1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2004-2013 Synopsys, Inc. (www.synopsys.com)
4 *
5 * Driver for the ARC EMAC 10100 (hardware revision 5)
6 *
7 * Contributors:
8 *		Amit Bhor
9 *		Sameer Dhavale
10 *		Vineet Gupta
11 */
12
13#include <linux/crc32.h>
14#include <linux/etherdevice.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/module.h>
18#include <linux/of.h>
19#include <linux/of_address.h>
20#include <linux/of_irq.h>
21#include <linux/of_mdio.h>
22#include <linux/of_net.h>
23
24#include "emac.h"
25
26static void arc_emac_restart(struct net_device *ndev);
27
28/**
29 * arc_emac_tx_avail - Return the number of available slots in the tx ring.
30 * @priv: Pointer to ARC EMAC private data structure.
31 *
32 * returns: the number of slots available for transmission in tx the ring.
33 */
34static inline int arc_emac_tx_avail(struct arc_emac_priv *priv)
35{
36	return (priv->txbd_dirty + TX_BD_NUM - priv->txbd_curr - 1) % TX_BD_NUM;
37}
38
39/**
40 * arc_emac_adjust_link - Adjust the PHY link duplex.
41 * @ndev:	Pointer to the net_device structure.
42 *
43 * This function is called to change the duplex setting after auto negotiation
44 * is done by the PHY.
45 */
46static void arc_emac_adjust_link(struct net_device *ndev)
47{
48	struct arc_emac_priv *priv = netdev_priv(ndev);
49	struct phy_device *phy_dev = ndev->phydev;
50	unsigned int reg, state_changed = 0;
51
52	if (priv->link != phy_dev->link) {
53		priv->link = phy_dev->link;
54		state_changed = 1;
55	}
56
57	if (priv->speed != phy_dev->speed) {
58		priv->speed = phy_dev->speed;
59		state_changed = 1;
60		if (priv->set_mac_speed)
61			priv->set_mac_speed(priv, priv->speed);
62	}
63
64	if (priv->duplex != phy_dev->duplex) {
65		reg = arc_reg_get(priv, R_CTRL);
66
67		if (phy_dev->duplex == DUPLEX_FULL)
68			reg |= ENFL_MASK;
69		else
70			reg &= ~ENFL_MASK;
71
72		arc_reg_set(priv, R_CTRL, reg);
73		priv->duplex = phy_dev->duplex;
74		state_changed = 1;
75	}
76
77	if (state_changed)
78		phy_print_status(phy_dev);
79}
80
81/**
82 * arc_emac_get_drvinfo - Get EMAC driver information.
83 * @ndev:	Pointer to net_device structure.
84 * @info:	Pointer to ethtool_drvinfo structure.
85 *
86 * This implements ethtool command for getting the driver information.
87 * Issue "ethtool -i ethX" under linux prompt to execute this function.
88 */
89static void arc_emac_get_drvinfo(struct net_device *ndev,
90				 struct ethtool_drvinfo *info)
91{
92	struct arc_emac_priv *priv = netdev_priv(ndev);
93
94	strscpy(info->driver, priv->drv_name, sizeof(info->driver));
95}
96
97static const struct ethtool_ops arc_emac_ethtool_ops = {
98	.get_drvinfo	= arc_emac_get_drvinfo,
99	.get_link	= ethtool_op_get_link,
100	.get_link_ksettings = phy_ethtool_get_link_ksettings,
101	.set_link_ksettings = phy_ethtool_set_link_ksettings,
102};
103
104#define FIRST_OR_LAST_MASK	(FIRST_MASK | LAST_MASK)
105
106/**
107 * arc_emac_tx_clean - clears processed by EMAC Tx BDs.
108 * @ndev:	Pointer to the network device.
