1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Microchip switch driver main logic
4 *
5 * Copyright (C) 2017-2019 Microchip Technology Inc.
6 */
7
8#include <linux/delay.h>
9#include <linux/dsa/ksz_common.h>
10#include <linux/export.h>
11#include <linux/gpio/consumer.h>
12#include <linux/kernel.h>
13#include <linux/module.h>
14#include <linux/platform_data/microchip-ksz.h>
15#include <linux/phy.h>
16#include <linux/etherdevice.h>
17#include <linux/if_bridge.h>
18#include <linux/if_vlan.h>
19#include <linux/if_hsr.h>
20#include <linux/irq.h>
21#include <linux/irqdomain.h>
22#include <linux/of.h>
23#include <linux/of_mdio.h>
24#include <linux/of_net.h>
25#include <linux/micrel_phy.h>
26#include <net/dsa.h>
27#include <net/pkt_cls.h>
28#include <net/switchdev.h>
29
30#include "ksz_common.h"
31#include "ksz_ptp.h"
32#include "ksz8.h"
33#include "ksz9477.h"
34#include "lan937x.h"
35
36#define MIB_COUNTER_NUM 0x20
37
38struct ksz_stats_raw {
39	u64 rx_hi;
40	u64 rx_undersize;
41	u64 rx_fragments;
42	u64 rx_oversize;
43	u64 rx_jabbers;
44	u64 rx_symbol_err;
45	u64 rx_crc_err;
46	u64 rx_align_err;
47	u64 rx_mac_ctrl;
48	u64 rx_pause;
49	u64 rx_bcast;
50	u64 rx_mcast;
51	u64 rx_ucast;
52	u64 rx_64_or_less;
53	u64 rx_65_127;
54	u64 rx_128_255;
55	u64 rx_256_511;
56	u64 rx_512_1023;
57	u64 rx_1024_1522;
58	u64 rx_1523_2000;
59	u64 rx_2001;
60	u64 tx_hi;
61	u64 tx_late_col;
62	u64 tx_pause;
63	u64 tx_bcast;
64	u64 tx_mcast;
65	u64 tx_ucast;
66	u64 tx_deferred;
67	u64 tx_total_col;
68	u64 tx_exc_col;
69	u64 tx_single_col;
70	u64 tx_mult_col;
71	u64 rx_total;
72	u64 tx_total;
73	u64 rx_discards;
74	u64 tx_discards;
75};
76
77struct ksz88xx_stats_raw {
78	u64 rx;
79	u64 rx_hi;
80	u64 rx_undersize;
81	u64 rx_fragments;
82	u64 rx_oversize;
83	u64 rx_jabbers;
84	u64 rx_symbol_err;
85	u64 rx_crc_err;
86	u64 rx_align_err;
87	u64 rx_mac_ctrl;
88	u64 rx_pause;
89	u64 rx_bcast;
90	u64 rx_mcast;
91	u64 rx_ucast;
92	u64 rx_64_or_less;
93	u64 rx_65_127;
94	u64 rx_128_255;
95	u64 rx_256_511;
96	u64 rx_512_1023;
97	u64 rx_1024_1522;
98	u64 tx;
99	u64 tx_hi;
100	u64 tx_late_col;
101	u64 tx_pause;
102	u64 tx_bcast;
103	u64 tx_mcast;
104	u64 tx_ucast;
105	u64 tx_deferred;
106	u64 tx_total_col;
107	u64 tx_exc_col;
108	u64 tx_single_col;
109	u64 tx_mult_col;
110	u64 rx_discards;
111	u64 tx_discards;
112};
113
114static const struct ksz_mib_names ksz88xx_mib_names[] = {
115	{ 0x00, "rx" },
116	{ 0x01, "rx_hi" },
117	{ 0x02, "rx_undersize" },
118	{ 0x03, "rx_fragments" },
119	{ 0x04, "rx_oversize" },
120	{ 0x05, "rx_jabbers" },
121	{ 0x06, "rx_symbol_err" },
122	{ 0x07, "rx_crc_err" },
123	{ 0x08, "rx_align_err" },
124	{ 0x09, "rx_mac_ctrl" },
125	{ 0x0a, "rx_pause" },
126	{ 0x0b, "rx_bcast" },
127	{ 0x0c, "rx_mcast" },
128	{ 0x0d, "rx_ucast" },
129	{ 0x0e, "rx_64_or_less" },
130	{ 0x0f, "rx_65_127" },
131	{ 0x10, "rx_128_255" },
132	{ 0x11, "rx_256_511" },
133	{ 0x12, "rx_512_1023" },
134	{ 0x13, "rx_1024_1522" },
135	{ 0x14, "tx" },
136	{ 0x15, "tx_hi" },
137	{ 0x16, "tx_late_col" },
138	{ 0x17, "tx_pause" },
139	{ 0x18, "tx_bcast" },
140	{ 0x19, "tx_mcast" },
141	{ 0x1a, "tx_ucast" },
142	{ 0x1b, "tx_deferred" },
143	{ 0x1c, "tx_total_col" },
144	{ 0x1d, "tx_exc_col" },
145	{ 0x1e, "tx_single_col" },
146	{ 0x1f, "tx_mult_col" },
147	{ 0x100, "rx_discards" },
148	{ 0x101, "tx_discards" },
149};
150
151static const struct ksz_mib_names ksz9477_mib_names[] = {
152	{ 0x00, "rx_hi" },
153	{ 0x01, "rx_undersize" },
154	{ 0x02, "rx_fragments" },
155	{ 0x03, "rx_oversize" },
156	{ 0x04, "rx_jabbers" },
157	{ 0x05, "rx_symbol_err" },
158	{ 0x06, "rx_crc_err" },
159	{ 0x07, "rx_align_err" },
160	{ 0x08, "rx_mac_ctrl" },
161	{ 0x09, "rx_pause" },
162	{ 0x0A, "rx_bcast" },
163	{ 0x0B, "rx_mcast" },
164	{ 0x0C, "rx_ucast" },
165	{ 0x0D, "rx_64_or_less" },
166	{ 0x0E, "rx_65_127" },
167	{ 0x0F, "rx_128_255" },
168	{ 0x10, "rx_256_511" },
169	{ 0x11, "rx_512_1023" },
170	{ 0x12, "rx_1024_1522" },
171	{ 0x13, "rx_1523_2000" },
172	{ 0x14, "rx_2001" },
173	{ 0x15, "tx_hi" },
174	{ 0x16, "tx_late_col" },
175	{ 0x17, "tx_pause" },
176	{ 0x18, "tx_bcast" },
177	{ 0x19, "tx_mcast" },
178	{ 0x1A, "tx_ucast" },
179	{ 0x1B, "tx_deferred" },
180	{ 0x1C, "tx_total_col" },
181	{ 0x1D, "tx_exc_col" },
182	{ 0x1E, "tx_single_col" },
183	{ 0x1F, "tx_mult_col" },
184	{ 0x80, "rx_total" },
185	{ 0x81, "tx_total" },
186	{ 0x82, "rx_discards" },
187	{ 0x83, "tx_discards" },
188};
189
190struct ksz_driver_strength_prop {
191	const char *name;
192	int offset;
193	int value;
194};
195
196enum ksz_driver_strength_type {
197	KSZ_DRIVER_STRENGTH_HI,
198	KSZ_DRIVER_STRENGTH_LO,
199	KSZ_DRIVER_STRENGTH_IO,
200};
201
202/**
203 * struct ksz_drive_strength - drive strength mapping
204 * @reg_val:	register value
205 * @microamp:	microamp value
206 */
207struct ksz_drive_strength {
208	u32 reg_val;
209	u32 microamp;
210};
211
212/* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants
213 *
214 * This values are not documented in KSZ9477 variants but confirmed by
215 * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893
216 * and KSZ8563 are using same register (drive strength) settings like KSZ8795.
