1/* Agere Systems Inc.
2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
3 *
4 * Copyright �� 2005 Agere Systems Inc.
5 * All rights reserved.
6 *   http://www.agere.com
7 *
8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
9 *
10 *------------------------------------------------------------------------------
11 *
12 * SOFTWARE LICENSE
13 *
14 * This software is provided subject to the following terms and conditions,
15 * which you should read carefully before using the software.  Using this
16 * software indicates your acceptance of these terms and conditions.  If you do
17 * not agree with these terms and conditions, do not use the software.
18 *
19 * Copyright �� 2005 Agere Systems Inc.
20 * All rights reserved.
21 *
22 * Redistribution and use in source or binary forms, with or without
23 * modifications, are permitted provided that the following conditions are met:
24 *
25 * . Redistributions of source code must retain the above copyright notice, this
26 *    list of conditions and the following Disclaimer as comments in the code as
27 *    well as in the documentation and/or other materials provided with the
28 *    distribution.
29 *
30 * . Redistributions in binary form must reproduce the above copyright notice,
31 *    this list of conditions and the following Disclaimer in the documentation
32 *    and/or other materials provided with the distribution.
33 *
34 * . Neither the name of Agere Systems Inc. nor the names of the contributors
35 *    may be used to endorse or promote products derived from this software
36 *    without specific prior written permission.
37 *
38 * Disclaimer
39 *
40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
51 * DAMAGE.
52 */
53
54#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55
56#include <linux/pci.h>
57#include <linux/module.h>
58#include <linux/types.h>
59#include <linux/kernel.h>
60
61#include <linux/sched.h>
62#include <linux/ptrace.h>
63#include <linux/slab.h>
64#include <linux/ctype.h>
65#include <linux/string.h>
66#include <linux/timer.h>
67#include <linux/interrupt.h>
68#include <linux/in.h>
69#include <linux/delay.h>
70#include <linux/bitops.h>
71#include <linux/io.h>
72
73#include <linux/netdevice.h>
74#include <linux/etherdevice.h>
75#include <linux/skbuff.h>
76#include <linux/if_arp.h>
77#include <linux/ioport.h>
78#include <linux/crc32.h>
79#include <linux/random.h>
80#include <linux/phy.h>
81
82#include "et131x.h"
83
84MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
85MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
86MODULE_LICENSE("Dual BSD/GPL");
87MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
88
89/* EEPROM defines */
90#define MAX_NUM_REGISTER_POLLS          1000
91#define MAX_NUM_WRITE_RETRIES           2
92
93/* MAC defines */
94#define COUNTER_WRAP_16_BIT 0x10000
95#define COUNTER_WRAP_12_BIT 0x1000
96
97/* PCI defines */
98#define INTERNAL_MEM_SIZE       0x400	/* 1024 of internal memory */
99#define INTERNAL_MEM_RX_OFFSET  0x1FF	/* 50%   Tx, 50%   Rx */
100
101/* ISR defines */
102/* For interrupts, normal running is:
103 *       rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
104 *       watchdog_interrupt & txdma_xfer_done
105 *
106 * In both cases, when flow control is enabled for either Tx or bi-direction,
107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
108 * buffer rings are running low.
109 */
110#define INT_MASK_DISABLE            0xffffffff
111
112/* NOTE: Masking out MAC_STAT Interrupt for now...
113 * #define INT_MASK_ENABLE             0xfff6bf17
114 * #define INT_MASK_ENABLE_NO_FLOW     0xfff6bfd7
115 */
116#define INT_MASK_ENABLE             0xfffebf17
117#define INT_MASK_ENABLE_NO_FLOW     0xfffebfd7
118
119/* General defines */
120/* Packet and header sizes */
121#define NIC_MIN_PACKET_SIZE	60
122
123/* Multicast list size */
124#define NIC_MAX_MCAST_LIST	128
125
126/* Supported Filters */
127#define ET131X_PACKET_TYPE_DIRECTED		0x0001
128#define ET131X_PACKET_TYPE_MULTICAST		0x0002
129#define ET131X_PACKET_TYPE_BROADCAST		0x0004
130#define ET131X_PACKET_TYPE_PROMISCUOUS		0x0008
131#define ET131X_PACKET_TYPE_ALL_MULTICAST	0x0010
132
133/* Tx Timeout */
134#define ET131X_TX_TIMEOUT	(1 * HZ)
135#define NIC_SEND_HANG_THRESHOLD	0
136
137/* MP_ADAPTER flags */
138#define FMP_ADAPTER_INTERRUPT_IN_USE	0x00000008
139
140/* MP_SHARED flags */
141#define FMP_ADAPTER_LOWER_POWER		0x00200000
142
143#define FMP_ADAPTER_NON_RECOVER_ERROR	0x00800000
144#define FMP_ADAPTER_HARDWARE_ERROR	0x04000000
145
146#define FMP_ADAPTER_FAIL_SEND_MASK	0x3ff00000
147
148/* Some offsets in PCI config space that are actually used. */
149#define ET1310_PCI_MAC_ADDRESS		0xA4
150#define ET1310_PCI_EEPROM_STATUS	0xB2
151#define ET1310_PCI_ACK_NACK		0xC0
152#define ET1310_PCI_REPLAY		0xC2
153#define ET1310_PCI_L0L1LATENCY		0xCF
154
155/* PCI Product IDs */
156#define ET131X_PCI_DEVICE_ID_GIG	0xED00	/* ET1310 1000 Base-T 8 */
157#define ET131X_PCI_DEVICE_ID_FAST	0xED01	/* ET1310 100  Base-T */
158
159/* Define order of magnitude converter */
160#define NANO_IN_A_MICRO	1000
161
162#define PARM_RX_NUM_BUFS_DEF    4
163#define PARM_RX_TIME_INT_DEF    10
164#define PARM_RX_MEM_END_DEF     0x2bc
165#define PARM_TX_TIME_INT_DEF    40
166#define PARM_TX_NUM_BUFS_DEF    4
167#define PARM_DMA_CACHE_DEF      0
168
169/* RX defines */
170#define FBR_CHUNKS		32
171#define MAX_DESC_PER_RING_RX	1024
172
173/* number of RFDs - default and min */
174#define RFD_LOW_WATER_MARK	40
175#define NIC_DEFAULT_NUM_RFD	1024
176#define NUM_FBRS		2
177
178#define MAX_PACKETS_HANDLED	256
179#define ET131X_MIN_MTU		64
180#define ET131X_MAX_MTU		9216
181
182#define ALCATEL_MULTICAST_PKT	0x01000000
183#define ALCATEL_BROADCAST_PKT	0x02000000
184
185/* typedefs for Free Buffer Descriptors */
186struct fbr_desc {
187	u32 addr_lo;
188	u32 addr_hi;
189	u32 word2;		/* Bits 10-31 reserved, 0-9 descriptor */
190};
191
192/* Packet Status Ring Descriptors
193 *
194 * Word 0:
195 *
196 * top 16 bits are from the Alcatel Status Word as enumerated in
197 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
198 *
199 * 0: hp			hash pass
200 * 1: ipa			IP checksum assist
201 * 2: ipp			IP checksum pass
202 * 3: tcpa			TCP checksum assist
203 * 4: tcpp			TCP checksum pass
204 * 5: wol			WOL Event
205 * 6: rxmac_error		RXMAC Error Indicator
206 * 7: drop			Drop packet
207 * 8: ft			Frame Truncated
208 * 9: jp			Jumbo Packet
209 * 10: vp			VLAN Packet
210 * 11-15: unused
211 * 16: asw_prev_pkt_dropped	e.g. IFG too small on previous
212 * 17: asw_RX_DV_event		short receive event detected
213 * 18: asw_false_carrier_event	bad carrier since last good packet
214 * 19: asw_code_err		one or more nibbles signalled as errors
215 * 20: asw_CRC_err		CRC error
216 * 21: asw_len_chk_err		frame length field incorrect
217 * 22: asw_too_long		frame length > 1518 bytes
218 * 23: asw_OK			valid CRC + no code error
219 * 24: asw_multicast		has a multicast address
220 * 25: asw_broadcast		has a broadcast address
221 * 26: asw_dribble_nibble	spurious bits after EOP
222 * 27: asw_control_frame	is a control frame
223 * 28: asw_pause_frame		is a pause frame
224 * 29: asw_unsupported_op	unsupported OP code
225 * 30: asw_VLAN_tag		VLAN tag detected
226 * 31: asw_long_evt		Rx long event
227 *
228 * Word 1:
229 * 0-15: length			length in bytes
230 * 16-25: bi			Buffer Index
231 * 26-27: ri			Ring Index
232 * 28-31: reserved
233 */
234struct pkt_stat_desc {
235	u32 word0;
236	u32 word1;
237};
238
239/* Typedefs for the RX DMA status word */
240
241/* rx status word 0 holds part of the status bits of the Rx DMA engine
242 * that get copied out to memory by the ET-1310.  Word 0 is a 32 bit word
243 * which contains the Free Buffer ring 0 and 1 available offset.
244 *
245 * bit 0-9 FBR1 offset
246 * bit 10 Wrap flag for FBR1
247 * bit 16-25 FBR0 offset
248 * bit 26 Wrap flag for FBR0
249 */
250
251/* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
252 * that get copied out to memory by the ET-1310.  Word 3 is a 32 bit word
253 * which contains the Packet Status Ring available offset.
254 *
255 * bit 0-15 reserved
256 * bit 16-27 PSRoffset
257 * bit 28 PSRwrap
258 * bit 29-31 unused
259 */
260
261/* struct rx_status_block is a structure representing the status of the Rx
262 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
263 */
264struct rx_status_block {
265	u32 word0;
266	u32 word1;
267};
268
269/* Structure for look-up table holding free buffer ring pointers, addresses
270 * and state.
271 */
272struct fbr_lookup {
273	void		*virt[MAX_DESC_PER_RING_RX];
274	u32		 bus_high[MAX_DESC_PER_RING_RX];
275	u32		 bus_low[MAX_DESC_PER_RING_RX];
276	void		*ring_virtaddr;
277	dma_addr_t	 ring_physaddr;
278	void		*mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
279	dma_addr_t	 mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
280	u32		 local_full;
281	u32		 num_entries;
282	dma_addr_t	 buffsize;
283};
284
285/* struct rx_ring is the structure representing the adaptor's local
286 * reference(s) to the rings
287 */
288struct rx_ring {
289	struct fbr_lookup *fbr[NUM_FBRS];
290	void *ps_ring_virtaddr;
291	dma_addr_t ps_ring_physaddr;
292	u32 local_psr_full;
293	u32 psr_entries;
294
295	struct rx_status_block *rx_status_block;
296	dma_addr_t rx_status_bus;
297
298	struct list_head recv_list;
299	u32 num_ready_recv;
300
301	u32 num_rfd;
302
303	bool unfinished_receives;
304};
305
306/* TX defines */
307/* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
308 *
309 * 0-15: length of packet
310 * 16-27: VLAN tag
311 * 28: VLAN CFI
312 * 29-31: VLAN priority
313 *
314 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
315 *
316 * 0: last packet in the sequence
317 * 1: first packet in the sequence
318 * 2: interrupt the processor when this pkt sent
319 * 3: Control word - no packet data
320 * 4: Issue half-duplex backpressure : XON/XOFF
321 * 5: send pause frame
322 * 6: Tx frame has error
323 * 7: append CRC
324 * 8: MAC override
325 * 9: pad packet
326 * 10: Packet is a Huge packet
327 * 11: append VLAN tag
328 * 12: IP checksum assist
329 * 13: TCP checksum assist
330 * 14: UDP checksum assist
331 */
332#define TXDESC_FLAG_LASTPKT		0x0001
333#define TXDESC_FLAG_FIRSTPKT		0x0002
334#define TXDESC_FLAG_INTPROC		0x0004
335
336/* struct tx_desc represents each descriptor on the ring */
337struct tx_desc {
338	u32 addr_hi;
339	u32 addr_lo;
340	u32 len_vlan;	/* control words how to xmit the */
341	u32 flags;	/* data (detailed above) */
342};
343
344/* The status of the Tx DMA engine it sits in free memory, and is pointed to
345 * by 0x101c / 0x1020. This is a DMA10 type
346 */
347
348/* TCB (Transmit Control Block: Host Side) */
349struct tcb {
350	struct tcb *next;	/* Next entry in ring */
351	u32 count;		/* Used to spot stuck/lost packets */
352	u32 stale;		/* Used to spot stuck/lost packets */
353	struct sk_buff *skb;	/* Network skb we are tied to */
354	u32 index;		/* Ring indexes */
355	u32 index_start;
356};
357
358/* Structure representing our local reference(s) to the ring */
359struct tx_ring {
360	/* TCB (Transmit Control Block) memory and lists */
361	struct tcb *tcb_ring;
362
363	/* List of TCBs that are ready to be used */
364	struct tcb *tcb_qhead;
365	struct tcb *tcb_qtail;
366
367	/* list of TCBs that are currently being sent. */
368	struct tcb *send_head;
369	struct tcb *send_tail;
370	int used;
371
372	/* The actual descriptor ring */
373	struct tx_desc *tx_desc_ring;
374	dma_addr_t tx_desc_ring_pa;
375
376	/* send_idx indicates where we last wrote to in the descriptor ring. */
377	u32 send_idx;
378
379	/* The location of the write-back status block */
380	u32 *tx_status;
381	dma_addr_t tx_status_pa;
382
383	/* Packets since the last IRQ: used for interrupt coalescing */
384	int since_irq;
385};
386
387/* Do not change these values: if changed, then change also in respective
388 * TXdma and Rxdma engines
389 */
390#define NUM_DESC_PER_RING_TX         512    /* TX Do not change these values */
391#define NUM_TCB                      64
392
393/* These values are all superseded by registry entries to facilitate tuning.
394 * Once the desired performance has been achieved, the optimal registry values
395 * should be re-populated to these #defines:
396 */
397#define TX_ERROR_PERIOD             1000
398
399#define LO_MARK_PERCENT_FOR_PSR     15
400#define LO_MARK_PERCENT_FOR_RX      15
401
402/* RFD (Receive Frame Descriptor) */
403struct rfd {
404	struct list_head list_node;
405	struct sk_buff *skb;
406	u32 len;	/* total size of receive frame */
407	u16 bufferindex;
408	u8 ringindex;
409};
410
411/* Flow Control */
412#define FLOW_BOTH	0
413#define FLOW_TXONLY	1
414#define FLOW_RXONLY	2
415#define FLOW_NONE	3
416
417/* Struct to define some device statistics */
418struct ce_stats {
419	u32		multicast_pkts_rcvd;
420	u32		rcvd_pkts_dropped;
421
422	u32		tx_underflows;
423	u32		tx_collisions;
424	u32		tx_excessive_collisions;
425	u32		tx_first_collisions;
426	u32		tx_late_collisions;
427	u32		tx_max_pkt_errs;
428	u32		tx_deferred;
429
430	u32		rx_overflows;
431	u32		rx_length_errs;
432	u32		rx_align_errs;
433	u32		rx_crc_errs;
434	u32		rx_code_violations;
435	u32		rx_other_errs;
436
437	u32		interrupt_status;
438};
439
440/* The private adapter structure */
441struct et131x_adapter {
442	struct net_device *netdev;
443	struct pci_dev *pdev;
444	struct mii_bus *mii_bus;
445	struct napi_struct napi;
446
447	/* Flags that indicate current state of the adapter */
448	u32 flags;
449
450	/* local link state, to determine if a state change has occurred */
451	int link;
452
453	/* Configuration  */
454	u8 rom_addr[ETH_ALEN];
455	u8 addr[ETH_ALEN];
456	bool has_eeprom;
457	u8 eeprom_data[2];
458
459	spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */
460	spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */
461	spinlock_t rcv_lock; /* protects the rx_ring receive list */
462
463	/* Packet Filter and look ahead size */
464	u32 packet_filter;
465
466	/* multicast list */
467	u32 multicast_addr_count;
468	u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
469
470	/* Pointer to the device's PCI register space */
471	struct address_map __iomem *regs;
472
473	/* Registry parameters */
474	u8 wanted_flow;		/* Flow we want for 802.3x flow control */
475	u32 registry_jumbo_packet;	/* Max supported ethernet packet size */
476
477	/* Derived from the registry: */
478	u8 flow;		/* flow control validated by the far-end */
479
480	/* Minimize init-time */
481	struct timer_list error_timer;
482
483	/* variable putting the phy into coma mode when boot up with no cable
484	 * plugged in after 5 seconds
485	 */
486	u8 boot_coma;
487
488	/* Tx Memory Variables */
489	struct tx_ring tx_ring;
490
491	/* Rx Memory Variables */
492	struct rx_ring rx_ring;
493
494	struct ce_stats stats;
495};
496
497static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
498{
499	u32 reg;
500	int i;
501
502	/* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
503	 *    bits 7,1:0 both equal to 1, at least once after reset.
