		return 0;
507	}
508
509	return 1;
510}
511
512/*
513 * Reads the adapter's MAC address from the EEPROM
514 * hw - Struct containing variables accessed by shared code
515 */
516static s32 atl1_read_mac_addr(struct atl1_hw *hw)
517{
518	s32 ret = 0;
519	u16 i;
520
521	if (atl1_get_permanent_address(hw)) {
522		eth_random_addr(hw->perm_mac_addr);
523		ret = 1;
524	}
525
526	for (i = 0; i < ETH_ALEN; i++)
527		hw->mac_addr[i] = hw->perm_mac_addr[i];
528	return ret;
529}
530
531/*
532 * Hashes an address to determine its location in the multicast table
533 * hw - Struct containing variables accessed by shared code
534 * mc_addr - the multicast address to hash
535 *
536 * atl1_hash_mc_addr
537 *  purpose
538 *      set hash value for a multicast address
539 *      hash calcu processing :
540 *          1. calcu 32bit CRC for multicast address
541 *          2. reverse crc with MSB to LSB
542 */
543static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
544{
545	u32 crc32, value = 0;
546	int i;
547
548	crc32 = ether_crc_le(6, mc_addr);
549	for (i = 0; i < 32; i++)
550		value |= (((crc32 >> i) & 1) << (31 - i));
551
552	return value;
553}
554
555/*
556 * Sets the bit in the multicast table corresponding to the hash value.
557 * hw - Struct containing variables accessed by shared code
558 * hash_value - Multicast address hash value
559 */
560static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
561{
562	u32 hash_bit, hash_reg;
563	u32 mta;
564
565	/*
566	 * The HASH Table  is a register array of 2 32-bit registers.
567	 * It is treated like an array of 64 bits.  We want to set
568	 * bit BitArray[hash_value]. So we figure out what register
569	 * the bit is in, read it, OR in the new bit, then write
570	 * back the new value.  The register is determined by the
571	 * upper 7 bits of the hash value and the bit within that
572	 * register are determined by the lower 5 bits of the value.
573	 */
574	hash_reg = (hash_value >> 31) & 0x1;
575	hash_bit = (hash_value >> 26) & 0x1F;
576	mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
577	mta |= (1 << hash_bit);
578	iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
579}
580
581/*
582 * Writes a value to a PHY register
583 * hw - Struct containing variables accessed by shared code
584 * reg_addr - address of the PHY register to write
585 * data - data to write to the PHY
586 */
587static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
588{
589	int i;
590	u32 val;
591
592	val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
593	    (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
594	    MDIO_SUP_PREAMBLE |
595	    MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
596	iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
597	ioread32(hw->hw_addr + REG_MDIO_CTRL);
598
599	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
600		udelay(2);
601		val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
602		if (!(val & (MDIO_START | MDIO_BUSY)))
603			break;
604	}
605
606	if (!(val & (MDIO_START | MDIO_BUSY)))
607		return 0;
608
609	return ATLX_ERR_PHY;
610}
611
612/*
613 * Make L001's PHY out of Power Saving State (bug)
614 * hw - Struct containing variables accessed by shared code
615 * when power on, L001's PHY always on Power saving State
616 * (Gigabit Link forbidden)
617 */
618static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
619{
620	s32 ret;
621	ret = atl1_write_phy_reg(hw, 29, 0x0029);
622	if (ret)
623		return ret;
624	return atl1_write_phy_reg(hw, 30, 0);
625}
626
627/*
628 * Resets the PHY and make all config validate
629 * hw - Struct containing variables accessed by shared code
630 *
631 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
632 */
633static s32 atl1_phy_reset(struct atl1_hw *hw)
634{
635	struct pci_dev *pdev = hw->back->pdev;
636	struct atl1_adapter *adapter = hw->back;
637	s32 ret_val;
638	u16 phy_data;
639
640	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
641	    hw->media_type == MEDIA_TYPE_1000M_FULL)
642		phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
643	else {
644		switch (hw->media_type) {
645		case MEDIA_TYPE_100M_FULL:
646			phy_data =
647			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
648			    MII_CR_RESET;
649			break;
650		case MEDIA_TYPE_100M_HALF:
651			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
652			break;
653		case MEDIA_TYPE_10M_FULL:
654			phy_data =
655			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
656			break;
657		default:
658			/* MEDIA_TYPE_10M_HALF: */
659			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
660			break;
661		}
662	}
663
664	ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
665	if (ret_val) {
666		u32 val;
667		int i;
668		/* pcie serdes link may be down! */
669		if (netif_msg_hw(adapter))
670			dev_dbg(&pdev->dev, "pcie phy link down\n");
671
672		for (i = 0; i < 25; i++) {
673			msleep(1);
674			val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
675			if (!(val & (MDIO_START | MDIO_BUSY)))
676				break;
677		}
678
679		if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
680			if (netif_msg_hw(adapter))
681				dev_warn(&pdev->dev,
682					"pcie link down at least 25ms\n");
683			return ret_val;
684		}
685	}
686	return 0;
687}
688
689/*
690 * Configures PHY autoneg and flow control advertisement settings
691 * hw - Struct containing variables accessed by shared code
692 */
693static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
694{
695	s32 ret_val;
696	s16 mii_autoneg_adv_reg;
697	s16 mii_1000t_ctrl_reg;
698
699	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
700	mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
701
702	/* Read the MII 1000Base-T Control Register (Address 9). */
703	mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
704
705	/*
706	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
707	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
708	 * the  1000Base-T Control Register (Address 9).
709	 */
710	mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
711	mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
712
713	/*
714	 * Need to parse media_type  and set up
715	 * the appropriate PHY registers.
716	 */
717	switch (hw->media_type) {
718	case MEDIA_TYPE_AUTO_SENSOR:
719		mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
720					MII_AR_10T_FD_CAPS |
721					MII_AR_100TX_HD_CAPS |
722					MII_AR_100TX_FD_CAPS);
723		mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
724		break;
725
726	case MEDIA_TYPE_1000M_FULL:
727		mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
728		break;
729
730	case MEDIA_TYPE_100M_FULL:
731		mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
732		break;
733
734	case MEDIA_TYPE_100M_HALF:
735		mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
736		break;
737
738	case MEDIA_TYPE_10M_FULL:
739		mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
740		break;
741
742	default:
743		mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
744		break;
745	}
746
747	/* flow control fixed to enable all */
748	mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
749
750	hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
751	hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
752
753	ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
754	if (ret_val)
755		return ret_val;
756
757	ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
758	if (ret_val)
759		return ret_val;
760
761	return 0;
762}
763
764/*
765 * Configures link settings.
766 * hw - Struct containing variables accessed by shared code
767 * Assumes the hardware has previously been reset and the
768 * transmitter and receiver are not enabled.
769 */
770static s32 atl1_setup_link(struct atl1_hw *hw)
771{
772	struct pci_dev *pdev = hw->back->pdev;
773	struct atl1_adapter *adapter = hw->back;
774	s32 ret_val;
775
776	/*
777	 * Options:
778	 *  PHY will advertise value(s) parsed from
779	 *  autoneg_advertised and fc
780	 *  no matter what autoneg is , We will not wait link result.
781	 */
782	ret_val = atl1_phy_setup_autoneg_adv(hw);
783	if (ret_val) {
784		if (netif_msg_link(adapter))
785			dev_dbg(&pdev->dev,
786				"error setting up autonegotiation\n");
787		return ret_val;
788	}
789	/* SW.Reset , En-Auto-Neg if needed */
790	ret_val = atl1_phy_reset(hw);
791	if (ret_val) {
792		if (netif_msg_link(adapter))
793			dev_dbg(&pdev->dev, "error resetting phy\n");
794		return ret_val;
795	}
796	hw->phy_configured = true;
797	return ret_val;
798}
799
800static void atl1_init_flash_opcode(struct atl1_hw *hw)
801{
802	if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
803		/* Atmel */
804		hw->flash_vendor = 0;
805
806	/* Init OP table */
807	iowrite8(flash_table[hw->flash_vendor].cmd_program,
808		hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
809	iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
810		hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
811	iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
812		hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
813	iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
814		hw->hw_addr + REG_SPI_FLASH_OP_RDID);
815	iowrite8(flash_table[hw->flash_vendor].cmd_wren,
816		hw->hw_addr + REG_SPI_FLASH_OP_WREN);
817	iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
818		hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
819	iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
820		hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
821	iowrite8(flash_table[hw->flash_vendor].cmd_read,
822		hw->hw_addr + REG_SPI_FLASH_OP_READ);
823}
824
825/*
826 * Performs basic configuration of the adapter.
827 * hw - Struct containing variables accessed by shared code
828 * Assumes that the controller has previously been reset and is in a
829 * post-reset uninitialized state. Initializes multicast table,
830 * and  Calls routines to setup link
831 * Leaves the transmit and receive units disabled and uninitialized.
832 */
833static s32 atl1_init_hw(struct atl1_hw *hw)
834{
835	u32 ret_val = 0;
836
837	/* Zero out the Multicast HASH table */
838	iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
839	/* clear the old settings from the multicast hash table */
840	iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
841
842	atl1_init_flash_opcode(hw);
843
844	if (!hw->phy_configured) {
845		/* enable GPHY LinkChange Interrupt */
846		ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
847		if (ret_val)
848			return ret_val;
849		/* make PHY out of power-saving state */
850		ret_val = atl1_phy_leave_power_saving(hw);
851		if (ret_val)
852			return ret_val;
853		/* Call a subroutine to configure the link */
854		ret_val = atl1_setup_link(hw);
855	}
856	return ret_val;
857}
858
859/*
860 * Detects the current speed and duplex settings of the hardware.
861 * hw - Struct containing variables accessed by shared code
862 * speed - Speed of the connection
863 * duplex - Duplex setting of the connection
864 */
865static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
866{
867	struct pci_dev *pdev = hw->back->pdev;
868	struct atl1_adapter *adapter = hw->back;
869	s32 ret_val;
870	u16 phy_data;
871
872	/* ; --- Read   PHY Specific Status Register (17) */
873	ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
874	if (ret_val)
875		return ret_val;
876
877	if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
878		return ATLX_ERR_PHY_RES;
879
880	switch (phy_data & MII_ATLX_PSSR_SPEED) {
881	case MII_ATLX_PSSR_1000MBS:
882		*speed = SPEED_1000;
883		break;
884	case MII_ATLX_PSSR_100MBS:
885		*speed = SPEED_100;
886		break;
887	case MII_ATLX_PSSR_10MBS:
888		*speed = SPEED_10;
889		break;
890	default:
891		if (netif_msg_hw(adapter))
892			dev_dbg(&pdev->dev, "error getting speed\n");
893		return ATLX_ERR_PHY_SPEED;
894	}
895	if (phy_data & MII_ATLX_PSSR_DPLX)
896		*duplex = FULL_DUPLEX;
897	else
898		*duplex = HALF_DUPLEX;
899
900	return 0;
901}
902
903static void atl1_set_mac_addr(struct atl1_hw *hw)
904{
905	u32 value;
906	/*
907	 * 00-0B-6A-F6-00-DC
908	 * 0:  6AF600DC   1: 000B
909	 * low dword
910	 */
911	value = (((u32) hw->mac_addr[2]) << 24) |
912	    (((u32) hw->mac_addr[3]) << 16) |
913	    (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
914	iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
915	/* high dword */
916	value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
917	iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
918}
919
920/**
921 * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
922 * @adapter: board private structure to initialize
923 *
924 * atl1_sw_init initializes the Adapter private data structure.
925 * Fields are initialized based on PCI device information and
926 * OS network device settings (MTU size).