217 *
218 * Documentation in KSZ8795CLX provides more information with some
219 * recommendations:
220 * - for high speed signals
221 *   1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using
222 *      2.5V or 3.3V VDDIO.
223 *   2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with
224 *      using 1.8V VDDIO.
225 *   3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V
226 *      or 3.3V VDDIO.
227 *   4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO.
228 *   5. In same interface, the heavy loading should use higher one of the
229 *      drive current strength.
230 * - for low speed signals
231 *   1. 3.3V VDDIO, use either 4 mA or 8 mA.
232 *   2. 2.5V VDDIO, use either 8 mA or 12 mA.
233 *   3. 1.8V VDDIO, use either 12 mA or 16 mA.
234 *   4. If it is heavy loading, can use higher drive current strength.
235 */
236static const struct ksz_drive_strength ksz9477_drive_strengths[] = {
237	{ SW_DRIVE_STRENGTH_2MA,  2000 },
238	{ SW_DRIVE_STRENGTH_4MA,  4000 },
239	{ SW_DRIVE_STRENGTH_8MA,  8000 },
240	{ SW_DRIVE_STRENGTH_12MA, 12000 },
241	{ SW_DRIVE_STRENGTH_16MA, 16000 },
242	{ SW_DRIVE_STRENGTH_20MA, 20000 },
243	{ SW_DRIVE_STRENGTH_24MA, 24000 },
244	{ SW_DRIVE_STRENGTH_28MA, 28000 },
245};
246
247/* ksz8830_drive_strengths - Drive strength mapping for KSZ8830, KSZ8873, ..
248 *			     variants.
249 * This values are documented in KSZ8873 and KSZ8863 datasheets.
250 */
251static const struct ksz_drive_strength ksz8830_drive_strengths[] = {
252	{ 0,  8000 },
253	{ KSZ8873_DRIVE_STRENGTH_16MA, 16000 },
254};
255
256static const struct ksz_dev_ops ksz8_dev_ops = {
257	.setup = ksz8_setup,
258	.get_port_addr = ksz8_get_port_addr,
259	.cfg_port_member = ksz8_cfg_port_member,
260	.flush_dyn_mac_table = ksz8_flush_dyn_mac_table,
261	.port_setup = ksz8_port_setup,
262	.r_phy = ksz8_r_phy,
263	.w_phy = ksz8_w_phy,
264	.r_mib_cnt = ksz8_r_mib_cnt,
265	.r_mib_pkt = ksz8_r_mib_pkt,
266	.r_mib_stat64 = ksz88xx_r_mib_stats64,
267	.freeze_mib = ksz8_freeze_mib,
268	.port_init_cnt = ksz8_port_init_cnt,
269	.fdb_dump = ksz8_fdb_dump,
270	.fdb_add = ksz8_fdb_add,
271	.fdb_del = ksz8_fdb_del,
272	.mdb_add = ksz8_mdb_add,
273	.mdb_del = ksz8_mdb_del,
274	.vlan_filtering = ksz8_port_vlan_filtering,
275	.vlan_add = ksz8_port_vlan_add,
276	.vlan_del = ksz8_port_vlan_del,
277	.mirror_add = ksz8_port_mirror_add,
278	.mirror_del = ksz8_port_mirror_del,
279	.get_caps = ksz8_get_caps,
280	.phylink_mac_link_up = ksz8_phylink_mac_link_up,
281	.config_cpu_port = ksz8_config_cpu_port,
282	.enable_stp_addr = ksz8_enable_stp_addr,
283	.reset = ksz8_reset_switch,
284	.init = ksz8_switch_init,
285	.exit = ksz8_switch_exit,
286	.change_mtu = ksz8_change_mtu,
287};
288
289static void ksz9477_phylink_mac_link_up(struct ksz_device *dev, int port,
290					unsigned int mode,
291					phy_interface_t interface,
292					struct phy_device *phydev, int speed,
293					int duplex, bool tx_pause,
294					bool rx_pause);
295
296static const struct ksz_dev_ops ksz9477_dev_ops = {
297	.setup = ksz9477_setup,
298	.get_port_addr = ksz9477_get_port_addr,
299	.cfg_port_member = ksz9477_cfg_port_member,
300	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
301	.port_setup = ksz9477_port_setup,
302	.set_ageing_time = ksz9477_set_ageing_time,
303	.r_phy = ksz9477_r_phy,
304	.w_phy = ksz9477_w_phy,
305	.r_mib_cnt = ksz9477_r_mib_cnt,
306	.r_mib_pkt = ksz9477_r_mib_pkt,
307	.r_mib_stat64 = ksz_r_mib_stats64,
308	.freeze_mib = ksz9477_freeze_mib,
309	.port_init_cnt = ksz9477_port_init_cnt,
310	.vlan_filtering = ksz9477_port_vlan_filtering,
311	.vlan_add = ksz9477_port_vlan_add,
312	.vlan_del = ksz9477_port_vlan_del,
313	.mirror_add = ksz9477_port_mirror_add,
314	.mirror_del = ksz9477_port_mirror_del,
315	.get_caps = ksz9477_get_caps,
316	.fdb_dump = ksz9477_fdb_dump,
317	.fdb_add = ksz9477_fdb_add,
318	.fdb_del = ksz9477_fdb_del,
319	.mdb_add = ksz9477_mdb_add,
320	.mdb_del = ksz9477_mdb_del,
321	.change_mtu = ksz9477_change_mtu,
322	.phylink_mac_link_up = ksz9477_phylink_mac_link_up,
323	.get_wol = ksz9477_get_wol,
324	.set_wol = ksz9477_set_wol,
325	.wol_pre_shutdown = ksz9477_wol_pre_shutdown,
326	.config_cpu_port = ksz9477_config_cpu_port,
327	.tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc,
328	.enable_stp_addr = ksz9477_enable_stp_addr,
329	.reset = ksz9477_reset_switch,
330	.init = ksz9477_switch_init,
331	.exit = ksz9477_switch_exit,
332};
333
334static const struct ksz_dev_ops lan937x_dev_ops = {
335	.setup = lan937x_setup,
336	.teardown = lan937x_teardown,