504	 *    Subsequent operations need only to check that bits 1:0 are equal
505	 *    to 1 prior to starting a single byte read/write
506	 */
507	for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
508		if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
509			return -EIO;
510
511		/* I2C idle and Phy Queue Avail both true */
512		if ((reg & 0x3000) == 0x3000) {
513			if (status)
514				*status = reg;
515			return reg & 0xFF;
516		}
517	}
518	return -ETIMEDOUT;
519}
520
521static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
522{
523	struct pci_dev *pdev = adapter->pdev;
524	int index = 0;
525	int retries;
526	int err = 0;
527	int writeok = 0;
528	u32 status;
529	u32 val = 0;
530
531	/* For an EEPROM, an I2C single byte write is defined as a START
532	 * condition followed by the device address, EEPROM address, one byte
533	 * of data and a STOP condition.  The STOP condition will trigger the
534	 * EEPROM's internally timed write cycle to the nonvolatile memory.
535	 * All inputs are disabled during this write cycle and the EEPROM will
536	 * not respond to any access until the internal write is complete.
537	 */
538	err = eeprom_wait_ready(pdev, NULL);
539	if (err < 0)
540		return err;
541
542	 /* 2. Write to the LBCIF Control Register:  bit 7=1, bit 6=1, bit 3=0,
543	  *    and bits 1:0 both =0.  Bit 5 should be set according to the
544	  *    type of EEPROM being accessed (1=two byte addressing, 0=one
545	  *    byte addressing).
546	  */
547	if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
548				  LBCIF_CONTROL_LBCIF_ENABLE |
549					LBCIF_CONTROL_I2C_WRITE))
550		return -EIO;
551
552	/* Prepare EEPROM address for Step 3 */
553	for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
554		if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
555			break;
556		/* Write the data to the LBCIF Data Register (the I2C write
557		 * will begin).
558		 */
559		if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
560			break;
561		/* Monitor bit 1:0 of the LBCIF Status Register.  When bits
562		 * 1:0 are both equal to 1, the I2C write has completed and the
563		 * internal write cycle of the EEPROM is about to start.
564		 * (bits 1:0 = 01 is a legal state while waiting from both
565		 * equal to 1, but bits 1:0 = 10 is invalid and implies that
566		 * something is broken).
567		 */
568		err = eeprom_wait_ready(pdev, &status);
569		if (err < 0)
570			return 0;
571
572		/* Check bit 3 of the LBCIF Status Register.  If  equal to 1,
573		 * an error has occurred.Don't break here if we are revision
574		 * 1, this is so we do a blind write for load bug.
575		 */
576		if ((status & LBCIF_STATUS_GENERAL_ERROR) &&
577		    adapter->pdev->revision == 0)
578			break;
579
580		/* Check bit 2 of the LBCIF Status Register.  If equal to 1 an
581		 * ACK error has occurred on the address phase of the write.
582		 * This could be due to an actual hardware failure or the
583		 * EEPROM may still be in its internal write cycle from a
584		 * previous write. This write operation was ignored and must be
585		  *repeated later.
586		 */
587		if (status & LBCIF_STATUS_ACK_ERROR) {
588			/* This could be due to an actual hardware failure
589			 * or the EEPROM may still be in its internal write
590			 * cycle from a previous write. This write operation
591			 * was ignored and must be repeated later.
592			 */
593			udelay(10);
594			continue;
595		}
596
597		writeok = 1;
598		break;
599	}
600
601	udelay(10);
602
603	while (1) {
604		if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
605					  LBCIF_CONTROL_LBCIF_ENABLE))
606			writeok = 0;
607
608		/* Do read until internal ACK_ERROR goes away meaning write
609		 * completed
610		 */
611		do {
612			pci_write_config_dword(pdev,
613					       LBCIF_ADDRESS_REGISTER,
614					       addr);
615			do {
616				pci_read_config_dword(pdev,
617						      LBCIF_DATA_REGISTER,
618						      &val);
619			} while ((val & 0x00010000) == 0);
620		} while (val & 0x00040000);
621
622		if ((val & 0xFF00) != 0xC000 || index == 10000)
623			break;
624		index++;
625	}
626	return writeok ? 0 : -EIO;
627}
628
629static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
630{
631	struct pci_dev *pdev = adapter->pdev;
632	int err;
633	u32 status;
634
635	/* A single byte read is similar to the single byte write, with the
636	 * exception of the data flow:
637	 */
638	err = eeprom_wait_ready(pdev, NULL);
639	if (err < 0)
640		return err;
641	/* Write to the LBCIF Control Register:  bit 7=1, bit 6=0, bit 3=0,
642	 * and bits 1:0 both =0.  Bit 5 should be set according to the type
643	 * of EEPROM being accessed (1=two byte addressing, 0=one byte
644	 * addressing).
645	 */
646	if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
647				  LBCIF_CONTROL_LBCIF_ENABLE))
648		return -EIO;
649	/* Write the address to the LBCIF Address Register (I2C read will
650	 * begin).
651	 */
652	if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
653		return -EIO;
654	/* Monitor bit 0 of the LBCIF Status Register.  When = 1, I2C read
655	 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
656	 * has occurred).
657	 */
658	err = eeprom_wait_ready(pdev, &status);
659	if (err < 0)
660		return err;
661	/* Regardless of error status, read data byte from LBCIF Data
662	 * Register.
663	 */
664	*pdata = err;
665
666	return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
667}
668
669static int et131x_init_eeprom(struct et131x_adapter *adapter)
670{
671	struct pci_dev *pdev = adapter->pdev;
672	u8 eestatus;
673
674	pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
675
676	/* THIS IS A WORKAROUND:
677	 * I need to call this function twice to get my card in a
678	 * LG M1 Express Dual running. I tried also a msleep before this
679	 * function, because I thought there could be some time conditions
680	 * but it didn't work. Call the whole function twice also work.
681	 */
682	if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
683		dev_err(&pdev->dev,
684			"Could not read PCI config space for EEPROM Status\n");
685		return -EIO;
686	}
687
688	/* Determine if the error(s) we care about are present. If they are
689	 * present we need to fail.
690	 */
691	if (eestatus & 0x4C) {
692		int write_failed = 0;
693
694		if (pdev->revision == 0x01) {
695			int	i;
696			static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
697
698			/* Re-write the first 4 bytes if we have an eeprom
699			 * present and the revision id is 1, this fixes the
700			 * corruption seen with 1310 B Silicon
701			 */
702			for (i = 0; i < 3; i++)
703				if (eeprom_write(adapter, i, eedata[i]) < 0)
704					write_failed = 1;
705		}
706		if (pdev->revision  != 0x01 || write_failed) {
707			dev_err(&pdev->dev,
708				"Fatal EEPROM Status Error - 0x%04x\n",
709				eestatus);
710
711			/* This error could mean that there was an error
712			 * reading the eeprom or that the eeprom doesn't exist.
713			 * We will treat each case the same and not try to
714			 * gather additional information that normally would
715			 * come from the eeprom, like MAC Address
716			 */
717			adapter->has_eeprom = false;
718			return -EIO;
719		}
720	}
721	adapter->has_eeprom = true;
722
723	/* Read the EEPROM for information regarding LED behavior. Refer to
724	 * et131x_xcvr_init() for its use.
725	 */
726	eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
727	eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
728
729	if (adapter->eeprom_data[0] != 0xcd)
730		/* Disable all optional features */
731		adapter->eeprom_data[1] = 0x00;
732
733	return 0;
734}
735
736static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
737{
738	/* Setup the receive dma configuration register for normal operation */
739	u32 csr =  ET_RXDMA_CSR_FBR1_ENABLE;
740	struct rx_ring *rx_ring = &adapter->rx_ring;
741
742	if (rx_ring->fbr[1]->buffsize == 4096)
743		csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
744	else if (rx_ring->fbr[1]->buffsize == 8192)
745		csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
746	else if (rx_ring->fbr[1]->buffsize == 16384)
747		csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
748
749	csr |= ET_RXDMA_CSR_FBR0_ENABLE;
750	if (rx_ring->fbr[0]->buffsize == 256)
751		csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
752	else if (rx_ring->fbr[0]->buffsize == 512)
753		csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
754	else if (rx_ring->fbr[0]->buffsize == 1024)
755		csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
756	writel(csr, &adapter->regs->rxdma.csr);
757
758	csr = readl(&adapter->regs->rxdma.csr);
759	if (csr & ET_RXDMA_CSR_HALT_STATUS) {
760		udelay(5);
761		csr = readl(&adapter->regs->rxdma.csr);
762		if (csr & ET_RXDMA_CSR_HALT_STATUS) {
763			dev_err(&adapter->pdev->dev,
764				"RX Dma failed to exit halt state. CSR 0x%08x\n",
765				csr);
766		}
767	}
768}
769
770static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
771{
772	u32 csr;
773	/* Setup the receive dma configuration register */
774	writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
775	       &adapter->regs->rxdma.csr);
776	csr = readl(&adapter->regs->rxdma.csr);
777	if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
778		udelay(5);
779		csr = readl(&adapter->regs->rxdma.csr);
780		if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
781			dev_err(&adapter->pdev->dev,
782				"RX Dma failed to enter halt state. CSR 0x%08x\n",
783				csr);
784	}
785}
786
787static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
788{
789	/* Setup the transmit dma configuration register for normal
790	 * operation
791	 */
792	writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
793	       &adapter->regs->txdma.csr);
794}
795
796static inline void add_10bit(u32 *v, int n)
797{
798	*v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
799}
800
801static inline void add_12bit(u32 *v, int n)
802{
803	*v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
804}
805
806static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
807{
808	struct mac_regs __iomem *macregs = &adapter->regs->mac;
809	u32 station1;
810	u32 station2;
811	u32 ipg;
812
813	/* First we need to reset everything.  Write to MAC configuration
814	 * register 1 to perform reset.
815	 */
816	writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET  |
817	       ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
818	       ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
819	       &macregs->cfg1);
820
821	/* Next lets configure the MAC Inter-packet gap register */
822	ipg = 0x38005860;		/* IPG1 0x38 IPG2 0x58 B2B 0x60 */
823	ipg |= 0x50 << 8;		/* ifg enforce 0x50 */
824	writel(ipg, &macregs->ipg);
825
826	/* Next lets configure the MAC Half Duplex register */
827	/* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
828	writel(0x00A1F037, &macregs->hfdp);
829
830	/* Next lets configure the MAC Interface Control register */
831	writel(0, &macregs->if_ctrl);
832
833	writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
834
835	/* Next lets configure the MAC Station Address register.  These
836	 * values are read from the EEPROM during initialization and stored
837	 * in the adapter structure.  We write what is stored in the adapter
838	 * structure to the MAC Station Address registers high and low.  This
839	 * station address is used for generating and checking pause control
840	 * packets.
841	 */
842	station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
843		   (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
844	station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
845		   (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
846		   (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
847		    adapter->addr[2];
848	writel(station1, &macregs->station_addr_1);
849	writel(station2, &macregs->station_addr_2);
850
851	/* Max ethernet packet in bytes that will be passed by the mac without
852	 * being truncated.  Allow the MAC to pass 4 more than our max packet
853	 * size.  This is 4 for the Ethernet CRC.
854	 *
855	 * Packets larger than (registry_jumbo_packet) that do not contain a
856	 * VLAN ID will be dropped by the Rx function.
857	 */
858	writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
859
860	/* clear out MAC config reset */
861	writel(0, &macregs->cfg1);
862}
863
864static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
865{
866	int32_t delay = 0;
867	struct mac_regs __iomem *mac = &adapter->regs->mac;
868	struct phy_device *phydev = adapter->netdev->phydev;
869	u32 cfg1;
870	u32 cfg2;
871	u32 ifctrl;
872	u32 ctl;
873
874	ctl = readl(&adapter->regs->txmac.ctl);
875	cfg1 = readl(&mac->cfg1);
876	cfg2 = readl(&mac->cfg2);
877	ifctrl = readl(&mac->if_ctrl);
878
879	/* Set up the if mode bits */
880	cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
881	if (phydev->speed == SPEED_1000) {
882		cfg2 |= ET_MAC_CFG2_IFMODE_1000;
883		ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
884	} else {
885		cfg2 |= ET_MAC_CFG2_IFMODE_100;
886		ifctrl |= ET_MAC_IFCTRL_PHYMODE;
887	}
888
889	cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
890							ET_MAC_CFG1_TX_FLOW;
891
892	cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
893	if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH)
894		cfg1 |= ET_MAC_CFG1_RX_FLOW;
895	writel(cfg1, &mac->cfg1);
896
897	/* Now we need to initialize the MAC Configuration 2 register */
898	/* preamble 7, check length, huge frame off, pad crc, crc enable
899	 * full duplex off
900	 */
901	cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
902	cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
903	cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
904	cfg2 |=	ET_MAC_CFG2_IFMODE_CRC_ENABLE;
905	cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
906	cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
907
908	if (phydev->duplex == DUPLEX_FULL)
909		cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
910
911	ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
912	if (phydev->duplex == DUPLEX_HALF)
913		ifctrl |= ET_MAC_IFCTRL_GHDMODE;
914
915	writel(ifctrl, &mac->if_ctrl);
916	writel(cfg2, &mac->cfg2);
917
918	do {
919		udelay(10);
920		delay++;
921		cfg1 = readl(&mac->cfg1);
922	} while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
923
924	if (delay == 100) {
925		dev_warn(&adapter->pdev->dev,
926			 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
927			 cfg1);
928	}
929
930	ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
931	writel(ctl, &adapter->regs->txmac.ctl);
932
933	if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
934		et131x_rx_dma_enable(adapter);
935		et131x_tx_dma_enable(adapter);
936	}
937}
938
939static int et1310_in_phy_coma(struct et131x_adapter *adapter)
940{
941	u32 pmcsr = readl(&adapter->regs->global.pm_csr);
942
943	return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
944}
945
946static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
947{
948	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
949	u32 hash1 = 0;
950	u32 hash2 = 0;
951	u32 hash3 = 0;
952	u32 hash4 = 0;
953
954	/* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
955	 * the multi-cast LIST.  If it is NOT specified, (and "ALL" is not
956	 * specified) then we should pass NO multi-cast addresses to the
957	 * driver.
958	 */
959	if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
960		int i;
961
962		/* Loop through our multicast array and set up the device */
963		for (i = 0; i < adapter->multicast_addr_count; i++) {
964			u32 result;
965
966			result = ether_crc(6, adapter->multicast_list[i]);
967
968			result = (result & 0x3F800000) >> 23;
969
970			if (result < 32) {
971				hash1 |= (1 << result);
972			} else if ((31 < result) && (result < 64)) {
973				result -= 32;
974				hash2 |= (1 << result);
975			} else if ((63 < result) && (result < 96)) {
976				result -= 64;
977				hash3 |= (1 << result);
978			} else {
979				result -= 96;
980				hash4 |= (1 << result);
981			}
982		}
983	}
984
985	/* Write out the new hash to the device */
986	if (!et1310_in_phy_coma(adapter)) {
987		writel(hash1, &rxmac->multi_hash1);
988		writel(hash2, &rxmac->multi_hash2);
989		writel(hash3, &rxmac->multi_hash3);
990		writel(hash4, &rxmac->multi_hash4);
991	}
992}
993
994static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
995{
996	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
997	u32 uni_pf1;
998	u32 uni_pf2;
999	u32 uni_pf3;
1000
1001	/* Set up unicast packet filter reg 3 to be the first two octets of
1002	 * the MAC address for both address
1003	 *
1004	 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1005	 * MAC address for second address
1006	 *
1007	 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1008	 * MAC address for first address
1009	 */
1010	uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1011		  (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1012		  (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1013		   adapter->addr[1];
1014
1015	uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1016		  (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1017		  (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1018		   adapter->addr[5];
1019
1020	uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1021		  (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1022		  (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1023		   adapter->addr[5];
1024
1025	if (!et1310_in_phy_coma(adapter)) {
1026		writel(uni_pf1, &rxmac->uni_pf_addr1);
1027		writel(uni_pf2, &rxmac->uni_pf_addr2);
1028		writel(uni_pf3, &rxmac->uni_pf_addr3);
1029	}
1030}
1031
1032static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1033{
1034	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1035	struct phy_device *phydev = adapter->netdev->phydev;
1036	u32 sa_lo;
1037	u32 sa_hi = 0;
1038	u32 pf_ctrl = 0;
1039	u32 __iomem *wolw;
1040
1041	/* Disable the MAC while it is being configured (also disable WOL) */
1042	writel(0x8, &rxmac->ctrl);
1043
1044	/* Initialize WOL to disabled. */
1045	writel(0, &rxmac->crc0);
1046	writel(0, &rxmac->crc12);
1047	writel(0, &rxmac->crc34);
1048
1049	/* We need to set the WOL mask0 - mask4 next.  We initialize it to
1050	 * its default Values of 0x00000000 because there are not WOL masks
1051	 * as of this time.