927 */
928static int atl1_sw_init(struct atl1_adapter *adapter)
929{
930	struct atl1_hw *hw = &adapter->hw;
931	struct net_device *netdev = adapter->netdev;
932
933	hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
934	hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
935
936	adapter->wol = 0;
937	device_set_wakeup_enable(&adapter->pdev->dev, false);
938	adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
939	adapter->ict = 50000;		/* 100ms */
940	adapter->link_speed = SPEED_0;	/* hardware init */
941	adapter->link_duplex = FULL_DUPLEX;
942
943	hw->phy_configured = false;
944	hw->preamble_len = 7;
945	hw->ipgt = 0x60;
946	hw->min_ifg = 0x50;
947	hw->ipgr1 = 0x40;
948	hw->ipgr2 = 0x60;
949	hw->max_retry = 0xf;
950	hw->lcol = 0x37;
951	hw->jam_ipg = 7;
952	hw->rfd_burst = 8;
953	hw->rrd_burst = 8;
954	hw->rfd_fetch_gap = 1;
955	hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
956	hw->rx_jumbo_lkah = 1;
957	hw->rrd_ret_timer = 16;
958	hw->tpd_burst = 4;
959	hw->tpd_fetch_th = 16;
960	hw->txf_burst = 0x100;
961	hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
962	hw->tpd_fetch_gap = 1;
963	hw->rcb_value = atl1_rcb_64;
964	hw->dma_ord = atl1_dma_ord_enh;
965	hw->dmar_block = atl1_dma_req_256;
966	hw->dmaw_block = atl1_dma_req_256;
967	hw->cmb_rrd = 4;
968	hw->cmb_tpd = 4;
969	hw->cmb_rx_timer = 1;	/* about 2us */
970	hw->cmb_tx_timer = 1;	/* about 2us */
971	hw->smb_timer = 100000;	/* about 200ms */
972
973	spin_lock_init(&adapter->lock);
974	spin_lock_init(&adapter->mb_lock);
975
976	return 0;
977}
978
979static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
980{
981	struct atl1_adapter *adapter = netdev_priv(netdev);
982	u16 result;
983
984	atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
985
986	return result;
987}
988
989static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
990	int val)
991{
992	struct atl1_adapter *adapter = netdev_priv(netdev);
993
994	atl1_write_phy_reg(&adapter->hw, reg_num, val);
995}
996
997static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
998{
999	struct atl1_adapter *adapter = netdev_priv(netdev);
1000	unsigned long flags;
1001	int retval;
1002
1003	if (!netif_running(netdev))
1004		return -EINVAL;
1005
1006	spin_lock_irqsave(&adapter->lock, flags);
1007	retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1008	spin_unlock_irqrestore(&adapter->lock, flags);
1009
1010	return retval;
1011}
1012
1013/**
1014 * atl1_setup_ring_resources - allocate Tx / RX descriptor resources
1015 * @adapter: board private structure
1016 *
1017 * Return 0 on success, negative on failure
1018 */
1019static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1020{
1021	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1022	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1023	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1024	struct atl1_ring_header *ring_header = &adapter->ring_header;
1025	struct pci_dev *pdev = adapter->pdev;
1026	int size;
1027	u8 offset = 0;
1028
1029	size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1030	tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1031	if (unlikely(!tpd_ring->buffer_info)) {
1032		if (netif_msg_drv(adapter))
1033			dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1034				size);
1035		goto err_nomem;
1036	}
1037	rfd_ring->buffer_info =
1038		(tpd_ring->buffer_info + tpd_ring->count);
1039
1040	/*
1041	 * real ring DMA buffer
1042	 * each ring/block may need up to 8 bytes for alignment, hence the
1043	 * additional 40 bytes tacked onto the end.
1044	 */
1045	ring_header->size =
1046		sizeof(struct tx_packet_desc) * tpd_ring->count
1047		+ sizeof(struct rx_free_desc) * rfd_ring->count
1048		+ sizeof(struct rx_return_desc) * rrd_ring->count
1049		+ sizeof(struct coals_msg_block)
1050		+ sizeof(struct stats_msg_block)
1051		+ 40;
1052
1053	ring_header->desc = dma_alloc_coherent(&pdev->dev, ring_header->size,
1054					       &ring_header->dma, GFP_KERNEL);
1055	if (unlikely(!ring_header->desc)) {
1056		if (netif_msg_drv(adapter))
1057			dev_err(&pdev->dev, "dma_alloc_coherent failed\n");
1058		goto err_nomem;
1059	}
1060
1061	/* init TPD ring */
1062	tpd_ring->dma = ring_header->dma;
1063	offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1064	tpd_ring->dma += offset;
1065	tpd_ring->desc = (u8 *) ring_header->desc + offset;
1066	tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1067
1068	/* init RFD ring */
1069	rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1070	offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1071	rfd_ring->dma += offset;
1072	rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1073	rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1074
1075
1076	/* init RRD ring */
1077	rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1078	offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1079	rrd_ring->dma += offset;
1080	rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1081	rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1082
1083
1084	/* init CMB */
1085	adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1086	offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1087	adapter->cmb.dma += offset;
1088	adapter->cmb.cmb = (struct coals_msg_block *)
1089		((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1090
1091	/* init SMB */
1092	adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1093	offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1094	adapter->smb.dma += offset;
1095	adapter->smb.smb = (struct stats_msg_block *)
1096		((u8 *) adapter->cmb.cmb +
1097		(sizeof(struct coals_msg_block) + offset));
1098
1099	return 0;
1100
1101err_nomem:
1102	kfree(tpd_ring->buffer_info);
1103	return -ENOMEM;
1104}
1105
1106static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1107{
1108	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1109	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1110	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1111
1112	atomic_set(&tpd_ring->next_to_use, 0);
1113	atomic_set(&tpd_ring->next_to_clean, 0);
1114
1115	rfd_ring->next_to_clean = 0;
1116	atomic_set(&rfd_ring->next_to_use, 0);
1117
1118	rrd_ring->next_to_use = 0;
1119	atomic_set(&rrd_ring->next_to_clean, 0);
1120}
1121
1122/**
1123 * atl1_clean_rx_ring - Free RFD Buffers
1124 * @adapter: board private structure
1125 */
1126static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1127{
1128	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1129	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1130	struct atl1_buffer *buffer_info;
1131	struct pci_dev *pdev = adapter->pdev;
1132	unsigned long size;
1133	unsigned int i;
1134
1135	/* Free all the Rx ring sk_buffs */
1136	for (i = 0; i < rfd_ring->count; i++) {
1137		buffer_info = &rfd_ring->buffer_info[i];
1138		if (buffer_info->dma) {
1139			dma_unmap_page(&pdev->dev, buffer_info->dma,
1140				       buffer_info->length, DMA_FROM_DEVICE);
1141			buffer_info->dma = 0;
1142		}
1143		if (buffer_info->skb) {
1144			dev_kfree_skb(buffer_info->skb);
1145			buffer_info->skb = NULL;
1146		}
1147	}
1148
1149	size = sizeof(struct atl1_buffer) * rfd_ring->count;
1150	memset(rfd_ring->buffer_info, 0, size);
1151
1152	/* Zero out the descriptor ring */
1153	memset(rfd_ring->desc, 0, rfd_ring->size);
1154
1155	rfd_ring->next_to_clean = 0;
1156	atomic_set(&rfd_ring->next_to_use, 0);
1157
1158	rrd_ring->next_to_use = 0;
1159	atomic_set(&rrd_ring->next_to_clean, 0);
1160}
1161
1162/**
1163 * atl1_clean_tx_ring - Free Tx Buffers
1164 * @adapter: board private structure
1165 */
1166static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1167{
1168	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1169	struct atl1_buffer *buffer_info;
1170	struct pci_dev *pdev = adapter->pdev;
1171	unsigned long size;
1172	unsigned int i;
1173
1174	/* Free all the Tx ring sk_buffs */
1175	for (i = 0; i < tpd_ring->count; i++) {
1176		buffer_info = &tpd_ring->buffer_info[i];
1177		if (buffer_info->dma) {
1178			dma_unmap_page(&pdev->dev, buffer_info->dma,
1179				       buffer_info->length, DMA_TO_DEVICE);
1180			buffer_info->dma = 0;
1181		}
1182	}
1183
1184	for (i = 0; i < tpd_ring->count; i++) {
1185		buffer_info = &tpd_ring->buffer_info[i];
1186		if (buffer_info->skb) {
1187			dev_kfree_skb_any(buffer_info->skb);
1188			buffer_info->skb = NULL;
1189		}
1190	}
1191
1192	size = sizeof(struct atl1_buffer) * tpd_ring->count;
1193	memset(tpd_ring->buffer_info, 0, size);
1194
1195	/* Zero out the descriptor ring */
1196	memset(tpd_ring->desc, 0, tpd_ring->size);
1197
1198	atomic_set(&tpd_ring->next_to_use, 0);
1199	atomic_set(&tpd_ring->next_to_clean, 0);
1200}
1201
1202/**
1203 * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1204 * @adapter: board private structure
1205 *
1206 * Free all transmit software resources
1207 */
1208static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1209{
1210	struct pci_dev *pdev = adapter->pdev;
1211	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1212	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1213	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1214	struct atl1_ring_header *ring_header = &adapter->ring_header;
1215
1216	atl1_clean_tx_ring(adapter);
1217	atl1_clean_rx_ring(adapter);
1218
1219	kfree(tpd_ring->buffer_info);
1220	dma_free_coherent(&pdev->dev, ring_header->size, ring_header->desc,
1221			  ring_header->dma);
1222
1223	tpd_ring->buffer_info = NULL;
1224	tpd_ring->desc = NULL;
1225	tpd_ring->dma = 0;
1226
1227	rfd_ring->buffer_info = NULL;
1228	rfd_ring->desc = NULL;
1229	rfd_ring->dma = 0;
1230
1231	rrd_ring->desc = NULL;
1232	rrd_ring->dma = 0;
1233
1234	adapter->cmb.dma = 0;
1235	adapter->cmb.cmb = NULL;
1236
1237	adapter->smb.dma = 0;
1238	adapter->smb.smb = NULL;
1239}
1240
1241static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1242{
1243	u32 value;
1244	struct atl1_hw *hw = &adapter->hw;
1245	struct net_device *netdev = adapter->netdev;
1246	/* Config MAC CTRL Register */
1247	value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1248	/* duplex */
1249	if (FULL_DUPLEX == adapter->link_duplex)
1250		value |= MAC_CTRL_DUPLX;
1251	/* speed */
1252	value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1253			 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1254		  MAC_CTRL_SPEED_SHIFT);
1255	/* flow control */
1256	value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1257	/* PAD & CRC */
1258	value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1259	/* preamble length */
1260	value |= (((u32) adapter->hw.preamble_len
1261		   & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1262	/* vlan */
1263	__atlx_vlan_mode(netdev->features, &value);
1264	/* rx checksum
1265	   if (adapter->rx_csum)
1266	   value |= MAC_CTRL_RX_CHKSUM_EN;
1267	 */
1268	/* filter mode */
1269	value |= MAC_CTRL_BC_EN;
1270	if (netdev->flags & IFF_PROMISC)
1271		value |= MAC_CTRL_PROMIS_EN;
1272	else if (netdev->flags & IFF_ALLMULTI)
1273		value |= MAC_CTRL_MC_ALL_EN;
1274	/* value |= MAC_CTRL_LOOPBACK; */
1275	iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1276}
1277
1278static u32 atl1_check_link(struct atl1_adapter *adapter)
1279{
1280	struct atl1_hw *hw = &adapter->hw;
1281	struct net_device *netdev = adapter->netdev;
1282	u32 ret_val;
1283	u16 speed, duplex, phy_data;
1284	int reconfig = 0;
1285
1286	/* MII_BMSR must read twice */
1287	atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1288	atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1289	if (!(phy_data & BMSR_LSTATUS)) {
1290		/* link down */
1291		if (netif_carrier_ok(netdev)) {
1292			/* old link state: Up */
1293			if (netif_msg_link(adapter))
1294				dev_info(&adapter->pdev->dev, "link is down\n");
1295			adapter->link_speed = SPEED_0;
1296			netif_carrier_off(netdev);
1297		}
1298		return 0;
1299	}
1300
1301	/* Link Up */
1302	ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1303	if (ret_val)
1304		return ret_val;
1305
1306	switch (hw->media_type) {
1307	case MEDIA_TYPE_1000M_FULL:
1308		if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1309			reconfig = 1;
1310		break;
1311	case MEDIA_TYPE_100M_FULL:
1312		if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1313			reconfig = 1;
1314		break;
1315	case MEDIA_TYPE_100M_HALF:
1316		if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1317			reconfig = 1;
1318		break;
1319	case MEDIA_TYPE_10M_FULL:
1320		if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1321			reconfig = 1;
1322		break;
1323	case MEDIA_TYPE_10M_HALF:
1324		if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1325			reconfig = 1;
1326		break;
1327	}
1328
1329	/* link result is our setting */
1330	if (!reconfig) {
1331		if (adapter->link_speed != speed ||
1332		    adapter->link_duplex != duplex) {
1333			adapter->link_speed = speed;
1334			adapter->link_duplex = duplex;
1335			atl1_setup_mac_ctrl(adapter);
1336			if (netif_msg_link(adapter))
1337				dev_info(&adapter->pdev->dev,
1338					"%s link is up %d Mbps %s\n",
1339					netdev->name, adapter->link_speed,
1340					adapter->link_duplex == FULL_DUPLEX ?