337	.get_port_addr = ksz9477_get_port_addr,
338	.cfg_port_member = ksz9477_cfg_port_member,
339	.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
340	.port_setup = lan937x_port_setup,
341	.set_ageing_time = lan937x_set_ageing_time,
342	.r_phy = lan937x_r_phy,
343	.w_phy = lan937x_w_phy,
344	.r_mib_cnt = ksz9477_r_mib_cnt,
345	.r_mib_pkt = ksz9477_r_mib_pkt,
346	.r_mib_stat64 = ksz_r_mib_stats64,
347	.freeze_mib = ksz9477_freeze_mib,
348	.port_init_cnt = ksz9477_port_init_cnt,
349	.vlan_filtering = ksz9477_port_vlan_filtering,
350	.vlan_add = ksz9477_port_vlan_add,
351	.vlan_del = ksz9477_port_vlan_del,
352	.mirror_add = ksz9477_port_mirror_add,
353	.mirror_del = ksz9477_port_mirror_del,
354	.get_caps = lan937x_phylink_get_caps,
355	.setup_rgmii_delay = lan937x_setup_rgmii_delay,
356	.fdb_dump = ksz9477_fdb_dump,
357	.fdb_add = ksz9477_fdb_add,
358	.fdb_del = ksz9477_fdb_del,
359	.mdb_add = ksz9477_mdb_add,
360	.mdb_del = ksz9477_mdb_del,
361	.change_mtu = lan937x_change_mtu,
362	.phylink_mac_link_up = ksz9477_phylink_mac_link_up,
363	.config_cpu_port = lan937x_config_cpu_port,
364	.tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc,
365	.enable_stp_addr = ksz9477_enable_stp_addr,
366	.reset = lan937x_reset_switch,
367	.init = lan937x_switch_init,
368	.exit = lan937x_switch_exit,
369};
370
371static const u16 ksz8795_regs[] = {
372	[REG_SW_MAC_ADDR]		= 0x68,
373	[REG_IND_CTRL_0]		= 0x6E,
374	[REG_IND_DATA_8]		= 0x70,
375	[REG_IND_DATA_CHECK]		= 0x72,
376	[REG_IND_DATA_HI]		= 0x71,
377	[REG_IND_DATA_LO]		= 0x75,
378	[REG_IND_MIB_CHECK]		= 0x74,
379	[REG_IND_BYTE]			= 0xA0,
380	[P_FORCE_CTRL]			= 0x0C,
381	[P_LINK_STATUS]			= 0x0E,
382	[P_LOCAL_CTRL]			= 0x07,
383	[P_NEG_RESTART_CTRL]		= 0x0D,
384	[P_REMOTE_STATUS]		= 0x08,
385	[P_SPEED_STATUS]		= 0x09,
386	[S_TAIL_TAG_CTRL]		= 0x0C,
387	[P_STP_CTRL]			= 0x02,
388	[S_START_CTRL]			= 0x01,
389	[S_BROADCAST_CTRL]		= 0x06,
390	[S_MULTICAST_CTRL]		= 0x04,
391	[P_XMII_CTRL_0]			= 0x06,
392	[P_XMII_CTRL_1]			= 0x06,
393};
394
395static const u32 ksz8795_masks[] = {
396	[PORT_802_1P_REMAPPING]		= BIT(7),
397	[SW_TAIL_TAG_ENABLE]		= BIT(1),
398	[MIB_COUNTER_OVERFLOW]		= BIT(6),
399	[MIB_COUNTER_VALID]		= BIT(5),
400	[VLAN_TABLE_FID]		= GENMASK(6, 0),
401	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
402	[VLAN_TABLE_VALID]		= BIT(12),
403	[STATIC_MAC_TABLE_VALID]	= BIT(21),
404	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
405	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
406	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(22),
407	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(20, 16),
408	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
409	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
410	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
411	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
412	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(22, 16),
413	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
414	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
415	[P_MII_TX_FLOW_CTRL]		= BIT(5),
416	[P_MII_RX_FLOW_CTRL]		= BIT(5),
417};
418
419static const u8 ksz8795_xmii_ctrl0[] = {
420	[P_MII_100MBIT]			= 0,
421	[P_MII_10MBIT]			= 1,
422	[P_MII_FULL_DUPLEX]		= 0,
423	[P_MII_HALF_DUPLEX]		= 1,
424};
425
426static const u8 ksz8795_xmii_ctrl1[] = {
427	[P_RGMII_SEL]			= 3,
428	[P_GMII_SEL]			= 2,
429	[P_RMII_SEL]			= 1,
430	[P_MII_SEL]			= 0,
431	[P_GMII_1GBIT]			= 1,
432	[P_GMII_NOT_1GBIT]		= 0,
433};
434
435static const u8 ksz8795_shifts[] = {
436	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
437	[VLAN_TABLE]			= 16,
438	[STATIC_MAC_FWD_PORTS]		= 16,
439	[STATIC_MAC_FID]		= 24,
440	[DYNAMIC_MAC_ENTRIES_H]		= 3,
441	[DYNAMIC_MAC_ENTRIES]		= 29,
442	[DYNAMIC_MAC_FID]		= 16,
443	[DYNAMIC_MAC_TIMESTAMP]		= 27,
444	[DYNAMIC_MAC_SRC_PORT]		= 24,
445};
446
447static const u16 ksz8863_regs[] = {
448	[REG_SW_MAC_ADDR]		= 0x70,
449	[REG_IND_CTRL_0]		= 0x79,
450	[REG_IND_DATA_8]		= 0x7B,
451	[REG_IND_DATA_CHECK]		= 0x7B,
452	[REG_IND_DATA_HI]		= 0x7C,
453	[REG_IND_DATA_LO]		= 0x80,
454	[REG_IND_MIB_CHECK]		= 0x80,
455	[P_FORCE_CTRL]			= 0x0C,
456	[P_LINK_STATUS]			= 0x0E,
457	[P_LOCAL_CTRL]			= 0x0C,
458	[P_NEG_RESTART_CTRL]		= 0x0D,
459	[P_REMOTE_STATUS]		= 0x0E,
460	[P_SPEED_STATUS]		= 0x0F,
461	[S_TAIL_TAG_CTRL]		= 0x03,
462	[P_STP_CTRL]			= 0x02,
463	[S_START_CTRL]			= 0x01,
464	[S_BROADCAST_CTRL]		= 0x06,
465	[S_MULTICAST_CTRL]		= 0x04,
466};
467
468static const u32 ksz8863_masks[] = {
