1/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2/*
3	Written 1998-2000 by Donald Becker.
4
5	Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6	send all bug reports to me, and not to Donald Becker, as this code
7	has been heavily modified from Donald's original version.
8
9	This software may be used and distributed according to the terms of
10	the GNU General Public License (GPL), incorporated herein by reference.
11	Drivers based on or derived from this code fall under the GPL and must
12	retain the authorship, copyright and license notice.  This file is not
13	a complete program and may only be used when the entire operating
14	system is licensed under the GPL.
15
16	The information below comes from Donald Becker's original driver:
17
18	The author may be reached as becker@scyld.com, or C/O
19	Scyld Computing Corporation
20	410 Severn Ave., Suite 210
21	Annapolis MD 21403
22
23	Support and updates available at
24	http://www.scyld.com/network/starfire.html
25	[link no longer provides useful info -jgarzik]
26
27*/
28
29#define DRV_NAME	"starfire"
30
31#include <linux/interrupt.h>
32#include <linux/module.h>
33#include <linux/kernel.h>
34#include <linux/pci.h>
35#include <linux/netdevice.h>
36#include <linux/etherdevice.h>
37#include <linux/init.h>
38#include <linux/delay.h>
39#include <linux/crc32.h>
40#include <linux/ethtool.h>
41#include <linux/mii.h>
42#include <linux/if_vlan.h>
43#include <linux/mm.h>
44#include <linux/firmware.h>
45#include <asm/processor.h>		/* Processor type for cache alignment. */
46#include <linux/uaccess.h>
47#include <asm/io.h>
48
49/*
50 * The current frame processor firmware fails to checksum a fragment
51 * of length 1. If and when this is fixed, the #define below can be removed.
52 */
53#define HAS_BROKEN_FIRMWARE
54
55/*
56 * If using the broken firmware, data must be padded to the next 32-bit boundary.
57 */
58#ifdef HAS_BROKEN_FIRMWARE
59#define PADDING_MASK 3
60#endif
61
62/*
63 * Define this if using the driver with the zero-copy patch
64 */
65#define ZEROCOPY
66
67#if IS_ENABLED(CONFIG_VLAN_8021Q)
68#define VLAN_SUPPORT
69#endif
70
71/* The user-configurable values.
72   These may be modified when a driver module is loaded.*/
73
74/* Used for tuning interrupt latency vs. overhead. */
75static int intr_latency;
76static int small_frames;
77
78static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
79static int max_interrupt_work = 20;
80static int mtu;
81/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
82   The Starfire has a 512 element hash table based on the Ethernet CRC. */
83static const int multicast_filter_limit = 512;
84/* Whether to do TCP/UDP checksums in hardware */
85static int enable_hw_cksum = 1;
86
87#define PKT_BUF_SZ	1536		/* Size of each temporary Rx buffer.*/
88/*
89 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
90 * Setting to > 1518 effectively disables this feature.
91 *
92 * NOTE:
93 * The ia64 doesn't allow for unaligned loads even of integers being
94 * misaligned on a 2 byte boundary. Thus always force copying of
95 * packets as the starfire doesn't allow for misaligned DMAs ;-(
96 * 23/10/2000 - Jes
97 *
98 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
99 * at least, having unaligned frames leads to a rather serious performance
100 * penalty. -Ion
101 */
102#if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
103static int rx_copybreak = PKT_BUF_SZ;
104#else
105static int rx_copybreak /* = 0 */;
106#endif
107
108/* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
109#ifdef __sparc__
110#define DMA_BURST_SIZE 64
111#else
112#define DMA_BURST_SIZE 128
113#endif
114
115/* Operational parameters that are set at compile time. */
116
117/* The "native" ring sizes are either 256 or 2048.
118   However in some modes a descriptor may be marked to wrap the ring earlier.
119*/
120#define RX_RING_SIZE	256
121#define TX_RING_SIZE	32
122/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
123#define DONE_Q_SIZE	1024
124/* All queues must be aligned on a 256-byte boundary */
125#define QUEUE_ALIGN	256
126
127#if RX_RING_SIZE > 256
128#define RX_Q_ENTRIES Rx2048QEntries
129#else
130#define RX_Q_ENTRIES Rx256QEntries
131#endif
132
133/* Operational parameters that usually are not changed. */
134/* Time in jiffies before concluding the transmitter is hung. */
135#define TX_TIMEOUT	(2 * HZ)
136
137#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
138/* 64-bit dma_addr_t */
139#define ADDR_64BITS	/* This chip uses 64 bit addresses. */
140#define netdrv_addr_t __le64
141#define cpu_to_dma(x) cpu_to_le64(x)
142#define dma_to_cpu(x) le64_to_cpu(x)
143#define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
144#define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
145#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
146#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
147#define RX_DESC_ADDR_SIZE RxDescAddr64bit
148#else  /* 32-bit dma_addr_t */
149#define netdrv_addr_t __le32
150#define cpu_to_dma(x) cpu_to_le32(x)
151#define dma_to_cpu(x) le32_to_cpu(x)
152#define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
153#define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
154#define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
155#define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
156#define RX_DESC_ADDR_SIZE RxDescAddr32bit
157#endif
158
159#define skb_first_frag_len(skb)	skb_headlen(skb)
160#define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
161
162/* Firmware names */
163#define FIRMWARE_RX	"adaptec/starfire_rx.bin"
164#define FIRMWARE_TX	"adaptec/starfire_tx.bin"
165
166MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
167MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
168MODULE_LICENSE("GPL");
169MODULE_FIRMWARE(FIRMWARE_RX);
170MODULE_FIRMWARE(FIRMWARE_TX);
171
172module_param(max_interrupt_work, int, 0);
173module_param(mtu, int, 0);
174module_param(debug, int, 0);
175module_param(rx_copybreak, int, 0);
176module_param(intr_latency, int, 0);
177module_param(small_frames, int, 0);
178module_param(enable_hw_cksum, int, 0);
179MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
180MODULE_PARM_DESC(mtu, "MTU (all boards)");
181MODULE_PARM_DESC(debug, "Debug level (0-6)");
182MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
183MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
184MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
185MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
186
187/*
188				Theory of Operation
189
190I. Board Compatibility
191
192This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
193
194II. Board-specific settings
195
196III. Driver operation
197
198IIIa. Ring buffers
199
200The Starfire hardware uses multiple fixed-size descriptor queues/rings.  The
201ring sizes are set fixed by the hardware, but may optionally be wrapped
202earlier by the END bit in the descriptor.
203This driver uses that hardware queue size for the Rx ring, where a large
204number of entries has no ill effect beyond increases the potential backlog.
205The Tx ring is wrapped with the END bit, since a large hardware Tx queue
206disables the queue layer priority ordering and we have no mechanism to
207utilize the hardware two-level priority queue.  When modifying the
208RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
209levels.
210
211IIIb/c. Transmit/Receive Structure
212
213See the Adaptec manual for the many possible structures, and options for
214each structure.  There are far too many to document all of them here.
215
216For transmit this driver uses type 0/1 transmit descriptors (depending
217on the 32/64 bitness of the architecture), and relies on automatic
218minimum-length padding.  It does not use the completion queue
219consumer index, but instead checks for non-zero status entries.
220
221For receive this driver uses type 2/3 receive descriptors.  The driver
222allocates full frame size skbuffs for the Rx ring buffers, so all frames
223should fit in a single descriptor.  The driver does not use the completion
224queue consumer index, but instead checks for non-zero status entries.
225
226When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
227is allocated and the frame is copied to the new skbuff.  When the incoming
228frame is larger, the skbuff is passed directly up the protocol stack.
229Buffers consumed this way are replaced by newly allocated skbuffs in a later
230phase of receive.
231
232A notable aspect of operation is that unaligned buffers are not permitted by
233the Starfire hardware.  Thus the IP header at offset 14 in an ethernet frame
234isn't longword aligned, which may cause problems on some machine
235e.g. Alphas and IA64. For these architectures, the driver is forced to copy
236the frame into a new skbuff unconditionally. Copied frames are put into the
237skbuff at an offset of "+2", thus 16-byte aligning the IP header.
238
239IIId. Synchronization
240
241The driver runs as two independent, single-threaded flows of control.  One
242is the send-packet routine, which enforces single-threaded use by the
243dev->tbusy flag.  The other thread is the interrupt handler, which is single
244threaded by the hardware and interrupt handling software.
245
246The send packet thread has partial control over the Tx ring and the netif_queue
247status. If the number of free Tx slots in the ring falls below a certain number
248(currently hardcoded to 4), it signals the upper layer to stop the queue.