1341					"full duplex" : "half duplex");
1342		}
1343		if (!netif_carrier_ok(netdev)) {
1344			/* Link down -> Up */
1345			netif_carrier_on(netdev);
1346		}
1347		return 0;
1348	}
1349
1350	/* change original link status */
1351	if (netif_carrier_ok(netdev)) {
1352		adapter->link_speed = SPEED_0;
1353		netif_carrier_off(netdev);
1354		netif_stop_queue(netdev);
1355	}
1356
1357	if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1358	    hw->media_type != MEDIA_TYPE_1000M_FULL) {
1359		switch (hw->media_type) {
1360		case MEDIA_TYPE_100M_FULL:
1361			phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1362			           MII_CR_RESET;
1363			break;
1364		case MEDIA_TYPE_100M_HALF:
1365			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1366			break;
1367		case MEDIA_TYPE_10M_FULL:
1368			phy_data =
1369			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1370			break;
1371		default:
1372			/* MEDIA_TYPE_10M_HALF: */
1373			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1374			break;
1375		}
1376		atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1377		return 0;
1378	}
1379
1380	/* auto-neg, insert timer to re-config phy */
1381	if (!adapter->phy_timer_pending) {
1382		adapter->phy_timer_pending = true;
1383		mod_timer(&adapter->phy_config_timer,
1384			  round_jiffies(jiffies + 3 * HZ));
1385	}
1386
1387	return 0;
1388}
1389
1390static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1391{
1392	u32 hi, lo, value;
1393
1394	/* RFD Flow Control */
1395	value = adapter->rfd_ring.count;
1396	hi = value / 16;
1397	if (hi < 2)
1398		hi = 2;
1399	lo = value * 7 / 8;
1400
1401	value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1402		((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1403	iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1404
1405	/* RRD Flow Control */
1406	value = adapter->rrd_ring.count;
1407	lo = value / 16;
1408	hi = value * 7 / 8;
1409	if (lo < 2)
1410		lo = 2;
1411	value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1412		((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1413	iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1414}
1415
1416static void set_flow_ctrl_new(struct atl1_hw *hw)
1417{
1418	u32 hi, lo, value;
1419
1420	/* RXF Flow Control */
1421	value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1422	lo = value / 16;
1423	if (lo < 192)
1424		lo = 192;
1425	hi = value * 7 / 8;
1426	if (hi < lo)
1427		hi = lo + 16;
1428	value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1429		((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1430	iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1431
1432	/* RRD Flow Control */
1433	value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1434	lo = value / 8;
1435	hi = value * 7 / 8;
1436	if (lo < 2)
1437		lo = 2;
1438	if (hi < lo)
1439		hi = lo + 3;
1440	value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1441		((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1442	iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1443}
1444
1445/**
1446 * atl1_configure - Configure Transmit&Receive Unit after Reset
1447 * @adapter: board private structure
1448 *
1449 * Configure the Tx /Rx unit of the MAC after a reset.
1450 */
1451static u32 atl1_configure(struct atl1_adapter *adapter)
1452{
1453	struct atl1_hw *hw = &adapter->hw;
1454	u32 value;
1455
1456	/* clear interrupt status */
1457	iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1458
1459	/* set MAC Address */
1460	value = (((u32) hw->mac_addr[2]) << 24) |
1461		(((u32) hw->mac_addr[3]) << 16) |
1462		(((u32) hw->mac_addr[4]) << 8) |
1463		(((u32) hw->mac_addr[5]));
1464	iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1465	value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1466	iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1467
1468	/* tx / rx ring */
1469
1470	/* HI base address */
1471	iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1472		hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1473	/* LO base address */
1474	iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1475		hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1476	iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1477		hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1478	iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1479		hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1480	iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1481		hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1482	iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1483		hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1484
1485	/* element count */
1486	value = adapter->rrd_ring.count;
1487	value <<= 16;
1488	value += adapter->rfd_ring.count;
1489	iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1490	iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1491		REG_DESC_TPD_RING_SIZE);
1492
1493	/* Load Ptr */
1494	iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1495
1496	/* config Mailbox */
1497	value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1498		  & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1499		((atomic_read(&adapter->rrd_ring.next_to_clean)
1500		& MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1501		((atomic_read(&adapter->rfd_ring.next_to_use)
1502		& MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1503	iowrite32(value, hw->hw_addr + REG_MAILBOX);
1504
1505	/* config IPG/IFG */
1506	value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1507		 << MAC_IPG_IFG_IPGT_SHIFT) |
1508		(((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1509		<< MAC_IPG_IFG_MIFG_SHIFT) |
1510		(((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1511		<< MAC_IPG_IFG_IPGR1_SHIFT) |
1512		(((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1513		<< MAC_IPG_IFG_IPGR2_SHIFT);
1514	iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1515
1516	/* config  Half-Duplex Control */
1517	value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1518		(((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1519		<< MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1520		MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1521		(0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1522		(((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1523		<< MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1524	iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1525
1526	/* set Interrupt Moderator Timer */
1527	iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1528	iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1529
1530	/* set Interrupt Clear Timer */
1531	iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1532
1533	/* set max frame size hw will accept */
1534	iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1535
1536	/* jumbo size & rrd retirement timer */
1537	value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1538		 << RXQ_JMBOSZ_TH_SHIFT) |
1539		(((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1540		<< RXQ_JMBO_LKAH_SHIFT) |
1541		(((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1542		<< RXQ_RRD_TIMER_SHIFT);
1543	iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1544
1545	/* Flow Control */
1546	switch (hw->dev_rev) {
1547	case 0x8001:
1548	case 0x9001:
1549	case 0x9002:
1550	case 0x9003:
1551		set_flow_ctrl_old(adapter);
1552		break;
1553	default:
1554		set_flow_ctrl_new(hw);
1555		break;
1556	}
1557
1558	/* config TXQ */
1559	value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1560		 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1561		(((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1562		<< TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1563		(((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1564		<< TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1565		TXQ_CTRL_EN;
1566	iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1567
1568	/* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1569	value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1570		<< TX_JUMBO_TASK_TH_SHIFT) |
1571		(((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1572		<< TX_TPD_MIN_IPG_SHIFT);
1573	iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1574
1575	/* config RXQ */
1576	value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1577		<< RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1578		(((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1579		<< RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1580		(((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1581		<< RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1582		RXQ_CTRL_EN;
1583	iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1584
1585	/* config DMA Engine */
1586	value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1587		<< DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1588		((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1589		<< DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1590		DMA_CTRL_DMAW_EN;
1591	value |= (u32) hw->dma_ord;
1592	if (atl1_rcb_128 == hw->rcb_value)
1593		value |= DMA_CTRL_RCB_VALUE;
1594	iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1595
1596	/* config CMB / SMB */
1597	value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1598		hw->cmb_tpd : adapter->tpd_ring.count;
1599	value <<= 16;
1600	value |= hw->cmb_rrd;
1601	iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1602	value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1603	iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1604	iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1605
1606	/* --- enable CMB / SMB */
1607	value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1608	iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1609
1610	value = ioread32(adapter->hw.hw_addr + REG_ISR);
1611	if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1612		value = 1;	/* config failed */
1613	else
1614		value = 0;
1615
1616	/* clear all interrupt status */
1617	iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1618	iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1619	return value;
1620}
1621
1622/*
1623 * atl1_pcie_patch - Patch for PCIE module
1624 */
1625static void atl1_pcie_patch(struct atl1_adapter *adapter)
1626{
1627	u32 value;
1628
1629	/* much vendor magic here */
1630	value = 0x6500;
1631	iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1632	/* pcie flow control mode change */
1633	value = ioread32(adapter->hw.hw_addr + 0x1008);
1634	value |= 0x8000;
1635	iowrite32(value, adapter->hw.hw_addr + 0x1008);
1636}
1637
1638/*
1639 * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1640 * on PCI Command register is disable.
1641 * The function enable this bit.
1642 * Brackett, 2006/03/15
1643 */
1644static void atl1_via_workaround(struct atl1_adapter *adapter)
1645{
1646	unsigned long value;
1647
1648	value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1649	if (value & PCI_COMMAND_INTX_DISABLE)
1650		value &= ~PCI_COMMAND_INTX_DISABLE;
1651	iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1652}
1653
1654static void atl1_inc_smb(struct atl1_adapter *adapter)
1655{
1656	struct net_device *netdev = adapter->netdev;
1657	struct stats_msg_block *smb = adapter->smb.smb;
1658
1659	u64 new_rx_errors = smb->rx_frag +
1660			    smb->rx_fcs_err +
1661			    smb->rx_len_err +
1662			    smb->rx_sz_ov +
1663			    smb->rx_rxf_ov +
1664			    smb->rx_rrd_ov +
1665			    smb->rx_align_err;
1666	u64 new_tx_errors = smb->tx_late_col +
1667			    smb->tx_abort_col +
1668			    smb->tx_underrun +
1669			    smb->tx_trunc;
1670
1671	/* Fill out the OS statistics structure */
1672	adapter->soft_stats.rx_packets += smb->rx_ok + new_rx_errors;
1673	adapter->soft_stats.tx_packets += smb->tx_ok + new_tx_errors;
1674	adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1675	adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1676	adapter->soft_stats.multicast += smb->rx_mcast;
1677	adapter->soft_stats.collisions += smb->tx_1_col +
1678					  smb->tx_2_col +
1679					  smb->tx_late_col +
1680					  smb->tx_abort_col;
1681
1682	/* Rx Errors */
1683	adapter->soft_stats.rx_errors += new_rx_errors;
1684	adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1685	adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1686	adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1687	adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1688
1689	adapter->soft_stats.rx_pause += smb->rx_pause;
1690	adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1691	adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1692
1693	/* Tx Errors */
1694	adapter->soft_stats.tx_errors += new_tx_errors;
1695	adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1696	adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1697	adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1698
1699	adapter->soft_stats.excecol += smb->tx_abort_col;
1700	adapter->soft_stats.deffer += smb->tx_defer;
1701	adapter->soft_stats.scc += smb->tx_1_col;
1702	adapter->soft_stats.mcc += smb->tx_2_col;
1703	adapter->soft_stats.latecol += smb->tx_late_col;
1704	adapter->soft_stats.tx_underrun += smb->tx_underrun;
1705	adapter->soft_stats.tx_trunc += smb->tx_trunc;
1706	adapter->soft_stats.tx_pause += smb->tx_pause;
1707
1708	netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
1709	netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
1710	netdev->stats.multicast = adapter->soft_stats.multicast;
1711	netdev->stats.collisions = adapter->soft_stats.collisions;
1712	netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
1713	netdev->stats.rx_length_errors =
1714		adapter->soft_stats.rx_length_errors;
1715	netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1716	netdev->stats.rx_frame_errors =
1717		adapter->soft_stats.rx_frame_errors;
1718	netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1719	netdev->stats.rx_dropped = adapter->soft_stats.rx_rrd_ov;
1720	netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
1721	netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1722	netdev->stats.tx_aborted_errors =
1723		adapter->soft_stats.tx_aborted_errors;
1724	netdev->stats.tx_window_errors =
1725		adapter->soft_stats.tx_window_errors;
1726	netdev->stats.tx_carrier_errors =
1727		adapter->soft_stats.tx_carrier_errors;
1728
1729	netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
1730	netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
1731}
1732
1733static void atl1_update_mailbox(struct atl1_adapter *adapter)
1734{
1735	unsigned long flags;
1736	u32 tpd_next_to_use;
1737	u32 rfd_next_to_use;
1738	u32 rrd_next_to_clean;
1739	u32 value;
1740
1741	spin_lock_irqsave(&adapter->mb_lock, flags);
1742
1743	tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1744	rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1745	rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1746
1747	value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1748		MB_RFD_PROD_INDX_SHIFT) |
1749		((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1750		MB_RRD_CONS_INDX_SHIFT) |
1751		((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1752		MB_TPD_PROD_INDX_SHIFT);
1753	iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1754
1755	spin_unlock_irqrestore(&adapter->mb_lock, flags);
1756}
1757
1758static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1759	struct rx_return_desc *rrd, u16 offset)
1760{
1761	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1762
1763	while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1764		rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1765		if (++rfd_ring->next_to_clean == rfd_ring->count) {
1766			rfd_ring->next_to_clean = 0;
1767		}
1768	}
1769}
1770
1771static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1772	struct rx_return_desc *rrd)
1773{
1774	u16 num_buf;
1775
1776	num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1777		adapter->rx_buffer_len;
1778	if (rrd->num_buf == num_buf)
1779		/* clean alloc flag for bad rrd */
1780		atl1_clean_alloc_flag(adapter, rrd, num_buf);
1781}
1782
1783static void atl1_rx_checksum(struct atl1_adapter *adapter,
1784	struct rx_return_desc *rrd, struct sk_buff *skb)
1785{
1786	struct pci_dev *pdev = adapter->pdev;
1787
1788	/*
1789	 * The L1 hardware contains a bug that erroneously sets the
1790	 * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
1791	 * fragmented IP packet is received, even though the packet
1792	 * is perfectly valid and its checksum is correct. There's
1793	 * no way to distinguish between one of these good packets
1794	 * and a packet that actually contains a TCP/UDP checksum
1795	 * error, so all we can do is allow it to be handed up to
1796	 * the higher layers and let it be sorted out there.