469	[PORT_802_1P_REMAPPING]		= BIT(3),
470	[SW_TAIL_TAG_ENABLE]		= BIT(6),
471	[MIB_COUNTER_OVERFLOW]		= BIT(7),
472	[MIB_COUNTER_VALID]		= BIT(6),
473	[VLAN_TABLE_FID]		= GENMASK(15, 12),
474	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
475	[VLAN_TABLE_VALID]		= BIT(19),
476	[STATIC_MAC_TABLE_VALID]	= BIT(19),
477	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
478	[STATIC_MAC_TABLE_FID]		= GENMASK(25, 22),
479	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
480	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
481	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(1, 0),
482	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(2),
483	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
484	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 24),
485	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
486	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
487	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
488};
489
490static u8 ksz8863_shifts[] = {
491	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
492	[STATIC_MAC_FWD_PORTS]		= 16,
493	[STATIC_MAC_FID]		= 22,
494	[DYNAMIC_MAC_ENTRIES_H]		= 8,
495	[DYNAMIC_MAC_ENTRIES]		= 24,
496	[DYNAMIC_MAC_FID]		= 16,
497	[DYNAMIC_MAC_TIMESTAMP]		= 22,
498	[DYNAMIC_MAC_SRC_PORT]		= 20,
499};
500
501static const u16 ksz9477_regs[] = {
502	[REG_SW_MAC_ADDR]		= 0x0302,
503	[P_STP_CTRL]			= 0x0B04,
504	[S_START_CTRL]			= 0x0300,
505	[S_BROADCAST_CTRL]		= 0x0332,
506	[S_MULTICAST_CTRL]		= 0x0331,
507	[P_XMII_CTRL_0]			= 0x0300,
508	[P_XMII_CTRL_1]			= 0x0301,
509};
510
511static const u32 ksz9477_masks[] = {
512	[ALU_STAT_WRITE]		= 0,
513	[ALU_STAT_READ]			= 1,
514	[P_MII_TX_FLOW_CTRL]		= BIT(5),
515	[P_MII_RX_FLOW_CTRL]		= BIT(3),
516};
517
518static const u8 ksz9477_shifts[] = {
519	[ALU_STAT_INDEX]		= 16,
520};
521
522static const u8 ksz9477_xmii_ctrl0[] = {
523	[P_MII_100MBIT]			= 1,
524	[P_MII_10MBIT]			= 0,
525	[P_MII_FULL_DUPLEX]		= 1,
526	[P_MII_HALF_DUPLEX]		= 0,
527};
528
529static const u8 ksz9477_xmii_ctrl1[] = {
530	[P_RGMII_SEL]			= 0,
531	[P_RMII_SEL]			= 1,
532	[P_GMII_SEL]			= 2,
533	[P_MII_SEL]			= 3,
534	[P_GMII_1GBIT]			= 0,
535	[P_GMII_NOT_1GBIT]		= 1,
536};
537
538static const u32 lan937x_masks[] = {
539	[ALU_STAT_WRITE]		= 1,
540	[ALU_STAT_READ]			= 2,
541	[P_MII_TX_FLOW_CTRL]		= BIT(5),
542	[P_MII_RX_FLOW_CTRL]		= BIT(3),
543};
544
545static const u8 lan937x_shifts[] = {
546	[ALU_STAT_INDEX]		= 8,
547};
548
549static const struct regmap_range ksz8563_valid_regs[] = {
550	regmap_reg_range(0x0000, 0x0003),
551	regmap_reg_range(0x0006, 0x0006),
552	regmap_reg_range(0x000f, 0x001f),
553	regmap_reg_range(0x0100, 0x0100),
554	regmap_reg_range(0x0104, 0x0107),
555	regmap_reg_range(0x010d, 0x010d),
556	regmap_reg_range(0x0110, 0x0113),
557	regmap_reg_range(0x0120, 0x012b),
558	regmap_reg_range(0x0201, 0x0201),
559	regmap_reg_range(0x0210, 0x0213),
560	regmap_reg_range(0x0300, 0x0300),
561	regmap_reg_range(0x0302, 0x031b),
562	regmap_reg_range(0x0320, 0x032b),
563	regmap_reg_range(0x0330, 0x0336),
564	regmap_reg_range(0x0338, 0x033e),
565	regmap_reg_range(0x0340, 0x035f),
566	regmap_reg_range(0x0370, 0x0370),
567	regmap_reg_range(0x0378, 0x0378),
568	regmap_reg_range(0x037c, 0x037d),
569	regmap_reg_range(0x0390, 0x0393),
570	regmap_reg_range(0x0400, 0x040e),
571	regmap_reg_range(0x0410, 0x042f),
572	regmap_reg_range(0x0500, 0x0519),
573	regmap_reg_range(0x0520, 0x054b),
574	regmap_reg_range(0x0550, 0x05b3),
575
576	/* port 1 */
577	regmap_reg_range(0x1000, 0x1001),
578	regmap_reg_range(0x1004, 0x100b),
579	regmap_reg_range(0x1013, 0x1013),
580	regmap_reg_range(0x1017, 0x1017),
581	regmap_reg_range(0x101b, 0x101b),
582	regmap_reg_range(0x101f, 0x1021),
583	regmap_reg_range(0x1030, 0x1030),
584	regmap_reg_range(0x1100, 0x1111),
585	regmap_reg_range(0x111a, 0x111d),
586	regmap_reg_range(0x1122, 0x1127),
587	regmap_reg_range(0x112a, 0x112b),
588	regmap_reg_range(0x1136, 0x1139),
589	regmap_reg_range(0x113e, 0x113f),
590	regmap_reg_range(0x1400, 0x1401),
591	regmap_reg_range(0x1403, 0x1403),
592	regmap_reg_range(0x1410, 0x1417),
593	regmap_reg_range(0x1420, 0x1423),
594	regmap_reg_range(0x1500, 0x1507),
595	regmap_reg_range(0x1600, 0x1612),
596	regmap_reg_range(0x1800, 0x180f),
597	regmap_reg_range(0x1900, 0x1907),
598	regmap_reg_range(0x1914, 0x191b),
599	regmap_reg_range(0x1a00, 0x1a03),
600	regmap_reg_range(0x1a04, 0x1a08),
601	regmap_reg_range(0x1b00, 0x1b01),
602	regmap_reg_range(0x1b04, 0x1b04),
603	regmap_reg_range(0x1c00, 0x1c05),