109 */
110static void arc_emac_tx_clean(struct net_device *ndev)
111{
112	struct arc_emac_priv *priv = netdev_priv(ndev);
113	struct net_device_stats *stats = &ndev->stats;
114	unsigned int i;
115
116	for (i = 0; i < TX_BD_NUM; i++) {
117		unsigned int *txbd_dirty = &priv->txbd_dirty;
118		struct arc_emac_bd *txbd = &priv->txbd[*txbd_dirty];
119		struct buffer_state *tx_buff = &priv->tx_buff[*txbd_dirty];
120		struct sk_buff *skb = tx_buff->skb;
121		unsigned int info = le32_to_cpu(txbd->info);
122
123		if ((info & FOR_EMAC) || !txbd->data || !skb)
124			break;
125
126		if (unlikely(info & (DROP | DEFR | LTCL | UFLO))) {
127			stats->tx_errors++;
128			stats->tx_dropped++;
129
130			if (info & DEFR)
131				stats->tx_carrier_errors++;
132
133			if (info & LTCL)
134				stats->collisions++;
135
136			if (info & UFLO)
137				stats->tx_fifo_errors++;
138		} else if (likely(info & FIRST_OR_LAST_MASK)) {
139			stats->tx_packets++;
140			stats->tx_bytes += skb->len;
141		}
142
143		dma_unmap_single(&ndev->dev, dma_unmap_addr(tx_buff, addr),
144				 dma_unmap_len(tx_buff, len), DMA_TO_DEVICE);
145
146		/* return the sk_buff to system */
147		dev_consume_skb_irq(skb);
148
149		txbd->data = 0;
150		txbd->info = 0;
151		tx_buff->skb = NULL;
152
153		*txbd_dirty = (*txbd_dirty + 1) % TX_BD_NUM;
154	}
155
156	/* Ensure that txbd_dirty is visible to tx() before checking
157	 * for queue stopped.
158	 */
159	smp_mb();
160
161	if (netif_queue_stopped(ndev) && arc_emac_tx_avail(priv))
162		netif_wake_queue(ndev);
163}
164
165/**
166 * arc_emac_rx - processing of Rx packets.
167 * @ndev:	Pointer to the network device.
168 * @budget:	How many BDs to process on 1 call.
169 *
170 * returns:	Number of processed BDs
171 *
172 * Iterate through Rx BDs and deliver received packages to upper layer.
173 */
174static int arc_emac_rx(struct net_device *ndev, int budget)
175{
176	struct arc_emac_priv *priv = netdev_priv(ndev);
177	unsigned int work_done;
178
179	for (work_done = 0; work_done < budget; work_done++) {
180		unsigned int *last_rx_bd = &priv->last_rx_bd;
181		struct net_device_stats *stats = &ndev->stats;
182		struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd];
183		struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd];
184		unsigned int pktlen, info = le32_to_cpu(rxbd->info);
185		struct sk_buff *skb;
186		dma_addr_t addr;
187
188		if (unlikely((info & OWN_MASK) == FOR_EMAC))
189			break;
190
191		/* Make a note that we saw a packet at this BD.
192		 * So next time, driver starts from this + 1
193		 */
194		*last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM;
195
196		if (unlikely((info & FIRST_OR_LAST_MASK) !=
197			     FIRST_OR_LAST_MASK)) {
198			/* We pre-allocate buffers of MTU size so incoming
199			 * packets won't be split/chained.
200			 */
201			if (net_ratelimit())
202				netdev_err(ndev, "incomplete packet received\n");
203
204			/* Return ownership to EMAC */
205			rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
206			stats->rx_errors++;
207			stats->rx_length_errors++;
208			continue;
209		}
210
211		/* Prepare the BD for next cycle. netif_receive_skb()
212		 * only if new skb was allocated and mapped to avoid holes
213		 * in the RX fifo.
214		 */
215		skb = netdev_alloc_skb_ip_align(ndev, EMAC_BUFFER_SIZE);
216		if (unlikely(!skb)) {
217			if (net_ratelimit())
218				netdev_err(ndev, "cannot allocate skb\n");
219			/* Return ownership to EMAC */
220			rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
221			stats->rx_errors++;
222			stats->rx_dropped++;
223			continue;
224		}
225
226		addr = dma_map_single(&ndev->dev, (void *)skb->data,
227				      EMAC_BUFFER_SIZE, DMA_FROM_DEVICE);
228		if (dma_mapping_error(&ndev->dev, addr)) {
229			if (net_ratelimit())
230				netdev_err(ndev, "cannot map dma buffer\n");
231			dev_kfree_skb(skb);
232			/* Return ownership to EMAC */
233			rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
234			stats->rx_errors++;
235			stats->rx_dropped++;
236			continue;
237		}
238
239		/* unmap previosly mapped skb */
240		dma_unmap_single(&ndev->dev, dma_unmap_addr(rx_buff, addr),
241				 dma_unmap_len(rx_buff, len), DMA_FROM_DEVICE);
242
243		pktlen = info & LEN_MASK;
244		stats->rx_packets++;
245		stats->rx_bytes += pktlen;
246		skb_put(rx_buff->skb, pktlen);
247		rx_buff->skb->dev = ndev;
248		rx_buff->skb->protocol = eth_type_trans(rx_buff->skb, ndev);
249
250		netif_receive_skb(rx_buff->skb);
251
252		rx_buff->skb = skb;
253		dma_unmap_addr_set(rx_buff, addr, addr);
254		dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE);
255
256		rxbd->data = cpu_to_le32(addr);
257
258		/* Make sure pointer to data buffer is set */
259		wmb();
260
261		/* Return ownership to EMAC */
262		rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
263	}
264
265	return work_done;
266}
267
268/**
269 * arc_emac_rx_miss_handle - handle R_MISS register
270 * @ndev:	Pointer to the net_device structure.