249
250The interrupt handler has exclusive control over the Rx ring and records stats
251from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
252empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
253number of free Tx slow is above the threshold, it signals the upper layer to
254restart the queue.
255
256IV. Notes
257
258IVb. References
259
260The Adaptec Starfire manuals, available only from Adaptec.
261http://www.scyld.com/expert/100mbps.html
262http://www.scyld.com/expert/NWay.html
263
264IVc. Errata
265
266- StopOnPerr is broken, don't enable
267- Hardware ethernet padding exposes random data, perform software padding
268  instead (unverified -- works correctly for all the hardware I have)
269
270*/
271
272
273
274enum chip_capability_flags {CanHaveMII=1, };
275
276enum chipset {
277	CH_6915 = 0,
278};
279
280static const struct pci_device_id starfire_pci_tbl[] = {
281	{ PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
282	{ 0, }
283};
284MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
285
286/* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
287static const struct chip_info {
288	const char *name;
289	int drv_flags;
290} netdrv_tbl[] = {
291	{ "Adaptec Starfire 6915", CanHaveMII },
292};
293
294
295/* Offsets to the device registers.
296   Unlike software-only systems, device drivers interact with complex hardware.
297   It's not useful to define symbolic names for every register bit in the
298   device.  The name can only partially document the semantics and make
299   the driver longer and more difficult to read.
300   In general, only the important configuration values or bits changed
301   multiple times should be defined symbolically.
302*/
303enum register_offsets {
304	PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
305	IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
306	MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
307	GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
308	TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
309	TxRingHiAddr=0x5009C,		/* 64 bit address extension. */
310	TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
311	TxThreshold=0x500B0,
312	CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
313	RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
314	CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
315	RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
316	RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
317	TxMode=0x55000, VlanType=0x55064,
318	PerfFilterTable=0x56000, HashTable=0x56100,
319	TxGfpMem=0x58000, RxGfpMem=0x5a000,
320};
321
322/*
323 * Bits in the interrupt status/mask registers.
324 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
325 * enables all the interrupt sources that are or'ed into those status bits.
326 */
327enum intr_status_bits {
328	IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
329	IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
330	IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
331	IntrTxComplQLow=0x200000, IntrPCI=0x100000,
332	IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
333	IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
334	IntrNormalSummary=0x8000, IntrTxDone=0x4000,
335	IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
336	IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
337	IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
338	IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
339	IntrNoTxCsum=0x20, IntrTxBadID=0x10,
340	IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
341	IntrTxGfp=0x02, IntrPCIPad=0x01,
342	/* not quite bits */
343	IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
344	IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
345	IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
346};
347
348/* Bits in the RxFilterMode register. */
349enum rx_mode_bits {
350	AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
351	AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
352	PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
353	WakeupOnGFP=0x0800,
354};
355
356/* Bits in the TxMode register */
357enum tx_mode_bits {
358	MiiSoftReset=0x8000, MIILoopback=0x4000,
359	TxFlowEnable=0x0800, RxFlowEnable=0x0400,
360	PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
361};
362
363/* Bits in the TxDescCtrl register. */
364enum tx_ctrl_bits {
365	TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
366	TxDescSpace128=0x30, TxDescSpace256=0x40,
367	TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
368	TxDescType3=0x03, TxDescType4=0x04,
369	TxNoDMACompletion=0x08,
370	TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
371	TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
372	TxDMABurstSizeShift=8,
373};
374
375/* Bits in the RxDescQCtrl register. */
376enum rx_ctrl_bits {
377	RxBufferLenShift=16, RxMinDescrThreshShift=0,
378	RxPrefetchMode=0x8000, RxVariableQ=0x2000,
379	Rx2048QEntries=0x4000, Rx256QEntries=0,
380	RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
381	RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
382	RxDescSpace4=0x000, RxDescSpace8=0x100,
383	RxDescSpace16=0x200, RxDescSpace32=0x300,
384	RxDescSpace64=0x400, RxDescSpace128=0x500,
385	RxConsumerWrEn=0x80,
386};
387
388/* Bits in the RxDMACtrl register. */
389enum rx_dmactrl_bits {
390	RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
391	RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
392	RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
393	RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
394	RxChecksumRejectTCPOnly=0x01000000,
395	RxCompletionQ2Enable=0x800000,
396	RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
397	RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
398	RxDMAQ2NonIP=0x400000,
399	RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
400	RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
401	RxBurstSizeShift=0,
402};
403
404/* Bits in the RxCompletionAddr register */
405enum rx_compl_bits {
406	RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
407	RxComplProducerWrEn=0x40,
408	RxComplType0=0x00, RxComplType1=0x10,
409	RxComplType2=0x20, RxComplType3=0x30,
410	RxComplThreshShift=0,
411};
412
413/* Bits in the TxCompletionAddr register */
414enum tx_compl_bits {
415	TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
416	TxComplProducerWrEn=0x40,
417	TxComplIntrStatus=0x20,
418	CommonQueueMode=0x10,
419	TxComplThreshShift=0,
420};
421
422/* Bits in the GenCtrl register */
423enum gen_ctrl_bits {
424	RxEnable=0x05, TxEnable=0x0a,
425	RxGFPEnable=0x10, TxGFPEnable=0x20,
426};
427
428/* Bits in the IntrTimerCtrl register */
429enum intr_ctrl_bits {
430	Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
431	SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
432	IntrLatencyMask=0x1f,
433};
434
435/* The Rx and Tx buffer descriptors. */
436struct starfire_rx_desc {
437	netdrv_addr_t rxaddr;
438};
439enum rx_desc_bits {
440	RxDescValid=1, RxDescEndRing=2,
441};
442
443/* Completion queue entry. */
444struct short_rx_done_desc {
445	__le32 status;			/* Low 16 bits is length. */
446};
447struct basic_rx_done_desc {
448	__le32 status;			/* Low 16 bits is length. */
449	__le16 vlanid;
450	__le16 status2;
451};
452struct csum_rx_done_desc {
453	__le32 status;			/* Low 16 bits is length. */
454	__le16 csum;			/* Partial checksum */
455	__le16 status2;
456};
457struct full_rx_done_desc {
458	__le32 status;			/* Low 16 bits is length. */
459	__le16 status3;
460	__le16 status2;
461	__le16 vlanid;
462	__le16 csum;			/* partial checksum */
463	__le32 timestamp;
464};
465/* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
466#ifdef VLAN_SUPPORT
467typedef struct full_rx_done_desc rx_done_desc;
468#define RxComplType RxComplType3
469#else  /* not VLAN_SUPPORT */
470typedef struct csum_rx_done_desc rx_done_desc;
471#define RxComplType RxComplType2
472#endif /* not VLAN_SUPPORT */
473
474enum rx_done_bits {
475	RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
476};
477
478/* Type 1 Tx descriptor. */
479struct starfire_tx_desc_1 {
480	__le32 status;			/* Upper bits are status, lower 16 length. */
481	__le32 addr;
482};
483
484/* Type 2 Tx descriptor. */
485struct starfire_tx_desc_2 {
486	__le32 status;			/* Upper bits are status, lower 16 length. */
487	__le32 reserved;
488	__le64 addr;
489};
490
491#ifdef ADDR_64BITS
492typedef struct starfire_tx_desc_2 starfire_tx_desc;
493#define TX_DESC_TYPE TxDescType2
494#else  /* not ADDR_64BITS */
495typedef struct starfire_tx_desc_1 starfire_tx_desc;
496#define TX_DESC_TYPE TxDescType1
497#endif /* not ADDR_64BITS */
498#define TX_DESC_SPACING TxDescSpaceUnlim
499
500enum tx_desc_bits {
501	TxDescID=0xB0000000,
502	TxCRCEn=0x01000000, TxDescIntr=0x08000000,
503	TxRingWrap=0x04000000, TxCalTCP=0x02000000,
504};
505struct tx_done_desc {
506	__le32 status;			/* timestamp, index. */
507#if 0
508	__le32 intrstatus;		/* interrupt status */
509#endif
510};
511
512struct rx_ring_info {
513	struct sk_buff *skb;
514	dma_addr_t mapping;
515};
516struct tx_ring_info {
517	struct sk_buff *skb;
518	dma_addr_t mapping;
519	unsigned int used_slots;
520};
521
522#define PHY_CNT		2
523struct netdev_private {
524	/* Descriptor rings first for alignment. */
525	struct starfire_rx_desc *rx_ring;
526	starfire_tx_desc *tx_ring;
527	dma_addr_t rx_ring_dma;
528	dma_addr_t tx_ring_dma;
529	/* The addresses of rx/tx-in-place skbuffs. */