604	regmap_reg_range(0x1c08, 0x1c1b),
605
606	/* port 2 */
607	regmap_reg_range(0x2000, 0x2001),
608	regmap_reg_range(0x2004, 0x200b),
609	regmap_reg_range(0x2013, 0x2013),
610	regmap_reg_range(0x2017, 0x2017),
611	regmap_reg_range(0x201b, 0x201b),
612	regmap_reg_range(0x201f, 0x2021),
613	regmap_reg_range(0x2030, 0x2030),
614	regmap_reg_range(0x2100, 0x2111),
615	regmap_reg_range(0x211a, 0x211d),
616	regmap_reg_range(0x2122, 0x2127),
617	regmap_reg_range(0x212a, 0x212b),
618	regmap_reg_range(0x2136, 0x2139),
619	regmap_reg_range(0x213e, 0x213f),
620	regmap_reg_range(0x2400, 0x2401),
621	regmap_reg_range(0x2403, 0x2403),
622	regmap_reg_range(0x2410, 0x2417),
623	regmap_reg_range(0x2420, 0x2423),
624	regmap_reg_range(0x2500, 0x2507),
625	regmap_reg_range(0x2600, 0x2612),
626	regmap_reg_range(0x2800, 0x280f),
627	regmap_reg_range(0x2900, 0x2907),
628	regmap_reg_range(0x2914, 0x291b),
629	regmap_reg_range(0x2a00, 0x2a03),
630	regmap_reg_range(0x2a04, 0x2a08),
631	regmap_reg_range(0x2b00, 0x2b01),
632	regmap_reg_range(0x2b04, 0x2b04),
633	regmap_reg_range(0x2c00, 0x2c05),
634	regmap_reg_range(0x2c08, 0x2c1b),
635
636	/* port 3 */
637	regmap_reg_range(0x3000, 0x3001),
638	regmap_reg_range(0x3004, 0x300b),
639	regmap_reg_range(0x3013, 0x3013),
640	regmap_reg_range(0x3017, 0x3017),
641	regmap_reg_range(0x301b, 0x301b),
642	regmap_reg_range(0x301f, 0x3021),
643	regmap_reg_range(0x3030, 0x3030),
644	regmap_reg_range(0x3300, 0x3301),
645	regmap_reg_range(0x3303, 0x3303),
646	regmap_reg_range(0x3400, 0x3401),
647	regmap_reg_range(0x3403, 0x3403),
648	regmap_reg_range(0x3410, 0x3417),
649	regmap_reg_range(0x3420, 0x3423),
650	regmap_reg_range(0x3500, 0x3507),
651	regmap_reg_range(0x3600, 0x3612),
652	regmap_reg_range(0x3800, 0x380f),
653	regmap_reg_range(0x3900, 0x3907),
654	regmap_reg_range(0x3914, 0x391b),
655	regmap_reg_range(0x3a00, 0x3a03),
656	regmap_reg_range(0x3a04, 0x3a08),
657	regmap_reg_range(0x3b00, 0x3b01),
658	regmap_reg_range(0x3b04, 0x3b04),
659	regmap_reg_range(0x3c00, 0x3c05),
660	regmap_reg_range(0x3c08, 0x3c1b),
661};
662
663static const struct regmap_access_table ksz8563_register_set = {
664	.yes_ranges = ksz8563_valid_regs,
665	.n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs),
666};
667
668static const struct regmap_range ksz9477_valid_regs[] = {
669	regmap_reg_range(0x0000, 0x0003),
670	regmap_reg_range(0x0006, 0x0006),
671	regmap_reg_range(0x0010, 0x001f),
672	regmap_reg_range(0x0100, 0x0100),
673	regmap_reg_range(0x0103, 0x0107),
674	regmap_reg_range(0x010d, 0x010d),
675	regmap_reg_range(0x0110, 0x0113),
676	regmap_reg_range(0x0120, 0x012b),
677	regmap_reg_range(0x0201, 0x0201),
678	regmap_reg_range(0x0210, 0x0213),
679	regmap_reg_range(0x0300, 0x0300),
680	regmap_reg_range(0x0302, 0x031b),
681	regmap_reg_range(0x0320, 0x032b),
682	regmap_reg_range(0x0330, 0x0336),
683	regmap_reg_range(0x0338, 0x033b),
684	regmap_reg_range(0x033e, 0x033e),
685	regmap_reg_range(0x0340, 0x035f),
686	regmap_reg_range(0x0370, 0x0370),
687	regmap_reg_range(0x0378, 0x0378),
688	regmap_reg_range(0x037c, 0x037d),
689	regmap_reg_range(0x0390, 0x0393),
690	regmap_reg_range(0x0400, 0x040e),
691	regmap_reg_range(0x0410, 0x042f),
692	regmap_reg_range(0x0444, 0x044b),
693	regmap_reg_range(0x0450, 0x046f),
694	regmap_reg_range(0x0500, 0x0519),
695	regmap_reg_range(0x0520, 0x054b),
696	regmap_reg_range(0x0550, 0x05b3),
697	regmap_reg_range(0x0604, 0x060b),
698	regmap_reg_range(0x0610, 0x0612),
699	regmap_reg_range(0x0614, 0x062c),
700	regmap_reg_range(0x0640, 0x0645),
701	regmap_reg_range(0x0648, 0x064d),
702
703	/* port 1 */
704	regmap_reg_range(0x1000, 0x1001),
705	regmap_reg_range(0x1013, 0x1013),
706	regmap_reg_range(0x1017, 0x1017),
707	regmap_reg_range(0x101b, 0x101b),
708	regmap_reg_range(0x101f, 0x1020),
709	regmap_reg_range(0x1030, 0x1030),
710	regmap_reg_range(0x1100, 0x1115),
711	regmap_reg_range(0x111a, 0x111f),
712	regmap_reg_range(0x1120, 0x112b),
713	regmap_reg_range(0x1134, 0x113b),
714	regmap_reg_range(0x113c, 0x113f),
715	regmap_reg_range(0x1400, 0x1401),
716	regmap_reg_range(0x1403, 0x1403),
717	regmap_reg_range(0x1410, 0x1417),
718	regmap_reg_range(0x1420, 0x1423),
719	regmap_reg_range(0x1500, 0x1507),
720	regmap_reg_range(0x1600, 0x1613),
721	regmap_reg_range(0x1800, 0x180f),
722	regmap_reg_range(0x1820, 0x1827),
723	regmap_reg_range(0x1830, 0x1837),
724	regmap_reg_range(0x1840, 0x184b),
725	regmap_reg_range(0x1900, 0x1907),
726	regmap_reg_range(0x1914, 0x191b),
727	regmap_reg_range(0x1920, 0x1920),
728	regmap_reg_range(0x1923, 0x1927),