271 */
272static void arc_emac_rx_miss_handle(struct net_device *ndev)
273{
274	struct arc_emac_priv *priv = netdev_priv(ndev);
275	struct net_device_stats *stats = &ndev->stats;
276	unsigned int miss;
277
278	miss = arc_reg_get(priv, R_MISS);
279	if (miss) {
280		stats->rx_errors += miss;
281		stats->rx_missed_errors += miss;
282		priv->rx_missed_errors += miss;
283	}
284}
285
286/**
287 * arc_emac_rx_stall_check - check RX stall
288 * @ndev:	Pointer to the net_device structure.
289 * @budget:	How many BDs requested to process on 1 call.
290 * @work_done:	How many BDs processed
291 *
292 * Under certain conditions EMAC stop reception of incoming packets and
293 * continuously increment R_MISS register instead of saving data into
294 * provided buffer. This function detect that condition and restart
295 * EMAC.
296 */
297static void arc_emac_rx_stall_check(struct net_device *ndev,
298				    int budget, unsigned int work_done)
299{
300	struct arc_emac_priv *priv = netdev_priv(ndev);
301	struct arc_emac_bd *rxbd;
302
303	if (work_done)
304		priv->rx_missed_errors = 0;
305
306	if (priv->rx_missed_errors && budget) {
307		rxbd = &priv->rxbd[priv->last_rx_bd];
308		if (le32_to_cpu(rxbd->info) & FOR_EMAC) {
309			arc_emac_restart(ndev);
310			priv->rx_missed_errors = 0;
311		}
312	}
313}
314
315/**
316 * arc_emac_poll - NAPI poll handler.
317 * @napi:	Pointer to napi_struct structure.
318 * @budget:	How many BDs to process on 1 call.
319 *
320 * returns:	Number of processed BDs
321 */
322static int arc_emac_poll(struct napi_struct *napi, int budget)
323{
324	struct net_device *ndev = napi->dev;
325	struct arc_emac_priv *priv = netdev_priv(ndev);
326	unsigned int work_done;
327
328	arc_emac_tx_clean(ndev);
329	arc_emac_rx_miss_handle(ndev);
330
331	work_done = arc_emac_rx(ndev, budget);
332	if (work_done < budget) {
333		napi_complete_done(napi, work_done);
334		arc_reg_or(priv, R_ENABLE, RXINT_MASK | TXINT_MASK);
335	}
336
337	arc_emac_rx_stall_check(ndev, budget, work_done);
338
339	return work_done;
340}
341
342/**
343 * arc_emac_intr - Global interrupt handler for EMAC.
344 * @irq:		irq number.
345 * @dev_instance:	device instance.
346 *
347 * returns: IRQ_HANDLED for all cases.
348 *
349 * ARC EMAC has only 1 interrupt line, and depending on bits raised in
350 * STATUS register we may tell what is a reason for interrupt to fire.
351 */
352static irqreturn_t arc_emac_intr(int irq, void *dev_instance)
353{
354	struct net_device *ndev = dev_instance;
355	struct arc_emac_priv *priv = netdev_priv(ndev);
356	struct net_device_stats *stats = &ndev->stats;
357	unsigned int status;
358
359	status = arc_reg_get(priv, R_STATUS);
360	status &= ~MDIO_MASK;
361
362	/* Reset all flags except "MDIO complete" */
363	arc_reg_set(priv, R_STATUS, status);
364
365	if (status & (RXINT_MASK | TXINT_MASK)) {
366		if (likely(napi_schedule_prep(&priv->napi))) {
367			arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK);
368			__napi_schedule(&priv->napi);
369		}
370	}
371
372	if (status & ERR_MASK) {
373		/* MSER/RXCR/RXFR/RXFL interrupt fires on corresponding
374		 * 8-bit error counter overrun.