530	struct rx_ring_info rx_info[RX_RING_SIZE];
531	struct tx_ring_info tx_info[TX_RING_SIZE];
532	/* Pointers to completion queues (full pages). */
533	rx_done_desc *rx_done_q;
534	dma_addr_t rx_done_q_dma;
535	unsigned int rx_done;
536	struct tx_done_desc *tx_done_q;
537	dma_addr_t tx_done_q_dma;
538	unsigned int tx_done;
539	struct napi_struct napi;
540	struct net_device *dev;
541	struct pci_dev *pci_dev;
542#ifdef VLAN_SUPPORT
543	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
544#endif
545	void *queue_mem;
546	dma_addr_t queue_mem_dma;
547	size_t queue_mem_size;
548
549	/* Frequently used values: keep some adjacent for cache effect. */
550	spinlock_t lock;
551	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
552	unsigned int cur_tx, dirty_tx, reap_tx;
553	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
554	/* These values keep track of the transceiver/media in use. */
555	int speed100;			/* Set if speed == 100MBit. */
556	u32 tx_mode;
557	u32 intr_timer_ctrl;
558	u8 tx_threshold;
559	/* MII transceiver section. */
560	struct mii_if_info mii_if;		/* MII lib hooks/info */
561	int phy_cnt;			/* MII device addresses. */
562	unsigned char phys[PHY_CNT];	/* MII device addresses. */
563	void __iomem *base;
564};
565
566
567static int	mdio_read(struct net_device *dev, int phy_id, int location);
568static void	mdio_write(struct net_device *dev, int phy_id, int location, int value);
569static int	netdev_open(struct net_device *dev);
570static void	check_duplex(struct net_device *dev);
571static void	tx_timeout(struct net_device *dev, unsigned int txqueue);
572static void	init_ring(struct net_device *dev);
573static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
574static irqreturn_t intr_handler(int irq, void *dev_instance);
575static void	netdev_error(struct net_device *dev, int intr_status);
576static int	__netdev_rx(struct net_device *dev, int *quota);
577static int	netdev_poll(struct napi_struct *napi, int budget);
578static void	refill_rx_ring(struct net_device *dev);
579static void	netdev_error(struct net_device *dev, int intr_status);
580static void	set_rx_mode(struct net_device *dev);
581static struct net_device_stats *get_stats(struct net_device *dev);
582static int	netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
583static int	netdev_close(struct net_device *dev);
584static void	netdev_media_change(struct net_device *dev);
585static const struct ethtool_ops ethtool_ops;
586
587
588#ifdef VLAN_SUPPORT
589static int netdev_vlan_rx_add_vid(struct net_device *dev,
590				  __be16 proto, u16 vid)
591{
592	struct netdev_private *np = netdev_priv(dev);
593
594	spin_lock(&np->lock);
595	if (debug > 1)
596		printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
597	set_bit(vid, np->active_vlans);
598	set_rx_mode(dev);
599	spin_unlock(&np->lock);
600
601	return 0;
602}
603
604static int netdev_vlan_rx_kill_vid(struct net_device *dev,
605				   __be16 proto, u16 vid)
606{
607	struct netdev_private *np = netdev_priv(dev);
608
609	spin_lock(&np->lock);
610	if (debug > 1)
611		printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
612	clear_bit(vid, np->active_vlans);
613	set_rx_mode(dev);
614	spin_unlock(&np->lock);
615
616	return 0;
617}
618#endif /* VLAN_SUPPORT */
619
620
621static const struct net_device_ops netdev_ops = {
622	.ndo_open		= netdev_open,
623	.ndo_stop		= netdev_close,
624	.ndo_start_xmit		= start_tx,
625	.ndo_tx_timeout		= tx_timeout,
626	.ndo_get_stats		= get_stats,
627	.ndo_set_rx_mode	= set_rx_mode,
628	.ndo_eth_ioctl		= netdev_ioctl,
629	.ndo_set_mac_address	= eth_mac_addr,
630	.ndo_validate_addr	= eth_validate_addr,
631#ifdef VLAN_SUPPORT
632	.ndo_vlan_rx_add_vid	= netdev_vlan_rx_add_vid,
633	.ndo_vlan_rx_kill_vid	= netdev_vlan_rx_kill_vid,
634#endif
635};
636
637static int starfire_init_one(struct pci_dev *pdev,
638			     const struct pci_device_id *ent)
639{
640	struct device *d = &pdev->dev;
641	struct netdev_private *np;
642	int i, irq, chip_idx = ent->driver_data;
643	struct net_device *dev;
644	u8 addr[ETH_ALEN];
645	long ioaddr;
646	void __iomem *base;
647	int drv_flags, io_size;
648	int boguscnt;
649
650	if (pci_enable_device (pdev))
651		return -EIO;
652
653	ioaddr = pci_resource_start(pdev, 0);
654	io_size = pci_resource_len(pdev, 0);
655	if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
656		dev_err(d, "no PCI MEM resources, aborting\n");
657		return -ENODEV;
658	}
659
660	dev = alloc_etherdev(sizeof(*np));
661	if (!dev)
662		return -ENOMEM;
663
664	SET_NETDEV_DEV(dev, &pdev->dev);
665
666	irq = pdev->irq;
667
668	if (pci_request_regions (pdev, DRV_NAME)) {
669		dev_err(d, "cannot reserve PCI resources, aborting\n");
670		goto err_out_free_netdev;
671	}
672
673	base = ioremap(ioaddr, io_size);
674	if (!base) {
675		dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
676			io_size, ioaddr);
677		goto err_out_free_res;
678	}
679
680	pci_set_master(pdev);
681
682	/* enable MWI -- it vastly improves Rx performance on sparc64 */
683	pci_try_set_mwi(pdev);
684
685#ifdef ZEROCOPY
686	/* Starfire can do TCP/UDP checksumming */
687	if (enable_hw_cksum)
688		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
689#endif /* ZEROCOPY */
690
691#ifdef VLAN_SUPPORT
692	dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
693#endif /* VLAN_RX_KILL_VID */
694#ifdef ADDR_64BITS
695	dev->features |= NETIF_F_HIGHDMA;
696#endif /* ADDR_64BITS */
697
698	/* Serial EEPROM reads are hidden by the hardware. */
699	for (i = 0; i < 6; i++)
700		addr[i] = readb(base + EEPROMCtrl + 20 - i);
701	eth_hw_addr_set(dev, addr);
702
703#if ! defined(final_version) /* Dump the EEPROM contents during development. */
704	if (debug > 4)
705		for (i = 0; i < 0x20; i++)
706			printk("%2.2x%s",
707			       (unsigned int)readb(base + EEPROMCtrl + i),
708			       i % 16 != 15 ? " " : "\n");
709#endif
710
711	/* Issue soft reset */
712	writel(MiiSoftReset, base + TxMode);
713	udelay(1000);
714	writel(0, base + TxMode);
715
716	/* Reset the chip to erase previous misconfiguration. */
717	writel(1, base + PCIDeviceConfig);
718	boguscnt = 1000;
719	while (--boguscnt > 0) {
720		udelay(10);
721		if ((readl(base + PCIDeviceConfig) & 1) == 0)
722			break;
723	}
724	if (boguscnt == 0)
725		printk("%s: chipset reset never completed!\n", dev->name);
726	/* wait a little longer */
727	udelay(1000);
728
729	np = netdev_priv(dev);
730	np->dev = dev;
731	np->base = base;
732	spin_lock_init(&np->lock);
733	pci_set_drvdata(pdev, dev);
734
735	np->pci_dev = pdev;
736
737	np->mii_if.dev = dev;
738	np->mii_if.mdio_read = mdio_read;
739	np->mii_if.mdio_write = mdio_write;
740	np->mii_if.phy_id_mask = 0x1f;
741	np->mii_if.reg_num_mask = 0x1f;
742
743	drv_flags = netdrv_tbl[chip_idx].drv_flags;
744
745	np->speed100 = 1;
746
747	/* timer resolution is 128 * 0.8us */
748	np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
749		Timer10X | EnableIntrMasking;
750
751	if (small_frames > 0) {
752		np->intr_timer_ctrl |= SmallFrameBypass;
753		switch (small_frames) {
754		case 1 ... 64:
755			np->intr_timer_ctrl |= SmallFrame64;
756			break;
757		case 65 ... 128:
758			np->intr_timer_ctrl |= SmallFrame128;
759			break;
760		case 129 ... 256:
761			np->intr_timer_ctrl |= SmallFrame256;
762			break;
763		default:
764			np->intr_timer_ctrl |= SmallFrame512;
765			if (small_frames > 512)
766				printk("Adjusting small_frames down to 512\n");
767			break;
768		}
769	}
770
771	dev->netdev_ops = &netdev_ops;
772	dev->watchdog_timeo = TX_TIMEOUT;
773	dev->ethtool_ops = &ethtool_ops;
774
775	netif_napi_add_weight(dev, &np->napi, netdev_poll, max_interrupt_work);
776
777	if (mtu)
778		dev->mtu = mtu;
779
780	if (register_netdev(dev))
781		goto err_out_cleardev;
782
783	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
784	       dev->name, netdrv_tbl[chip_idx].name, base,
785	       dev->dev_addr, irq);
786
787	if (drv_flags & CanHaveMII) {
788		int phy, phy_idx = 0;
789		int mii_status;
790		for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
791			mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
792			msleep(100);
793			boguscnt = 1000;
794			while (--boguscnt > 0)
795				if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
796					break;
797			if (boguscnt == 0) {
798				printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
799				continue;
800			}
801			mii_status = mdio_read(dev, phy, MII_BMSR);
802			if (mii_status != 0) {
803				np->phys[phy_idx++] = phy;
804				np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
805				printk(KERN_INFO "%s: MII PHY found at address %d, status "
806					   "%#4.4x advertising %#4.4x.\n",
807					   dev->name, phy, mii_status, np->mii_if.advertising);
808				/* there can be only one PHY on-board */
809				break;
810			}
811		}
812		np->phy_cnt = phy_idx;
813		if (np->phy_cnt > 0)
814			np->mii_if.phy_id = np->phys[0];
815		else
816			memset(&np->mii_if, 0, sizeof(np->mii_if));
817	}
818
819	printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
820	       dev->name, enable_hw_cksum ? "enabled" : "disabled");
821	return 0;
822
823err_out_cleardev:
824	iounmap(base);
825err_out_free_res:
826	pci_release_regions (pdev);
827err_out_free_netdev:
828	free_netdev(dev);
829	return -ENODEV;
830}
831
832
833/* Read the MII Management Data I/O (MDIO) interfaces. */
834static int mdio_read(struct net_device *dev, int phy_id, int location)
835{