1052	 */
1053	for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++)
1054		writel(0, wolw);
1055
1056	/* Lets setup the WOL Source Address */
1057	sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1058		(adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1059		(adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1060		 adapter->addr[5];
1061	writel(sa_lo, &rxmac->sa_lo);
1062
1063	sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1064		       adapter->addr[1];
1065	writel(sa_hi, &rxmac->sa_hi);
1066
1067	/* Disable all Packet Filtering */
1068	writel(0, &rxmac->pf_ctrl);
1069
1070	/* Let's initialize the Unicast Packet filtering address */
1071	if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1072		et1310_setup_device_for_unicast(adapter);
1073		pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1074	} else {
1075		writel(0, &rxmac->uni_pf_addr1);
1076		writel(0, &rxmac->uni_pf_addr2);
1077		writel(0, &rxmac->uni_pf_addr3);
1078	}
1079
1080	/* Let's initialize the Multicast hash */
1081	if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1082		pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1083		et1310_setup_device_for_multicast(adapter);
1084	}
1085
1086	/* Runt packet filtering.  Didn't work in version A silicon. */
1087	pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1088	pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1089
1090	if (adapter->registry_jumbo_packet > 8192)
1091		/* In order to transmit jumbo packets greater than 8k, the
1092		 * FIFO between RxMAC and RxDMA needs to be reduced in size
1093		 * to (16k - Jumbo packet size).  In order to implement this,
1094		 * we must use "cut through" mode in the RxMAC, which chops
1095		 * packets down into segments which are (max_size * 16).  In
1096		 * this case we selected 256 bytes, since this is the size of
1097		 * the PCI-Express TLP's that the 1310 uses.
1098		 *
1099		 * seg_en on, fc_en off, size 0x10
1100		 */
1101		writel(0x41, &rxmac->mcif_ctrl_max_seg);
1102	else
1103		writel(0, &rxmac->mcif_ctrl_max_seg);
1104
1105	writel(0, &rxmac->mcif_water_mark);
1106	writel(0, &rxmac->mif_ctrl);
1107	writel(0, &rxmac->space_avail);
1108
1109	/* Initialize the mif_ctrl register
1110	 * bit 3:  Receive code error. One or more nibbles were signaled as
1111	 *	   errors  during the reception of the packet.  Clear this
1112	 *	   bit in Gigabit, set it in 100Mbit.  This was derived
1113	 *	   experimentally at UNH.
1114	 * bit 4:  Receive CRC error. The packet's CRC did not match the
1115	 *	   internally generated CRC.
1116	 * bit 5:  Receive length check error. Indicates that frame length
1117	 *	   field value in the packet does not match the actual data
1118	 *	   byte length and is not a type field.
1119	 * bit 16: Receive frame truncated.
1120	 * bit 17: Drop packet enable
1121	 */
1122	if (phydev && phydev->speed == SPEED_100)
1123		writel(0x30038, &rxmac->mif_ctrl);
1124	else
1125		writel(0x30030, &rxmac->mif_ctrl);
1126
1127	/* Finally we initialize RxMac to be enabled & WOL disabled.  Packet
1128	 * filter is always enabled since it is where the runt packets are
1129	 * supposed to be dropped.  For version A silicon, runt packet
1130	 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1131	 * but we still leave the packet filter on.
1132	 */
1133	writel(pf_ctrl, &rxmac->pf_ctrl);
1134	writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1135}
1136
1137static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1138{
1139	struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1140
1141	/* We need to update the Control Frame Parameters
1142	 * cfpt - control frame pause timer set to 64 (0x40)
1143	 * cfep - control frame extended pause timer set to 0x0
1144	 */
1145	if (adapter->flow == FLOW_NONE)
1146		writel(0, &txmac->cf_param);
1147	else
1148		writel(0x40, &txmac->cf_param);
1149}
1150
1151static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1152{
1153	struct macstat_regs __iomem *macstat = &adapter->regs->macstat;
1154	u32 __iomem *reg;
1155
1156	/* initialize all the macstat registers to zero on the device  */
1157	for (reg = &macstat->txrx_0_64_byte_frames;
1158	     reg <= &macstat->carry_reg2; reg++)
1159		writel(0, reg);
1160
1161	/* Unmask any counters that we want to track the overflow of.
1162	 * Initially this will be all counters.  It may become clear later
1163	 * that we do not need to track all counters.
1164	 */
1165	writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1166	writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1167}
1168
1169static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1170			       u8 reg, u16 *value)
1171{
1172	struct mac_regs __iomem *mac = &adapter->regs->mac;
1173	int status = 0;
1174	u32 delay = 0;
1175	u32 mii_addr;
1176	u32 mii_cmd;
1177	u32 mii_indicator;
1178
1179	/* Save a local copy of the registers we are dealing with so we can
1180	 * set them back
1181	 */
1182	mii_addr = readl(&mac->mii_mgmt_addr);
1183	mii_cmd = readl(&mac->mii_mgmt_cmd);
1184
1185	/* Stop the current operation */
1186	writel(0, &mac->mii_mgmt_cmd);
1187
1188	/* Set up the register we need to read from on the correct PHY */
1189	writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1190
1191	writel(0x1, &mac->mii_mgmt_cmd);
1192
1193	do {
1194		udelay(50);
1195		delay++;
1196		mii_indicator = readl(&mac->mii_mgmt_indicator);
1197	} while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1198
1199	/* If we hit the max delay, we could not read the register */
1200	if (delay == 50) {
1201		dev_warn(&adapter->pdev->dev,
1202			 "reg 0x%08x could not be read\n", reg);
1203		dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1204			 mii_indicator);
1205
1206		status = -EIO;
1207		goto out;
1208	}
1209
1210	/* If we hit here we were able to read the register and we need to
1211	 * return the value to the caller
1212	 */
1213	*value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1214
1215out:
1216	/* Stop the read operation */
1217	writel(0, &mac->mii_mgmt_cmd);
1218
1219	/* set the registers we touched back to the state at which we entered
1220	 * this function
1221	 */
1222	writel(mii_addr, &mac->mii_mgmt_addr);
1223	writel(mii_cmd, &mac->mii_mgmt_cmd);
1224
1225	return status;
1226}
1227
1228static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1229{
1230	struct phy_device *phydev = adapter->netdev->phydev;
1231
1232	if (!phydev)
1233		return -EIO;
1234
1235	return et131x_phy_mii_read(adapter, phydev->mdio.addr, reg, value);
1236}
1237
1238static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg,
1239			    u16 value)
1240{
1241	struct mac_regs __iomem *mac = &adapter->regs->mac;
1242	int status = 0;
1243	u32 delay = 0;
1244	u32 mii_addr;
1245	u32 mii_cmd;
1246	u32 mii_indicator;
1247
1248	/* Save a local copy of the registers we are dealing with so we can
1249	 * set them back
1250	 */
1251	mii_addr = readl(&mac->mii_mgmt_addr);
1252	mii_cmd = readl(&mac->mii_mgmt_cmd);
1253
1254	/* Stop the current operation */
1255	writel(0, &mac->mii_mgmt_cmd);
1256
1257	/* Set up the register we need to write to on the correct PHY */
1258	writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1259
1260	/* Add the value to write to the registers to the mac */
1261	writel(value, &mac->mii_mgmt_ctrl);
1262
1263	do {
1264		udelay(50);
1265		delay++;
1266		mii_indicator = readl(&mac->mii_mgmt_indicator);
1267	} while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1268
1269	/* If we hit the max delay, we could not write the register */
1270	if (delay == 100) {
1271		u16 tmp;
1272
1273		dev_warn(&adapter->pdev->dev,
1274			 "reg 0x%08x could not be written", reg);
1275		dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1276			 mii_indicator);
1277		dev_warn(&adapter->pdev->dev, "command is  0x%08x\n",
1278			 readl(&mac->mii_mgmt_cmd));
1279
1280		et131x_mii_read(adapter, reg, &tmp);
1281
1282		status = -EIO;
1283	}
1284	/* Stop the write operation */
1285	writel(0, &mac->mii_mgmt_cmd);
1286
1287	/* set the registers we touched back to the state at which we entered
1288	 * this function
1289	 */
1290	writel(mii_addr, &mac->mii_mgmt_addr);
1291	writel(mii_cmd, &mac->mii_mgmt_cmd);
1292
1293	return status;
1294}
1295
1296static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1297				    u16 regnum,
1298				    u16 bitnum,
1299				    u8 *value)
1300{
1301	u16 reg;
1302	u16 mask = 1 << bitnum;
1303
1304	et131x_mii_read(adapter, regnum, &reg);
1305
1306	*value = (reg & mask) >> bitnum;
1307}
1308
1309static void et1310_config_flow_control(struct et131x_adapter *adapter)
1310{
1311	struct phy_device *phydev = adapter->netdev->phydev;
1312
1313	if (phydev->duplex == DUPLEX_HALF) {
1314		adapter->flow = FLOW_NONE;
1315	} else {
1316		char remote_pause, remote_async_pause;
1317
1318		et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1319		et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
1320
1321		if (remote_pause && remote_async_pause) {
1322			adapter->flow = adapter->wanted_flow;
1323		} else if (remote_pause && !remote_async_pause) {
1324			if (adapter->wanted_flow == FLOW_BOTH)
1325				adapter->flow = FLOW_BOTH;
1326			else
1327				adapter->flow = FLOW_NONE;
1328		} else if (!remote_pause && !remote_async_pause) {
1329			adapter->flow = FLOW_NONE;
1330		} else {
1331			if (adapter->wanted_flow == FLOW_BOTH)
1332				adapter->flow = FLOW_RXONLY;
1333			else
1334				adapter->flow = FLOW_NONE;
1335		}
1336	}
1337}
1338
1339/* et1310_update_macstat_host_counters - Update local copy of the statistics */
1340static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1341{
1342	struct ce_stats *stats = &adapter->stats;
1343	struct macstat_regs __iomem *macstat =
1344		&adapter->regs->macstat;
1345
1346	stats->tx_collisions	       += readl(&macstat->tx_total_collisions);
1347	stats->tx_first_collisions     += readl(&macstat->tx_single_collisions);
1348	stats->tx_deferred	       += readl(&macstat->tx_deferred);
1349	stats->tx_excessive_collisions +=
1350				readl(&macstat->tx_multiple_collisions);
1351	stats->tx_late_collisions      += readl(&macstat->tx_late_collisions);
1352	stats->tx_underflows	       += readl(&macstat->tx_undersize_frames);
1353	stats->tx_max_pkt_errs	       += readl(&macstat->tx_oversize_frames);
1354
1355	stats->rx_align_errs        += readl(&macstat->rx_align_errs);
1356	stats->rx_crc_errs          += readl(&macstat->rx_code_errs);
1357	stats->rcvd_pkts_dropped    += readl(&macstat->rx_drops);
1358	stats->rx_overflows         += readl(&macstat->rx_oversize_packets);
1359	stats->rx_code_violations   += readl(&macstat->rx_fcs_errs);
1360	stats->rx_length_errs       += readl(&macstat->rx_frame_len_errs);
1361	stats->rx_other_errs        += readl(&macstat->rx_fragment_packets);
1362}
1363
1364/* et1310_handle_macstat_interrupt
1365 *
1366 * One of the MACSTAT counters has wrapped.  Update the local copy of
1367 * the statistics held in the adapter structure, checking the "wrap"
1368 * bit for each counter.
1369 */
1370static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1371{
1372	u32 carry_reg1;
1373	u32 carry_reg2;
1374
1375	/* Read the interrupt bits from the register(s).  These are Clear On
1376	 * Write.
1377	 */
1378	carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1379	carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1380
1381	writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1382	writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1383
1384	/* We need to do update the host copy of all the MAC_STAT counters.
1385	 * For each counter, check it's overflow bit.  If the overflow bit is
1386	 * set, then increment the host version of the count by one complete
1387	 * revolution of the counter.  This routine is called when the counter
1388	 * block indicates that one of the counters has wrapped.
1389	 */
1390	if (carry_reg1 & (1 << 14))
1391		adapter->stats.rx_code_violations	+= COUNTER_WRAP_16_BIT;
1392	if (carry_reg1 & (1 << 8))
1393		adapter->stats.rx_align_errs	+= COUNTER_WRAP_12_BIT;
1394	if (carry_reg1 & (1 << 7))
1395		adapter->stats.rx_length_errs	+= COUNTER_WRAP_16_BIT;
1396	if (carry_reg1 & (1 << 2))
1397		adapter->stats.rx_other_errs	+= COUNTER_WRAP_16_BIT;
1398	if (carry_reg1 & (1 << 6))
1399		adapter->stats.rx_crc_errs	+= COUNTER_WRAP_16_BIT;
1400	if (carry_reg1 & (1 << 3))
1401		adapter->stats.rx_overflows	+= COUNTER_WRAP_16_BIT;
1402	if (carry_reg1 & (1 << 0))
1403		adapter->stats.rcvd_pkts_dropped	+= COUNTER_WRAP_16_BIT;
1404	if (carry_reg2 & (1 << 16))
1405		adapter->stats.tx_max_pkt_errs	+= COUNTER_WRAP_12_BIT;
1406	if (carry_reg2 & (1 << 15))
1407		adapter->stats.tx_underflows	+= COUNTER_WRAP_12_BIT;
1408	if (carry_reg2 & (1 << 6))
1409		adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1410	if (carry_reg2 & (1 << 8))
1411		adapter->stats.tx_deferred	+= COUNTER_WRAP_12_BIT;
1412	if (carry_reg2 & (1 << 5))
1413		adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1414	if (carry_reg2 & (1 << 4))
1415		adapter->stats.tx_late_collisions	+= COUNTER_WRAP_12_BIT;
1416	if (carry_reg2 & (1 << 2))
1417		adapter->stats.tx_collisions	+= COUNTER_WRAP_12_BIT;
1418}
1419
1420static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1421{
1422	struct net_device *netdev = bus->priv;
1423	struct et131x_adapter *adapter = netdev_priv(netdev);
1424	u16 value;
1425	int ret;
1426
1427	ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1428
1429	if (ret < 0)
1430		return ret;
1431
1432	return value;
1433}
1434
1435static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1436			     int reg, u16 value)
1437{
1438	struct net_device *netdev = bus->priv;
1439	struct et131x_adapter *adapter = netdev_priv(netdev);
1440
1441	return et131x_mii_write(adapter, phy_addr, reg, value);
1442}
1443
1444/*	et1310_phy_power_switch	-	PHY power control
1445 *	@adapter: device to control
1446 *	@down: true for off/false for back on
1447 *
1448 *	one hundred, ten, one thousand megs
1449 *	How would you like to have your LAN accessed
1450 *	Can't you see that this code processed
1451 *	Phy power, phy power..
1452 */
1453static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
1454{
1455	u16 data;
1456	struct  phy_device *phydev = adapter->netdev->phydev;
1457
1458	et131x_mii_read(adapter, MII_BMCR, &data);
1459	data &= ~BMCR_PDOWN;
1460	if (down)
1461		data |= BMCR_PDOWN;
1462	et131x_mii_write(adapter, phydev->mdio.addr, MII_BMCR, data);
1463}
1464
1465/* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1466static void et131x_xcvr_init(struct et131x_adapter *adapter)
1467{
1468	u16 lcr2;
1469	struct  phy_device *phydev = adapter->netdev->phydev;
1470
1471	/* Set the LED behavior such that LED 1 indicates speed (off =
1472	 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1473	 * link and activity (on for link, blink off for activity).
1474	 *
1475	 * NOTE: Some customizations have been added here for specific
1476	 * vendors; The LED behavior is now determined by vendor data in the
1477	 * EEPROM. However, the above description is the default.
1478	 */
1479	if ((adapter->eeprom_data[1] & 0x4) == 0) {
1480		et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1481
1482		lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1483		lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1484
1485		if ((adapter->eeprom_data[1] & 0x8) == 0)
1486			lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1487		else
1488			lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1489
1490		et131x_mii_write(adapter, phydev->mdio.addr, PHY_LED_2, lcr2);
1491	}
1492}
1493
1494/* et131x_configure_global_regs	- configure JAGCore global regs */
1495static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1496{
1497	struct global_regs __iomem *regs = &adapter->regs->global;
1498
1499	writel(0, &regs->rxq_start_addr);
1500	writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1501
1502	if (adapter->registry_jumbo_packet < 2048) {
1503		/* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1504		 * block of RAM that the driver can split between Tx
1505		 * and Rx as it desires.  Our default is to split it
1506		 * 50/50:
1507		 */
1508		writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1509		writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1510	} else if (adapter->registry_jumbo_packet < 8192) {
1511		/* For jumbo packets > 2k but < 8k, split 50-50. */
1512		writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1513		writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1514	} else {
1515		/* 9216 is the only packet size greater than 8k that
1516		 * is available. The Tx buffer has to be big enough
1517		 * for one whole packet on the Tx side. We'll make
1518		 * the Tx 9408, and give the rest to Rx
1519		 */
1520		writel(0x01b3, &regs->rxq_end_addr);
1521		writel(0x01b4, &regs->txq_start_addr);
1522	}
1523
1524	/* Initialize the loopback register. Disable all loopbacks. */
1525	writel(0, &regs->loopback);
1526
1527	writel(0, &regs->msi_config);
1528
1529	/* By default, disable the watchdog timer.  It will be enabled when
1530	 * a packet is queued.