375		 */
376
377		if (status & MSER_MASK) {
378			stats->rx_missed_errors += 0x100;
379			stats->rx_errors += 0x100;
380			priv->rx_missed_errors += 0x100;
381			napi_schedule(&priv->napi);
382		}
383
384		if (status & RXCR_MASK) {
385			stats->rx_crc_errors += 0x100;
386			stats->rx_errors += 0x100;
387		}
388
389		if (status & RXFR_MASK) {
390			stats->rx_frame_errors += 0x100;
391			stats->rx_errors += 0x100;
392		}
393
394		if (status & RXFL_MASK) {
395			stats->rx_over_errors += 0x100;
396			stats->rx_errors += 0x100;
397		}
398	}
399
400	return IRQ_HANDLED;
401}
402
403#ifdef CONFIG_NET_POLL_CONTROLLER
404static void arc_emac_poll_controller(struct net_device *dev)
405{
406	disable_irq(dev->irq);
407	arc_emac_intr(dev->irq, dev);
408	enable_irq(dev->irq);
409}
410#endif
411
412/**
413 * arc_emac_open - Open the network device.
414 * @ndev:	Pointer to the network device.
415 *
416 * returns: 0, on success or non-zero error value on failure.
417 *
418 * This function sets the MAC address, requests and enables an IRQ
419 * for the EMAC device and starts the Tx queue.
420 * It also connects to the phy device.
421 */
422static int arc_emac_open(struct net_device *ndev)
423{
424	struct arc_emac_priv *priv = netdev_priv(ndev);
425	struct phy_device *phy_dev = ndev->phydev;
426	int i;
427
428	phy_dev->autoneg = AUTONEG_ENABLE;
429	phy_dev->speed = 0;
430	phy_dev->duplex = 0;
431	linkmode_and(phy_dev->advertising, phy_dev->advertising,
432		     phy_dev->supported);
433
434	priv->last_rx_bd = 0;
435
436	/* Allocate and set buffers for Rx BD's */
437	for (i = 0; i < RX_BD_NUM; i++) {
438		dma_addr_t addr;
439		unsigned int *last_rx_bd = &priv->last_rx_bd;
440		struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd];
441		struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd];
442
443		rx_buff->skb = netdev_alloc_skb_ip_align(ndev,
444							 EMAC_BUFFER_SIZE);
445		if (unlikely(!rx_buff->skb))
446			return -ENOMEM;
447
448		addr = dma_map_single(&ndev->dev, (void *)rx_buff->skb->data,
449				      EMAC_BUFFER_SIZE, DMA_FROM_DEVICE);
450		if (dma_mapping_error(&ndev->dev, addr)) {
451			netdev_err(ndev, "cannot dma map\n");
452			dev_kfree_skb(rx_buff->skb);
453			return -ENOMEM;
454		}
455		dma_unmap_addr_set(rx_buff, addr, addr);
456		dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE);
457
458		rxbd->data = cpu_to_le32(addr);
459
460		/* Make sure pointer to data buffer is set */
461		wmb();
462
463		/* Return ownership to EMAC */
464		rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
465
466		*last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM;
467	}
468
469	priv->txbd_curr = 0;
470	priv->txbd_dirty = 0;
471
472	/* Clean Tx BD's */
473	memset(priv->txbd, 0, TX_RING_SZ);
474
475	/* Initialize logical address filter */
476	arc_reg_set(priv, R_LAFL, 0);
477	arc_reg_set(priv, R_LAFH, 0);
478
479	/* Set BD ring pointers for device side */
480	arc_reg_set(priv, R_RX_RING, (unsigned int)priv->rxbd_dma);
481	arc_reg_set(priv, R_TX_RING, (unsigned int)priv->txbd_dma);
482
483	/* Enable interrupts */
484	arc_reg_set(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
485
486	/* Set CONTROL */
487	arc_reg_set(priv, R_CTRL,
488		    (RX_BD_NUM << 24) |	/* RX BD table length */
489		    (TX_BD_NUM << 16) |	/* TX BD table length */
490		    TXRN_MASK | RXRN_MASK);
491
492	napi_enable(&priv->napi);
493
494	/* Enable EMAC */
495	arc_reg_or(priv, R_CTRL, EN_MASK);
496
497	phy_start(ndev->phydev);
498
499	netif_start_queue(ndev);
500
501	return 0;
502}
503
504/**
505 * arc_emac_set_rx_mode - Change the receive filtering mode.
506 * @ndev:	Pointer to the network device.
507 *
508 * This function enables/disables promiscuous or all-multicast mode
509 * and updates the multicast filtering list of the network device.