836	struct netdev_private *np = netdev_priv(dev);
837	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
838	int result, boguscnt=1000;
839	/* ??? Should we add a busy-wait here? */
840	do {
841		result = readl(mdio_addr);
842	} while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
843	if (boguscnt == 0)
844		return 0;
845	if ((result & 0xffff) == 0xffff)
846		return 0;
847	return result & 0xffff;
848}
849
850
851static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
852{
853	struct netdev_private *np = netdev_priv(dev);
854	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
855	writel(value, mdio_addr);
856	/* The busy-wait will occur before a read. */
857}
858
859
860static int netdev_open(struct net_device *dev)
861{
862	const struct firmware *fw_rx, *fw_tx;
863	const __be32 *fw_rx_data, *fw_tx_data;
864	struct netdev_private *np = netdev_priv(dev);
865	void __iomem *ioaddr = np->base;
866	const int irq = np->pci_dev->irq;
867	int i, retval;
868	size_t tx_size, rx_size;
869	size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
870
871	/* Do we ever need to reset the chip??? */
872
873	retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
874	if (retval)
875		return retval;
876
877	/* Disable the Rx and Tx, and reset the chip. */
878	writel(0, ioaddr + GenCtrl);
879	writel(1, ioaddr + PCIDeviceConfig);
880	if (debug > 1)
881		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
882		       dev->name, irq);
883
884	/* Allocate the various queues. */
885	if (!np->queue_mem) {
886		tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
887		rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
888		tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
889		rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
890		np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
891		np->queue_mem = dma_alloc_coherent(&np->pci_dev->dev,
892						   np->queue_mem_size,
893						   &np->queue_mem_dma, GFP_ATOMIC);
894		if (np->queue_mem == NULL) {
895			free_irq(irq, dev);
896			return -ENOMEM;
897		}
898
899		np->tx_done_q     = np->queue_mem;
900		np->tx_done_q_dma = np->queue_mem_dma;
901		np->rx_done_q     = (void *) np->tx_done_q + tx_done_q_size;
902		np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
903		np->tx_ring       = (void *) np->rx_done_q + rx_done_q_size;
904		np->tx_ring_dma   = np->rx_done_q_dma + rx_done_q_size;
905		np->rx_ring       = (void *) np->tx_ring + tx_ring_size;
906		np->rx_ring_dma   = np->tx_ring_dma + tx_ring_size;
907	}
908
909	/* Start with no carrier, it gets adjusted later */
910	netif_carrier_off(dev);
911	init_ring(dev);
912	/* Set the size of the Rx buffers. */
913	writel((np->rx_buf_sz << RxBufferLenShift) |
914	       (0 << RxMinDescrThreshShift) |
915	       RxPrefetchMode | RxVariableQ |
916	       RX_Q_ENTRIES |
917	       RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
918	       RxDescSpace4,
919	       ioaddr + RxDescQCtrl);
920
921	/* Set up the Rx DMA controller. */
922	writel(RxChecksumIgnore |
923	       (0 << RxEarlyIntThreshShift) |
924	       (6 << RxHighPrioThreshShift) |
925	       ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
926	       ioaddr + RxDMACtrl);
927
928	/* Set Tx descriptor */
929	writel((2 << TxHiPriFIFOThreshShift) |
930	       (0 << TxPadLenShift) |
931	       ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
932	       TX_DESC_Q_ADDR_SIZE |
933	       TX_DESC_SPACING | TX_DESC_TYPE,
934	       ioaddr + TxDescCtrl);
935
936	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
937	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
938	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
939	writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
940	writel(np->tx_ring_dma, ioaddr + TxRingPtr);
941
942	writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
943	writel(np->rx_done_q_dma |
944	       RxComplType |
945	       (0 << RxComplThreshShift),
946	       ioaddr + RxCompletionAddr);
947
948	if (debug > 1)
949		printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
950
951	/* Fill both the Tx SA register and the Rx perfect filter. */
952	for (i = 0; i < 6; i++)
953		writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
954	/* The first entry is special because it bypasses the VLAN filter.
955	   Don't use it. */
956	writew(0, ioaddr + PerfFilterTable);
957	writew(0, ioaddr + PerfFilterTable + 4);
958	writew(0, ioaddr + PerfFilterTable + 8);
959	for (i = 1; i < 16; i++) {
960		const __be16 *eaddrs = (const __be16 *)dev->dev_addr;
961		void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
962		writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
963		writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
964		writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
965	}
966
967	/* Initialize other registers. */
968	/* Configure the PCI bus bursts and FIFO thresholds. */
969	np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable;	/* modified when link is up. */
970	writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
971	udelay(1000);
972	writel(np->tx_mode, ioaddr + TxMode);
973	np->tx_threshold = 4;
974	writel(np->tx_threshold, ioaddr + TxThreshold);
975
976	writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
977
978	napi_enable(&np->napi);
979
980	netif_start_queue(dev);
981
982	if (debug > 1)
983		printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
984	set_rx_mode(dev);
985
986	np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
987	check_duplex(dev);
988
989	/* Enable GPIO interrupts on link change */
990	writel(0x0f00ff00, ioaddr + GPIOCtrl);
991
992	/* Set the interrupt mask */
993	writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
994	       IntrTxDMADone | IntrStatsMax | IntrLinkChange |
995	       IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
996	       ioaddr + IntrEnable);
997	/* Enable PCI interrupts. */
998	writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
999	       ioaddr + PCIDeviceConfig);
1000
1001#ifdef VLAN_SUPPORT
1002	/* Set VLAN type to 802.1q */
1003	writel(ETH_P_8021Q, ioaddr + VlanType);
1004#endif /* VLAN_SUPPORT */
1005
1006	retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1007	if (retval) {
1008		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1009		       FIRMWARE_RX);
1010		goto out_init;
1011	}
1012	if (fw_rx->size % 4) {
1013		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1014		       fw_rx->size, FIRMWARE_RX);
1015		retval = -EINVAL;
1016		goto out_rx;
1017	}
1018	retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1019	if (retval) {
1020		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1021		       FIRMWARE_TX);
1022		goto out_rx;
1023	}
1024	if (fw_tx->size % 4) {
1025		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1026		       fw_tx->size, FIRMWARE_TX);
1027		retval = -EINVAL;
1028		goto out_tx;
1029	}
1030	fw_rx_data = (const __be32 *)&fw_rx->data[0];
1031	fw_tx_data = (const __be32 *)&fw_tx->data[0];
1032	rx_size = fw_rx->size / 4;
1033	tx_size = fw_tx->size / 4;
1034
1035	/* Load Rx/Tx firmware into the frame processors */
1036	for (i = 0; i < rx_size; i++)
1037		writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1038	for (i = 0; i < tx_size; i++)
1039		writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1040	if (enable_hw_cksum)
1041		/* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1042		writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1043	else
1044		/* Enable the Rx and Tx units only. */
1045		writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1046
1047	if (debug > 1)
1048		printk(KERN_DEBUG "%s: Done netdev_open().\n",
1049		       dev->name);
1050
1051out_tx:
1052	release_firmware(fw_tx);
1053out_rx:
1054	release_firmware(fw_rx);
1055out_init:
1056	if (retval)
1057		netdev_close(dev);
1058	return retval;
1059}
1060
1061
1062static void check_duplex(struct net_device *dev)
1063{
1064	struct netdev_private *np = netdev_priv(dev);
1065	u16 reg0;
1066	int silly_count = 1000;
1067
1068	mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1069	mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1070	udelay(500);
1071	while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1072		/* do nothing */;
1073	if (!silly_count) {
1074		printk("%s: MII reset failed!\n", dev->name);
1075		return;
1076	}
1077
1078	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1079
1080	if (!np->mii_if.force_media) {
1081		reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1082	} else {
1083		reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1084		if (np->speed100)
1085			reg0 |= BMCR_SPEED100;
1086		if (np->mii_if.full_duplex)
1087			reg0 |= BMCR_FULLDPLX;
1088		printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1089		       dev->name,
1090		       np->speed100 ? "100" : "10",
1091		       np->mii_if.full_duplex ? "full" : "half");
1092	}
1093	mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1094}
1095
1096
1097static void tx_timeout(struct net_device *dev, unsigned int txqueue)
1098{
1099	struct netdev_private *np = netdev_priv(dev);
1100	void __iomem *ioaddr = np->base;
1101	int old_debug;
1102
1103	printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1104	       "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1105
1106	/* Perhaps we should reinitialize the hardware here. */
1107
1108	/*
1109	 * Stop and restart the interface.