1531	 */
1532	writel(0, &regs->watchdog_timer);
1533}
1534
1535/* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1536static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1537{
1538	struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1539	struct rx_ring *rx_local = &adapter->rx_ring;
1540	struct fbr_desc *fbr_entry;
1541	u32 entry;
1542	u32 psr_num_des;
1543	unsigned long flags;
1544	u8 id;
1545
1546	et131x_rx_dma_disable(adapter);
1547
1548	/* Load the completion writeback physical address */
1549	writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1550	writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1551
1552	memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1553
1554	/* Set the address and parameters of the packet status ring */
1555	writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1556	writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1557	writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des);
1558	writel(0, &rx_dma->psr_full_offset);
1559
1560	psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1561	writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1562	       &rx_dma->psr_min_des);
1563
1564	spin_lock_irqsave(&adapter->rcv_lock, flags);
1565
1566	/* These local variables track the PSR in the adapter structure */
1567	rx_local->local_psr_full = 0;
1568
1569	for (id = 0; id < NUM_FBRS; id++) {
1570		u32 __iomem *num_des;
1571		u32 __iomem *full_offset;
1572		u32 __iomem *min_des;
1573		u32 __iomem *base_hi;
1574		u32 __iomem *base_lo;
1575		struct fbr_lookup *fbr = rx_local->fbr[id];
1576
1577		if (id == 0) {
1578			num_des = &rx_dma->fbr0_num_des;
1579			full_offset = &rx_dma->fbr0_full_offset;
1580			min_des = &rx_dma->fbr0_min_des;
1581			base_hi = &rx_dma->fbr0_base_hi;
1582			base_lo = &rx_dma->fbr0_base_lo;
1583		} else {
1584			num_des = &rx_dma->fbr1_num_des;
1585			full_offset = &rx_dma->fbr1_full_offset;
1586			min_des = &rx_dma->fbr1_min_des;
1587			base_hi = &rx_dma->fbr1_base_hi;
1588			base_lo = &rx_dma->fbr1_base_lo;
1589		}
1590
1591		/* Now's the best time to initialize FBR contents */
1592		fbr_entry = fbr->ring_virtaddr;
1593		for (entry = 0; entry < fbr->num_entries; entry++) {
1594			fbr_entry->addr_hi = fbr->bus_high[entry];
1595			fbr_entry->addr_lo = fbr->bus_low[entry];
1596			fbr_entry->word2 = entry;
1597			fbr_entry++;
1598		}
1599
1600		/* Set the address and parameters of Free buffer ring 1 and 0 */
1601		writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1602		writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1603		writel(fbr->num_entries - 1, num_des);
1604		writel(ET_DMA10_WRAP, full_offset);
1605
1606		/* This variable tracks the free buffer ring 1 full position,
1607		 * so it has to match the above.
1608		 */
1609		fbr->local_full = ET_DMA10_WRAP;
1610		writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1611		       min_des);
1612	}
1613
1614	/* Program the number of packets we will receive before generating an
1615	 * interrupt.
1616	 * For version B silicon, this value gets updated once autoneg is
1617	 *complete.
1618	 */
1619	writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1620
1621	/* The "time_done" is not working correctly to coalesce interrupts
1622	 * after a given time period, but rather is giving us an interrupt
1623	 * regardless of whether we have received packets.
1624	 * This value gets updated once autoneg is complete.
1625	 */
1626	writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1627
1628	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1629}
1630
1631/* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1632 *
1633 * Configure the transmit engine with the ring buffers we have created
1634 * and prepare it for use.
1635 */
1636static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1637{
1638	struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1639	struct tx_ring *tx_ring = &adapter->tx_ring;
1640
1641	/* Load the hardware with the start of the transmit descriptor ring. */
1642	writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1643	writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
1644
1645	/* Initialise the transmit DMA engine */
1646	writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1647
1648	/* Load the completion writeback physical address */
1649	writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1650	writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
1651
1652	*tx_ring->tx_status = 0;
1653
1654	writel(0, &txdma->service_request);
1655	tx_ring->send_idx = 0;
1656}
1657
1658/* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1659static void et131x_adapter_setup(struct et131x_adapter *adapter)
1660{
1661	et131x_configure_global_regs(adapter);
1662	et1310_config_mac_regs1(adapter);
1663
1664	/* Configure the MMC registers */
1665	/* All we need to do is initialize the Memory Control Register */
1666	writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1667
1668	et1310_config_rxmac_regs(adapter);
1669	et1310_config_txmac_regs(adapter);
1670
1671	et131x_config_rx_dma_regs(adapter);
1672	et131x_config_tx_dma_regs(adapter);
1673
1674	et1310_config_macstat_regs(adapter);
1675
1676	et1310_phy_power_switch(adapter, 0);
1677	et131x_xcvr_init(adapter);
1678}
1679
1680/* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1681static void et131x_soft_reset(struct et131x_adapter *adapter)
1682{
1683	u32 reg;
1684
1685	/* Disable MAC Core */
1686	reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1687	      ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1688	      ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1689	writel(reg, &adapter->regs->mac.cfg1);
1690
1691	reg = ET_RESET_ALL;
1692	writel(reg, &adapter->regs->global.sw_reset);
1693
1694	reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1695	      ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1696	writel(reg, &adapter->regs->mac.cfg1);
1697	writel(0, &adapter->regs->mac.cfg1);
1698}
1699
1700static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1701{
1702	u32 mask;
1703
1704	if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
1705		mask = INT_MASK_ENABLE;
1706	else
1707		mask = INT_MASK_ENABLE_NO_FLOW;
1708
1709	writel(mask, &adapter->regs->global.int_mask);
1710}
1711
1712static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1713{
1714	writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1715}
1716
1717static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
1718{
1719	/* Setup the transmit dma configuration register */
1720	writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
1721	       &adapter->regs->txdma.csr);
1722}
1723
1724static void et131x_enable_txrx(struct net_device *netdev)
1725{
1726	struct et131x_adapter *adapter = netdev_priv(netdev);
1727
1728	et131x_rx_dma_enable(adapter);
1729	et131x_tx_dma_enable(adapter);
1730
1731	if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
1732		et131x_enable_interrupts(adapter);
1733
1734	netif_start_queue(netdev);
1735}
1736
1737static void et131x_disable_txrx(struct net_device *netdev)
1738{
1739	struct et131x_adapter *adapter = netdev_priv(netdev);
1740
1741	netif_stop_queue(netdev);
1742
1743	et131x_rx_dma_disable(adapter);
1744	et131x_tx_dma_disable(adapter);
1745
1746	et131x_disable_interrupts(adapter);
1747}
1748
1749static void et131x_init_send(struct et131x_adapter *adapter)
1750{
1751	int i;
1752	struct tx_ring *tx_ring = &adapter->tx_ring;
1753	struct tcb *tcb = tx_ring->tcb_ring;
1754
1755	tx_ring->tcb_qhead = tcb;
1756
1757	memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1758
1759	for (i = 0; i < NUM_TCB; i++) {
1760		tcb->next = tcb + 1;
1761		tcb++;
1762	}
1763
1764	tcb--;
1765	tx_ring->tcb_qtail = tcb;
1766	tcb->next = NULL;
1767	/* Curr send queue should now be empty */
1768	tx_ring->send_head = NULL;
1769	tx_ring->send_tail = NULL;
1770}
1771
1772/* et1310_enable_phy_coma
1773 *
1774 * driver receive an phy status change interrupt while in D0 and check that
1775 * phy_status is down.
1776 *
1777 *          -- gate off JAGCore;
1778 *          -- set gigE PHY in Coma mode
1779 *          -- wake on phy_interrupt; Perform software reset JAGCore,
1780 *             re-initialize jagcore and gigE PHY
1781 */
1782static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
1783{
1784	u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1785
1786	/* Stop sending packets. */
1787	adapter->flags |= FMP_ADAPTER_LOWER_POWER;
1788
1789	/* Wait for outstanding Receive packets */
1790	et131x_disable_txrx(adapter->netdev);
1791
1792	/* Gate off JAGCore 3 clock domains */
1793	pmcsr &= ~ET_PMCSR_INIT;
1794	writel(pmcsr, &adapter->regs->global.pm_csr);
1795
1796	/* Program gigE PHY in to Coma mode */
1797	pmcsr |= ET_PM_PHY_SW_COMA;
1798	writel(pmcsr, &adapter->regs->global.pm_csr);
1799}
1800
1801static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
1802{
1803	u32 pmcsr;
1804
1805	pmcsr = readl(&adapter->regs->global.pm_csr);
1806
1807	/* Disable phy_sw_coma register and re-enable JAGCore clocks */
1808	pmcsr |= ET_PMCSR_INIT;
1809	pmcsr &= ~ET_PM_PHY_SW_COMA;
1810	writel(pmcsr, &adapter->regs->global.pm_csr);
1811
1812	/* Restore the GbE PHY speed and duplex modes;
1813	 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
1814	 */
1815
1816	/* Re-initialize the send structures */
1817	et131x_init_send(adapter);
1818
1819	/* Bring the device back to the state it was during init prior to
1820	 * autonegotiation being complete.  This way, when we get the auto-neg
1821	 * complete interrupt, we can complete init by calling ConfigMacREGS2.
1822	 */
1823	et131x_soft_reset(adapter);
1824
1825	et131x_adapter_setup(adapter);
1826
1827	/* Allow Tx to restart */
1828	adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
1829
1830	et131x_enable_txrx(adapter->netdev);
1831}
1832
1833static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
1834{
1835	u32 tmp_free_buff_ring = *free_buff_ring;
1836
1837	tmp_free_buff_ring++;
1838	/* This works for all cases where limit < 1024. The 1023 case
1839	 * works because 1023++ is 1024 which means the if condition is not
1840	 * taken but the carry of the bit into the wrap bit toggles the wrap
1841	 * value correctly
1842	 */
1843	if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
1844		tmp_free_buff_ring &= ~ET_DMA10_MASK;
1845		tmp_free_buff_ring ^= ET_DMA10_WRAP;
1846	}
1847	/* For the 1023 case */
1848	tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
1849	*free_buff_ring = tmp_free_buff_ring;
1850	return tmp_free_buff_ring;
1851}
1852
1853/* et131x_rx_dma_memory_alloc
1854 *
1855 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
1856 * and the Packet Status Ring.
1857 */
1858static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
1859{
1860	u8 id;
1861	u32 i, j;
1862	u32 bufsize;
1863	u32 psr_size;
1864	u32 fbr_chunksize;
1865	struct rx_ring *rx_ring = &adapter->rx_ring;
1866	struct fbr_lookup *fbr;
1867
1868	/* Alloc memory for the lookup table */
1869	rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1870	if (rx_ring->fbr[0] == NULL)
1871		return -ENOMEM;
1872	rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1873	if (rx_ring->fbr[1] == NULL)
1874		return -ENOMEM;
1875
1876	/* The first thing we will do is configure the sizes of the buffer
1877	 * rings. These will change based on jumbo packet support.  Larger
1878	 * jumbo packets increases the size of each entry in FBR0, and the
1879	 * number of entries in FBR0, while at the same time decreasing the
1880	 * number of entries in FBR1.
1881	 *
1882	 * FBR1 holds "large" frames, FBR0 holds "small" frames.  If FBR1
1883	 * entries are huge in order to accommodate a "jumbo" frame, then it
1884	 * will have less entries.  Conversely, FBR1 will now be relied upon
1885	 * to carry more "normal" frames, thus it's entry size also increases
1886	 * and the number of entries goes up too (since it now carries
1887	 * "small" + "regular" packets.
1888	 *
1889	 * In this scheme, we try to maintain 512 entries between the two
1890	 * rings. Also, FBR1 remains a constant size - when it's size doubles
1891	 * the number of entries halves.  FBR0 increases in size, however.
1892	 */
1893	if (adapter->registry_jumbo_packet < 2048) {
1894		rx_ring->fbr[0]->buffsize = 256;
1895		rx_ring->fbr[0]->num_entries = 512;
1896		rx_ring->fbr[1]->buffsize = 2048;
1897		rx_ring->fbr[1]->num_entries = 512;
1898	} else if (adapter->registry_jumbo_packet < 4096) {
1899		rx_ring->fbr[0]->buffsize = 512;
1900		rx_ring->fbr[0]->num_entries = 1024;
1901		rx_ring->fbr[1]->buffsize = 4096;
1902		rx_ring->fbr[1]->num_entries = 512;
1903	} else {
1904		rx_ring->fbr[0]->buffsize = 1024;
1905		rx_ring->fbr[0]->num_entries = 768;
1906		rx_ring->fbr[1]->buffsize = 16384;
1907		rx_ring->fbr[1]->num_entries = 128;
1908	}
1909
1910	rx_ring->psr_entries = rx_ring->fbr[0]->num_entries +
1911			       rx_ring->fbr[1]->num_entries;
1912
1913	for (id = 0; id < NUM_FBRS; id++) {
1914		fbr = rx_ring->fbr[id];
1915		/* Allocate an area of memory for Free Buffer Ring */
1916		bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
1917		fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1918							bufsize,
1919							&fbr->ring_physaddr,
1920							GFP_KERNEL);
1921		if (!fbr->ring_virtaddr) {
1922			dev_err(&adapter->pdev->dev,
1923				"Cannot alloc memory for Free Buffer Ring %d\n",
1924				id);
1925			return -ENOMEM;
1926		}
1927	}
1928
1929	for (id = 0; id < NUM_FBRS; id++) {
1930		fbr = rx_ring->fbr[id];
1931		fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
1932
1933		for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
1934			dma_addr_t fbr_physaddr;
1935
1936			fbr->mem_virtaddrs[i] = dma_alloc_coherent(
1937					&adapter->pdev->dev, fbr_chunksize,
1938					&fbr->mem_physaddrs[i],
1939					GFP_KERNEL);
1940
1941			if (!fbr->mem_virtaddrs[i]) {
1942				dev_err(&adapter->pdev->dev,
1943					"Could not alloc memory\n");
1944				return -ENOMEM;
1945			}
1946
1947			/* See NOTE in "Save Physical Address" comment above */
1948			fbr_physaddr = fbr->mem_physaddrs[i];
1949
1950			for (j = 0; j < FBR_CHUNKS; j++) {
1951				u32 k = (i * FBR_CHUNKS) + j;
1952
1953				/* Save the Virtual address of this index for
1954				 * quick access later
1955				 */
1956				fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] +
1957						   (j * fbr->buffsize);
1958
1959				/* now store the physical address in the
1960				 * descriptor so the device can access it
1961				 */
1962				fbr->bus_high[k] = upper_32_bits(fbr_physaddr);
1963				fbr->bus_low[k] = lower_32_bits(fbr_physaddr);
1964				fbr_physaddr += fbr->buffsize;
1965			}
1966		}
1967	}
1968
1969	/* Allocate an area of memory for FIFO of Packet Status ring entries */
1970	psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
1971
1972	rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1973						  psr_size,
1974						  &rx_ring->ps_ring_physaddr,
1975						  GFP_KERNEL);
1976
1977	if (!rx_ring->ps_ring_virtaddr) {
1978		dev_err(&adapter->pdev->dev,
1979			"Cannot alloc memory for Packet Status Ring\n");
1980		return -ENOMEM;
1981	}
1982
1983	/* Allocate an area of memory for writeback of status information */
1984	rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
1985					    sizeof(struct rx_status_block),
1986					    &rx_ring->rx_status_bus,
1987					    GFP_KERNEL);
1988	if (!rx_ring->rx_status_block) {
1989		dev_err(&adapter->pdev->dev,
1990			"Cannot alloc memory for Status Block\n");
1991		return -ENOMEM;
1992	}
1993	rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
1994
1995	/* The RFDs are going to be put on lists later on, so initialize the
1996	 * lists now.