510 */
511static void arc_emac_set_rx_mode(struct net_device *ndev)
512{
513	struct arc_emac_priv *priv = netdev_priv(ndev);
514
515	if (ndev->flags & IFF_PROMISC) {
516		arc_reg_or(priv, R_CTRL, PROM_MASK);
517	} else {
518		arc_reg_clr(priv, R_CTRL, PROM_MASK);
519
520		if (ndev->flags & IFF_ALLMULTI) {
521			arc_reg_set(priv, R_LAFL, ~0);
522			arc_reg_set(priv, R_LAFH, ~0);
523		} else if (ndev->flags & IFF_MULTICAST) {
524			struct netdev_hw_addr *ha;
525			unsigned int filter[2] = { 0, 0 };
526			int bit;
527
528			netdev_for_each_mc_addr(ha, ndev) {
529				bit = ether_crc_le(ETH_ALEN, ha->addr) >> 26;
530				filter[bit >> 5] |= 1 << (bit & 31);
531			}
532
533			arc_reg_set(priv, R_LAFL, filter[0]);
534			arc_reg_set(priv, R_LAFH, filter[1]);
535		} else {
536			arc_reg_set(priv, R_LAFL, 0);
537			arc_reg_set(priv, R_LAFH, 0);
538		}
539	}
540}
541
542/**
543 * arc_free_tx_queue - free skb from tx queue
544 * @ndev:	Pointer to the network device.
545 *
546 * This function must be called while EMAC disable
547 */
548static void arc_free_tx_queue(struct net_device *ndev)
549{
550	struct arc_emac_priv *priv = netdev_priv(ndev);
551	unsigned int i;
552
553	for (i = 0; i < TX_BD_NUM; i++) {
554		struct arc_emac_bd *txbd = &priv->txbd[i];
555		struct buffer_state *tx_buff = &priv->tx_buff[i];
556
557		if (tx_buff->skb) {
558			dma_unmap_single(&ndev->dev,
559					 dma_unmap_addr(tx_buff, addr),
560					 dma_unmap_len(tx_buff, len),
561					 DMA_TO_DEVICE);
562
563			/* return the sk_buff to system */
564			dev_kfree_skb_irq(tx_buff->skb);
565		}
566
567		txbd->info = 0;
568		txbd->data = 0;
569		tx_buff->skb = NULL;
570	}
571}
572
573/**
574 * arc_free_rx_queue - free skb from rx queue
575 * @ndev:	Pointer to the network device.
576 *
577 * This function must be called while EMAC disable
578 */
579static void arc_free_rx_queue(struct net_device *ndev)
580{
581	struct arc_emac_priv *priv = netdev_priv(ndev);
582	unsigned int i;
583
584	for (i = 0; i < RX_BD_NUM; i++) {
585		struct arc_emac_bd *rxbd = &priv->rxbd[i];
586		struct buffer_state *rx_buff = &priv->rx_buff[i];
587
588		if (rx_buff->skb) {
589			dma_unmap_single(&ndev->dev,
590					 dma_unmap_addr(rx_buff, addr),
591					 dma_unmap_len(rx_buff, len),
592					 DMA_FROM_DEVICE);
593
594			/* return the sk_buff to system */
595			dev_kfree_skb_irq(rx_buff->skb);
596		}
597
598		rxbd->info = 0;
599		rxbd->data = 0;
600		rx_buff->skb = NULL;
601	}
602}
603
604/**
605 * arc_emac_stop - Close the network device.
606 * @ndev:	Pointer to the network device.
607 *
608 * This function stops the Tx queue, disables interrupts and frees the IRQ for
609 * the EMAC device.
610 * It also disconnects the PHY device associated with the EMAC device.
611 */
612static int arc_emac_stop(struct net_device *ndev)
613{
614	struct arc_emac_priv *priv = netdev_priv(ndev);
615
616	napi_disable(&priv->napi);
617	netif_stop_queue(ndev);
618
619	phy_stop(ndev->phydev);
620
621	/* Disable interrupts */
622	arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
623
624	/* Disable EMAC */
625	arc_reg_clr(priv, R_CTRL, EN_MASK);
626
627	/* Return the sk_buff to system */
628	arc_free_tx_queue(ndev);
629	arc_free_rx_queue(ndev);
630
631	return 0;
632}
633
634/**
635 * arc_emac_stats - Get system network statistics.
636 * @ndev:	Pointer to net_device structure.
637 *
638 * Returns the address of the device statistics structure.
639 * Statistics are updated in interrupt handler.
640 */
641static struct net_device_stats *arc_emac_stats(struct net_device *ndev)
642{
643	struct arc_emac_priv *priv = netdev_priv(ndev);
644	struct net_device_stats *stats = &ndev->stats;
645	unsigned long miss, rxerr;
646	u8 rxcrc, rxfram, rxoflow;
647
648	rxerr = arc_reg_get(priv, R_RXERR);
649	miss = arc_reg_get(priv, R_MISS);
650
651	rxcrc = rxerr;
652	rxfram = rxerr >> 8;
653	rxoflow = rxerr >> 16;
654
655	stats->rx_errors += miss;
656	stats->rx_errors += rxcrc + rxfram + rxoflow;
657
658	stats->rx_over_errors += rxoflow;
659	stats->rx_frame_errors += rxfram;
660	stats->rx_crc_errors += rxcrc;
661	stats->rx_missed_errors += miss;
662
663	return stats;
664}
665
666/**
667 * arc_emac_tx - Starts the data transmission.