1110	 * Cheat and increase the debug level temporarily.
1111	 */
1112	old_debug = debug;
1113	debug = 2;
1114	netdev_close(dev);
1115	netdev_open(dev);
1116	debug = old_debug;
1117
1118	/* Trigger an immediate transmit demand. */
1119
1120	netif_trans_update(dev); /* prevent tx timeout */
1121	dev->stats.tx_errors++;
1122	netif_wake_queue(dev);
1123}
1124
1125
1126/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1127static void init_ring(struct net_device *dev)
1128{
1129	struct netdev_private *np = netdev_priv(dev);
1130	int i;
1131
1132	np->cur_rx = np->cur_tx = np->reap_tx = 0;
1133	np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1134
1135	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1136
1137	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1138	for (i = 0; i < RX_RING_SIZE; i++) {
1139		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1140		np->rx_info[i].skb = skb;
1141		if (skb == NULL)
1142			break;
1143		np->rx_info[i].mapping = dma_map_single(&np->pci_dev->dev,
1144							skb->data,
1145							np->rx_buf_sz,
1146							DMA_FROM_DEVICE);
1147		if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[i].mapping)) {
1148			dev_kfree_skb(skb);
1149			np->rx_info[i].skb = NULL;
1150			break;
1151		}
1152		/* Grrr, we cannot offset to correctly align the IP header. */
1153		np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1154	}
1155	writew(i - 1, np->base + RxDescQIdx);
1156	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1157
1158	/* Clear the remainder of the Rx buffer ring. */
1159	for (  ; i < RX_RING_SIZE; i++) {
1160		np->rx_ring[i].rxaddr = 0;
1161		np->rx_info[i].skb = NULL;
1162		np->rx_info[i].mapping = 0;
1163	}
1164	/* Mark the last entry as wrapping the ring. */
1165	np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1166
1167	/* Clear the completion rings. */
1168	for (i = 0; i < DONE_Q_SIZE; i++) {
1169		np->rx_done_q[i].status = 0;
1170		np->tx_done_q[i].status = 0;
1171	}
1172
1173	for (i = 0; i < TX_RING_SIZE; i++)
1174		memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1175}
1176
1177
1178static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1179{
1180	struct netdev_private *np = netdev_priv(dev);
1181	unsigned int entry;
1182	unsigned int prev_tx;
1183	u32 status;
1184	int i, j;
1185
1186	/*
1187	 * be cautious here, wrapping the queue has weird semantics
1188	 * and we may not have enough slots even when it seems we do.
1189	 */
1190	if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1191		netif_stop_queue(dev);
1192		return NETDEV_TX_BUSY;
1193	}
1194
1195#if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1196	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1197		if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1198			return NETDEV_TX_OK;
1199	}
1200#endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1201
1202	prev_tx = np->cur_tx;
1203	entry = np->cur_tx % TX_RING_SIZE;
1204	for (i = 0; i < skb_num_frags(skb); i++) {
1205		int wrap_ring = 0;
1206		status = TxDescID;
1207
1208		if (i == 0) {
1209			np->tx_info[entry].skb = skb;
1210			status |= TxCRCEn;
1211			if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1212				status |= TxRingWrap;
1213				wrap_ring = 1;
1214			}
1215			if (np->reap_tx) {
1216				status |= TxDescIntr;
1217				np->reap_tx = 0;
1218			}
1219			if (skb->ip_summed == CHECKSUM_PARTIAL) {
1220				status |= TxCalTCP;
1221				dev->stats.tx_compressed++;
1222			}
1223			status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1224
1225			np->tx_info[entry].mapping =
1226				dma_map_single(&np->pci_dev->dev, skb->data,
1227					       skb_first_frag_len(skb),
1228					       DMA_TO_DEVICE);
1229		} else {
1230			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1231			status |= skb_frag_size(this_frag);
1232			np->tx_info[entry].mapping =
1233				dma_map_single(&np->pci_dev->dev,
1234					       skb_frag_address(this_frag),
1235					       skb_frag_size(this_frag),
1236					       DMA_TO_DEVICE);
1237		}
1238		if (dma_mapping_error(&np->pci_dev->dev, np->tx_info[entry].mapping)) {
1239			dev->stats.tx_dropped++;
1240			goto err_out;
1241		}
1242
1243		np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1244		np->tx_ring[entry].status = cpu_to_le32(status);
1245		if (debug > 3)
1246			printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1247			       dev->name, np->cur_tx, np->dirty_tx,
1248			       entry, status);
1249		if (wrap_ring) {
1250			np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1251			np->cur_tx += np->tx_info[entry].used_slots;
1252			entry = 0;
1253		} else {
1254			np->tx_info[entry].used_slots = 1;
1255			np->cur_tx += np->tx_info[entry].used_slots;
1256			entry++;
1257		}
1258		/* scavenge the tx descriptors twice per TX_RING_SIZE */
1259		if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1260			np->reap_tx = 1;
1261	}
1262
1263	/* Non-x86: explicitly flush descriptor cache lines here. */
1264	/* Ensure all descriptors are written back before the transmit is
1265	   initiated. - Jes */
1266	wmb();
1267
1268	/* Update the producer index. */
1269	writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1270
1271	/* 4 is arbitrary, but should be ok */
1272	if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1273		netif_stop_queue(dev);
1274
1275	return NETDEV_TX_OK;
1276
1277err_out:
1278	entry = prev_tx % TX_RING_SIZE;
1279	np->tx_info[entry].skb = NULL;
1280	if (i > 0) {
1281		dma_unmap_single(&np->pci_dev->dev,
1282				 np->tx_info[entry].mapping,
1283				 skb_first_frag_len(skb), DMA_TO_DEVICE);
1284		np->tx_info[entry].mapping = 0;
1285		entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1286		for (j = 1; j < i; j++) {
1287			dma_unmap_single(&np->pci_dev->dev,
1288					 np->tx_info[entry].mapping,
1289					 skb_frag_size(&skb_shinfo(skb)->frags[j - 1]),
1290					 DMA_TO_DEVICE);
1291			entry++;
1292		}
1293	}
1294	dev_kfree_skb_any(skb);
1295	np->cur_tx = prev_tx;
1296	return NETDEV_TX_OK;
1297}
1298
1299/* The interrupt handler does all of the Rx thread work and cleans up
1300   after the Tx thread. */
1301static irqreturn_t intr_handler(int irq, void *dev_instance)
1302{
1303	struct net_device *dev = dev_instance;
1304	struct netdev_private *np = netdev_priv(dev);
1305	void __iomem *ioaddr = np->base;
1306	int boguscnt = max_interrupt_work;
1307	int consumer;
1308	int tx_status;
1309	int handled = 0;
1310
1311	do {
1312		u32 intr_status = readl(ioaddr + IntrClear);
1313
1314		if (debug > 4)
1315			printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1316			       dev->name, intr_status);
1317
1318		if (intr_status == 0 || intr_status == (u32) -1)
1319			break;
1320
1321		handled = 1;
1322
1323		if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1324			u32 enable;
1325
1326			if (likely(napi_schedule_prep(&np->napi))) {
1327				__napi_schedule(&np->napi);
1328				enable = readl(ioaddr + IntrEnable);
1329				enable &= ~(IntrRxDone | IntrRxEmpty);
1330				writel(enable, ioaddr + IntrEnable);
1331				/* flush PCI posting buffers */
1332				readl(ioaddr + IntrEnable);
1333			} else {
1334				/* Paranoia check */
1335				enable = readl(ioaddr + IntrEnable);
1336				if (enable & (IntrRxDone | IntrRxEmpty)) {
1337					printk(KERN_INFO
1338					       "%s: interrupt while in poll!\n",
1339					       dev->name);
1340					enable &= ~(IntrRxDone | IntrRxEmpty);
1341					writel(enable, ioaddr + IntrEnable);
1342				}
1343			}
1344		}
1345
1346		/* Scavenge the skbuff list based on the Tx-done queue.