1997	 */
1998	INIT_LIST_HEAD(&rx_ring->recv_list);
1999	return 0;
2000}
2001
2002static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2003{
2004	u8 id;
2005	u32 ii;
2006	u32 bufsize;
2007	u32 psr_size;
2008	struct rfd *rfd;
2009	struct rx_ring *rx_ring = &adapter->rx_ring;
2010	struct fbr_lookup *fbr;
2011
2012	/* Free RFDs and associated packet descriptors */
2013	WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2014
2015	while (!list_empty(&rx_ring->recv_list)) {
2016		rfd = list_entry(rx_ring->recv_list.next,
2017				 struct rfd, list_node);
2018
2019		list_del(&rfd->list_node);
2020		rfd->skb = NULL;
2021		kfree(rfd);
2022	}
2023
2024	/* Free Free Buffer Rings */
2025	for (id = 0; id < NUM_FBRS; id++) {
2026		fbr = rx_ring->fbr[id];
2027
2028		if (!fbr || !fbr->ring_virtaddr)
2029			continue;
2030
2031		/* First the packet memory */
2032		for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) {
2033			if (fbr->mem_virtaddrs[ii]) {
2034				bufsize = fbr->buffsize * FBR_CHUNKS;
2035
2036				dma_free_coherent(&adapter->pdev->dev,
2037						  bufsize,
2038						  fbr->mem_virtaddrs[ii],
2039						  fbr->mem_physaddrs[ii]);
2040
2041				fbr->mem_virtaddrs[ii] = NULL;
2042			}
2043		}
2044
2045		bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2046
2047		dma_free_coherent(&adapter->pdev->dev,
2048				  bufsize,
2049				  fbr->ring_virtaddr,
2050				  fbr->ring_physaddr);
2051
2052		fbr->ring_virtaddr = NULL;
2053	}
2054
2055	/* Free Packet Status Ring */
2056	if (rx_ring->ps_ring_virtaddr) {
2057		psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
2058
2059		dma_free_coherent(&adapter->pdev->dev, psr_size,
2060				  rx_ring->ps_ring_virtaddr,
2061				  rx_ring->ps_ring_physaddr);
2062
2063		rx_ring->ps_ring_virtaddr = NULL;
2064	}
2065
2066	/* Free area of memory for the writeback of status information */
2067	if (rx_ring->rx_status_block) {
2068		dma_free_coherent(&adapter->pdev->dev,
2069				  sizeof(struct rx_status_block),
2070				  rx_ring->rx_status_block,
2071				  rx_ring->rx_status_bus);
2072		rx_ring->rx_status_block = NULL;
2073	}
2074
2075	/* Free the FBR Lookup Table */
2076	kfree(rx_ring->fbr[0]);
2077	kfree(rx_ring->fbr[1]);
2078
2079	/* Reset Counters */
2080	rx_ring->num_ready_recv = 0;
2081}
2082
2083/* et131x_init_recv - Initialize receive data structures */
2084static int et131x_init_recv(struct et131x_adapter *adapter)
2085{
2086	struct rfd *rfd;
2087	u32 rfdct;
2088	struct rx_ring *rx_ring = &adapter->rx_ring;
2089
2090	/* Setup each RFD */
2091	for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2092		rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA);
2093		if (!rfd)
2094			return -ENOMEM;
2095
2096		rfd->skb = NULL;
2097
2098		/* Add this RFD to the recv_list */
2099		list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2100
2101		/* Increment the available RFD's */
2102		rx_ring->num_ready_recv++;
2103	}
2104
2105	return 0;
2106}
2107
2108/* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2109static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2110{
2111	struct phy_device *phydev = adapter->netdev->phydev;
2112
2113	/* For version B silicon, we do not use the RxDMA timer for 10 and 100
2114	 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2115	 */
2116	if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2117		writel(0, &adapter->regs->rxdma.max_pkt_time);
2118		writel(1, &adapter->regs->rxdma.num_pkt_done);
2119	}
2120}
2121
2122/* nic_return_rfd - Recycle a RFD and put it back onto the receive list */
2123static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2124{
2125	struct rx_ring *rx_local = &adapter->rx_ring;
2126	struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2127	u16 buff_index = rfd->bufferindex;
2128	u8 ring_index = rfd->ringindex;
2129	unsigned long flags;
2130	struct fbr_lookup *fbr = rx_local->fbr[ring_index];
2131
2132	/* We don't use any of the OOB data besides status. Otherwise, we
2133	 * need to clean up OOB data
2134	 */
2135	if (buff_index < fbr->num_entries) {
2136		u32 free_buff_ring;
2137		u32 __iomem *offset;
2138		struct fbr_desc *next;
2139
2140		if (ring_index == 0)
2141			offset = &rx_dma->fbr0_full_offset;
2142		else
2143			offset = &rx_dma->fbr1_full_offset;
2144
2145		next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2146		       INDEX10(fbr->local_full);
2147
2148		/* Handle the Free Buffer Ring advancement here. Write
2149		 * the PA / Buffer Index for the returned buffer into
2150		 * the oldest (next to be freed)FBR entry
2151		 */
2152		next->addr_hi = fbr->bus_high[buff_index];
2153		next->addr_lo = fbr->bus_low[buff_index];
2154		next->word2 = buff_index;
2155
2156		free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2157						     fbr->num_entries - 1);
2158		writel(free_buff_ring, offset);
2159	} else {
2160		dev_err(&adapter->pdev->dev,
2161			"%s illegal Buffer Index returned\n", __func__);
2162	}
2163
2164	/* The processing on this RFD is done, so put it back on the tail of
2165	 * our list
2166	 */
2167	spin_lock_irqsave(&adapter->rcv_lock, flags);
2168	list_add_tail(&rfd->list_node, &rx_local->recv_list);
2169	rx_local->num_ready_recv++;
2170	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2171
2172	WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2173}
2174
2175/* nic_rx_pkts - Checks the hardware for available packets
2176 *
2177 * Checks the hardware for available packets, using completion ring
2178 * If packets are available, it gets an RFD from the recv_list, attaches
2179 * the packet to it, puts the RFD in the RecvPendList, and also returns
2180 * the pointer to the RFD.
2181 */
2182static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2183{
2184	struct rx_ring *rx_local = &adapter->rx_ring;
2185	struct rx_status_block *status;
2186	struct pkt_stat_desc *psr;
2187	struct rfd *rfd;
2188	unsigned long flags;
2189	struct list_head *element;
2190	u8 ring_index;
2191	u16 buff_index;
2192	u32 len;
2193	u32 word0;
2194	u32 word1;
2195	struct sk_buff *skb;
2196	struct fbr_lookup *fbr;
2197
2198	/* RX Status block is written by the DMA engine prior to every
2199	 * interrupt. It contains the next to be used entry in the Packet
2200	 * Status Ring, and also the two Free Buffer rings.
2201	 */
2202	status = rx_local->rx_status_block;
2203	word1 = status->word1 >> 16;
2204
2205	/* Check the PSR and wrap bits do not match */
2206	if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2207		return NULL; /* Looks like this ring is not updated yet */
2208
2209	/* The packet status ring indicates that data is available. */
2210	psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) +
2211			(rx_local->local_psr_full & 0xFFF);
2212
2213	/* Grab any information that is required once the PSR is advanced,
2214	 * since we can no longer rely on the memory being accurate
2215	 */
2216	len = psr->word1 & 0xFFFF;
2217	ring_index = (psr->word1 >> 26) & 0x03;
2218	fbr = rx_local->fbr[ring_index];
2219	buff_index = (psr->word1 >> 16) & 0x3FF;
2220	word0 = psr->word0;
2221
2222	/* Indicate that we have used this PSR entry. */
2223	/* FIXME wrap 12 */
2224	add_12bit(&rx_local->local_psr_full, 1);
2225	if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) {
2226		/* Clear psr full and toggle the wrap bit */
2227		rx_local->local_psr_full &=  ~0xFFF;
2228		rx_local->local_psr_full ^= 0x1000;
2229	}
2230
2231	writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2232
2233	if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
2234		/* Illegal buffer or ring index cannot be used by S/W*/
2235		dev_err(&adapter->pdev->dev,
2236			"NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2237			rx_local->local_psr_full & 0xFFF, len, buff_index);
2238		return NULL;
2239	}
2240
2241	/* Get and fill the RFD. */
2242	spin_lock_irqsave(&adapter->rcv_lock, flags);
2243
2244	element = rx_local->recv_list.next;
2245	rfd = list_entry(element, struct rfd, list_node);
2246
2247	if (!rfd) {
2248		spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2249		return NULL;
2250	}
2251
2252	list_del(&rfd->list_node);
2253	rx_local->num_ready_recv--;
2254
2255	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2256
2257	rfd->bufferindex = buff_index;
2258	rfd->ringindex = ring_index;
2259
2260	/* In V1 silicon, there is a bug which screws up filtering of runt
2261	 * packets. Therefore runt packet filtering is disabled in the MAC and
2262	 * the packets are dropped here. They are also counted here.
2263	 */
2264	if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2265		adapter->stats.rx_other_errs++;
2266		rfd->len = 0;
2267		goto out;
2268	}
2269
2270	if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT))
2271		adapter->stats.multicast_pkts_rcvd++;
2272
2273	rfd->len = len;
2274
2275	skb = dev_alloc_skb(rfd->len + 2);
2276	if (!skb)
2277		return NULL;
2278
2279	adapter->netdev->stats.rx_bytes += rfd->len;
2280
2281	skb_put_data(skb, fbr->virt[buff_index], rfd->len);
2282
2283	skb->protocol = eth_type_trans(skb, adapter->netdev);
2284	skb->ip_summed = CHECKSUM_NONE;
2285	netif_receive_skb(skb);
2286
2287out:
2288	nic_return_rfd(adapter, rfd);
2289	return rfd;
2290}
2291
2292static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget)
2293{
2294	struct rfd *rfd = NULL;
2295	int count = 0;
2296	int limit = budget;
2297	bool done = true;
2298	struct rx_ring *rx_ring = &adapter->rx_ring;
2299
2300	if (budget > MAX_PACKETS_HANDLED)
2301		limit = MAX_PACKETS_HANDLED;
2302
2303	/* Process up to available RFD's */
2304	while (count < limit) {
2305		if (list_empty(&rx_ring->recv_list)) {
2306			WARN_ON(rx_ring->num_ready_recv != 0);
2307			done = false;
2308			break;
2309		}
2310
2311		rfd = nic_rx_pkts(adapter);
2312
2313		if (rfd == NULL)
2314			break;
2315
2316		/* Do not receive any packets until a filter has been set.
2317		 * Do not receive any packets until we have link.
2318		 * If length is zero, return the RFD in order to advance the
2319		 * Free buffer ring.
2320		 */
2321		if (!adapter->packet_filter ||
2322		    !netif_carrier_ok(adapter->netdev) ||
2323		    rfd->len == 0)
2324			continue;
2325
2326		adapter->netdev->stats.rx_packets++;
2327
2328		if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
2329			dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2330
2331		count++;
2332	}
2333
2334	if (count == limit || !done) {
2335		rx_ring->unfinished_receives = true;
2336		writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2337		       &adapter->regs->global.watchdog_timer);
2338	} else {
2339		/* Watchdog timer will disable itself if appropriate. */
2340		rx_ring->unfinished_receives = false;
2341	}
2342
2343	return count;
2344}
2345
2346/* et131x_tx_dma_memory_alloc
2347 *
2348 * Allocates memory that will be visible both to the device and to the CPU.
2349 * The OS will pass us packets, pointers to which we will insert in the Tx
2350 * Descriptor queue. The device will read this queue to find the packets in
2351 * memory. The device will update the "status" in memory each time it xmits a
2352 * packet.
2353 */
2354static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2355{
2356	int desc_size = 0;
2357	struct tx_ring *tx_ring = &adapter->tx_ring;
2358
2359	/* Allocate memory for the TCB's (Transmit Control Block) */
2360	tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2361				    GFP_KERNEL | GFP_DMA);
2362	if (!tx_ring->tcb_ring)
2363		return -ENOMEM;
2364
2365	desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2366	tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2367						   desc_size,
2368						   &tx_ring->tx_desc_ring_pa,
2369						   GFP_KERNEL);
2370	if (!tx_ring->tx_desc_ring) {
2371		dev_err(&adapter->pdev->dev,
2372			"Cannot alloc memory for Tx Ring\n");
2373		return -ENOMEM;
2374	}
2375
2376	tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2377						    sizeof(u32),
2378						    &tx_ring->tx_status_pa,
2379						    GFP_KERNEL);
2380	if (!tx_ring->tx_status) {
2381		dev_err(&adapter->pdev->dev,
2382			"Cannot alloc memory for Tx status block\n");
2383		return -ENOMEM;
2384	}
2385	return 0;
2386}
2387
2388static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2389{
2390	int desc_size = 0;
2391	struct tx_ring *tx_ring = &adapter->tx_ring;
2392
2393	if (tx_ring->tx_desc_ring) {
2394		/* Free memory relating to Tx rings here */
2395		desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2396		dma_free_coherent(&adapter->pdev->dev,
2397				  desc_size,
2398				  tx_ring->tx_desc_ring,
2399				  tx_ring->tx_desc_ring_pa);
2400		tx_ring->tx_desc_ring = NULL;
2401	}
2402
2403	/* Free memory for the Tx status block */
2404	if (tx_ring->tx_status) {
2405		dma_free_coherent(&adapter->pdev->dev,
2406				  sizeof(u32),
2407				  tx_ring->tx_status,
2408				  tx_ring->tx_status_pa);
2409
2410		tx_ring->tx_status = NULL;
2411	}
2412	/* Free the memory for the tcb structures */
2413	kfree(tx_ring->tcb_ring);
2414}
2415
2416#define MAX_TX_DESC_PER_PKT 24
2417
2418/* nic_send_packet - NIC specific send handler for version B silicon. */
2419static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2420{
2421	u32 i;
2422	struct tx_desc desc[MAX_TX_DESC_PER_PKT];
2423	u32 frag = 0;
2424	u32 thiscopy, remainder;
2425	struct sk_buff *skb = tcb->skb;
2426	u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2427	skb_frag_t *frags = &skb_shinfo(skb)->frags[0];
2428	struct phy_device *phydev = adapter->netdev->phydev;
2429	dma_addr_t dma_addr;
2430	struct tx_ring *tx_ring = &adapter->tx_ring;
2431
2432	/* Part of the optimizations of this send routine restrict us to
2433	 * sending 24 fragments at a pass.  In practice we should never see
2434	 * more than 5 fragments.
2435	 */
2436
2437	memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2438
2439	for (i = 0; i < nr_frags; i++) {
2440		/* If there is something in this element, lets get a
2441		 * descriptor from the ring and get the necessary data
2442		 */
2443		if (i == 0) {
2444			/* If the fragments are smaller than a standard MTU,
2445			 * then map them to a single descriptor in the Tx
2446			 * Desc ring. However, if they're larger, as is
2447			 * possible with support for jumbo packets, then
2448			 * split them each across 2 descriptors.
2449			 *
2450			 * This will work until we determine why the hardware
2451			 * doesn't seem to like large fragments.
2452			 */
2453			if (skb_headlen(skb) <= 1514) {
2454				/* Low 16bits are length, high is vlan and
2455				 * unused currently so zero
2456				 */
2457				desc[frag].len_vlan = skb_headlen(skb);
2458				dma_addr = dma_map_single(&adapter->pdev->dev,
2459							  skb->data,
2460							  skb_headlen(skb),
2461							  DMA_TO_DEVICE);
2462				desc[frag].addr_lo = lower_32_bits(dma_addr);
2463				desc[frag].addr_hi = upper_32_bits(dma_addr);
2464				frag++;
2465			} else {
2466				desc[frag].len_vlan = skb_headlen(skb) / 2;
2467				dma_addr = dma_map_single(&adapter->pdev->dev,
2468							  skb->data,
2469							  skb_headlen(skb) / 2,
2470							  DMA_TO_DEVICE);
2471				desc[frag].addr_lo = lower_32_bits(dma_addr);
2472				desc[frag].addr_hi = upper_32_bits(dma_addr);
2473				frag++;
2474
2475				desc[frag].len_vlan = skb_headlen(skb) / 2;
2476				dma_addr = dma_map_single(&adapter->pdev->dev,
2477							  skb->data +
2478							  skb_headlen(skb) / 2,
2479							  skb_headlen(skb) / 2,
2480							  DMA_TO_DEVICE);
2481				desc[frag].addr_lo = lower_32_bits(dma_addr);
2482				desc[frag].addr_hi = upper_32_bits(dma_addr);
2483				frag++;
2484			}
2485		} else {
2486			desc[frag].len_vlan = skb_frag_size(&frags[i - 1]);
2487			dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2488						    &frags[i - 1],
2489						    0,
2490						    desc[frag].len_vlan,
2491						    DMA_TO_DEVICE);
2492			desc[frag].addr_lo = lower_32_bits(dma_addr);
2493			desc[frag].addr_hi = upper_32_bits(dma_addr);
2494			frag++;
2495		}
2496	}
2497
2498	if (phydev && phydev->speed == SPEED_1000) {
2499		if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
2500			/* Last element & Interrupt flag */
2501			desc[frag - 1].flags =
2502				    TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2503			tx_ring->since_irq = 0;
2504		} else { /* Last element */
2505			desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2506		}
2507	} else {
2508		desc[frag - 1].flags =
2509				    TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2510	}
2511
2512	desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2513
2514	tcb->index_start = tx_ring->send_idx;
2515	tcb->stale = 0;
2516
2517	thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
2518
2519	if (thiscopy >= frag) {
2520		remainder = 0;
2521		thiscopy = frag;
2522	} else {
2523		remainder = frag - thiscopy;
2524	}
2525
2526	memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2527	       desc,
2528	       sizeof(struct tx_desc) * thiscopy);
2529
2530	add_10bit(&tx_ring->send_idx, thiscopy);
2531
2532	if (INDEX10(tx_ring->send_idx) == 0 ||
2533	    INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2534		tx_ring->send_idx &= ~ET_DMA10_MASK;
2535		tx_ring->send_idx ^= ET_DMA10_WRAP;
2536	}
2537
2538	if (remainder) {
2539		memcpy(tx_ring->tx_desc_ring,
2540		       desc + thiscopy,
2541		       sizeof(struct tx_desc) * remainder);
2542
2543		add_10bit(&tx_ring->send_idx, remainder);
2544	}
2545
2546	if (INDEX10(tx_ring->send_idx) == 0) {
2547		if (tx_ring->send_idx)
2548			tcb->index = NUM_DESC_PER_RING_TX - 1;
2549		else
2550			tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2551	} else {
2552		tcb->index = tx_ring->send_idx - 1;
2553	}
2554
2555	spin_lock(&adapter->tcb_send_qlock);
2556
2557	if (tx_ring->send_tail)
2558		tx_ring->send_tail->next = tcb;
2559	else
2560		tx_ring->send_head = tcb;
2561
2562	tx_ring->send_tail = tcb;
2563
2564	WARN_ON(tcb->next != NULL);
2565
2566	tx_ring->used++;
2567
2568	spin_unlock(&adapter->tcb_send_qlock);
2569
2570	/* Write the new write pointer back to the device. */
2571	writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
2572
2573	/* For Gig only, we use Tx Interrupt coalescing.  Enable the software
2574	 * timer to wake us up if this packet isn't followed by N more.