729	regmap_reg_range(0x1a00, 0x1a03),
730	regmap_reg_range(0x1a04, 0x1a07),
731	regmap_reg_range(0x1b00, 0x1b01),
732	regmap_reg_range(0x1b04, 0x1b04),
733	regmap_reg_range(0x1c00, 0x1c05),
734	regmap_reg_range(0x1c08, 0x1c1b),
735
736	/* port 2 */
737	regmap_reg_range(0x2000, 0x2001),
738	regmap_reg_range(0x2013, 0x2013),
739	regmap_reg_range(0x2017, 0x2017),
740	regmap_reg_range(0x201b, 0x201b),
741	regmap_reg_range(0x201f, 0x2020),
742	regmap_reg_range(0x2030, 0x2030),
743	regmap_reg_range(0x2100, 0x2115),
744	regmap_reg_range(0x211a, 0x211f),
745	regmap_reg_range(0x2120, 0x212b),
746	regmap_reg_range(0x2134, 0x213b),
747	regmap_reg_range(0x213c, 0x213f),
748	regmap_reg_range(0x2400, 0x2401),
749	regmap_reg_range(0x2403, 0x2403),
750	regmap_reg_range(0x2410, 0x2417),
751	regmap_reg_range(0x2420, 0x2423),
752	regmap_reg_range(0x2500, 0x2507),
753	regmap_reg_range(0x2600, 0x2613),
754	regmap_reg_range(0x2800, 0x280f),
755	regmap_reg_range(0x2820, 0x2827),
756	regmap_reg_range(0x2830, 0x2837),
757	regmap_reg_range(0x2840, 0x284b),
758	regmap_reg_range(0x2900, 0x2907),
759	regmap_reg_range(0x2914, 0x291b),
760	regmap_reg_range(0x2920, 0x2920),
761	regmap_reg_range(0x2923, 0x2927),
762	regmap_reg_range(0x2a00, 0x2a03),
763	regmap_reg_range(0x2a04, 0x2a07),
764	regmap_reg_range(0x2b00, 0x2b01),
765	regmap_reg_range(0x2b04, 0x2b04),
766	regmap_reg_range(0x2c00, 0x2c05),
767	regmap_reg_range(0x2c08, 0x2c1b),
768
769	/* port 3 */
770	regmap_reg_range(0x3000, 0x3001),
771	regmap_reg_range(0x3013, 0x3013),
772	regmap_reg_range(0x3017, 0x3017),
773	regmap_reg_range(0x301b, 0x301b),
774	regmap_reg_range(0x301f, 0x3020),
775	regmap_reg_range(0x3030, 0x3030),
776	regmap_reg_range(0x3100, 0x3115),
777	regmap_reg_range(0x311a, 0x311f),
778	regmap_reg_range(0x3120, 0x312b),
779	regmap_reg_range(0x3134, 0x313b),
780	regmap_reg_range(0x313c, 0x313f),
781	regmap_reg_range(0x3400, 0x3401),
782	regmap_reg_range(0x3403, 0x3403),
783	regmap_reg_range(0x3410, 0x3417),
784	regmap_reg_range(0x3420, 0x3423),
785	regmap_reg_range(0x3500, 0x3507),
786	regmap_reg_range(0x3600, 0x3613),
787	regmap_reg_range(0x3800, 0x380f),
788	regmap_reg_range(0x3820, 0x3827),
789	regmap_reg_range(0x3830, 0x3837),
790	regmap_reg_range(0x3840, 0x384b),
791	regmap_reg_range(0x3900, 0x3907),
792	regmap_reg_range(0x3914, 0x391b),
793	regmap_reg_range(0x3920, 0x3920),
794	regmap_reg_range(0x3923, 0x3927),
795	regmap_reg_range(0x3a00, 0x3a03),
796	regmap_reg_range(0x3a04, 0x3a07),
797	regmap_reg_range(0x3b00, 0x3b01),
798	regmap_reg_range(0x3b04, 0x3b04),
799	regmap_reg_range(0x3c00, 0x3c05),
800	regmap_reg_range(0x3c08, 0x3c1b),
801
802	/* port 4 */
803	regmap_reg_range(0x4000, 0x4001),
804	regmap_reg_range(0x4013, 0x4013),
805	regmap_reg_range(0x4017, 0x4017),
806	regmap_reg_range(0x401b, 0x401b),
807	regmap_reg_range(0x401f, 0x4020),
808	regmap_reg_range(0x4030, 0x4030),
809	regmap_reg_range(0x4100, 0x4115),
810	regmap_reg_range(0x411a, 0x411f),
811	regmap_reg_range(0x4120, 0x412b),
812	regmap_reg_range(0x4134, 0x413b),
813	regmap_reg_range(0x413c, 0x413f),
814	regmap_reg_range(0x4400, 0x4401),
815	regmap_reg_range(0x4403, 0x4403),
816	regmap_reg_range(0x4410, 0x4417),
817	regmap_reg_range(0x4420, 0x4423),
818	regmap_reg_range(0x4500, 0x4507),
819	regmap_reg_range(0x4600, 0x4613),
820	regmap_reg_range(0x4800, 0x480f),
821	regmap_reg_range(0x4820, 0x4827),
822	regmap_reg_range(0x4830, 0x4837),
823	regmap_reg_range(0x4840, 0x484b),
824	regmap_reg_range(0x4900, 0x4907),
825	regmap_reg_range(0x4914, 0x491b),
826	regmap_reg_range(0x4920, 0x4920),
827	regmap_reg_range(0x4923, 0x4927),
828	regmap_reg_range(0x4a00, 0x4a03),
829	regmap_reg_range(0x4a04, 0x4a07),
830	regmap_reg_range(0x4b00, 0x4b01),
831	regmap_reg_range(0x4b04, 0x4b04),
832	regmap_reg_range(0x4c00, 0x4c05),
833	regmap_reg_range(0x4c08, 0x4c1b),
834
835	/* port 5 */
836	regmap_reg_range(0x5000, 0x5001),
837	regmap_reg_range(0x5013, 0x5013),
838	regmap_reg_range(0x5017, 0x5017),
839	regmap_reg_range(0x501b, 0x501b),
840	regmap_reg_range(0x501f, 0x5020),
841	regmap_reg_range(0x5030, 0x5030),
842	regmap_reg_range(0x5100, 0x5115),
843	regmap_reg_range(0x511a, 0x511f),
844	regmap_reg_range(0x5120, 0x512b),
845	regmap_reg_range(0x5134, 0x513b),
846	regmap_reg_range(0x513c, 0x513f),
847	regmap_reg_range(0x5400, 0x5401),
848	regmap_reg_range(0x5403, 0x5403),
849	regmap_reg_range(0x5410, 0x5417),
850	regmap_reg_range(0x5420, 0x5423),
851	regmap_reg_range(0x5500, 0x5507),
852	regmap_reg_range(0x5600, 0x5613),
853	regmap_reg_range(0x5800, 0x580f),