1347		   There are redundant checks here that may be cleaned up
1348		   after the driver has proven to be reliable. */
1349		consumer = readl(ioaddr + TxConsumerIdx);
1350		if (debug > 3)
1351			printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1352			       dev->name, consumer);
1353
1354		while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1355			if (debug > 3)
1356				printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1357				       dev->name, np->dirty_tx, np->tx_done, tx_status);
1358			if ((tx_status & 0xe0000000) == 0xa0000000) {
1359				dev->stats.tx_packets++;
1360			} else if ((tx_status & 0xe0000000) == 0x80000000) {
1361				u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1362				struct sk_buff *skb = np->tx_info[entry].skb;
1363				np->tx_info[entry].skb = NULL;
1364				dma_unmap_single(&np->pci_dev->dev,
1365						 np->tx_info[entry].mapping,
1366						 skb_first_frag_len(skb),
1367						 DMA_TO_DEVICE);
1368				np->tx_info[entry].mapping = 0;
1369				np->dirty_tx += np->tx_info[entry].used_slots;
1370				entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1371				{
1372					int i;
1373					for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1374						dma_unmap_single(&np->pci_dev->dev,
1375								 np->tx_info[entry].mapping,
1376								 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1377								 DMA_TO_DEVICE);
1378						np->dirty_tx++;
1379						entry++;
1380					}
1381				}
1382
1383				dev_consume_skb_irq(skb);
1384			}
1385			np->tx_done_q[np->tx_done].status = 0;
1386			np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1387		}
1388		writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1389
1390		if (netif_queue_stopped(dev) &&
1391		    (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1392			/* The ring is no longer full, wake the queue. */
1393			netif_wake_queue(dev);
1394		}
1395
1396		/* Stats overflow */
1397		if (intr_status & IntrStatsMax)
1398			get_stats(dev);
1399
1400		/* Media change interrupt. */
1401		if (intr_status & IntrLinkChange)
1402			netdev_media_change(dev);
1403
1404		/* Abnormal error summary/uncommon events handlers. */
1405		if (intr_status & IntrAbnormalSummary)
1406			netdev_error(dev, intr_status);
1407
1408		if (--boguscnt < 0) {
1409			if (debug > 1)
1410				printk(KERN_WARNING "%s: Too much work at interrupt, "
1411				       "status=%#8.8x.\n",
1412				       dev->name, intr_status);
1413			break;
1414		}
1415	} while (1);
1416
1417	if (debug > 4)
1418		printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1419		       dev->name, (int) readl(ioaddr + IntrStatus));
1420	return IRQ_RETVAL(handled);
1421}
1422
1423
1424/*
1425 * This routine is logically part of the interrupt/poll handler, but separated
1426 * for clarity and better register allocation.
1427 */
1428static int __netdev_rx(struct net_device *dev, int *quota)
1429{
1430	struct netdev_private *np = netdev_priv(dev);
1431	u32 desc_status;
1432	int retcode = 0;
1433
1434	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1435	while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1436		struct sk_buff *skb;
1437		u16 pkt_len;
1438		int entry;
1439		rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1440
1441		if (debug > 4)
1442			printk(KERN_DEBUG "  netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1443		if (!(desc_status & RxOK)) {
1444			/* There was an error. */
1445			if (debug > 2)
1446				printk(KERN_DEBUG "  netdev_rx() Rx error was %#8.8x.\n", desc_status);
1447			dev->stats.rx_errors++;
1448			if (desc_status & RxFIFOErr)
1449				dev->stats.rx_fifo_errors++;
1450			goto next_rx;
1451		}
1452
1453		if (*quota <= 0) {	/* out of rx quota */
1454			retcode = 1;
1455			goto out;
1456		}
1457		(*quota)--;
1458
1459		pkt_len = desc_status;	/* Implicitly Truncate */
1460		entry = (desc_status >> 16) & 0x7ff;
1461
1462		if (debug > 4)
1463			printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1464		/* Check if the packet is long enough to accept without copying
1465		   to a minimally-sized skbuff. */
1466		if (pkt_len < rx_copybreak &&
1467		    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1468			skb_reserve(skb, 2);	/* 16 byte align the IP header */
1469			dma_sync_single_for_cpu(&np->pci_dev->dev,
1470						np->rx_info[entry].mapping,
1471						pkt_len, DMA_FROM_DEVICE);
1472			skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1473			dma_sync_single_for_device(&np->pci_dev->dev,
1474						   np->rx_info[entry].mapping,
1475						   pkt_len, DMA_FROM_DEVICE);
1476			skb_put(skb, pkt_len);
1477		} else {
1478			dma_unmap_single(&np->pci_dev->dev,
1479					 np->rx_info[entry].mapping,
1480					 np->rx_buf_sz, DMA_FROM_DEVICE);
1481			skb = np->rx_info[entry].skb;
1482			skb_put(skb, pkt_len);
1483			np->rx_info[entry].skb = NULL;
1484			np->rx_info[entry].mapping = 0;
1485		}
1486#ifndef final_version			/* Remove after testing. */
1487		/* You will want this info for the initial debug. */
1488		if (debug > 5) {
1489			printk(KERN_DEBUG "  Rx data %pM %pM %2.2x%2.2x.\n",
1490			       skb->data, skb->data + 6,
1491			       skb->data[12], skb->data[13]);
1492		}
1493#endif
1494
1495		skb->protocol = eth_type_trans(skb, dev);
1496#ifdef VLAN_SUPPORT
1497		if (debug > 4)
1498			printk(KERN_DEBUG "  netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1499#endif
1500		if (le16_to_cpu(desc->status2) & 0x0100) {
1501			skb->ip_summed = CHECKSUM_UNNECESSARY;
1502			dev->stats.rx_compressed++;
1503		}
1504		/*
1505		 * This feature doesn't seem to be working, at least
1506		 * with the two firmware versions I have. If the GFP sees
1507		 * an IP fragment, it either ignores it completely, or reports
1508		 * "bad checksum" on it.
1509		 *
1510		 * Maybe I missed something -- corrections are welcome.