668 * @skb:	sk_buff pointer that contains data to be Transmitted.
669 * @ndev:	Pointer to net_device structure.
670 *
671 * returns: NETDEV_TX_OK, on success
672 *		NETDEV_TX_BUSY, if any of the descriptors are not free.
673 *
674 * This function is invoked from upper layers to initiate transmission.
675 */
676static netdev_tx_t arc_emac_tx(struct sk_buff *skb, struct net_device *ndev)
677{
678	struct arc_emac_priv *priv = netdev_priv(ndev);
679	unsigned int len, *txbd_curr = &priv->txbd_curr;
680	struct net_device_stats *stats = &ndev->stats;
681	__le32 *info = &priv->txbd[*txbd_curr].info;
682	dma_addr_t addr;
683
684	if (skb_padto(skb, ETH_ZLEN))
685		return NETDEV_TX_OK;
686
687	len = max_t(unsigned int, ETH_ZLEN, skb->len);
688
689	if (unlikely(!arc_emac_tx_avail(priv))) {
690		netif_stop_queue(ndev);
691		netdev_err(ndev, "BUG! Tx Ring full when queue awake!\n");
692		return NETDEV_TX_BUSY;
693	}
694
695	addr = dma_map_single(&ndev->dev, (void *)skb->data, len,
696			      DMA_TO_DEVICE);
697
698	if (unlikely(dma_mapping_error(&ndev->dev, addr))) {
699		stats->tx_dropped++;
700		stats->tx_errors++;
701		dev_kfree_skb_any(skb);
702		return NETDEV_TX_OK;
703	}
704	dma_unmap_addr_set(&priv->tx_buff[*txbd_curr], addr, addr);
705	dma_unmap_len_set(&priv->tx_buff[*txbd_curr], len, len);
706
707	priv->txbd[*txbd_curr].data = cpu_to_le32(addr);
708
709	/* Make sure pointer to data buffer is set */
710	wmb();
711
712	skb_tx_timestamp(skb);
713
714	*info = cpu_to_le32(FOR_EMAC | FIRST_OR_LAST_MASK | len);
715
716	/* Make sure info word is set */
717	wmb();
718
719	priv->tx_buff[*txbd_curr].skb = skb;
720
721	/* Increment index to point to the next BD */
722	*txbd_curr = (*txbd_curr + 1) % TX_BD_NUM;
723
724	/* Ensure that tx_clean() sees the new txbd_curr before
725	 * checking the queue status. This prevents an unneeded wake
726	 * of the queue in tx_clean().
727	 */
728	smp_mb();
729
730	if (!arc_emac_tx_avail(priv)) {
731		netif_stop_queue(ndev);
732		/* Refresh tx_dirty */
733		smp_mb();
734		if (arc_emac_tx_avail(priv))
735			netif_start_queue(ndev);
736	}
737
738	arc_reg_set(priv, R_STATUS, TXPL_MASK);
739
740	return NETDEV_TX_OK;
741}
742
743static void arc_emac_set_address_internal(struct net_device *ndev)
744{
745	struct arc_emac_priv *priv = netdev_priv(ndev);
746	unsigned int addr_low, addr_hi;
747
748	addr_low = le32_to_cpu(*(__le32 *)&ndev->dev_addr[0]);
749	addr_hi = le16_to_cpu(*(__le16 *)&ndev->dev_addr[4]);
750
751	arc_reg_set(priv, R_ADDRL, addr_low);
752	arc_reg_set(priv, R_ADDRH, addr_hi);
753}
754
755/**
756 * arc_emac_set_address - Set the MAC address for this device.
757 * @ndev:	Pointer to net_device structure.
758 * @p:		6 byte Address to be written as MAC address.
759 *
760 * This function copies the HW address from the sockaddr structure to the
761 * net_device structure and updates the address in HW.
762 *
763 * returns:	-EBUSY if the net device is busy or 0 if the address is set
764 *		successfully.