1797	 */
1798
1799	skb_checksum_none_assert(skb);
1800
1801	if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1802		if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1803					ERR_FLAG_CODE | ERR_FLAG_OV)) {
1804			adapter->hw_csum_err++;
1805			if (netif_msg_rx_err(adapter))
1806				dev_printk(KERN_DEBUG, &pdev->dev,
1807					"rx checksum error\n");
1808			return;
1809		}
1810	}
1811
1812	/* not IPv4 */
1813	if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1814		/* checksum is invalid, but it's not an IPv4 pkt, so ok */
1815		return;
1816
1817	/* IPv4 packet */
1818	if (likely(!(rrd->err_flg &
1819		(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1820		skb->ip_summed = CHECKSUM_UNNECESSARY;
1821		adapter->hw_csum_good++;
1822		return;
1823	}
1824}
1825
1826/**
1827 * atl1_alloc_rx_buffers - Replace used receive buffers
1828 * @adapter: address of board private structure
1829 */
1830static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1831{
1832	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1833	struct pci_dev *pdev = adapter->pdev;
1834	struct page *page;
1835	unsigned long offset;
1836	struct atl1_buffer *buffer_info, *next_info;
1837	struct sk_buff *skb;
1838	u16 num_alloc = 0;
1839	u16 rfd_next_to_use, next_next;
1840	struct rx_free_desc *rfd_desc;
1841
1842	next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1843	if (++next_next == rfd_ring->count)
1844		next_next = 0;
1845	buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1846	next_info = &rfd_ring->buffer_info[next_next];
1847
1848	while (!buffer_info->alloced && !next_info->alloced) {
1849		if (buffer_info->skb) {
1850			buffer_info->alloced = 1;
1851			goto next;
1852		}
1853
1854		rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1855
1856		skb = netdev_alloc_skb_ip_align(adapter->netdev,
1857						adapter->rx_buffer_len);
1858		if (unlikely(!skb)) {
1859			/* Better luck next round */
1860			adapter->soft_stats.rx_dropped++;
1861			break;
1862		}
1863
1864		buffer_info->alloced = 1;
1865		buffer_info->skb = skb;
1866		buffer_info->length = (u16) adapter->rx_buffer_len;
1867		page = virt_to_page(skb->data);
1868		offset = offset_in_page(skb->data);
1869		buffer_info->dma = dma_map_page(&pdev->dev, page, offset,
1870						adapter->rx_buffer_len,
1871						DMA_FROM_DEVICE);
1872		rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1873		rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1874		rfd_desc->coalese = 0;
1875
1876next:
1877		rfd_next_to_use = next_next;
1878		if (unlikely(++next_next == rfd_ring->count))
1879			next_next = 0;
1880
1881		buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1882		next_info = &rfd_ring->buffer_info[next_next];
1883		num_alloc++;
1884	}
1885
1886	if (num_alloc) {
1887		/*
1888		 * Force memory writes to complete before letting h/w
1889		 * know there are new descriptors to fetch.  (Only
1890		 * applicable for weak-ordered memory model archs,
1891		 * such as IA-64).
1892		 */
1893		wmb();
1894		atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1895	}
1896	return num_alloc;
1897}
1898
1899static int atl1_intr_rx(struct atl1_adapter *adapter, int budget)
1900{
1901	int i, count;
1902	u16 length;
1903	u16 rrd_next_to_clean;
1904	u32 value;
1905	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1906	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1907	struct atl1_buffer *buffer_info;
1908	struct rx_return_desc *rrd;
1909	struct sk_buff *skb;
1910
1911	count = 0;
1912
1913	rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1914
1915	while (count < budget) {
1916		rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1917		i = 1;
1918		if (likely(rrd->xsz.valid)) {	/* packet valid */
1919chk_rrd:
1920			/* check rrd status */
1921			if (likely(rrd->num_buf == 1))
1922				goto rrd_ok;
1923			else if (netif_msg_rx_err(adapter)) {
1924				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1925					"unexpected RRD buffer count\n");
1926				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1927					"rx_buf_len = %d\n",
1928					adapter->rx_buffer_len);
1929				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1930					"RRD num_buf = %d\n",
1931					rrd->num_buf);
1932				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1933					"RRD pkt_len = %d\n",
1934					rrd->xsz.xsum_sz.pkt_size);
1935				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1936					"RRD pkt_flg = 0x%08X\n",
1937					rrd->pkt_flg);
1938				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1939					"RRD err_flg = 0x%08X\n",
1940					rrd->err_flg);
1941				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1942					"RRD vlan_tag = 0x%08X\n",
1943					rrd->vlan_tag);
1944			}
1945
1946			/* rrd seems to be bad */
1947			if (unlikely(i-- > 0)) {
1948				/* rrd may not be DMAed completely */
1949				udelay(1);
1950				goto chk_rrd;
1951			}
1952			/* bad rrd */
1953			if (netif_msg_rx_err(adapter))
1954				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1955					"bad RRD\n");
1956			/* see if update RFD index */
1957			if (rrd->num_buf > 1)
1958				atl1_update_rfd_index(adapter, rrd);
1959
1960			/* update rrd */
1961			rrd->xsz.valid = 0;
1962			if (++rrd_next_to_clean == rrd_ring->count)
1963				rrd_next_to_clean = 0;
1964			count++;
1965			continue;
1966		} else {	/* current rrd still not be updated */
1967
1968			break;
1969		}
1970rrd_ok:
1971		/* clean alloc flag for bad rrd */
1972		atl1_clean_alloc_flag(adapter, rrd, 0);
1973
1974		buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1975		if (++rfd_ring->next_to_clean == rfd_ring->count)
1976			rfd_ring->next_to_clean = 0;
1977
1978		/* update rrd next to clean */
1979		if (++rrd_next_to_clean == rrd_ring->count)
1980			rrd_next_to_clean = 0;
1981		count++;
1982
1983		if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1984			if (!(rrd->err_flg &
1985				(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
1986				| ERR_FLAG_LEN))) {
1987				/* packet error, don't need upstream */
1988				buffer_info->alloced = 0;
1989				rrd->xsz.valid = 0;
1990				continue;
1991			}
1992		}
1993
1994		/* Good Receive */
1995		dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1996			       buffer_info->length, DMA_FROM_DEVICE);
1997		buffer_info->dma = 0;
1998		skb = buffer_info->skb;
1999		length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2000
2001		skb_put(skb, length - ETH_FCS_LEN);
2002
2003		/* Receive Checksum Offload */
2004		atl1_rx_checksum(adapter, rrd, skb);
2005		skb->protocol = eth_type_trans(skb, adapter->netdev);
2006
2007		if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) {
2008			u16 vlan_tag = (rrd->vlan_tag >> 4) |
2009					((rrd->vlan_tag & 7) << 13) |
2010					((rrd->vlan_tag & 8) << 9);
2011
2012			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
2013		}
2014		netif_receive_skb(skb);
2015
2016		/* let protocol layer free skb */
2017		buffer_info->skb = NULL;
2018		buffer_info->alloced = 0;
2019		rrd->xsz.valid = 0;
2020	}
2021
2022	atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2023
2024	atl1_alloc_rx_buffers(adapter);
2025
2026	/* update mailbox ? */
2027	if (count) {
2028		u32 tpd_next_to_use;
2029		u32 rfd_next_to_use;
2030
2031		spin_lock(&adapter->mb_lock);
2032
2033		tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2034		rfd_next_to_use =
2035		    atomic_read(&adapter->rfd_ring.next_to_use);
2036		rrd_next_to_clean =
2037		    atomic_read(&adapter->rrd_ring.next_to_clean);
2038		value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2039			MB_RFD_PROD_INDX_SHIFT) |
2040                        ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2041			MB_RRD_CONS_INDX_SHIFT) |
2042                        ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2043			MB_TPD_PROD_INDX_SHIFT);
2044		iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2045		spin_unlock(&adapter->mb_lock);
2046	}
2047
2048	return count;
2049}
2050
2051static int atl1_intr_tx(struct atl1_adapter *adapter)
2052{
2053	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2054	struct atl1_buffer *buffer_info;
2055	u16 sw_tpd_next_to_clean;
2056	u16 cmb_tpd_next_to_clean;
2057	int count = 0;
2058
2059	sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2060	cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2061
2062	while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2063		buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2064		if (buffer_info->dma) {
2065			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
2066				       buffer_info->length, DMA_TO_DEVICE);
2067			buffer_info->dma = 0;
2068		}
2069
2070		if (buffer_info->skb) {
2071			dev_consume_skb_irq(buffer_info->skb);
2072			buffer_info->skb = NULL;
2073		}
2074
2075		if (++sw_tpd_next_to_clean == tpd_ring->count)
2076			sw_tpd_next_to_clean = 0;
2077
2078		count++;
2079	}
2080	atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2081
2082	if (netif_queue_stopped(adapter->netdev) &&
2083	    netif_carrier_ok(adapter->netdev))
2084		netif_wake_queue(adapter->netdev);
2085
2086	return count;
2087}
2088
2089static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2090{
2091	u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2092	u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2093	return (next_to_clean > next_to_use) ?