2575	 */
2576	if (phydev && phydev->speed == SPEED_1000) {
2577		writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2578		       &adapter->regs->global.watchdog_timer);
2579	}
2580	return 0;
2581}
2582
2583static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2584{
2585	int status;
2586	struct tcb *tcb;
2587	unsigned long flags;
2588	struct tx_ring *tx_ring = &adapter->tx_ring;
2589
2590	/* All packets must have at least a MAC address and a protocol type */
2591	if (skb->len < ETH_HLEN)
2592		return -EIO;
2593
2594	spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2595
2596	tcb = tx_ring->tcb_qhead;
2597
2598	if (tcb == NULL) {
2599		spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2600		return -ENOMEM;
2601	}
2602
2603	tx_ring->tcb_qhead = tcb->next;
2604
2605	if (tx_ring->tcb_qhead == NULL)
2606		tx_ring->tcb_qtail = NULL;
2607
2608	spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2609
2610	tcb->skb = skb;
2611	tcb->next = NULL;
2612
2613	status = nic_send_packet(adapter, tcb);
2614
2615	if (status != 0) {
2616		spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2617
2618		if (tx_ring->tcb_qtail)
2619			tx_ring->tcb_qtail->next = tcb;
2620		else
2621			/* Apparently ready Q is empty. */
2622			tx_ring->tcb_qhead = tcb;
2623
2624		tx_ring->tcb_qtail = tcb;
2625		spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2626		return status;
2627	}
2628	WARN_ON(tx_ring->used > NUM_TCB);
2629	return 0;
2630}
2631
2632/* free_send_packet - Recycle a struct tcb */
2633static inline void free_send_packet(struct et131x_adapter *adapter,
2634				    struct tcb *tcb)
2635{
2636	unsigned long flags;
2637	struct tx_desc *desc = NULL;
2638	struct net_device_stats *stats = &adapter->netdev->stats;
2639	struct tx_ring *tx_ring = &adapter->tx_ring;
2640	u64  dma_addr;
2641
2642	if (tcb->skb) {
2643		stats->tx_bytes += tcb->skb->len;
2644
2645		/* Iterate through the TX descriptors on the ring
2646		 * corresponding to this packet and umap the fragments
2647		 * they point to
2648		 */
2649		do {
2650			desc = tx_ring->tx_desc_ring +
2651			       INDEX10(tcb->index_start);
2652
2653			dma_addr = desc->addr_lo;
2654			dma_addr |= (u64)desc->addr_hi << 32;
2655
2656			dma_unmap_single(&adapter->pdev->dev,
2657					 dma_addr,
2658					 desc->len_vlan, DMA_TO_DEVICE);
2659
2660			add_10bit(&tcb->index_start, 1);
2661			if (INDEX10(tcb->index_start) >=
2662							NUM_DESC_PER_RING_TX) {
2663				tcb->index_start &= ~ET_DMA10_MASK;
2664				tcb->index_start ^= ET_DMA10_WRAP;
2665			}
2666		} while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
2667
2668		dev_kfree_skb_any(tcb->skb);
2669	}
2670
2671	memset(tcb, 0, sizeof(struct tcb));
2672
2673	/* Add the TCB to the Ready Q */
2674	spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2675
2676	stats->tx_packets++;
2677
2678	if (tx_ring->tcb_qtail)
2679		tx_ring->tcb_qtail->next = tcb;
2680	else /* Apparently ready Q is empty. */
2681		tx_ring->tcb_qhead = tcb;
2682
2683	tx_ring->tcb_qtail = tcb;
2684
2685	spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2686	WARN_ON(tx_ring->used < 0);
2687}
2688
2689/* et131x_free_busy_send_packets - Free and complete the stopped active sends */
2690static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
2691{
2692	struct tcb *tcb;
2693	unsigned long flags;
2694	u32 freed = 0;
2695	struct tx_ring *tx_ring = &adapter->tx_ring;
2696
2697	/* Any packets being sent? Check the first TCB on the send list */
2698	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2699
2700	tcb = tx_ring->send_head;
2701
2702	while (tcb != NULL && freed < NUM_TCB) {
2703		struct tcb *next = tcb->next;
2704
2705		tx_ring->send_head = next;
2706
2707		if (next == NULL)
2708			tx_ring->send_tail = NULL;
2709
2710		tx_ring->used--;
2711
2712		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2713
2714		freed++;
2715		free_send_packet(adapter, tcb);
2716
2717		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2718
2719		tcb = tx_ring->send_head;
2720	}
2721
2722	WARN_ON(freed == NUM_TCB);
2723
2724	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2725
2726	tx_ring->used = 0;
2727}
2728
2729/* et131x_handle_send_pkts
2730 *
2731 * Re-claim the send resources, complete sends and get more to send from
2732 * the send wait queue.
2733 */
2734static void et131x_handle_send_pkts(struct et131x_adapter *adapter)
2735{
2736	unsigned long flags;
2737	u32 serviced;
2738	struct tcb *tcb;
2739	u32 index;
2740	struct tx_ring *tx_ring = &adapter->tx_ring;
2741
2742	serviced = readl(&adapter->regs->txdma.new_service_complete);
2743	index = INDEX10(serviced);
2744
2745	/* Has the ring wrapped?  Process any descriptors that do not have
2746	 * the same "wrap" indicator as the current completion indicator
2747	 */
2748	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2749
2750	tcb = tx_ring->send_head;
2751
2752	while (tcb &&
2753	       ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2754	       index < INDEX10(tcb->index)) {
2755		tx_ring->used--;
2756		tx_ring->send_head = tcb->next;
2757		if (tcb->next == NULL)
2758			tx_ring->send_tail = NULL;
2759
2760		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2761		free_send_packet(adapter, tcb);
2762		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2763
2764		/* Goto the next packet */
2765		tcb = tx_ring->send_head;
2766	}
2767	while (tcb &&
2768	       !((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2769	       index > (tcb->index & ET_DMA10_MASK)) {
2770		tx_ring->used--;
2771		tx_ring->send_head = tcb->next;
2772		if (tcb->next == NULL)
2773			tx_ring->send_tail = NULL;
2774
2775		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2776		free_send_packet(adapter, tcb);
2777		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2778
2779		/* Goto the next packet */
2780		tcb = tx_ring->send_head;
2781	}
2782
2783	/* Wake up the queue when we hit a low-water mark */
2784	if (tx_ring->used <= NUM_TCB / 3)
2785		netif_wake_queue(adapter->netdev);
2786
2787	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2788}
2789
2790static int et131x_get_regs_len(struct net_device *netdev)
2791{
2792#define ET131X_REGS_LEN 256
2793	return ET131X_REGS_LEN * sizeof(u32);
2794}
2795
2796static void et131x_get_regs(struct net_device *netdev,
2797			    struct ethtool_regs *regs, void *regs_data)
2798{
2799	struct et131x_adapter *adapter = netdev_priv(netdev);
2800	struct address_map __iomem *aregs = adapter->regs;
2801	u32 *regs_buff = regs_data;
2802	u32 num = 0;
2803	u16 tmp;
2804
2805	memset(regs_data, 0, et131x_get_regs_len(netdev));
2806
2807	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
2808			adapter->pdev->device;
2809
2810	/* PHY regs */
2811	et131x_mii_read(adapter, MII_BMCR, &tmp);
2812	regs_buff[num++] = tmp;
2813	et131x_mii_read(adapter, MII_BMSR, &tmp);
2814	regs_buff[num++] = tmp;
2815	et131x_mii_read(adapter, MII_PHYSID1, &tmp);
2816	regs_buff[num++] = tmp;
2817	et131x_mii_read(adapter, MII_PHYSID2, &tmp);
2818	regs_buff[num++] = tmp;
2819	et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
2820	regs_buff[num++] = tmp;
2821	et131x_mii_read(adapter, MII_LPA, &tmp);
2822	regs_buff[num++] = tmp;
2823	et131x_mii_read(adapter, MII_EXPANSION, &tmp);
2824	regs_buff[num++] = tmp;
2825	/* Autoneg next page transmit reg */
2826	et131x_mii_read(adapter, 0x07, &tmp);
2827	regs_buff[num++] = tmp;
2828	/* Link partner next page reg */
2829	et131x_mii_read(adapter, 0x08, &tmp);
2830	regs_buff[num++] = tmp;
2831	et131x_mii_read(adapter, MII_CTRL1000, &tmp);
2832	regs_buff[num++] = tmp;
2833	et131x_mii_read(adapter, MII_STAT1000, &tmp);
2834	regs_buff[num++] = tmp;
2835	et131x_mii_read(adapter, 0x0b, &tmp);
2836	regs_buff[num++] = tmp;
2837	et131x_mii_read(adapter, 0x0c, &tmp);
2838	regs_buff[num++] = tmp;
2839	et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
2840	regs_buff[num++] = tmp;
2841	et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
2842	regs_buff[num++] = tmp;
2843	et131x_mii_read(adapter, MII_ESTATUS, &tmp);
2844	regs_buff[num++] = tmp;
2845
2846	et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
2847	regs_buff[num++] = tmp;
2848	et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
2849	regs_buff[num++] = tmp;
2850	et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
2851	regs_buff[num++] = tmp;
2852	et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
2853	regs_buff[num++] = tmp;
2854	et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
2855	regs_buff[num++] = tmp;
2856
2857	et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
2858	regs_buff[num++] = tmp;
2859	et131x_mii_read(adapter, PHY_CONFIG, &tmp);
2860	regs_buff[num++] = tmp;
2861	et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
2862	regs_buff[num++] = tmp;
2863	et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
2864	regs_buff[num++] = tmp;
2865	et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
2866	regs_buff[num++] = tmp;
2867	et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
2868	regs_buff[num++] = tmp;
2869	et131x_mii_read(adapter, PHY_LED_1, &tmp);
2870	regs_buff[num++] = tmp;
2871	et131x_mii_read(adapter, PHY_LED_2, &tmp);
2872	regs_buff[num++] = tmp;
2873
2874	/* Global regs */
2875	regs_buff[num++] = readl(&aregs->global.txq_start_addr);
2876	regs_buff[num++] = readl(&aregs->global.txq_end_addr);
2877	regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
2878	regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
2879	regs_buff[num++] = readl(&aregs->global.pm_csr);
2880	regs_buff[num++] = adapter->stats.interrupt_status;
2881	regs_buff[num++] = readl(&aregs->global.int_mask);
2882	regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
2883	regs_buff[num++] = readl(&aregs->global.int_status_alias);
2884	regs_buff[num++] = readl(&aregs->global.sw_reset);
2885	regs_buff[num++] = readl(&aregs->global.slv_timer);
2886	regs_buff[num++] = readl(&aregs->global.msi_config);
2887	regs_buff[num++] = readl(&aregs->global.loopback);
2888	regs_buff[num++] = readl(&aregs->global.watchdog_timer);
2889
2890	/* TXDMA regs */
2891	regs_buff[num++] = readl(&aregs->txdma.csr);
2892	regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
2893	regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
2894	regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
2895	regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
2896	regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
2897	regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
2898	regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
2899	regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
2900	regs_buff[num++] = readl(&aregs->txdma.service_request);
2901	regs_buff[num++] = readl(&aregs->txdma.service_complete);
2902	regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
2903	regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
2904	regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
2905	regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
2906	regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
2907	regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
2908	regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
2909	regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
2910	regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
2911	regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
2912	regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
2913	regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
2914	regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
2915	regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
2916	regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
2917
2918	/* RXDMA regs */
2919	regs_buff[num++] = readl(&aregs->rxdma.csr);
2920	regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
2921	regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
2922	regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
2923	regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
2924	regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
2925	regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
2926	regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
2927	regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
2928	regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
2929	regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
2930	regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
2931	regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
2932	regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
2933	regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
2934	regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
2935	regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
2936	regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
2937	regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
2938	regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
2939	regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
2940	regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
2941	regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
2942	regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
2943	regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
2944	regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
2945	regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
2946	regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
2947	regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
2948}
2949
2950static void et131x_get_drvinfo(struct net_device *netdev,
2951			       struct ethtool_drvinfo *info)
2952{
2953	struct et131x_adapter *adapter = netdev_priv(netdev);
2954
2955	strscpy(info->driver, DRIVER_NAME, sizeof(info->driver));
2956	strscpy(info->bus_info, pci_name(adapter->pdev),
2957		sizeof(info->bus_info));
2958}
2959
2960static const struct ethtool_ops et131x_ethtool_ops = {
2961	.get_drvinfo	= et131x_get_drvinfo,
2962	.get_regs_len	= et131x_get_regs_len,
2963	.get_regs	= et131x_get_regs,
2964	.get_link	= ethtool_op_get_link,
2965	.get_link_ksettings = phy_ethtool_get_link_ksettings,
2966	.set_link_ksettings = phy_ethtool_set_link_ksettings,
2967};
2968
2969/* et131x_hwaddr_init - set up the MAC Address */
2970static void et131x_hwaddr_init(struct et131x_adapter *adapter)
2971{
2972	/* If have our default mac from init and no mac address from
2973	 * EEPROM then we need to generate the last octet and set it on the
2974	 * device
2975	 */
2976	if (is_zero_ether_addr(adapter->rom_addr)) {
2977		/* We need to randomly generate the last octet so we
2978		 * decrease our chances of setting the mac address to
2979		 * same as another one of our cards in the system
2980		 */
2981		get_random_bytes(&adapter->addr[5], 1);
2982		/* We have the default value in the register we are
2983		 * working with so we need to copy the current
2984		 * address into the permanent address
2985		 */
2986		ether_addr_copy(adapter->rom_addr, adapter->addr);
2987	} else {
2988		/* We do not have an override address, so set the
2989		 * current address to the permanent address and add
2990		 * it to the device
2991		 */
2992		ether_addr_copy(adapter->addr, adapter->rom_addr);
2993	}
2994}
2995
2996static int et131x_pci_init(struct et131x_adapter *adapter,
2997			   struct pci_dev *pdev)
2998{
2999	u16 max_payload;
3000	int i, rc;
3001
3002	rc = et131x_init_eeprom(adapter);
3003	if (rc < 0)
3004		goto out;
3005
3006	if (!pci_is_pcie(pdev)) {
3007		dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3008		goto err_out;
3009	}
3010
3011	/* Program the Ack/Nak latency and replay timers */
3012	max_payload = pdev->pcie_mpss;
3013
3014	if (max_payload < 2) {
3015		static const u16 acknak[2] = { 0x76, 0xD0 };
3016		static const u16 replay[2] = { 0x1E0, 0x2ED };
3017
3018		if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3019					  acknak[max_payload])) {
3020			dev_err(&pdev->dev,
3021				"Could not write PCI config space for ACK/NAK\n");
3022			goto err_out;
3023		}
3024		if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3025					  replay[max_payload])) {
3026			dev_err(&pdev->dev,
3027				"Could not write PCI config space for Replay Timer\n");
3028			goto err_out;
3029		}
3030	}
3031
3032	/* l0s and l1 latency timers.  We are using default values.
3033	 * Representing 001 for L0s and 010 for L1
3034	 */
3035	if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3036		dev_err(&pdev->dev,
3037			"Could not write PCI config space for Latency Timers\n");
3038		goto err_out;
3039	}
3040
3041	/* Change the max read size to 2k */
3042	if (pcie_set_readrq(pdev, 2048)) {
3043		dev_err(&pdev->dev,
3044			"Couldn't change PCI config space for Max read size\n");
3045		goto err_out;
3046	}
3047
3048	/* Get MAC address from config space if an eeprom exists, otherwise
3049	 * the MAC address there will not be valid
3050	 */
3051	if (!adapter->has_eeprom) {
3052		et131x_hwaddr_init(adapter);
3053		return 0;
3054	}
3055
3056	for (i = 0; i < ETH_ALEN; i++) {
3057		if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3058					 adapter->rom_addr + i)) {
3059			dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3060			goto err_out;
3061		}
3062	}
3063	ether_addr_copy(adapter->addr, adapter->rom_addr);
3064out:
3065	return rc;
3066err_out:
3067	rc = -EIO;
3068	goto out;
3069}
3070
3071/* et131x_error_timer_handler
3072 * @data: timer-specific variable; here a pointer to our adapter structure
3073 *
3074 * The routine called when the error timer expires, to track the number of
3075 * recurring errors.