765 */
766static int arc_emac_set_address(struct net_device *ndev, void *p)
767{
768	struct sockaddr *addr = p;
769
770	if (netif_running(ndev))
771		return -EBUSY;
772
773	if (!is_valid_ether_addr(addr->sa_data))
774		return -EADDRNOTAVAIL;
775
776	eth_hw_addr_set(ndev, addr->sa_data);
777
778	arc_emac_set_address_internal(ndev);
779
780	return 0;
781}
782
783/**
784 * arc_emac_restart - Restart EMAC
785 * @ndev:	Pointer to net_device structure.
786 *
787 * This function do hardware reset of EMAC in order to restore
788 * network packets reception.
789 */
790static void arc_emac_restart(struct net_device *ndev)
791{
792	struct arc_emac_priv *priv = netdev_priv(ndev);
793	struct net_device_stats *stats = &ndev->stats;
794	int i;
795
796	if (net_ratelimit())
797		netdev_warn(ndev, "restarting stalled EMAC\n");
798
799	netif_stop_queue(ndev);
800
801	/* Disable interrupts */
802	arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
803
804	/* Disable EMAC */
805	arc_reg_clr(priv, R_CTRL, EN_MASK);
806
807	/* Return the sk_buff to system */
808	arc_free_tx_queue(ndev);
809
810	/* Clean Tx BD's */
811	priv->txbd_curr = 0;
812	priv->txbd_dirty = 0;
813	memset(priv->txbd, 0, TX_RING_SZ);
814
815	for (i = 0; i < RX_BD_NUM; i++) {
816		struct arc_emac_bd *rxbd = &priv->rxbd[i];
817		unsigned int info = le32_to_cpu(rxbd->info);
818
819		if (!(info & FOR_EMAC)) {
820			stats->rx_errors++;
821			stats->rx_dropped++;
822		}
823		/* Return ownership to EMAC */
824		rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
825	}
826	priv->last_rx_bd = 0;
827
828	/* Make sure info is visible to EMAC before enable */
829	wmb();
830
831	/* Enable interrupts */
832	arc_reg_set(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
833
834	/* Enable EMAC */
835	arc_reg_or(priv, R_CTRL, EN_MASK);
836
837	netif_start_queue(ndev);
838}
839
840static const struct net_device_ops arc_emac_netdev_ops = {
841	.ndo_open		= arc_emac_open,
842	.ndo_stop		= arc_emac_stop,
843	.ndo_start_xmit		= arc_emac_tx,
844	.ndo_set_mac_address	= arc_emac_set_address,
845	.ndo_get_stats		= arc_emac_stats,
846	.ndo_set_rx_mode	= arc_emac_set_rx_mode,
847	.ndo_eth_ioctl		= phy_do_ioctl_running,
848#ifdef CONFIG_NET_POLL_CONTROLLER
849	.ndo_poll_controller	= arc_emac_poll_controller,
850#endif
851};
852
853int arc_emac_probe(struct net_device *ndev, int interface)
854{
855	struct device *dev = ndev->dev.parent;
856	struct resource res_regs;
857	struct device_node *phy_node;
858	struct phy_device *phydev = NULL;
859	struct arc_emac_priv *priv;
860	unsigned int id, clock_frequency, irq;
861	int err;
862
863	/* Get PHY from device tree */
864	phy_node = of_parse_phandle(dev->of_node, "phy", 0);
865	if (!phy_node) {
866		dev_err(dev, "failed to retrieve phy description from device tree\n");
867		return -ENODEV;
868	}
869
870	/* Get EMAC registers base address from device tree */
871	err = of_address_to_resource(dev->of_node, 0, &res_regs);
872	if (err) {
873		dev_err(dev, "failed to retrieve registers base from device tree\n");
874		err = -ENODEV;
875		goto out_put_node;
876	}
877
878	/* Get IRQ from device tree */
879	irq = irq_of_parse_and_map(dev->of_node, 0);
880	if (!irq) {
881		dev_err(dev, "failed to retrieve <irq> value from device tree\n");
882		err = -ENODEV;
883		goto out_put_node;
884	}
885
886	ndev->netdev_ops = &arc_emac_netdev_ops;
887	ndev->ethtool_ops = &arc_emac_ethtool_ops;
888	ndev->watchdog_timeo = TX_TIMEOUT;
889
890	priv = netdev_priv(ndev);
891	priv->dev = dev;
892
893	priv->regs = devm_ioremap_resource(dev, &res_regs);
894	if (IS_ERR(priv->regs)) {
895		err = PTR_ERR(priv->regs);
896		goto out_put_node;
897	}