2094		next_to_clean - next_to_use - 1 :
2095		tpd_ring->count + next_to_clean - next_to_use - 1;
2096}
2097
2098static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2099		    struct tx_packet_desc *ptpd)
2100{
2101	u8 hdr_len, ip_off;
2102	u32 real_len;
2103
2104	if (skb_shinfo(skb)->gso_size) {
2105		int err;
2106
2107		err = skb_cow_head(skb, 0);
2108		if (err < 0)
2109			return err;
2110
2111		if (skb->protocol == htons(ETH_P_IP)) {
2112			struct iphdr *iph = ip_hdr(skb);
2113
2114			real_len = (((unsigned char *)iph - skb->data) +
2115				ntohs(iph->tot_len));
2116			if (real_len < skb->len) {
2117				err = pskb_trim(skb, real_len);
2118				if (err)
2119					return err;
2120			}
2121			hdr_len = skb_tcp_all_headers(skb);
2122			if (skb->len == hdr_len) {
2123				iph->check = 0;
2124				tcp_hdr(skb)->check =
2125					~csum_tcpudp_magic(iph->saddr,
2126					iph->daddr, tcp_hdrlen(skb),
2127					IPPROTO_TCP, 0);
2128				ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2129					TPD_IPHL_SHIFT;
2130				ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2131					TPD_TCPHDRLEN_MASK) <<
2132					TPD_TCPHDRLEN_SHIFT;
2133				ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2134				ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2135				return 1;
2136			}
2137
2138			iph->check = 0;
2139			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2140					iph->daddr, 0, IPPROTO_TCP, 0);
2141			ip_off = (unsigned char *)iph -
2142				(unsigned char *) skb_network_header(skb);
2143			if (ip_off == 8) /* 802.3-SNAP frame */
2144				ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2145			else if (ip_off != 0)
2146				return -2;
2147
2148			ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2149				TPD_IPHL_SHIFT;
2150			ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2151				TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2152			ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2153				TPD_MSS_MASK) << TPD_MSS_SHIFT;
2154			ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2155			return 3;
2156		}
2157	}
2158	return 0;
2159}
2160
2161static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2162	struct tx_packet_desc *ptpd)
2163{
2164	u8 css, cso;
2165
2166	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2167		css = skb_checksum_start_offset(skb);
2168		cso = css + (u8) skb->csum_offset;
2169		if (unlikely(css & 0x1)) {
2170			/* L1 hardware requires an even number here */
2171			if (netif_msg_tx_err(adapter))
2172				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2173					"payload offset not an even number\n");
2174			return -1;
2175		}
2176		ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2177			TPD_PLOADOFFSET_SHIFT;
2178		ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2179			TPD_CCSUMOFFSET_SHIFT;
2180		ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2181		return true;
2182	}
2183	return 0;
2184}
2185
2186static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2187	struct tx_packet_desc *ptpd)
2188{
2189	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2190	struct atl1_buffer *buffer_info;
2191	u16 buf_len = skb->len;
2192	struct page *page;
2193	unsigned long offset;
2194	unsigned int nr_frags;
2195	unsigned int f;
2196	int retval;
2197	u16 next_to_use;
2198	u16 data_len;
2199	u8 hdr_len;
2200
2201	buf_len -= skb->data_len;
2202	nr_frags = skb_shinfo(skb)->nr_frags;
2203	next_to_use = atomic_read(&tpd_ring->next_to_use);
2204	buffer_info = &tpd_ring->buffer_info[next_to_use];
2205	BUG_ON(buffer_info->skb);
2206	/* put skb in last TPD */
2207	buffer_info->skb = NULL;
2208
2209	retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2210	if (retval) {
2211		/* TSO */
2212		hdr_len = skb_tcp_all_headers(skb);
2213		buffer_info->length = hdr_len;
2214		page = virt_to_page(skb->data);
2215		offset = offset_in_page(skb->data);
2216		buffer_info->dma = dma_map_page(&adapter->pdev->dev, page,
2217						offset, hdr_len,
2218						DMA_TO_DEVICE);
2219
2220		if (++next_to_use == tpd_ring->count)
2221			next_to_use = 0;
2222
2223		if (buf_len > hdr_len) {
2224			int i, nseg;
2225
2226			data_len = buf_len - hdr_len;
2227			nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2228				ATL1_MAX_TX_BUF_LEN;
2229			for (i = 0; i < nseg; i++) {
2230				buffer_info =
2231				    &tpd_ring->buffer_info[next_to_use];
2232				buffer_info->skb = NULL;
2233				buffer_info->length =
2234				    (ATL1_MAX_TX_BUF_LEN >=
2235				     data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2236				data_len -= buffer_info->length;
2237				page = virt_to_page(skb->data +
2238					(hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2239				offset = offset_in_page(skb->data +
2240					(hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2241				buffer_info->dma = dma_map_page(&adapter->pdev->dev,
2242								page, offset,
2243								buffer_info->length,
2244								DMA_TO_DEVICE);
2245				if (++next_to_use == tpd_ring->count)
2246					next_to_use = 0;
2247			}
2248		}
2249	} else {
2250		/* not TSO */
2251		buffer_info->length = buf_len;
2252		page = virt_to_page(skb->data);
2253		offset = offset_in_page(skb->data);
2254		buffer_info->dma = dma_map_page(&adapter->pdev->dev, page,
2255						offset, buf_len,
2256						DMA_TO_DEVICE);
2257		if (++next_to_use == tpd_ring->count)
2258			next_to_use = 0;
2259	}
2260
2261	for (f = 0; f < nr_frags; f++) {
2262		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2263		u16 i, nseg;
2264
2265		buf_len = skb_frag_size(frag);
2266
2267		nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2268			ATL1_MAX_TX_BUF_LEN;
2269		for (i = 0; i < nseg; i++) {
2270			buffer_info = &tpd_ring->buffer_info[next_to_use];
2271			BUG_ON(buffer_info->skb);
2272
2273			buffer_info->skb = NULL;
2274			buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2275				ATL1_MAX_TX_BUF_LEN : buf_len;
2276			buf_len -= buffer_info->length;
2277			buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev,
2278				frag, i * ATL1_MAX_TX_BUF_LEN,
2279				buffer_info->length, DMA_TO_DEVICE);
2280
2281			if (++next_to_use == tpd_ring->count)
2282				next_to_use = 0;
2283		}
2284	}
2285
2286	/* last tpd's buffer-info */
2287	buffer_info->skb = skb;
2288}
2289
2290static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2291       struct tx_packet_desc *ptpd)
2292{
2293	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2294	struct atl1_buffer *buffer_info;
2295	struct tx_packet_desc *tpd;
2296	u16 j;
2297	u32 val;
2298	u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2299
2300	for (j = 0; j < count; j++) {
2301		buffer_info = &tpd_ring->buffer_info[next_to_use];
2302		tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2303		if (tpd != ptpd)
2304			memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2305		tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2306		tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
2307		tpd->word2 |= (cpu_to_le16(buffer_info->length) &
2308			TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2309
2310		/*
2311		 * if this is the first packet in a TSO chain, set
2312		 * TPD_HDRFLAG, otherwise, clear it.
2313		 */
2314		val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2315			TPD_SEGMENT_EN_MASK;
2316		if (val) {
2317			if (!j)
2318				tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2319			else
2320				tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2321		}
2322
2323		if (j == (count - 1))
2324			tpd->word3 |= 1 << TPD_EOP_SHIFT;
2325
2326		if (++next_to_use == tpd_ring->count)
2327			next_to_use = 0;
2328	}
2329	/*
2330	 * Force memory writes to complete before letting h/w
2331	 * know there are new descriptors to fetch.  (Only
2332	 * applicable for weak-ordered memory model archs,
2333	 * such as IA-64).
2334	 */
2335	wmb();
2336
2337	atomic_set(&tpd_ring->next_to_use, next_to_use);
2338}
2339
2340static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
2341					 struct net_device *netdev)
2342{
2343	struct atl1_adapter *adapter = netdev_priv(netdev);
2344	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2345	int len;
2346	int tso;
2347	int count = 1;
2348	int ret_val;
2349	struct tx_packet_desc *ptpd;
2350	u16 vlan_tag;
2351	unsigned int nr_frags = 0;
2352	unsigned int mss = 0;
2353	unsigned int f;
2354	unsigned int proto_hdr_len;
2355
2356	len = skb_headlen(skb);
2357
2358	if (unlikely(skb->len <= 0)) {
2359		dev_kfree_skb_any(skb);
2360		return NETDEV_TX_OK;
2361	}
2362
2363	nr_frags = skb_shinfo(skb)->nr_frags;
2364	for (f = 0; f < nr_frags; f++) {
2365		unsigned int f_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2366		count += (f_size + ATL1_MAX_TX_BUF_LEN - 1) /
2367			 ATL1_MAX_TX_BUF_LEN;
2368	}
2369
2370	mss = skb_shinfo(skb)->gso_size;
2371	if (mss) {
2372		if (skb->protocol == htons(ETH_P_IP)) {
2373			proto_hdr_len = skb_tcp_all_headers(skb);
2374			if (unlikely(proto_hdr_len > len)) {
2375				dev_kfree_skb_any(skb);
2376				return NETDEV_TX_OK;
2377			}
2378			/* need additional TPD ? */
2379			if (proto_hdr_len != len)
2380				count += (len - proto_hdr_len +
2381					ATL1_MAX_TX_BUF_LEN - 1) /
2382					ATL1_MAX_TX_BUF_LEN;
2383		}
2384	}
2385
2386	if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2387		/* not enough descriptors */
2388		netif_stop_queue(netdev);
2389		if (netif_msg_tx_queued(adapter))
2390			dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2391				"tx busy\n");
2392		return NETDEV_TX_BUSY;
2393	}
2394
2395	ptpd = ATL1_TPD_DESC(tpd_ring,
2396		(u16) atomic_read(&tpd_ring->next_to_use));
2397	memset(ptpd, 0, sizeof(struct tx_packet_desc));
2398
2399	if (skb_vlan_tag_present(skb)) {
2400		vlan_tag = skb_vlan_tag_get(skb);
2401		vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2402			((vlan_tag >> 9) & 0x8);
2403		ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2404		ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
2405			TPD_VLANTAG_SHIFT;
2406	}
2407
2408	tso = atl1_tso(adapter, skb, ptpd);
2409	if (tso < 0) {
2410		dev_kfree_skb_any(skb);
2411		return NETDEV_TX_OK;
2412	}
2413
2414	if (!tso) {
2415		ret_val = atl1_tx_csum(adapter, skb, ptpd);
2416		if (ret_val < 0) {
2417			dev_kfree_skb_any(skb);
2418			return NETDEV_TX_OK;
2419		}
2420	}
2421
2422	atl1_tx_map(adapter, skb, ptpd);
2423	atl1_tx_queue(adapter, count, ptpd);
2424	atl1_update_mailbox(adapter);
2425	return NETDEV_TX_OK;
2426}
2427
2428static int atl1_rings_clean(struct napi_struct *napi, int budget)
2429{
2430	struct atl1_adapter *adapter = container_of(napi, struct atl1_adapter, napi);
2431	int work_done = atl1_intr_rx(adapter, budget);
2432
2433	if (atl1_intr_tx(adapter))
2434		work_done = budget;
2435
2436	/* Let's come again to process some more packets */
2437	if (work_done >= budget)
2438		return work_done;
2439
2440	napi_complete_done(napi, work_done);
2441	/* re-enable Interrupt */
2442	if (likely(adapter->int_enabled))
2443		atlx_imr_set(adapter, IMR_NORMAL_MASK);
2444	return work_done;
2445}
2446
2447static inline int atl1_sched_rings_clean(struct atl1_adapter* adapter)
2448{
2449	if (!napi_schedule(&adapter->napi))
2450		/* It is possible in case even the RX/TX ints are disabled via IMR
2451		 * register the ISR bits are set anyway (but do not produce IRQ).
2452		 * To handle such situation the napi functions used to check is
2453		 * something scheduled or not.
2454		 */
2455		return 0;
2456
2457	/*
2458	 * Disable RX/TX ints via IMR register if it is
2459	 * allowed. NAPI handler must reenable them in same
2460	 * way.
2461	 */
2462	if (!adapter->int_enabled)
2463		return 1;
2464
2465	atlx_imr_set(adapter, IMR_NORXTX_MASK);
2466	return 1;
2467}
2468
2469/**
2470 * atl1_intr - Interrupt Handler
2471 * @irq: interrupt number
2472 * @data: pointer to a network interface device structure
2473 */
2474static irqreturn_t atl1_intr(int irq, void *data)
2475{
2476	struct atl1_adapter *adapter = netdev_priv(data);
2477	u32 status;
2478
2479	status = adapter->cmb.cmb->int_stats;
2480	if (!status)
2481		return IRQ_NONE;
2482
2483	/* clear CMB interrupt status at once,
2484	 * but leave rx/tx interrupt status in case it should be dropped
2485	 * only if rx/tx processing queued. In other case interrupt
2486	 * can be lost.