854	regmap_reg_range(0x5820, 0x5827),
855	regmap_reg_range(0x5830, 0x5837),
856	regmap_reg_range(0x5840, 0x584b),
857	regmap_reg_range(0x5900, 0x5907),
858	regmap_reg_range(0x5914, 0x591b),
859	regmap_reg_range(0x5920, 0x5920),
860	regmap_reg_range(0x5923, 0x5927),
861	regmap_reg_range(0x5a00, 0x5a03),
862	regmap_reg_range(0x5a04, 0x5a07),
863	regmap_reg_range(0x5b00, 0x5b01),
864	regmap_reg_range(0x5b04, 0x5b04),
865	regmap_reg_range(0x5c00, 0x5c05),
866	regmap_reg_range(0x5c08, 0x5c1b),
867
868	/* port 6 */
869	regmap_reg_range(0x6000, 0x6001),
870	regmap_reg_range(0x6013, 0x6013),
871	regmap_reg_range(0x6017, 0x6017),
872	regmap_reg_range(0x601b, 0x601b),
873	regmap_reg_range(0x601f, 0x6020),
874	regmap_reg_range(0x6030, 0x6030),
875	regmap_reg_range(0x6300, 0x6301),
876	regmap_reg_range(0x6400, 0x6401),
877	regmap_reg_range(0x6403, 0x6403),
878	regmap_reg_range(0x6410, 0x6417),
879	regmap_reg_range(0x6420, 0x6423),
880	regmap_reg_range(0x6500, 0x6507),
881	regmap_reg_range(0x6600, 0x6613),
882	regmap_reg_range(0x6800, 0x680f),
883	regmap_reg_range(0x6820, 0x6827),
884	regmap_reg_range(0x6830, 0x6837),
885	regmap_reg_range(0x6840, 0x684b),
886	regmap_reg_range(0x6900, 0x6907),
887	regmap_reg_range(0x6914, 0x691b),
888	regmap_reg_range(0x6920, 0x6920),
889	regmap_reg_range(0x6923, 0x6927),
890	regmap_reg_range(0x6a00, 0x6a03),
891	regmap_reg_range(0x6a04, 0x6a07),
892	regmap_reg_range(0x6b00, 0x6b01),
893	regmap_reg_range(0x6b04, 0x6b04),
894	regmap_reg_range(0x6c00, 0x6c05),
895	regmap_reg_range(0x6c08, 0x6c1b),
896
897	/* port 7 */
898	regmap_reg_range(0x7000, 0x7001),
899	regmap_reg_range(0x7013, 0x7013),
900	regmap_reg_range(0x7017, 0x7017),
901	regmap_reg_range(0x701b, 0x701b),
902	regmap_reg_range(0x701f, 0x7020),
903	regmap_reg_range(0x7030, 0x7030),
904	regmap_reg_range(0x7200, 0x7203),
905	regmap_reg_range(0x7206, 0x7207),
906	regmap_reg_range(0x7300, 0x7301),
907	regmap_reg_range(0x7400, 0x7401),
908	regmap_reg_range(0x7403, 0x7403),
909	regmap_reg_range(0x7410, 0x7417),
910	regmap_reg_range(0x7420, 0x7423),
911	regmap_reg_range(0x7500, 0x7507),
912	regmap_reg_range(0x7600, 0x7613),
913	regmap_reg_range(0x7800, 0x780f),
914	regmap_reg_range(0x7820, 0x7827),
915	regmap_reg_range(0x7830, 0x7837),
916	regmap_reg_range(0x7840, 0x784b),
917	regmap_reg_range(0x7900, 0x7907),
918	regmap_reg_range(0x7914, 0x791b),
919	regmap_reg_range(0x7920, 0x7920),
920	regmap_reg_range(0x7923, 0x7927),
921	regmap_reg_range(0x7a00, 0x7a03),
922	regmap_reg_range(0x7a04, 0x7a07),
923	regmap_reg_range(0x7b00, 0x7b01),
924	regmap_reg_range(0x7b04, 0x7b04),
925	regmap_reg_range(0x7c00, 0x7c05),
926	regmap_reg_range(0x7c08, 0x7c1b),
927};
928
929static const struct regmap_access_table ksz9477_register_set = {
930	.yes_ranges = ksz9477_valid_regs,
931	.n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs),
932};
933
934static const struct regmap_range ksz9896_valid_regs[] = {
935	regmap_reg_range(0x0000, 0x0003),
936	regmap_reg_range(0x0006, 0x0006),
937	regmap_reg_range(0x0010, 0x001f),
938	regmap_reg_range(0x0100, 0x0100),
939	regmap_reg_range(0x0103, 0x0107),
940	regmap_reg_range(0x010d, 0x010d),
941	regmap_reg_range(0x0110, 0x0113),
942	regmap_reg_range(0x0120, 0x0127),
943	regmap_reg_range(0x0201, 0x0201),
944	regmap_reg_range(0x0210, 0x0213),
945	regmap_reg_range(0x0300, 0x0300),
946	regmap_reg_range(0x0302, 0x030b),
947	regmap_reg_range(0x0310, 0x031b),
948	regmap_reg_range(0x0320, 0x032b),
949	regmap_reg_range(0x0330, 0x0336),
950	regmap_reg_range(0x0338, 0x033b),
951	regmap_reg_range(0x033e, 0x033e),
952	regmap_reg_range(0x0340, 0x035f),
953	regmap_reg_range(0x0370, 0x0370),
954	regmap_reg_range(0x0378, 0x0378),
955	regmap_reg_range(0x037c, 0x037d),
956	regmap_reg_range(0x0390, 0x0393),
957	regmap_reg_range(0x0400, 0x040e),
958	regmap_reg_range(0x0410, 0x042f),
959
960	/* port 1 */
961	regmap_reg_range(0x1000, 0x1001),
962	regmap_reg_range(0x1013, 0x1013),
963	regmap_reg_range(0x1017, 0x1017),
964	regmap_reg_range(0x101b, 0x101b),
965	regmap_reg_range(0x101f, 0x1020),
966	regmap_reg_range(0x1030, 0x1030),
967	regmap_reg_range(0x1100, 0x1115),
968	regmap_reg_range(0x111a, 0x111f),
969	regmap_reg_range(0x1122, 0x1127),
970	regmap_reg_range(0x112a, 0x112b),
971	regmap_reg_range(0x1136, 0x1139),
972	regmap_reg_range(0x113e, 0x113f),
973	regmap_reg_range(0x1400, 0x1401),
974	regmap_reg_range(0x1403, 0x1403),
975	regmap_reg_range(0x1410, 0x1417),
976	regmap_reg_range(0x1420, 0x1423),
977	regmap_reg_range(0x1500, 0x1507),