3076 */
3077static void et131x_error_timer_handler(struct timer_list *t)
3078{
3079	struct et131x_adapter *adapter = from_timer(adapter, t, error_timer);
3080	struct phy_device *phydev = adapter->netdev->phydev;
3081
3082	if (et1310_in_phy_coma(adapter)) {
3083		/* Bring the device immediately out of coma, to
3084		 * prevent it from sleeping indefinitely, this
3085		 * mechanism could be improved!
3086		 */
3087		et1310_disable_phy_coma(adapter);
3088		adapter->boot_coma = 20;
3089	} else {
3090		et1310_update_macstat_host_counters(adapter);
3091	}
3092
3093	if (!phydev->link && adapter->boot_coma < 11)
3094		adapter->boot_coma++;
3095
3096	if (adapter->boot_coma == 10) {
3097		if (!phydev->link) {
3098			if (!et1310_in_phy_coma(adapter)) {
3099				/* NOTE - This was originally a 'sync with
3100				 *  interrupt'. How to do that under Linux?
3101				 */
3102				et131x_enable_interrupts(adapter);
3103				et1310_enable_phy_coma(adapter);
3104			}
3105		}
3106	}
3107
3108	/* This is a periodic timer, so reschedule */
3109	mod_timer(&adapter->error_timer, jiffies +
3110		  msecs_to_jiffies(TX_ERROR_PERIOD));
3111}
3112
3113static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3114{
3115	et131x_tx_dma_memory_free(adapter);
3116	et131x_rx_dma_memory_free(adapter);
3117}
3118
3119static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3120{
3121	int status;
3122
3123	status = et131x_tx_dma_memory_alloc(adapter);
3124	if (status) {
3125		dev_err(&adapter->pdev->dev,
3126			"et131x_tx_dma_memory_alloc FAILED\n");
3127		et131x_tx_dma_memory_free(adapter);
3128		return status;
3129	}
3130
3131	status = et131x_rx_dma_memory_alloc(adapter);
3132	if (status) {
3133		dev_err(&adapter->pdev->dev,
3134			"et131x_rx_dma_memory_alloc FAILED\n");
3135		et131x_adapter_memory_free(adapter);
3136		return status;
3137	}
3138
3139	status = et131x_init_recv(adapter);
3140	if (status) {
3141		dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
3142		et131x_adapter_memory_free(adapter);
3143	}
3144	return status;
3145}
3146
3147static void et131x_adjust_link(struct net_device *netdev)
3148{
3149	struct et131x_adapter *adapter = netdev_priv(netdev);
3150	struct  phy_device *phydev = netdev->phydev;
3151
3152	if (!phydev)
3153		return;
3154	if (phydev->link == adapter->link)
3155		return;
3156
3157	/* Check to see if we are in coma mode and if
3158	 * so, disable it because we will not be able
3159	 * to read PHY values until we are out.
3160	 */
3161	if (et1310_in_phy_coma(adapter))
3162		et1310_disable_phy_coma(adapter);
3163
3164	adapter->link = phydev->link;
3165	phy_print_status(phydev);
3166
3167	if (phydev->link) {
3168		adapter->boot_coma = 20;
3169		if (phydev->speed == SPEED_10) {
3170			u16 register18;
3171
3172			et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3173					&register18);
3174			et131x_mii_write(adapter, phydev->mdio.addr,
3175					 PHY_MPHY_CONTROL_REG,
3176					 register18 | 0x4);
3177			et131x_mii_write(adapter, phydev->mdio.addr,
3178					 PHY_INDEX_REG, register18 | 0x8402);
3179			et131x_mii_write(adapter, phydev->mdio.addr,
3180					 PHY_DATA_REG, register18 | 511);
3181			et131x_mii_write(adapter, phydev->mdio.addr,
3182					 PHY_MPHY_CONTROL_REG, register18);
3183		}
3184
3185		et1310_config_flow_control(adapter);
3186
3187		if (phydev->speed == SPEED_1000 &&
3188		    adapter->registry_jumbo_packet > 2048) {
3189			u16 reg;
3190
3191			et131x_mii_read(adapter, PHY_CONFIG, &reg);
3192			reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3193			reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3194			et131x_mii_write(adapter, phydev->mdio.addr,
3195					 PHY_CONFIG, reg);
3196		}
3197
3198		et131x_set_rx_dma_timer(adapter);
3199		et1310_config_mac_regs2(adapter);
3200	} else {
3201		adapter->boot_coma = 0;
3202
3203		if (phydev->speed == SPEED_10) {
3204			u16 register18;
3205
3206			et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3207					&register18);
3208			et131x_mii_write(adapter, phydev->mdio.addr,
3209					 PHY_MPHY_CONTROL_REG,
3210					 register18 | 0x4);
3211			et131x_mii_write(adapter, phydev->mdio.addr,
3212					 PHY_INDEX_REG, register18 | 0x8402);
3213			et131x_mii_write(adapter, phydev->mdio.addr,
3214					 PHY_DATA_REG, register18 | 511);
3215			et131x_mii_write(adapter, phydev->mdio.addr,
3216					 PHY_MPHY_CONTROL_REG, register18);
3217		}
3218
3219		et131x_free_busy_send_packets(adapter);
3220		et131x_init_send(adapter);
3221
3222		/* Bring the device back to the state it was during
3223		 * init prior to autonegotiation being complete. This
3224		 * way, when we get the auto-neg complete interrupt,
3225		 * we can complete init by calling config_mac_regs2.
3226		 */
3227		et131x_soft_reset(adapter);
3228
3229		et131x_adapter_setup(adapter);
3230
3231		et131x_disable_txrx(netdev);
3232		et131x_enable_txrx(netdev);
3233	}
3234}
3235
3236static int et131x_mii_probe(struct net_device *netdev)
3237{
3238	struct et131x_adapter *adapter = netdev_priv(netdev);
3239	struct  phy_device *phydev = NULL;
3240
3241	phydev = phy_find_first(adapter->mii_bus);
3242	if (!phydev) {
3243		dev_err(&adapter->pdev->dev, "no PHY found\n");
3244		return -ENODEV;
3245	}
3246
3247	phydev = phy_connect(netdev, phydev_name(phydev),
3248			     &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3249
3250	if (IS_ERR(phydev)) {
3251		dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3252		return PTR_ERR(phydev);
3253	}
3254
3255	phy_set_max_speed(phydev, SPEED_100);
3256
3257	if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3258		phy_set_max_speed(phydev, SPEED_1000);
3259
3260	phydev->autoneg = AUTONEG_ENABLE;
3261
3262	phy_attached_info(phydev);
3263
3264	return 0;
3265}
3266
3267static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3268						  struct pci_dev *pdev)
3269{
3270	static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3271
3272	struct et131x_adapter *adapter;
3273
3274	adapter = netdev_priv(netdev);
3275	adapter->pdev = pci_dev_get(pdev);
3276	adapter->netdev = netdev;
3277
3278	spin_lock_init(&adapter->tcb_send_qlock);
3279	spin_lock_init(&adapter->tcb_ready_qlock);
3280	spin_lock_init(&adapter->rcv_lock);
3281
3282	adapter->registry_jumbo_packet = 1514;	/* 1514-9216 */
3283
3284	ether_addr_copy(adapter->addr, default_mac);
3285
3286	return adapter;
3287}
3288
3289static void et131x_pci_remove(struct pci_dev *pdev)
3290{
3291	struct net_device *netdev = pci_get_drvdata(pdev);
3292	struct et131x_adapter *adapter = netdev_priv(netdev);
3293
3294	unregister_netdev(netdev);
3295	netif_napi_del(&adapter->napi);
3296	phy_disconnect(netdev->phydev);
3297	mdiobus_unregister(adapter->mii_bus);
3298	mdiobus_free(adapter->mii_bus);
3299
3300	et131x_adapter_memory_free(adapter);
3301	iounmap(adapter->regs);
3302	pci_dev_put(pdev);
3303
3304	free_netdev(netdev);
3305	pci_release_regions(pdev);
3306	pci_disable_device(pdev);
3307}
3308
3309static void et131x_up(struct net_device *netdev)
3310{
3311	et131x_enable_txrx(netdev);
3312	phy_start(netdev->phydev);
3313}
3314
3315static void et131x_down(struct net_device *netdev)
3316{
3317	/* Save the timestamp for the TX watchdog, prevent a timeout */
3318	netif_trans_update(netdev);
3319
3320	phy_stop(netdev->phydev);
3321	et131x_disable_txrx(netdev);
3322}
3323
3324#ifdef CONFIG_PM_SLEEP
3325static int et131x_suspend(struct device *dev)
3326{
3327	struct pci_dev *pdev = to_pci_dev(dev);
3328	struct net_device *netdev = pci_get_drvdata(pdev);
3329
3330	if (netif_running(netdev)) {
3331		netif_device_detach(netdev);
3332		et131x_down(netdev);
3333		pci_save_state(pdev);
3334	}
3335
3336	return 0;
3337}
3338
3339static int et131x_resume(struct device *dev)
3340{
3341	struct pci_dev *pdev = to_pci_dev(dev);
3342	struct net_device *netdev = pci_get_drvdata(pdev);
3343
3344	if (netif_running(netdev)) {
3345		pci_restore_state(pdev);
3346		et131x_up(netdev);
3347		netif_device_attach(netdev);
3348	}
3349
3350	return 0;
3351}
3352#endif
3353
3354static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3355
3356static irqreturn_t et131x_isr(int irq, void *dev_id)
3357{
3358	bool handled = true;
3359	bool enable_interrupts = true;
3360	struct net_device *netdev = dev_id;
3361	struct et131x_adapter *adapter = netdev_priv(netdev);
3362	struct address_map __iomem *iomem = adapter->regs;
3363	struct rx_ring *rx_ring = &adapter->rx_ring;
3364	struct tx_ring *tx_ring = &adapter->tx_ring;
3365	u32 status;
3366
3367	if (!netif_device_present(netdev)) {
3368		handled = false;
3369		enable_interrupts = false;
3370		goto out;
3371	}
3372
3373	et131x_disable_interrupts(adapter);
3374
3375	status = readl(&adapter->regs->global.int_status);
3376
3377	if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
3378		status &= ~INT_MASK_ENABLE;
3379	else
3380		status &= ~INT_MASK_ENABLE_NO_FLOW;
3381
3382	/* Make sure this is our interrupt */
3383	if (!status) {
3384		handled = false;
3385		et131x_enable_interrupts(adapter);
3386		goto out;
3387	}
3388
3389	/* This is our interrupt, so process accordingly */
3390	if (status & ET_INTR_WATCHDOG) {
3391		struct tcb *tcb = tx_ring->send_head;
3392
3393		if (tcb)
3394			if (++tcb->stale > 1)
3395				status |= ET_INTR_TXDMA_ISR;
3396
3397		if (rx_ring->unfinished_receives)
3398			status |= ET_INTR_RXDMA_XFR_DONE;
3399		else if (tcb == NULL)
3400			writel(0, &adapter->regs->global.watchdog_timer);
3401
3402		status &= ~ET_INTR_WATCHDOG;
3403	}
3404
3405	if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) {
3406		enable_interrupts = false;
3407		napi_schedule(&adapter->napi);
3408	}
3409
3410	status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE);
3411
3412	if (!status)
3413		goto out;
3414
3415	if (status & ET_INTR_TXDMA_ERR) {
3416		/* Following read also clears the register (COR) */
3417		u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
3418
3419		dev_warn(&adapter->pdev->dev,
3420			 "TXDMA_ERR interrupt, error = %d\n",
3421			 txdma_err);
3422	}
3423
3424	if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
3425		/* This indicates the number of unused buffers in RXDMA free
3426		 * buffer ring 0 is <= the limit you programmed. Free buffer
3427		 * resources need to be returned.  Free buffers are consumed as
3428		 * packets are passed from the network to the host. The host
3429		 * becomes aware of the packets from the contents of the packet
3430		 * status ring. This ring is queried when the packet done
3431		 * interrupt occurs. Packets are then passed to the OS. When
3432		 * the OS is done with the packets the resources can be
3433		 * returned to the ET1310 for re-use. This interrupt is one
3434		 * method of returning resources.
3435		 */
3436
3437		/*  If the user has flow control on, then we will
3438		 * send a pause packet, otherwise just exit
3439		 */
3440		if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) {
3441			/* Tell the device to send a pause packet via the back
3442			 * pressure register (bp req and bp xon/xoff)
3443			 */
3444			if (!et1310_in_phy_coma(adapter))
3445				writel(3, &iomem->txmac.bp_ctrl);
3446		}
3447	}
3448
3449	/* Handle Packet Status Ring Low Interrupt */
3450	if (status & ET_INTR_RXDMA_STAT_LOW) {
3451		/* Same idea as with the two Free Buffer Rings. Packets going
3452		 * from the network to the host each consume a free buffer
3453		 * resource and a packet status resource. These resources are
3454		 * passed to the OS. When the OS is done with the resources,
3455		 * they need to be returned to the ET1310. This is one method
3456		 * of returning the resources.
3457		 */
3458	}
3459
3460	if (status & ET_INTR_RXDMA_ERR) {
3461		/* The rxdma_error interrupt is sent when a time-out on a
3462		 * request issued by the JAGCore has occurred or a completion is
3463		 * returned with an un-successful status. In both cases the
3464		 * request is considered complete. The JAGCore will
3465		 * automatically re-try the request in question. Normally
3466		 * information on events like these are sent to the host using
3467		 * the "Advanced Error Reporting" capability. This interrupt is
3468		 * another way of getting similar information. The only thing
3469		 * required is to clear the interrupt by reading the ISR in the
3470		 * global resources. The JAGCore will do a re-try on the
3471		 * request. Normally you should never see this interrupt. If
3472		 * you start to see this interrupt occurring frequently then
3473		 * something bad has occurred. A reset might be the thing to do.
3474		 */
3475		/* TRAP();*/
3476
3477		dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n",
3478			 readl(&iomem->txmac.tx_test));
3479	}
3480
3481	/* Handle the Wake on LAN Event */
3482	if (status & ET_INTR_WOL) {
3483		/* This is a secondary interrupt for wake on LAN. The driver
3484		 * should never see this, if it does, something serious is
3485		 * wrong.
3486		 */
3487		dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
3488	}
3489
3490	if (status & ET_INTR_TXMAC) {
3491		u32 err = readl(&iomem->txmac.err);
3492
3493		/* When any of the errors occur and TXMAC generates an
3494		 * interrupt to report these errors, it usually means that
3495		 * TXMAC has detected an error in the data stream retrieved
3496		 * from the on-chip Tx Q. All of these errors are catastrophic
3497		 * and TXMAC won't be able to recover data when these errors
3498		 * occur. In a nutshell, the whole Tx path will have to be reset
3499		 * and re-configured afterwards.
3500		 */
3501		dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n",
3502			 err);
3503
3504		/* If we are debugging, we want to see this error, otherwise we
3505		 * just want the device to be reset and continue
3506		 */
3507	}
3508
3509	if (status & ET_INTR_RXMAC) {
3510		/* These interrupts are catastrophic to the device, what we need
3511		 * to do is disable the interrupts and set the flag to cause us
3512		 * to reset so we can solve this issue.
3513		 */
3514		dev_warn(&adapter->pdev->dev,
3515			 "RXMAC interrupt, error 0x%08x.  Requesting reset\n",
3516			 readl(&iomem->rxmac.err_reg));
3517
3518		dev_warn(&adapter->pdev->dev,
3519			 "Enable 0x%08x, Diag 0x%08x\n",
3520			 readl(&iomem->rxmac.ctrl),
3521			 readl(&iomem->rxmac.rxq_diag));
3522
3523		/* If we are debugging, we want to see this error, otherwise we
3524		 * just want the device to be reset and continue
3525		 */
3526	}
3527
3528	if (status & ET_INTR_MAC_STAT) {
3529		/* This means at least one of the un-masked counters in the
3530		 * MAC_STAT block has rolled over. Use this to maintain the top,
3531		 * software managed bits of the counter(s).
3532		 */
3533		et1310_handle_macstat_interrupt(adapter);
3534	}
3535
3536	if (status & ET_INTR_SLV_TIMEOUT) {
3537		/* This means a timeout has occurred on a read or write request
3538		 * to one of the JAGCore registers. The Global Resources block
3539		 * has terminated the request and on a read request, returned a
3540		 * "fake" value. The most likely reasons are: Bad Address or the
3541		 * addressed module is in a power-down state and can't respond.