1511		 * Until then, the printk stays. :-) -Ion
1512		 */
1513		else if (le16_to_cpu(desc->status2) & 0x0040) {
1514			skb->ip_summed = CHECKSUM_COMPLETE;
1515			skb->csum = le16_to_cpu(desc->csum);
1516			printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1517		}
1518#ifdef VLAN_SUPPORT
1519		if (le16_to_cpu(desc->status2) & 0x0200) {
1520			u16 vlid = le16_to_cpu(desc->vlanid);
1521
1522			if (debug > 4) {
1523				printk(KERN_DEBUG "  netdev_rx() vlanid = %d\n",
1524				       vlid);
1525			}
1526			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1527		}
1528#endif /* VLAN_SUPPORT */
1529		netif_receive_skb(skb);
1530		dev->stats.rx_packets++;
1531
1532	next_rx:
1533		np->cur_rx++;
1534		desc->status = 0;
1535		np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1536	}
1537
1538	if (*quota == 0) {	/* out of rx quota */
1539		retcode = 1;
1540		goto out;
1541	}
1542	writew(np->rx_done, np->base + CompletionQConsumerIdx);
1543
1544 out:
1545	refill_rx_ring(dev);
1546	if (debug > 5)
1547		printk(KERN_DEBUG "  exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1548		       retcode, np->rx_done, desc_status);
1549	return retcode;
1550}
1551
1552static int netdev_poll(struct napi_struct *napi, int budget)
1553{
1554	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1555	struct net_device *dev = np->dev;
1556	u32 intr_status;
1557	void __iomem *ioaddr = np->base;
1558	int quota = budget;
1559
1560	do {
1561		writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1562
1563		if (__netdev_rx(dev, &quota))
1564			goto out;
1565
1566		intr_status = readl(ioaddr + IntrStatus);
1567	} while (intr_status & (IntrRxDone | IntrRxEmpty));
1568
1569	napi_complete(napi);
1570	intr_status = readl(ioaddr + IntrEnable);
1571	intr_status |= IntrRxDone | IntrRxEmpty;
1572	writel(intr_status, ioaddr + IntrEnable);
1573
1574 out:
1575	if (debug > 5)
1576		printk(KERN_DEBUG "  exiting netdev_poll(): %d.\n",
1577		       budget - quota);
1578
1579	/* Restart Rx engine if stopped. */
1580	return budget - quota;
1581}
1582
1583static void refill_rx_ring(struct net_device *dev)
1584{
1585	struct netdev_private *np = netdev_priv(dev);
1586	struct sk_buff *skb;
1587	int entry = -1;
1588
1589	/* Refill the Rx ring buffers. */
1590	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1591		entry = np->dirty_rx % RX_RING_SIZE;
1592		if (np->rx_info[entry].skb == NULL) {
1593			skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1594			np->rx_info[entry].skb = skb;
1595			if (skb == NULL)
1596				break;	/* Better luck next round. */
1597			np->rx_info[entry].mapping =
1598				dma_map_single(&np->pci_dev->dev, skb->data,
1599					       np->rx_buf_sz, DMA_FROM_DEVICE);
1600			if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[entry].mapping)) {
1601				dev_kfree_skb(skb);
1602				np->rx_info[entry].skb = NULL;
1603				break;
1604			}
1605			np->rx_ring[entry].rxaddr =
1606				cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1607		}
1608		if (entry == RX_RING_SIZE - 1)
1609			np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1610	}
1611	if (entry >= 0)
1612		writew(entry, np->base + RxDescQIdx);
1613}
1614
1615
1616static void netdev_media_change(struct net_device *dev)
1617{
1618	struct netdev_private *np = netdev_priv(dev);
1619	void __iomem *ioaddr = np->base;
1620	u16 reg0, reg1, reg4, reg5;
1621	u32 new_tx_mode;
1622	u32 new_intr_timer_ctrl;
1623
1624	/* reset status first */
1625	mdio_read(dev, np->phys[0], MII_BMCR);
1626	mdio_read(dev, np->phys[0], MII_BMSR);
1627
1628	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1629	reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1630
1631	if (reg1 & BMSR_LSTATUS) {
1632		/* link is up */
1633		if (reg0 & BMCR_ANENABLE) {
1634			/* autonegotiation is enabled */
1635			reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1636			reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1637			if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1638				np->speed100 = 1;
1639				np->mii_if.full_duplex = 1;
1640			} else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1641				np->speed100 = 1;
1642				np->mii_if.full_duplex = 0;
1643			} else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1644				np->speed100 = 0;
1645				np->mii_if.full_duplex = 1;
1646			} else {
1647				np->speed100 = 0;
1648				np->mii_if.full_duplex = 0;
1649			}
1650		} else {
1651			/* autonegotiation is disabled */
1652			if (reg0 & BMCR_SPEED100)
1653				np->speed100 = 1;
1654			else
1655				np->speed100 = 0;
1656			if (reg0 & BMCR_FULLDPLX)
1657				np->mii_if.full_duplex = 1;
1658			else
1659				np->mii_if.full_duplex = 0;
1660		}
1661		netif_carrier_on(dev);
1662		printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1663		       dev->name,
1664		       np->speed100 ? "100" : "10",
1665		       np->mii_if.full_duplex ? "full" : "half");
1666
1667		new_tx_mode = np->tx_mode & ~FullDuplex;	/* duplex setting */
1668		if (np->mii_if.full_duplex)
1669			new_tx_mode |= FullDuplex;
1670		if (np->tx_mode != new_tx_mode) {
1671			np->tx_mode = new_tx_mode;
1672			writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1673			udelay(1000);
1674			writel(np->tx_mode, ioaddr + TxMode);
1675		}
1676
1677		new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1678		if (np->speed100)
1679			new_intr_timer_ctrl |= Timer10X;
1680		if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1681			np->intr_timer_ctrl = new_intr_timer_ctrl;
1682			writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1683		}
1684	} else {
1685		netif_carrier_off(dev);
1686		printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1687	}
1688}
1689
1690
1691static void netdev_error(struct net_device *dev, int intr_status)
1692{
1693	struct netdev_private *np = netdev_priv(dev);
1694
1695	/* Came close to underrunning the Tx FIFO, increase threshold. */
1696	if (intr_status & IntrTxDataLow) {
1697		if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1698			writel(++np->tx_threshold, np->base + TxThreshold);
1699			printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1700			       dev->name, np->tx_threshold * 16);
1701		} else
1702			printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1703	}
1704	if (intr_status & IntrRxGFPDead) {
1705		dev->stats.rx_fifo_errors++;
1706		dev->stats.rx_errors++;
1707	}
1708	if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1709		dev->stats.tx_fifo_errors++;
1710		dev->stats.tx_errors++;
1711	}
1712	if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1713		printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1714		       dev->name, intr_status);
1715}
1716
1717
1718static struct net_device_stats *get_stats(struct net_device *dev)
1719{
1720	struct netdev_private *np = netdev_priv(dev);
1721	void __iomem *ioaddr = np->base;
1722
1723	/* This adapter architecture needs no SMP locks. */
1724	dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1725	dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1726	dev->stats.tx_packets = readl(ioaddr + 0x57000);
1727	dev->stats.tx_aborted_errors =
1728		readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1729	dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1730	dev->stats.collisions =
1731		readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1732
1733	/* The chip only need report frame silently dropped. */
1734	dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1735	writew(0, ioaddr + RxDMAStatus);
1736	dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1737	dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1738	dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1739	dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1740
1741	return &dev->stats;
1742}
1743
1744#ifdef VLAN_SUPPORT
1745static u32 set_vlan_mode(struct netdev_private *np)
1746{
1747	u32 ret = VlanMode;
1748	u16 vid;
1749	void __iomem *filter_addr = np->base + HashTable + 8;
1750	int vlan_count = 0;
1751
1752	for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1753		if (vlan_count == 32)
1754			break;
1755		writew(vid, filter_addr);
1756		filter_addr += 16;
1757		vlan_count++;
1758	}
1759	if (vlan_count == 32) {
1760		ret |= PerfectFilterVlan;
1761		while (vlan_count < 32) {
1762			writew(0, filter_addr);
1763			filter_addr += 16;
1764			vlan_count++;
1765		}
1766	}
1767	return ret;
1768}
1769#endif /* VLAN_SUPPORT */
1770
1771static void set_rx_mode(struct net_device *dev)
1772{
1773	struct netdev_private *np = netdev_priv(dev);
1774	void __iomem *ioaddr = np->base;
1775	u32 rx_mode = MinVLANPrio;
1776	struct netdev_hw_addr *ha;
1777	int i;
1778
1779#ifdef VLAN_SUPPORT
1780	rx_mode |= set_vlan_mode(np);
1781#endif /* VLAN_SUPPORT */
1782
1783	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1784		rx_mode |= AcceptAll;
1785	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1786		   (dev->flags & IFF_ALLMULTI)) {
1787		/* Too many to match, or accept all multicasts. */