898
899	dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs);
900
901	if (priv->clk) {
902		err = clk_prepare_enable(priv->clk);
903		if (err) {
904			dev_err(dev, "failed to enable clock\n");
905			goto out_put_node;
906		}
907
908		clock_frequency = clk_get_rate(priv->clk);
909	} else {
910		/* Get CPU clock frequency from device tree */
911		if (of_property_read_u32(dev->of_node, "clock-frequency",
912					 &clock_frequency)) {
913			dev_err(dev, "failed to retrieve <clock-frequency> from device tree\n");
914			err = -EINVAL;
915			goto out_put_node;
916		}
917	}
918
919	id = arc_reg_get(priv, R_ID);
920
921	/* Check for EMAC revision 5 or 7, magic number */
922	if (!(id == 0x0005fd02 || id == 0x0007fd02)) {
923		dev_err(dev, "ARC EMAC not detected, id=0x%x\n", id);
924		err = -ENODEV;
925		goto out_clken;
926	}
927	dev_info(dev, "ARC EMAC detected with id: 0x%x\n", id);
928
929	/* Set poll rate so that it polls every 1 ms */
930	arc_reg_set(priv, R_POLLRATE, clock_frequency / 1000000);
931
932	ndev->irq = irq;
933	dev_info(dev, "IRQ is %d\n", ndev->irq);
934
935	/* Register interrupt handler for device */
936	err = devm_request_irq(dev, ndev->irq, arc_emac_intr, 0,
937			       ndev->name, ndev);
938	if (err) {
939		dev_err(dev, "could not allocate IRQ\n");
940		goto out_clken;
941	}
942
943	/* Get MAC address from device tree */
944	err = of_get_ethdev_address(dev->of_node, ndev);
945	if (err)
946		eth_hw_addr_random(ndev);
947
948	arc_emac_set_address_internal(ndev);
949	dev_info(dev, "MAC address is now %pM\n", ndev->dev_addr);
950
951	/* Do 1 allocation instead of 2 separate ones for Rx and Tx BD rings */
952	priv->rxbd = dmam_alloc_coherent(dev, RX_RING_SZ + TX_RING_SZ,
953					 &priv->rxbd_dma, GFP_KERNEL);
954
955	if (!priv->rxbd) {
956		dev_err(dev, "failed to allocate data buffers\n");
957		err = -ENOMEM;
958		goto out_clken;
959	}
960
961	priv->txbd = priv->rxbd + RX_BD_NUM;
962
963	priv->txbd_dma = priv->rxbd_dma + RX_RING_SZ;
964	dev_dbg(dev, "EMAC Device addr: Rx Ring [0x%x], Tx Ring[%x]\n",
965		(unsigned int)priv->rxbd_dma, (unsigned int)priv->txbd_dma);
966
967	err = arc_mdio_probe(priv);
968	if (err) {
969		dev_err(dev, "failed to probe MII bus\n");
970		goto out_clken;
971	}
972
973	phydev = of_phy_connect(ndev, phy_node, arc_emac_adjust_link, 0,
974				interface);
975	if (!phydev) {
976		dev_err(dev, "of_phy_connect() failed\n");
977		err = -ENODEV;
978		goto out_mdio;
979	}
980
981	dev_info(dev, "connected to %s phy with id 0x%x\n",
982		 phydev->drv->name, phydev->phy_id);
983
984	netif_napi_add_weight(ndev, &priv->napi, arc_emac_poll,
985			      ARC_EMAC_NAPI_WEIGHT);
986
987	err = register_netdev(ndev);
988	if (err) {
989		dev_err(dev, "failed to register network device\n");
990		goto out_netif_api;
991	}
992
993	of_node_put(phy_node);
994	return 0;
995
996out_netif_api:
997	netif_napi_del(&priv->napi);
998	phy_disconnect(phydev);
999out_mdio:
1000	arc_mdio_remove(priv);
1001out_clken:
1002	if (priv->clk)
1003		clk_disable_unprepare(priv->clk);
1004out_put_node:
1005	of_node_put(phy_node);
1006
1007	return err;
1008}
1009EXPORT_SYMBOL_GPL(arc_emac_probe);
1010
1011void arc_emac_remove(struct net_device *ndev)
1012{
1013	struct arc_emac_priv *priv = netdev_priv(ndev);
1014
1015	phy_disconnect(ndev->phydev);
1016	arc_mdio_remove(priv);
1017	unregister_netdev(ndev);
1018	netif_napi_del(&priv->napi);
1019
1020	if (!IS_ERR(priv->clk))
1021		clk_disable_unprepare(priv->clk);
1022}
1023EXPORT_SYMBOL_GPL(arc_emac_remove);
1024
1025MODULE_AUTHOR("Alexey Brodkin <abrodkin@synopsys.com>");
1026MODULE_DESCRIPTION("ARC EMAC driver");
1027MODULE_LICENSE("GPL");
1028