3542		 */
3543	}
3544
3545out:
3546	if (enable_interrupts)
3547		et131x_enable_interrupts(adapter);
3548
3549	return IRQ_RETVAL(handled);
3550}
3551
3552static int et131x_poll(struct napi_struct *napi, int budget)
3553{
3554	struct et131x_adapter *adapter =
3555		container_of(napi, struct et131x_adapter, napi);
3556	int work_done = et131x_handle_recv_pkts(adapter, budget);
3557
3558	et131x_handle_send_pkts(adapter);
3559
3560	if (work_done < budget) {
3561		napi_complete_done(&adapter->napi, work_done);
3562		et131x_enable_interrupts(adapter);
3563	}
3564
3565	return work_done;
3566}
3567
3568/* et131x_stats - Return the current device statistics  */
3569static struct net_device_stats *et131x_stats(struct net_device *netdev)
3570{
3571	struct et131x_adapter *adapter = netdev_priv(netdev);
3572	struct net_device_stats *stats = &adapter->netdev->stats;
3573	struct ce_stats *devstat = &adapter->stats;
3574
3575	stats->rx_errors = devstat->rx_length_errs +
3576			   devstat->rx_align_errs +
3577			   devstat->rx_crc_errs +
3578			   devstat->rx_code_violations +
3579			   devstat->rx_other_errs;
3580	stats->tx_errors = devstat->tx_max_pkt_errs;
3581	stats->multicast = devstat->multicast_pkts_rcvd;
3582	stats->collisions = devstat->tx_collisions;
3583
3584	stats->rx_length_errors = devstat->rx_length_errs;
3585	stats->rx_over_errors = devstat->rx_overflows;
3586	stats->rx_crc_errors = devstat->rx_crc_errs;
3587	stats->rx_dropped = devstat->rcvd_pkts_dropped;
3588
3589	/* NOTE: Not used, can't find analogous statistics */
3590	/* stats->rx_frame_errors     = devstat->; */
3591	/* stats->rx_fifo_errors      = devstat->; */
3592	/* stats->rx_missed_errors    = devstat->; */
3593
3594	/* stats->tx_aborted_errors   = devstat->; */
3595	/* stats->tx_carrier_errors   = devstat->; */
3596	/* stats->tx_fifo_errors      = devstat->; */
3597	/* stats->tx_heartbeat_errors = devstat->; */
3598	/* stats->tx_window_errors    = devstat->; */
3599	return stats;
3600}
3601
3602static int et131x_open(struct net_device *netdev)
3603{
3604	struct et131x_adapter *adapter = netdev_priv(netdev);
3605	struct pci_dev *pdev = adapter->pdev;
3606	unsigned int irq = pdev->irq;
3607	int result;
3608
3609	/* Start the timer to track NIC errors */
3610	timer_setup(&adapter->error_timer, et131x_error_timer_handler, 0);
3611	adapter->error_timer.expires = jiffies +
3612		msecs_to_jiffies(TX_ERROR_PERIOD);
3613	add_timer(&adapter->error_timer);
3614
3615	result = request_irq(irq, et131x_isr,
3616			     IRQF_SHARED, netdev->name, netdev);
3617	if (result) {
3618		dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
3619		return result;
3620	}
3621
3622	adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
3623
3624	napi_enable(&adapter->napi);
3625
3626	et131x_up(netdev);
3627
3628	return result;
3629}
3630
3631static int et131x_close(struct net_device *netdev)
3632{
3633	struct et131x_adapter *adapter = netdev_priv(netdev);
3634
3635	et131x_down(netdev);
3636	napi_disable(&adapter->napi);
3637
3638	adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
3639	free_irq(adapter->pdev->irq, netdev);
3640
3641	/* Stop the error timer */
3642	return del_timer_sync(&adapter->error_timer);
3643}
3644
3645/* et131x_set_packet_filter - Configures the Rx Packet filtering */
3646static int et131x_set_packet_filter(struct et131x_adapter *adapter)
3647{
3648	int filter = adapter->packet_filter;
3649	u32 ctrl;
3650	u32 pf_ctrl;
3651
3652	ctrl = readl(&adapter->regs->rxmac.ctrl);
3653	pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
3654
3655	/* Default to disabled packet filtering */
3656	ctrl |= 0x04;
3657
3658	/* Set us to be in promiscuous mode so we receive everything, this
3659	 * is also true when we get a packet filter of 0
3660	 */
3661	if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
3662		pf_ctrl &= ~7;	/* Clear filter bits */
3663	else {
3664		/* Set us up with Multicast packet filtering.  Three cases are
3665		 * possible - (1) we have a multi-cast list, (2) we receive ALL
3666		 * multicast entries or (3) we receive none.
3667		 */
3668		if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
3669			pf_ctrl &= ~2;	/* Multicast filter bit */
3670		else {
3671			et1310_setup_device_for_multicast(adapter);
3672			pf_ctrl |= 2;
3673			ctrl &= ~0x04;
3674		}
3675
3676		/* Set us up with Unicast packet filtering */
3677		if (filter & ET131X_PACKET_TYPE_DIRECTED) {
3678			et1310_setup_device_for_unicast(adapter);
3679			pf_ctrl |= 4;
3680			ctrl &= ~0x04;
3681		}
3682
3683		/* Set us up with Broadcast packet filtering */
3684		if (filter & ET131X_PACKET_TYPE_BROADCAST) {
3685			pf_ctrl |= 1;	/* Broadcast filter bit */
3686			ctrl &= ~0x04;
3687		} else {
3688			pf_ctrl &= ~1;
3689		}
3690
3691		/* Setup the receive mac configuration registers - Packet
3692		 * Filter control + the enable / disable for packet filter
3693		 * in the control reg.
3694		 */
3695		writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
3696		writel(ctrl, &adapter->regs->rxmac.ctrl);
3697	}
3698	return 0;
3699}
3700
3701static void et131x_multicast(struct net_device *netdev)
3702{
3703	struct et131x_adapter *adapter = netdev_priv(netdev);
3704	int packet_filter;
3705	struct netdev_hw_addr *ha;
3706	int i;
3707
3708	/* Before we modify the platform-independent filter flags, store them
3709	 * locally. This allows us to determine if anything's changed and if
3710	 * we even need to bother the hardware
3711	 */
3712	packet_filter = adapter->packet_filter;
3713
3714	/* Clear the 'multicast' flag locally; because we only have a single
3715	 * flag to check multicast, and multiple multicast addresses can be
3716	 * set, this is the easiest way to determine if more than one
3717	 * multicast address is being set.
3718	 */
3719	packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3720
3721	/* Check the net_device flags and set the device independent flags
3722	 * accordingly
3723	 */
3724	if (netdev->flags & IFF_PROMISC)
3725		adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
3726	else
3727		adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
3728
3729	if ((netdev->flags & IFF_ALLMULTI) ||
3730	    (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST))
3731		adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
3732
3733	if (netdev_mc_count(netdev) < 1) {
3734		adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
3735		adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3736	} else {
3737		adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
3738	}
3739
3740	/* Set values in the private adapter struct */
3741	i = 0;
3742	netdev_for_each_mc_addr(ha, netdev) {
3743		if (i == NIC_MAX_MCAST_LIST)
3744			break;
3745		ether_addr_copy(adapter->multicast_list[i++], ha->addr);
3746	}
3747	adapter->multicast_addr_count = i;
3748
3749	/* Are the new flags different from the previous ones? If not, then no
3750	 * action is required
3751	 *
3752	 * NOTE - This block will always update the multicast_list with the
3753	 *        hardware, even if the addresses aren't the same.
3754	 */
3755	if (packet_filter != adapter->packet_filter)
3756		et131x_set_packet_filter(adapter);
3757}
3758
3759static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev)
3760{
3761	struct et131x_adapter *adapter = netdev_priv(netdev);
3762	struct tx_ring *tx_ring = &adapter->tx_ring;
3763
3764	/* This driver does not support TSO, it is very unlikely
3765	 * this condition is true.
3766	 */
3767	if (unlikely(skb_shinfo(skb)->nr_frags > MAX_TX_DESC_PER_PKT - 2)) {
3768		if (skb_linearize(skb))
3769			goto drop_err;
3770	}
3771	/* stop the queue if it's getting full */
3772	if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
3773		netif_stop_queue(netdev);
3774
3775	/* Save the timestamp for the TX timeout watchdog */
3776	netif_trans_update(netdev);
3777
3778	/* TCB is not available */
3779	if (tx_ring->used >= NUM_TCB)
3780		goto drop_err;
3781
3782	if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
3783	    !netif_carrier_ok(netdev))
3784		goto drop_err;
3785
3786	if (send_packet(skb, adapter))
3787		goto drop_err;
3788
3789	return NETDEV_TX_OK;
3790
3791drop_err:
3792	dev_kfree_skb_any(skb);
3793	adapter->netdev->stats.tx_dropped++;
3794	return NETDEV_TX_OK;
3795}
3796
3797/* et131x_tx_timeout - Timeout handler
3798 *
3799 * The handler called when a Tx request times out. The timeout period is
3800 * specified by the 'tx_timeo" element in the net_device structure (see
3801 * et131x_alloc_device() to see how this value is set).
3802 */
3803static void et131x_tx_timeout(struct net_device *netdev, unsigned int txqueue)
3804{
3805	struct et131x_adapter *adapter = netdev_priv(netdev);
3806	struct tx_ring *tx_ring = &adapter->tx_ring;
3807	struct tcb *tcb;
3808	unsigned long flags;
3809
3810	/* If the device is closed, ignore the timeout */
3811	if (!(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
3812		return;
3813
3814	/* Any nonrecoverable hardware error?
3815	 * Checks adapter->flags for any failure in phy reading
3816	 */
3817	if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
3818		return;
3819
3820	/* Hardware failure? */
3821	if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
3822		dev_err(&adapter->pdev->dev, "hardware error - reset\n");
3823		return;
3824	}
3825
3826	/* Is send stuck? */
3827	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3828	tcb = tx_ring->send_head;
3829	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3830
3831	if (tcb) {
3832		tcb->count++;
3833
3834		if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
3835			dev_warn(&adapter->pdev->dev,
3836				 "Send stuck - reset. tcb->WrIndex %x\n",
3837				 tcb->index);
3838
3839			adapter->netdev->stats.tx_errors++;
3840
3841			/* perform reset of tx/rx */
3842			et131x_disable_txrx(netdev);
3843			et131x_enable_txrx(netdev);
3844		}
3845	}
3846}
3847
3848static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
3849{
3850	int result = 0;
3851	struct et131x_adapter *adapter = netdev_priv(netdev);
3852
3853	et131x_disable_txrx(netdev);
3854
3855	netdev->mtu = new_mtu;
3856
3857	et131x_adapter_memory_free(adapter);
3858
3859	/* Set the config parameter for Jumbo Packet support */
3860	adapter->registry_jumbo_packet = new_mtu + 14;
3861	et131x_soft_reset(adapter);
3862
3863	result = et131x_adapter_memory_alloc(adapter);
3864	if (result != 0) {
3865		dev_warn(&adapter->pdev->dev,
3866			 "Change MTU failed; couldn't re-alloc DMA memory\n");
3867		return result;
3868	}
3869
3870	et131x_init_send(adapter);
3871	et131x_hwaddr_init(adapter);
3872	eth_hw_addr_set(netdev, adapter->addr);
3873
3874	/* Init the device with the new settings */
3875	et131x_adapter_setup(adapter);
3876	et131x_enable_txrx(netdev);
3877
3878	return result;
3879}
3880
3881static const struct net_device_ops et131x_netdev_ops = {
3882	.ndo_open		= et131x_open,
3883	.ndo_stop		= et131x_close,
3884	.ndo_start_xmit		= et131x_tx,
3885	.ndo_set_rx_mode	= et131x_multicast,
3886	.ndo_tx_timeout		= et131x_tx_timeout,
3887	.ndo_change_mtu		= et131x_change_mtu,
3888	.ndo_set_mac_address	= eth_mac_addr,
3889	.ndo_validate_addr	= eth_validate_addr,
3890	.ndo_get_stats		= et131x_stats,
3891	.ndo_eth_ioctl		= phy_do_ioctl,
3892};
3893
3894static int et131x_pci_setup(struct pci_dev *pdev,
3895			    const struct pci_device_id *ent)
3896{
3897	struct net_device *netdev;
3898	struct et131x_adapter *adapter;
3899	int rc;
3900
3901	rc = pci_enable_device(pdev);
3902	if (rc < 0) {
3903		dev_err(&pdev->dev, "pci_enable_device() failed\n");
3904		goto out;
3905	}
3906
3907	/* Perform some basic PCI checks */
3908	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
3909		dev_err(&pdev->dev, "Can't find PCI device's base address\n");
3910		rc = -ENODEV;
3911		goto err_disable;
3912	}
3913
3914	rc = pci_request_regions(pdev, DRIVER_NAME);
3915	if (rc < 0) {
3916		dev_err(&pdev->dev, "Can't get PCI resources\n");
3917		goto err_disable;
3918	}
3919
3920	pci_set_master(pdev);
3921
3922	/* Check the DMA addressing support of this device */
3923	rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3924	if (rc) {
3925		dev_err(&pdev->dev, "No usable DMA addressing method\n");
3926		goto err_release_res;
3927	}
3928
3929	netdev = alloc_etherdev(sizeof(struct et131x_adapter));
3930	if (!netdev) {
3931		dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
3932		rc = -ENOMEM;
3933		goto err_release_res;
3934	}
3935
3936	netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
3937	netdev->netdev_ops     = &et131x_netdev_ops;
3938	netdev->min_mtu        = ET131X_MIN_MTU;
3939	netdev->max_mtu        = ET131X_MAX_MTU;
3940
3941	SET_NETDEV_DEV(netdev, &pdev->dev);
3942	netdev->ethtool_ops = &et131x_ethtool_ops;
3943
3944	adapter = et131x_adapter_init(netdev, pdev);
3945
3946	rc = et131x_pci_init(adapter, pdev);
3947	if (rc < 0)
3948		goto err_free_dev;
3949
3950	/* Map the bus-relative registers to system virtual memory */
3951	adapter->regs = pci_ioremap_bar(pdev, 0);
3952	if (!adapter->regs) {
3953		dev_err(&pdev->dev, "Cannot map device registers\n");
3954		rc = -ENOMEM;
3955		goto err_free_dev;
3956	}
3957
3958	/* If Phy COMA mode was enabled when we went down, disable it here. */
3959	writel(ET_PMCSR_INIT,  &adapter->regs->global.pm_csr);
3960
3961	et131x_soft_reset(adapter);
3962	et131x_disable_interrupts(adapter);
3963
3964	rc = et131x_adapter_memory_alloc(adapter);
3965	if (rc < 0) {
3966		dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n");
3967		goto err_iounmap;
3968	}
3969
3970	et131x_init_send(adapter);
3971
3972	netif_napi_add(netdev, &adapter->napi, et131x_poll);
3973
3974	eth_hw_addr_set(netdev, adapter->addr);
3975
3976	rc = -ENOMEM;
3977
3978	adapter->mii_bus = mdiobus_alloc();
3979	if (!adapter->mii_bus) {
3980		dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
3981		goto err_mem_free;
3982	}
3983
3984	adapter->mii_bus->name = "et131x_eth_mii";
3985	snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x", pci_dev_id(adapter->pdev));
3986	adapter->mii_bus->priv = netdev;
3987	adapter->mii_bus->read = et131x_mdio_read;
3988	adapter->mii_bus->write = et131x_mdio_write;
3989
3990	rc = mdiobus_register(adapter->mii_bus);
3991	if (rc < 0) {
3992		dev_err(&pdev->dev, "failed to register MII bus\n");
3993		goto err_mdio_free;
3994	}
3995
3996	rc = et131x_mii_probe(netdev);
3997	if (rc < 0) {
3998		dev_err(&pdev->dev, "failed to probe MII bus\n");
3999		goto err_mdio_unregister;
4000	}
4001
4002	et131x_adapter_setup(adapter);
4003
4004	/* Init variable for counting how long we do not have link status */
4005	adapter->boot_coma = 0;
4006	et1310_disable_phy_coma(adapter);
4007
4008	/* We can enable interrupts now
4009	 *
4010	 *  NOTE - Because registration of interrupt handler is done in the
4011	 *         device's open(), defer enabling device interrupts to that
4012	 *         point
4013	 */
4014
4015	rc = register_netdev(netdev);
4016	if (rc < 0) {
4017		dev_err(&pdev->dev, "register_netdev() failed\n");
4018		goto err_phy_disconnect;
4019	}
4020
4021	/* Register the net_device struct with the PCI subsystem. Save a copy
4022	 * of the PCI config space for this device now that the device has
4023	 * been initialized, just in case it needs to be quickly restored.
4024	 */
4025	pci_set_drvdata(pdev, netdev);
4026out:
4027	return rc;
4028
4029err_phy_disconnect:
4030	phy_disconnect(netdev->phydev);
4031err_mdio_unregister:
4032	mdiobus_unregister(adapter->mii_bus);
4033err_mdio_free:
4034	mdiobus_free(adapter->mii_bus);
4035err_mem_free:
4036	et131x_adapter_memory_free(adapter);
4037err_iounmap:
4038	iounmap(adapter->regs);
4039err_free_dev:
4040	pci_dev_put(pdev);
4041	free_netdev(netdev);
4042err_release_res:
4043	pci_release_regions(pdev);
4044err_disable:
4045	pci_disable_device(pdev);
4046	goto out;
4047}
4048
4049static const struct pci_device_id et131x_pci_table[] = {
4050	{ PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4051	{ PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4052	{ 0,}
4053};
4054MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4055
4056static struct pci_driver et131x_driver = {
4057	.name		= DRIVER_NAME,
4058	.id_table	= et131x_pci_table,
4059	.probe		= et131x_pci_setup,
4060	.remove		= et131x_pci_remove,
4061	.driver.pm	= &et131x_pm_ops,
4062};
4063
4064module_pci_driver(et131x_driver);
4065