1788		rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1789	} else if (netdev_mc_count(dev) <= 14) {
1790		/* Use the 16 element perfect filter, skip first two entries. */
1791		void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1792		const __be16 *eaddrs;
1793		netdev_for_each_mc_addr(ha, dev) {
1794			eaddrs = (__be16 *) ha->addr;
1795			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1796			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1797			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1798		}
1799		eaddrs = (const __be16 *)dev->dev_addr;
1800		i = netdev_mc_count(dev) + 2;
1801		while (i++ < 16) {
1802			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1803			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1804			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1805		}
1806		rx_mode |= AcceptBroadcast|PerfectFilter;
1807	} else {
1808		/* Must use a multicast hash table. */
1809		void __iomem *filter_addr;
1810		const __be16 *eaddrs;
1811		__le16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));	/* Multicast hash filter */
1812
1813		memset(mc_filter, 0, sizeof(mc_filter));
1814		netdev_for_each_mc_addr(ha, dev) {
1815			/* The chip uses the upper 9 CRC bits
1816			   as index into the hash table */
1817			int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1818			__le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1819
1820			*fptr |= cpu_to_le32(1 << (bit_nr & 31));
1821		}
1822		/* Clear the perfect filter list, skip first two entries. */
1823		filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1824		eaddrs = (const __be16 *)dev->dev_addr;
1825		for (i = 2; i < 16; i++) {
1826			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1827			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1828			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1829		}
1830		for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1831			writew(mc_filter[i], filter_addr);
1832		rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1833	}
1834	writel(rx_mode, ioaddr + RxFilterMode);
1835}
1836
1837static int check_if_running(struct net_device *dev)
1838{
1839	if (!netif_running(dev))
1840		return -EINVAL;
1841	return 0;
1842}
1843
1844static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1845{
1846	struct netdev_private *np = netdev_priv(dev);
1847	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1848	strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1849}
1850
1851static int get_link_ksettings(struct net_device *dev,
1852			      struct ethtool_link_ksettings *cmd)
1853{
1854	struct netdev_private *np = netdev_priv(dev);
1855	spin_lock_irq(&np->lock);
1856	mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1857	spin_unlock_irq(&np->lock);
1858	return 0;
1859}
1860
1861static int set_link_ksettings(struct net_device *dev,
1862			      const struct ethtool_link_ksettings *cmd)
1863{
1864	struct netdev_private *np = netdev_priv(dev);
1865	int res;
1866	spin_lock_irq(&np->lock);
1867	res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1868	spin_unlock_irq(&np->lock);
1869	check_duplex(dev);
1870	return res;
1871}
1872
1873static int nway_reset(struct net_device *dev)
1874{
1875	struct netdev_private *np = netdev_priv(dev);
1876	return mii_nway_restart(&np->mii_if);
1877}
1878
1879static u32 get_link(struct net_device *dev)
1880{
1881	struct netdev_private *np = netdev_priv(dev);
1882	return mii_link_ok(&np->mii_if);
1883}
1884
1885static u32 get_msglevel(struct net_device *dev)
1886{
1887	return debug;
1888}
1889
1890static void set_msglevel(struct net_device *dev, u32 val)
1891{
1892	debug = val;
1893}
1894
1895static const struct ethtool_ops ethtool_ops = {
1896	.begin = check_if_running,
1897	.get_drvinfo = get_drvinfo,
1898	.nway_reset = nway_reset,
1899	.get_link = get_link,
1900	.get_msglevel = get_msglevel,
1901	.set_msglevel = set_msglevel,
1902	.get_link_ksettings = get_link_ksettings,
1903	.set_link_ksettings = set_link_ksettings,
1904};
1905
1906static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1907{
1908	struct netdev_private *np = netdev_priv(dev);
1909	struct mii_ioctl_data *data = if_mii(rq);
1910	int rc;
1911
1912	if (!netif_running(dev))
1913		return -EINVAL;
1914
1915	spin_lock_irq(&np->lock);
1916	rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1917	spin_unlock_irq(&np->lock);
1918
1919	if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1920		check_duplex(dev);
1921
1922	return rc;
1923}
1924
1925static int netdev_close(struct net_device *dev)
1926{
1927	struct netdev_private *np = netdev_priv(dev);
1928	void __iomem *ioaddr = np->base;
1929	int i;
1930
1931	netif_stop_queue(dev);
1932
1933	napi_disable(&np->napi);
1934
1935	if (debug > 1) {
1936		printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1937			   dev->name, (int) readl(ioaddr + IntrStatus));
1938		printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1939		       dev->name, np->cur_tx, np->dirty_tx,
1940		       np->cur_rx, np->dirty_rx);
1941	}
1942
1943	/* Disable interrupts by clearing the interrupt mask. */
1944	writel(0, ioaddr + IntrEnable);
1945
1946	/* Stop the chip's Tx and Rx processes. */
1947	writel(0, ioaddr + GenCtrl);
1948	readl(ioaddr + GenCtrl);
1949
1950	if (debug > 5) {
1951		printk(KERN_DEBUG"  Tx ring at %#llx:\n",
1952		       (long long) np->tx_ring_dma);
1953		for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1954			printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1955			       i, le32_to_cpu(np->tx_ring[i].status),
1956			       (long long) dma_to_cpu(np->tx_ring[i].addr),
1957			       le32_to_cpu(np->tx_done_q[i].status));
1958		printk(KERN_DEBUG "  Rx ring at %#llx -> %p:\n",
1959		       (long long) np->rx_ring_dma, np->rx_done_q);
1960		if (np->rx_done_q)
1961			for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1962				printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1963				       i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1964		}
1965	}
1966
1967	free_irq(np->pci_dev->irq, dev);
1968
1969	/* Free all the skbuffs in the Rx queue. */
1970	for (i = 0; i < RX_RING_SIZE; i++) {
1971		np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1972		if (np->rx_info[i].skb != NULL) {
1973			dma_unmap_single(&np->pci_dev->dev,
1974					 np->rx_info[i].mapping,
1975					 np->rx_buf_sz, DMA_FROM_DEVICE);
1976			dev_kfree_skb(np->rx_info[i].skb);
1977		}
1978		np->rx_info[i].skb = NULL;
1979		np->rx_info[i].mapping = 0;
1980	}
1981	for (i = 0; i < TX_RING_SIZE; i++) {
1982		struct sk_buff *skb = np->tx_info[i].skb;
1983		if (skb == NULL)
1984			continue;
1985		dma_unmap_single(&np->pci_dev->dev, np->tx_info[i].mapping,
1986				 skb_first_frag_len(skb), DMA_TO_DEVICE);
1987		np->tx_info[i].mapping = 0;
1988		dev_kfree_skb(skb);
1989		np->tx_info[i].skb = NULL;
1990	}
1991
1992	return 0;
1993}
1994
1995static int __maybe_unused starfire_suspend(struct device *dev_d)
1996{
1997	struct net_device *dev = dev_get_drvdata(dev_d);
1998
1999	if (netif_running(dev)) {
2000		netif_device_detach(dev);
2001		netdev_close(dev);
2002	}
2003
2004	return 0;
2005}
2006
2007static int __maybe_unused starfire_resume(struct device *dev_d)
2008{
2009	struct net_device *dev = dev_get_drvdata(dev_d);
2010
2011	if (netif_running(dev)) {
2012		netdev_open(dev);
2013		netif_device_attach(dev);
2014	}
2015
2016	return 0;
2017}
2018
2019static void starfire_remove_one(struct pci_dev *pdev)
2020{
2021	struct net_device *dev = pci_get_drvdata(pdev);
2022	struct netdev_private *np = netdev_priv(dev);
2023
2024	BUG_ON(!dev);
2025
2026	unregister_netdev(dev);
2027
2028	if (np->queue_mem)
2029		dma_free_coherent(&pdev->dev, np->queue_mem_size,
2030				  np->queue_mem, np->queue_mem_dma);
2031
2032
2033	/* XXX: add wakeup code -- requires firmware for MagicPacket */
2034	pci_set_power_state(pdev, PCI_D3hot);	/* go to sleep in D3 mode */
2035	pci_disable_device(pdev);
2036
2037	iounmap(np->base);
2038	pci_release_regions(pdev);
2039
2040	free_netdev(dev);			/* Will also free np!! */
2041}
2042
2043static SIMPLE_DEV_PM_OPS(starfire_pm_ops, starfire_suspend, starfire_resume);
2044
2045static struct pci_driver starfire_driver = {
2046	.name		= DRV_NAME,
2047	.probe		= starfire_init_one,
2048	.remove		= starfire_remove_one,
2049	.driver.pm	= &starfire_pm_ops,
2050	.id_table	= starfire_pci_tbl,
2051};
2052
2053
2054static int __init starfire_init (void)
2055{
2056/* when a module, this is printed whether or not devices are found in probe */
2057#ifdef MODULE
2058	printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2059#endif
2060
2061	BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2062
2063	return pci_register_driver(&starfire_driver);
2064}
2065
2066
2067static void __exit starfire_cleanup (void)
2068{
2069	pci_unregister_driver (&starfire_driver);
2070}
2071
2072
2073module_init(starfire_init);
2074module_exit(starfire_cleanup);
2075