2487	 */
2488	adapter->cmb.cmb->int_stats = status & (ISR_CMB_TX | ISR_CMB_RX);
2489
2490	if (status & ISR_GPHY)	/* clear phy status */
2491		atlx_clear_phy_int(adapter);
2492
2493	/* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2494	iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2495
2496	/* check if SMB intr */
2497	if (status & ISR_SMB)
2498		atl1_inc_smb(adapter);
2499
2500	/* check if PCIE PHY Link down */
2501	if (status & ISR_PHY_LINKDOWN) {
2502		if (netif_msg_intr(adapter))
2503			dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2504				"pcie phy link down %x\n", status);
2505		if (netif_running(adapter->netdev)) {	/* reset MAC */
2506			atlx_irq_disable(adapter);
2507			schedule_work(&adapter->reset_dev_task);
2508			return IRQ_HANDLED;
2509		}
2510	}
2511
2512	/* check if DMA read/write error ? */
2513	if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2514		if (netif_msg_intr(adapter))
2515			dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2516				"pcie DMA r/w error (status = 0x%x)\n",
2517				status);
2518		atlx_irq_disable(adapter);
2519		schedule_work(&adapter->reset_dev_task);
2520		return IRQ_HANDLED;
2521	}
2522
2523	/* link event */
2524	if (status & ISR_GPHY) {
2525		adapter->soft_stats.tx_carrier_errors++;
2526		atl1_check_for_link(adapter);
2527	}
2528
2529	/* transmit or receive event */
2530	if (status & (ISR_CMB_TX | ISR_CMB_RX) &&
2531	    atl1_sched_rings_clean(adapter))
2532		adapter->cmb.cmb->int_stats = adapter->cmb.cmb->int_stats &
2533					      ~(ISR_CMB_TX | ISR_CMB_RX);
2534
2535	/* rx exception */
2536	if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2537		ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2538		ISR_HOST_RRD_OV))) {
2539		if (netif_msg_intr(adapter))
2540			dev_printk(KERN_DEBUG,
2541				&adapter->pdev->dev,
2542				"rx exception, ISR = 0x%x\n",
2543				status);
2544		atl1_sched_rings_clean(adapter);
2545	}
2546
2547	/* re-enable Interrupt */
2548	iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2549	return IRQ_HANDLED;
2550}
2551
2552
2553/**
2554 * atl1_phy_config - Timer Call-back
2555 * @t: timer_list containing pointer to netdev cast into an unsigned long
2556 */
2557static void atl1_phy_config(struct timer_list *t)
2558{
2559	struct atl1_adapter *adapter = from_timer(adapter, t,
2560						  phy_config_timer);
2561	struct atl1_hw *hw = &adapter->hw;
2562	unsigned long flags;
2563
2564	spin_lock_irqsave(&adapter->lock, flags);
2565	adapter->phy_timer_pending = false;
2566	atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2567	atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2568	atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2569	spin_unlock_irqrestore(&adapter->lock, flags);
2570}
2571
2572/*
2573 * Orphaned vendor comment left intact here:
2574 * <vendor comment>
2575 * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2576 * will assert. We do soft reset <0x1400=1> according
2577 * with the SPEC. BUT, it seemes that PCIE or DMA
2578 * state-machine will not be reset. DMAR_TO_INT will
2579 * assert again and again.
2580 * </vendor comment>
2581 */
2582
2583static int atl1_reset(struct atl1_adapter *adapter)
2584{
2585	int ret;
2586	ret = atl1_reset_hw(&adapter->hw);
2587	if (ret)
2588		return ret;
2589	return atl1_init_hw(&adapter->hw);
2590}
2591
2592static s32 atl1_up(struct atl1_adapter *adapter)
2593{
2594	struct net_device *netdev = adapter->netdev;
2595	int err;
2596	int irq_flags = 0;
2597
2598	/* hardware has been reset, we need to reload some things */
2599	atlx_set_multi(netdev);
2600	atl1_init_ring_ptrs(adapter);
2601	atlx_restore_vlan(adapter);
2602	err = atl1_alloc_rx_buffers(adapter);
2603	if (unlikely(!err))
2604		/* no RX BUFFER allocated */
2605		return -ENOMEM;
2606
2607	if (unlikely(atl1_configure(adapter))) {
2608		err = -EIO;
2609		goto err_up;
2610	}
2611
2612	err = pci_enable_msi(adapter->pdev);
2613	if (err) {
2614		if (netif_msg_ifup(adapter))
2615			dev_info(&adapter->pdev->dev,
2616				"Unable to enable MSI: %d\n", err);
2617		irq_flags |= IRQF_SHARED;
2618	}
2619
2620	err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
2621			netdev->name, netdev);
2622	if (unlikely(err))
2623		goto err_up;
2624
2625	napi_enable(&adapter->napi);
2626	atlx_irq_enable(adapter);
2627	atl1_check_link(adapter);
2628	netif_start_queue(netdev);
2629	return 0;
2630
2631err_up:
2632	pci_disable_msi(adapter->pdev);
2633	/* free rx_buffers */
2634	atl1_clean_rx_ring(adapter);
2635	return err;
2636}
2637
2638static void atl1_down(struct atl1_adapter *adapter)
2639{
2640	struct net_device *netdev = adapter->netdev;
2641
2642	napi_disable(&adapter->napi);
2643	netif_stop_queue(netdev);
2644	del_timer_sync(&adapter->phy_config_timer);
2645	adapter->phy_timer_pending = false;
2646
2647	atlx_irq_disable(adapter);
2648	free_irq(adapter->pdev->irq, netdev);
2649	pci_disable_msi(adapter->pdev);
2650	atl1_reset_hw(&adapter->hw);
2651	adapter->cmb.cmb->int_stats = 0;
2652
2653	adapter->link_speed = SPEED_0;
2654	adapter->link_duplex = -1;
2655	netif_carrier_off(netdev);
2656
2657	atl1_clean_tx_ring(adapter);
2658	atl1_clean_rx_ring(adapter);
2659}
2660
2661static void atl1_reset_dev_task(struct work_struct *work)
2662{
2663	struct atl1_adapter *adapter =
2664		container_of(work, struct atl1_adapter, reset_dev_task);
2665	struct net_device *netdev = adapter->netdev;
2666
2667	netif_device_detach(netdev);
2668	atl1_down(adapter);
2669	atl1_up(adapter);
2670	netif_device_attach(netdev);
2671}
2672
2673/**
2674 * atl1_change_mtu - Change the Maximum Transfer Unit
2675 * @netdev: network interface device structure
2676 * @new_mtu: new value for maximum frame size
2677 *
2678 * Returns 0 on success, negative on failure
2679 */
2680static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2681{
2682	struct atl1_adapter *adapter = netdev_priv(netdev);
2683	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2684
2685	adapter->hw.max_frame_size = max_frame;
2686	adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2687	adapter->rx_buffer_len = (max_frame + 7) & ~7;
2688	adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2689
2690	netdev->mtu = new_mtu;
2691	if (netif_running(netdev)) {
2692		atl1_down(adapter);
2693		atl1_up(adapter);
2694	}
2695
2696	return 0;
2697}
2698
2699/**
2700 * atl1_open - Called when a network interface is made active
2701 * @netdev: network interface device structure
2702 *
2703 * Returns 0 on success, negative value on failure
2704 *
2705 * The open entry point is called when a network interface is made
2706 * active by the system (IFF_UP).  At this point all resources needed
2707 * for transmit and receive operations are allocated, the interrupt
2708 * handler is registered with the OS, the watchdog timer is started,
2709 * and the stack is notified that the interface is ready.
2710 */
2711static int atl1_open(struct net_device *netdev)
2712{
2713	struct atl1_adapter *adapter = netdev_priv(netdev);
2714	int err;
2715
2716	netif_carrier_off(netdev);
2717
2718	/* allocate transmit descriptors */
2719	err = atl1_setup_ring_resources(adapter);
2720	if (err)
2721		return err;
2722
2723	err = atl1_up(adapter);
2724	if (err)
2725		goto err_up;
2726
2727	return 0;
2728
2729err_up:
2730	atl1_reset(adapter);
2731	return err;
2732}
2733
2734/**
2735 * atl1_close - Disables a network interface
2736 * @netdev: network interface device structure
2737 *
2738 * Returns 0, this is not allowed to fail
2739 *
2740 * The close entry point is called when an interface is de-activated
2741 * by the OS.  The hardware is still under the drivers control, but
2742 * needs to be disabled.  A global MAC reset is issued to stop the
2743 * hardware, and all transmit and receive resources are freed.
2744 */
2745static int atl1_close(struct net_device *netdev)
2746{
2747	struct atl1_adapter *adapter = netdev_priv(netdev);
2748	atl1_down(adapter);
2749	atl1_free_ring_resources(adapter);
2750	return 0;
2751}
2752
2753#ifdef CONFIG_PM_SLEEP
2754static int atl1_suspend(struct device *dev)
2755{
2756	struct net_device *netdev = dev_get_drvdata(dev);
2757	struct atl1_adapter *adapter = netdev_priv(netdev);
2758	struct atl1_hw *hw = &adapter->hw;
2759	u32 ctrl = 0;
2760	u32 wufc = adapter->wol;
2761	u32 val;
2762	u16 speed;
2763	u16 duplex;
2764
2765	netif_device_detach(netdev);
2766	if (netif_running(netdev))
2767		atl1_down(adapter);
2768
2769	atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2770	atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2771	val = ctrl & BMSR_LSTATUS;
2772	if (val)
2773		wufc &= ~ATLX_WUFC_LNKC;
2774	if (!wufc)
2775		goto disable_wol;
2776
2777	if (val) {
2778		val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2779		if (val) {
2780			if (netif_msg_ifdown(adapter))
2781				dev_printk(KERN_DEBUG, dev,
2782					"error getting speed/duplex\n");
2783			goto disable_wol;
2784		}
2785
2786		ctrl = 0;
2787
2788		/* enable magic packet WOL */
2789		if (wufc & ATLX_WUFC_MAG)
2790			ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2791		iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2792		ioread32(hw->hw_addr + REG_WOL_CTRL);
2793
2794		/* configure the mac */
2795		ctrl = MAC_CTRL_RX_EN;
2796		ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2797			MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2798		if (duplex == FULL_DUPLEX)
2799			ctrl |= MAC_CTRL_DUPLX;
2800		ctrl |= (((u32)adapter->hw.preamble_len &
2801			MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2802		__atlx_vlan_mode(netdev->features, &ctrl);
2803		if (wufc & ATLX_WUFC_MAG)
2804			ctrl |= MAC_CTRL_BC_EN;
2805		iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2806		ioread32(hw->hw_addr + REG_MAC_CTRL);
2807
2808		/* poke the PHY */
2809		ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2810		ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2811		iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2812		ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2813	} else {
2814		ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2815		iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2816		ioread32(hw->hw_addr + REG_WOL_CTRL);
2817		iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2818		ioread32(hw->hw_addr + REG_MAC_CTRL);
2819		hw->phy_configured = false;
2820	}
2821
2822	return 0;
2823
2824 disable_wol:
2825	iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2826	ioread32(hw->hw_addr + REG_WOL_CTRL);
2827	ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2828	ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2829	iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2830	ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2831	hw->phy_configured = false;
2832
2833	return 0;
2834}
2835
2836static int atl1_resume(struct device *dev)
2837{
2838	struct net_device *netdev = dev_get_drvdata(dev);
2839	struct atl1_adapter *adapter = netdev_priv(netdev);
2840
2841	iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2842
2843	atl1_reset_hw(&adapter->hw);
2844
2845	if (netif_running(netdev)) {
2846		adapter->cmb.cmb->int_stats = 0;
2847		atl1_up(adapter);
2848	}
2849	netif_device_attach(netdev);
2850
2851	return 0;
2852}
2853#endif
2854
2855static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume);
2856
2857static void atl1_shutdown(struct pci_dev *pdev)
2858{
2859	struct net_device *netdev = pci_get_drvdata(pdev);
2860	struct atl1_adapter *adapter = netdev_priv(netdev);
2861
2862#ifdef CONFIG_PM_SLEEP
2863	atl1_suspend(&pdev->dev);
2864#endif
2865	pci_wake_from_d3(pdev, adapter->wol);
2866	pci_set_power_state(pdev, PCI_D3hot);
2867}
2868
2869#ifdef CONFIG_NET_POLL_CONTROLLER
2870static void atl1_poll_controller(struct net_device *netdev)
2871{
2872	disable_irq(netdev->irq);
2873	atl1_intr(netdev->irq, netdev);
2874	enable_irq(netdev->irq);
2875}
2876#endif
2877
2878static const struct net_device_ops atl1_netdev_ops = {
2879	.ndo_open		= atl1_open,
2880	.ndo_stop		= atl1_close,
2881	.ndo_start_xmit		= atl1_xmit_frame,
2882	.ndo_set_rx_mode	= atlx_set_multi,
2883	.ndo_validate_addr	= eth_validate_addr,
2884	.ndo_set_mac_address	= atl1_set_mac,
2885	.ndo_change_mtu		= atl1_change_mtu,
2886	.ndo_fix_features	= atlx_fix_features,
2887	.ndo_set_features	= atlx_set_features,
2888	.ndo_eth_ioctl		= atlx_ioctl,
2889	.ndo_tx_timeout		= atlx_tx_timeout,
2890#ifdef CONFIG_NET_POLL_CONTROLLER
2891	.ndo_poll_controller	= atl1_poll_controller,
2892#endif
2893};
2894
2895/**
2896 * atl1_probe - Device Initialization Routine
2897 * @pdev: PCI device information struct
2898 * @ent: entry in atl1_pci_tbl
2899 *
2900 * Returns 0 on success, negative on failure
2901 *
2902 * atl1_probe initializes an adapter identified by a pci_dev structure.
2903 * The OS initialization, configuring of the adapter private structure,
2904 * and a hardware reset occur.
2905 */
2906static int atl1_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2907{
2908	struct net_device *netdev;
2909	struct atl1_adapter *adapter;
2910	static int cards_found = 0;
2911	int err;
2912
2913	err = pci_enable_device(pdev);
2914	if (err)
2915		return err;
2916
2917	/*
2918	 * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2919	 * shared register for the high 32 bits, so only a single, aligned,
2920	 * 4 GB physical address range can be used at a time.
2921	 *
2922	 * Supporting 64-bit DMA on this hardware is more trouble than it's
2923	 * worth.  It is far easier to limit to 32-bit DMA than update
2924	 * various kernel subsystems to support the mechanics required by a
2925	 * fixed-high-32-bit system.
2926	 */
2927	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2928	if (err) {
2929		dev_err(&pdev->dev, "no usable DMA configuration\n");
2930		goto err_dma;
2931	}
2932	/*
2933	 * Mark all PCI regions associated with PCI device
2934	 * pdev as being reserved by owner atl1_driver_name
2935	 */
2936	err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2937	if (err)
2938		goto err_request_regions;
2939
2940	/*
2941	 * Enables bus-mastering on the device and calls
2942	 * pcibios_set_master to do the needed arch specific settings
2943	 */
2944	pci_set_master(pdev);
2945
2946	netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2947	if (!netdev) {
2948		err = -ENOMEM;
2949		goto err_alloc_etherdev;
2950	}
2951	SET_NETDEV_DEV(netdev, &pdev->dev);
2952
2953	pci_set_drvdata(pdev, netdev);
2954	adapter = netdev_priv(netdev);
2955	adapter->netdev = netdev;
2956	adapter->pdev = pdev;
2957	adapter->hw.back = adapter;
2958	adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2959
2960	adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2961	if (!adapter->hw.hw_addr) {
2962		err = -EIO;
2963		goto err_pci_iomap;
2964	}
2965	/* get device revision number */
2966	adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2967		(REG_MASTER_CTRL + 2));
2968
2969	/* set default ring resource counts */
2970	adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
2971	adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
2972
2973	adapter->mii.dev = netdev;
2974	adapter->mii.mdio_read = mdio_read;
2975	adapter->mii.mdio_write = mdio_write;
2976	adapter->mii.phy_id_mask = 0x1f;
2977	adapter->mii.reg_num_mask = 0x1f;
2978
2979	netdev->netdev_ops = &atl1_netdev_ops;
2980	netdev->watchdog_timeo = 5 * HZ;
2981	netif_napi_add(netdev, &adapter->napi, atl1_rings_clean);
2982
2983	netdev->ethtool_ops = &atl1_ethtool_ops;
2984	adapter->bd_number = cards_found;
2985
2986	/* setup the private structure */
2987	err = atl1_sw_init(adapter);
2988	if (err)
2989		goto err_common;
2990
2991	netdev->features = NETIF_F_HW_CSUM;
2992	netdev->features |= NETIF_F_SG;
2993	netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
2994
2995	netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO |
2996			      NETIF_F_HW_VLAN_CTAG_RX;
2997
2998	/* is this valid? see atl1_setup_mac_ctrl() */
2999	netdev->features |= NETIF_F_RXCSUM;
3000
3001	/* MTU range: 42 - 10218 */
3002	netdev->min_mtu = ETH_ZLEN - (ETH_HLEN + VLAN_HLEN);
3003	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE -
3004			  (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
3005
3006	/*
3007	 * patch for some L1 of old version,
3008	 * the final version of L1 may not need these
3009	 * patches
3010	 */
3011	/* atl1_pcie_patch(adapter); */
3012
3013	/* really reset GPHY core */
3014	iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3015
3016	/*
3017	 * reset the controller to
3018	 * put the device in a known good starting state
3019	 */
3020	if (atl1_reset_hw(&adapter->hw)) {
3021		err = -EIO;
3022		goto err_common;
3023	}
3024
3025	/* copy the MAC address out of the EEPROM */
3026	if (atl1_read_mac_addr(&adapter->hw)) {
3027		/* mark random mac */
3028		netdev->addr_assign_type = NET_ADDR_RANDOM;
3029	}
3030	eth_hw_addr_set(netdev, adapter->hw.mac_addr);
3031
3032	if (!is_valid_ether_addr(netdev->dev_addr)) {
3033		err = -EIO;
3034		goto err_common;
3035	}
3036
3037	atl1_check_options(adapter);
3038
3039	/* pre-init the MAC, and setup link */
3040	err = atl1_init_hw(&adapter->hw);
3041	if (err) {
3042		err = -EIO;
3043		goto err_common;
3044	}
3045
3046	atl1_pcie_patch(adapter);
3047	/* assume we have no link for now */
3048	netif_carrier_off(netdev);
3049
3050	timer_setup(&adapter->phy_config_timer, atl1_phy_config, 0);
3051	adapter->phy_timer_pending = false;
3052
3053	INIT_WORK(&adapter->reset_dev_task, atl1_reset_dev_task);
3054
3055	INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3056
3057	err = register_netdev(netdev);
3058	if (err)
3059		goto err_common;
3060
3061	cards_found++;
3062	atl1_via_workaround(adapter);
3063	return 0;
3064
3065err_common:
3066	pci_iounmap(pdev, adapter->hw.hw_addr);
3067err_pci_iomap:
3068	free_netdev(netdev);
3069err_alloc_etherdev:
3070	pci_release_regions(pdev);
3071err_dma:
3072err_request_regions:
3073	pci_disable_device(pdev);
3074	return err;
3075}
3076
3077/**
3078 * atl1_remove - Device Removal Routine
3079 * @pdev: PCI device information struct
3080 *
3081 * atl1_remove is called by the PCI subsystem to alert the driver
3082 * that it should release a PCI device.  The could be caused by a
3083 * Hot-Plug event, or because the driver is going to be removed from
3084 * memory.
3085 */
3086static void atl1_remove(struct pci_dev *pdev)
3087{
3088	struct net_device *netdev = pci_get_drvdata(pdev);
3089	struct atl1_adapter *adapter;
3090	/* Device not available. Return. */
3091	if (!netdev)
3092		return;
3093
3094	adapter = netdev_priv(netdev);
3095
3096	/*
3097	 * Some atl1 boards lack persistent storage for their MAC, and get it
3098	 * from the BIOS during POST.  If we've been messing with the MAC
3099	 * address, we need to save the permanent one.
3100	 */
3101	if (!ether_addr_equal_unaligned(adapter->hw.mac_addr,
3102					adapter->hw.perm_mac_addr)) {
3103		memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3104			ETH_ALEN);
3105		atl1_set_mac_addr(&adapter->hw);
3106	}
3107
3108	iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3109	unregister_netdev(netdev);
3110	pci_iounmap(pdev, adapter->hw.hw_addr);
3111	pci_release_regions(pdev);
3112	free_netdev(netdev);
3113	pci_disable_device(pdev);
3114}
3115
3116static struct pci_driver atl1_driver = {
3117	.name = ATLX_DRIVER_NAME,
3118	.id_table = atl1_pci_tbl,
3119	.probe = atl1_probe,
3120	.remove = atl1_remove,
3121	.shutdown = atl1_shutdown,
3122	.driver.pm = &atl1_pm_ops,
3123};
3124
3125struct atl1_stats {
3126	char stat_string[ETH_GSTRING_LEN];
3127	int sizeof_stat;
3128	int stat_offset;
3129};
3130
3131#define ATL1_STAT(m) \
3132	sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3133
3134static struct atl1_stats atl1_gstrings_stats[] = {
3135	{"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3136	{"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3137	{"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3138	{"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3139	{"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3140	{"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3141	{"multicast", ATL1_STAT(soft_stats.multicast)},
3142	{"collisions", ATL1_STAT(soft_stats.collisions)},
3143	{"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3144	{"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3145	{"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3146	{"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3147	{"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3148	{"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3149	{"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3150	{"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3151	{"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3152	{"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3153	{"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3154	{"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3155	{"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3156	{"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3157	{"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3158	{"tx_underrun", ATL1_STAT(soft_stats.tx_underrun)},
3159	{"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3160	{"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3161	{"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3162	{"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3163	{"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3164};
3165
3166static void atl1_get_ethtool_stats(struct net_device *netdev,
3167	struct ethtool_stats *stats, u64 *data)
3168{
3169	struct atl1_adapter *adapter = netdev_priv(netdev);
3170	int i;
3171	char *p;
3172
3173	for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3174		p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3175		data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3176			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3177	}
3178
3179}
3180
3181static int atl1_get_sset_count(struct net_device *netdev, int sset)
3182{
3183	switch (sset) {
3184	case ETH_SS_STATS:
3185		return ARRAY_SIZE(atl1_gstrings_stats);
3186	default:
3187		return -EOPNOTSUPP;
3188	}
3189}
3190
3191static int atl1_get_link_ksettings(struct net_device *netdev,
3192				   struct ethtool_link_ksettings *cmd)
3193{
3194	struct atl1_adapter *adapter = netdev_priv(netdev);
3195	struct atl1_hw *hw = &adapter->hw;
3196	u32 supported, advertising;
3197
3198	supported = (SUPPORTED_10baseT_Half |
3199			   SUPPORTED_10baseT_Full |
3200			   SUPPORTED_100baseT_Half |
3201			   SUPPORTED_100baseT_Full |
3202			   SUPPORTED_1000baseT_Full |
3203			   SUPPORTED_Autoneg | SUPPORTED_TP);
3204	advertising = ADVERTISED_TP;
3205	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3206	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3207		advertising |= ADVERTISED_Autoneg;
3208		if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3209			advertising |= ADVERTISED_Autoneg;
3210			advertising |=
3211			    (ADVERTISED_10baseT_Half |
3212			     ADVERTISED_10baseT_Full |
3213			     ADVERTISED_100baseT_Half |
3214			     ADVERTISED_100baseT_Full |
3215			     ADVERTISED_1000baseT_Full);
3216		} else
3217			advertising |= (ADVERTISED_1000baseT_Full);
3218	}
3219	cmd->base.port = PORT_TP;
3220	cmd->base.phy_address = 0;
3221
3222	if (netif_carrier_ok(adapter->netdev)) {
3223		u16 link_speed, link_duplex;
3224		atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3225		cmd->base.speed = link_speed;
3226		if (link_duplex == FULL_DUPLEX)
3227			cmd->base.duplex = DUPLEX_FULL;
3228		else
3229			cmd->base.duplex = DUPLEX_HALF;
3230	} else {
3231		cmd->base.speed = SPEED_UNKNOWN;
3232		cmd->base.duplex = DUPLEX_UNKNOWN;
3233	}
3234	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3235	    hw->media_type == MEDIA_TYPE_1000M_FULL)
3236		cmd->base.autoneg = AUTONEG_ENABLE;
3237	else
3238		cmd->base.autoneg = AUTONEG_DISABLE;
3239
3240	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
3241						supported);
3242	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
3243						advertising);
3244
3245	return 0;
3246}
3247
3248static int atl1_set_link_ksettings(struct net_device *netdev,
3249				   const struct ethtool_link_ksettings *cmd)
3250{
3251	struct atl1_adapter *adapter = netdev_priv(netdev);
3252	struct atl1_hw *hw = &adapter->hw;
3253	u16 phy_data;
3254	int ret_val = 0;
3255	u16 old_media_type = hw->media_type;
3256
3257	if (netif_running(adapter->netdev)) {
3258		if (netif_msg_link(adapter))
3259			dev_dbg(&adapter->pdev->dev,
3260				"ethtool shutting down adapter\n");
3261		atl1_down(adapter);
3262	}
3263
3264	if (cmd->base.autoneg == AUTONEG_ENABLE)
3265		hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3266	else {
3267		u32 speed = cmd->base.speed;
3268		if (speed == SPEED_1000) {
3269			if (cmd->base.duplex != DUPLEX_FULL) {
3270				if (netif_msg_link(adapter))
3271					dev_warn(&adapter->pdev->dev,
3272						"1000M half is invalid\n");
3273				ret_val = -EINVAL;
3274				goto exit_sset;
3275			}
3276			hw->media_type = MEDIA_TYPE_1000M_FULL;
3277		} else if (speed == SPEED_100) {
3278			if (cmd->base.duplex == DUPLEX_FULL)
3279				hw->media_type = MEDIA_TYPE_100M_FULL;
3280			else
3281				hw->media_type = MEDIA_TYPE_100M_HALF;
3282		} else {
3283			if (cmd->base.duplex == DUPLEX_FULL)
3284				hw->media_type = MEDIA_TYPE_10M_FULL;
3285			else
3286				hw->media_type = MEDIA_TYPE_10M_HALF;
3287		}
3288	}
3289
3290	if (atl1_phy_setup_autoneg_adv(hw)) {
3291		ret_val = -EINVAL;
3292		if (netif_msg_link(adapter))
3293			dev_warn(&adapter->pdev->dev,
3294				"invalid ethtool speed/duplex setting\n");
3295		goto exit_sset;
3296	}
3297	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3298	    hw->media_type == MEDIA_TYPE_1000M_FULL)
3299		phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3300	else {
3301		switch (hw->media_type) {
3302		case MEDIA_TYPE_100M_FULL:
3303			phy_data =
3304			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3305			    MII_CR_RESET;
3306			break;
3307		case MEDIA_TYPE_100M_HALF:
3308			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3309			break;
3310		case MEDIA_TYPE_10M_FULL:
3311			phy_data =
3312			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3313			break;
3314		default:
3315			/* MEDIA_TYPE_10M_HALF: */
3316			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3317			break;
3318		}
3319	}
3320	atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3321exit_sset:
3322	if (ret_val)
3323		hw->media_type = old_media_type;
3324
3325	if (netif_running(adapter->netdev)) {
3326		if (netif_msg_link(adapter))
3327			dev_dbg(&adapter->pdev->dev,
3328				"ethtool starting adapter\n");
3329		atl1_up(adapter);
3330	} else if (!ret_val) {
3331		if (netif_msg_link(adapter))
3332			dev_dbg(&adapter->pdev->dev,
3333				"ethtool resetting adapter\n");
3334		atl1_reset(adapter);
3335	}
3336	return ret_val;
3337}
3338
3339static void atl1_get_drvinfo(struct net_device *netdev,
3340	struct ethtool_drvinfo *drvinfo)
3341{
3342	struct atl1_adapter *adapter = netdev_priv(netdev);
3343
3344	strscpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3345	strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
3346		sizeof(drvinfo->bus_info));
3347}
3348
3349static void atl1_get_wol(struct net_device *netdev,
3350	struct ethtool_wolinfo *wol)
3351{
3352	struct atl1_adapter *adapter = netdev_priv(netdev);
3353
3354	wol->supported = WAKE_MAGIC;
3355	wol->wolopts = 0;
3356	if (adapter->wol & ATLX_WUFC_MAG)
3357		wol->wolopts |= WAKE_MAGIC;
3358}
3359
3360static int atl1_set_wol(struct net_device *netdev,
3361	struct ethtool_wolinfo *wol)
3362{
3363	struct atl1_adapter *adapter = netdev_priv(netdev);
3364
3365	if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
3366		WAKE_ARP | WAKE_MAGICSECURE))
3367		return -EOPNOTSUPP;
3368	adapter->wol = 0;
3369	if (wol->wolopts & WAKE_MAGIC)
3370		adapter->wol |= ATLX_WUFC_MAG;
3371
3372	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
3373
3374	return 0;
3375}
3376
3377static u32 atl1_get_msglevel(struct net_device *netdev)
3378{
3379	struct atl1_adapter *adapter = netdev_priv(netdev);
3380	return adapter->msg_enable;
3381}
3382
3383static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3384{
3385	struct atl1_adapter *adapter = netdev_priv(netdev);
3386	adapter->msg_enable = value;
3387}
3388
3389static int atl1_get_regs_len(struct net_device *netdev)
3390{
3391	return ATL1_REG_COUNT * sizeof(u32);
3392}
3393
3394static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3395	void *p)
3396{
3397	struct atl1_adapter *adapter = netdev_priv(netdev);
3398	struct atl1_hw *hw = &adapter->hw;
3399	unsigned int i;
3400	u32 *regbuf = p;
3401
3402	for (i = 0; i < ATL1_REG_COUNT; i++) {
3403		/*
3404		 * This switch statement avoids reserved regions
3405		 * of register space.
3406		 */
3407		switch (i) {
3408		case 6 ... 9:
3409		case 14:
3410		case 29 ... 31:
3411		case 34 ... 63:
3412		case 75 ... 127:
3413		case 136 ... 1023:
3414		case 1027 ... 1087:
3415		case 1091 ... 1151:
3416		case 1194 ... 1195:
3417		case 1200 ... 1201:
3418		case 1206 ... 1213:
3419		case 1216 ... 1279:
3420		case 1290 ... 1311:
3421		case 1323 ... 1343:
3422		case 1358 ... 1359:
3423		case 1368 ... 1375:
3424		case 1378 ... 1383:
3425		case 1388 ... 1391:
3426		case 1393 ... 1395:
3427		case 1402 ... 1403:
3428		case 1410 ... 1471:
3429		case 1522 ... 1535:
3430			/* reserved region; don't read it */
3431			regbuf[i] = 0;
3432			break;
3433		default:
3434			/* unreserved region */
3435			regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3436		}
3437	}
3438}
3439
3440static void atl1_get_ringparam(struct net_device *netdev,
3441			       struct ethtool_ringparam *ring,
3442			       struct kernel_ethtool_ringparam *kernel_ring,
3443			       struct netlink_ext_ack *extack)
3444{
3445	struct atl1_adapter *adapter = netdev_priv(netdev);
3446	struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3447	struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3448
3449	ring->rx_max_pending = ATL1_MAX_RFD;
3450	ring->tx_max_pending = ATL1_MAX_TPD;
3451	ring->rx_pending = rxdr->count;
3452	ring->tx_pending = txdr->count;
3453}
3454
3455static int atl1_set_ringparam(struct net_device *netdev,
3456			      struct ethtool_ringparam *ring,
3457			      struct kernel_ethtool_ringparam *kernel_ring,
3458			      struct netlink_ext_ack *extack)
3459{
3460	struct atl1_adapter *adapter = netdev_priv(netdev);
3461	struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3462	struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3463	struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3464
3465	struct atl1_tpd_ring tpd_old, tpd_new;
3466	struct atl1_rfd_ring rfd_old, rfd_new;
3467	struct atl1_rrd_ring rrd_old, rrd_new;
3468	struct atl1_ring_header rhdr_old, rhdr_new;
3469	struct atl1_smb smb;
3470	struct atl1_cmb cmb;
3471	int err;
3472
3473	tpd_old = adapter->tpd_ring;
3474	rfd_old = adapter->rfd_ring;
3475	rrd_old = adapter->rrd_ring;
3476	rhdr_old = adapter->ring_header;
3477
3478	if (netif_running(adapter->netdev))
3479		atl1_down(adapter);
3480
3481	rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3482	rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3483			rfdr->count;
3484	rfdr->count = (rfdr->count + 3) & ~3;
3485	rrdr->count = rfdr->count;
3486
3487	tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3488	tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3489			tpdr->count;
3490	tpdr->count = (tpdr->count + 3) & ~3;
3491
3492	if (netif_running(adapter->netdev)) {
3493		/* try to get new resources before deleting old */
3494		err = atl1_setup_ring_resources(adapter);
3495		if (err)
3496			goto err_setup_ring;
3497
3498		/*
3499		 * save the new, restore the old in order to free it,
3500		 * then restore the new back again
3501		 */
3502
3503		rfd_new = adapter->rfd_ring;
3504		rrd_new = adapter->rrd_ring;
3505		tpd_new = adapter->tpd_ring;
3506		rhdr_new = adapter->ring_header;
3507		adapter->rfd_ring = rfd_old;
3508		adapter->rrd_ring = rrd_old;
3509		adapter->tpd_ring = tpd_old;
3510		adapter->ring_header = rhdr_old;
3511		/*
3512		 * Save SMB and CMB, since atl1_free_ring_resources
3513		 * will clear them.
3514		 */
3515		smb = adapter->smb;
3516		cmb = adapter->cmb;
3517		atl1_free_ring_resources(adapter);
3518		adapter->rfd_ring = rfd_new;
3519		adapter->rrd_ring = rrd_new;
3520		adapter->tpd_ring = tpd_new;
3521		adapter->ring_header = rhdr_new;
3522		adapter->smb = smb;
3523		adapter->cmb = cmb;
3524
3525		err = atl1_up(adapter);
3526		if (err)
3527			return err;
3528	}
3529	return 0;
3530
3531err_setup_ring:
3532	adapter->rfd_ring = rfd_old;
3533	adapter->rrd_ring = rrd_old;
3534	adapter->tpd_ring = tpd_old;
3535	adapter->ring_header = rhdr_old;
3536	atl1_up(adapter);
3537	return err;
3538}
3539
3540static void atl1_get_pauseparam(struct net_device *netdev,
3541	struct ethtool_pauseparam *epause)
3542{
3543	struct atl1_adapter *adapter = netdev_priv(netdev);
3544	struct atl1_hw *hw = &adapter->hw;
3545
3546	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3547	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3548		epause->autoneg = AUTONEG_ENABLE;
3549	} else {
3550		epause->autoneg = AUTONEG_DISABLE;
3551	}
3552	epause->rx_pause = 1;
3553	epause->tx_pause = 1;
3554}
3555
3556static int atl1_set_pauseparam(struct net_device *netdev,
3557	struct ethtool_pauseparam *epause)
3558{
3559	struct atl1_adapter *adapter = netdev_priv(netdev);
3560	struct atl1_hw *hw = &adapter->hw;
3561
3562	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3563	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3564		epause->autoneg = AUTONEG_ENABLE;
3565	} else {
3566		epause->autoneg = AUTONEG_DISABLE;
3567	}
3568
3569	epause->rx_pause = 1;
3570	epause->tx_pause = 1;
3571
3572	return 0;
3573}
3574
3575static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3576	u8 *data)
3577{
3578	u8 *p = data;
3579	int i;
3580
3581	switch (stringset) {
3582	case ETH_SS_STATS:
3583		for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3584			memcpy(p, atl1_gstrings_stats[i].stat_string,
3585				ETH_GSTRING_LEN);
3586			p += ETH_GSTRING_LEN;
3587		}
3588		break;
3589	}
3590}
3591
3592static int atl1_nway_reset(struct net_device *netdev)
3593{
3594	struct atl1_adapter *adapter = netdev_priv(netdev);
3595	struct atl1_hw *hw = &adapter->hw;
3596
3597	if (netif_running(netdev)) {
3598		u16 phy_data;
3599		atl1_down(adapter);
3600
3601		if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3602			hw->media_type == MEDIA_TYPE_1000M_FULL) {
3603			phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3604		} else {
3605			switch (hw->media_type) {
3606			case MEDIA_TYPE_100M_FULL:
3607				phy_data = MII_CR_FULL_DUPLEX |
3608					MII_CR_SPEED_100 | MII_CR_RESET;
3609				break;
3610			case MEDIA_TYPE_100M_HALF:
3611				phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3612				break;
3613			case MEDIA_TYPE_10M_FULL:
3614				phy_data = MII_CR_FULL_DUPLEX |
3615					MII_CR_SPEED_10 | MII_CR_RESET;
3616				break;
3617			default:
3618				/* MEDIA_TYPE_10M_HALF */
3619				phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3620			}
3621		}
3622		atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3623		atl1_up(adapter);
3624	}
3625	return 0;
3626}
3627
3628static const struct ethtool_ops atl1_ethtool_ops = {
3629	.get_drvinfo		= atl1_get_drvinfo,
3630	.get_wol		= atl1_get_wol,
3631	.set_wol		= atl1_set_wol,
3632	.get_msglevel		= atl1_get_msglevel,
3633	.set_msglevel		= atl1_set_msglevel,
3634	.get_regs_len		= atl1_get_regs_len,
3635	.get_regs		= atl1_get_regs,
3636	.get_ringparam		= atl1_get_ringparam,
3637	.set_ringparam		= atl1_set_ringparam,
3638	.get_pauseparam		= atl1_get_pauseparam,
3639	.set_pauseparam		= atl1_set_pauseparam,
3640	.get_link		= ethtool_op_get_link,
3641	.get_strings		= atl1_get_strings,
3642	.nway_reset		= atl1_nway_reset,
3643	.get_ethtool_stats	= atl1_get_ethtool_stats,
3644	.get_sset_count		= atl1_get_sset_count,
3645	.get_link_ksettings	= atl1_get_link_ksettings,
3646	.set_link_ksettings	= atl1_set_link_ksettings,
3647};
3648
3649module_pci_driver(atl1_driver);
3650