978	regmap_reg_range(0x1600, 0x1612),
979	regmap_reg_range(0x1800, 0x180f),
980	regmap_reg_range(0x1820, 0x1827),
981	regmap_reg_range(0x1830, 0x1837),
982	regmap_reg_range(0x1840, 0x184b),
983	regmap_reg_range(0x1900, 0x1907),
984	regmap_reg_range(0x1914, 0x1915),
985	regmap_reg_range(0x1a00, 0x1a03),
986	regmap_reg_range(0x1a04, 0x1a07),
987	regmap_reg_range(0x1b00, 0x1b01),
988	regmap_reg_range(0x1b04, 0x1b04),
989
990	/* port 2 */
991	regmap_reg_range(0x2000, 0x2001),
992	regmap_reg_range(0x2013, 0x2013),
993	regmap_reg_range(0x2017, 0x2017),
994	regmap_reg_range(0x201b, 0x201b),
995	regmap_reg_range(0x201f, 0x2020),
996	regmap_reg_range(0x2030, 0x2030),
997	regmap_reg_range(0x2100, 0x2115),
998	regmap_reg_range(0x211a, 0x211f),
999	regmap_reg_range(0x2122, 0x2127),
1000	regmap_reg_range(0x212a, 0x212b),
1001	regmap_reg_range(0x2136, 0x2139),
1002	regmap_reg_range(0x213e, 0x213f),
1003	regmap_reg_range(0x2400, 0x2401),
1004	regmap_reg_range(0x2403, 0x2403),
1005	regmap_reg_range(0x2410, 0x2417),
1006	regmap_reg_range(0x2420, 0x2423),
1007	regmap_reg_range(0x2500, 0x2507),
1008	regmap_reg_range(0x2600, 0x2612),
1009	regmap_reg_range(0x2800, 0x280f),
1010	regmap_reg_range(0x2820, 0x2827),
1011	regmap_reg_range(0x2830, 0x2837),
1012	regmap_reg_range(0x2840, 0x284b),
1013	regmap_reg_range(0x2900, 0x2907),
1014	regmap_reg_range(0x2914, 0x2915),
1015	regmap_reg_range(0x2a00, 0x2a03),
1016	regmap_reg_range(0x2a04, 0x2a07),
1017	regmap_reg_range(0x2b00, 0x2b01),
1018	regmap_reg_range(0x2b04, 0x2b04),
1019
1020	/* port 3 */
1021	regmap_reg_range(0x3000, 0x3001),
1022	regmap_reg_range(0x3013, 0x3013),
1023	regmap_reg_range(0x3017, 0x3017),
1024	regmap_reg_range(0x301b, 0x301b),
1025	regmap_reg_range(0x301f, 0x3020),
1026	regmap_reg_range(0x3030, 0x3030),
1027	regmap_reg_range(0x3100, 0x3115),
1028	regmap_reg_range(0x311a, 0x311f),
1029	regmap_reg_range(0x3122, 0x3127),
1030	regmap_reg_range(0x312a, 0x312b),
1031	regmap_reg_range(0x3136, 0x3139),
1032	regmap_reg_range(0x313e, 0x313f),
1033	regmap_reg_range(0x3400, 0x3401),
1034	regmap_reg_range(0x3403, 0x3403),
1035	regmap_reg_range(0x3410, 0x3417),
1036	regmap_reg_range(0x3420, 0x3423),
1037	regmap_reg_range(0x3500, 0x3507),
1038	regmap_reg_range(0x3600, 0x3612),
1039	regmap_reg_range(0x3800, 0x380f),
1040	regmap_reg_range(0x3820, 0x3827),
1041	regmap_reg_range(0x3830, 0x3837),
1042	regmap_reg_range(0x3840, 0x384b),
1043	regmap_reg_range(0x3900, 0x3907),
1044	regmap_reg_range(0x3914, 0x3915),
1045	regmap_reg_range(0x3a00, 0x3a03),
1046	regmap_reg_range(0x3a04, 0x3a07),
1047	regmap_reg_range(0x3b00, 0x3b01),
1048	regmap_reg_range(0x3b04, 0x3b04),
1049
1050	/* port 4 */
1051	regmap_reg_range(0x4000, 0x4001),
1052	regmap_reg_range(0x4013, 0x4013),
1053	regmap_reg_range(0x4017, 0x4017),
1054	regmap_reg_range(0x401b, 0x401b),
1055	regmap_reg_range(0x401f, 0x4020),
1056	regmap_reg_range(0x4030, 0x4030),
1057	regmap_reg_range(0x4100, 0x4115),
1058	regmap_reg_range(0x411a, 0x411f),
1059	regmap_reg_range(0x4122, 0x4127),
1060	regmap_reg_range(0x412a, 0x412b),
1061	regmap_reg_range(0x4136, 0x4139),
1062	regmap_reg_range(0x413e, 0x413f),
1063	regmap_reg_range(0x4400, 0x4401),
1064	regmap_reg_range(0x4403, 0x4403),
1065	regmap_reg_range(0x4410, 0x4417),
1066	regmap_reg_range(0x4420, 0x4423),
1067	regmap_reg_range(0x4500, 0x4507),
1068	regmap_reg_range(0x4600, 0x4612),
1069	regmap_reg_range(0x4800, 0x480f),
1070	regmap_reg_range(0x4820, 0x4827),
1071	regmap_reg_range(0x4830, 0x4837),
1072	regmap_reg_range(0x4840, 0x484b),
1073	regmap_reg_range(0x4900, 0x4907),
1074	regmap_reg_range(0x4914, 0x4915),
1075	regmap_reg_range(0x4a00, 0x4a03),
1076	regmap_reg_range(0x4a04, 0x4a07),
1077	regmap_reg_range(0x4b00, 0x4b01),
1078	regmap_reg_range(0x4b04, 0x4b04),
1079
1080	/* port 5 */
1081	regmap_reg_range(0x5000, 0x5001),
1082	regmap_reg_range(0x5013, 0x5013),
1083	regmap_reg_range(0x5017, 0x5017),
1084	regmap_reg_range(0x501b, 0x501b),
1085	regmap_reg_range(0x501f, 0x5020),
1086	regmap_reg_range(0x5030, 0x5030),
1087	regmap_reg_range(0x5100, 0x5115),
1088	regmap_reg_range(0x511a, 0x511f),
1089	regmap_reg_range(0x5122, 0x5127),
1090	regmap_reg_range(0x512a, 0x512b),
1091	regmap_reg_range(0x5136, 0x5139),
1092	regmap_reg_range(0x513e, 0x513f),
1093	regmap_reg_range(0x5400, 0x5401),
1094	regmap_reg_range(0x5403, 0x5403),
1095	regmap_reg_range(0x5410, 0x5417),
1096	regmap_reg_range(0x5420, 0x5423),
1097	regmap_reg_range(0x5500, 0x5507),
1098	regmap_reg_range(0x5600, 0x5612),
1099	regmap_reg_range(0x5800, 0x580f),
1100	regmap_reg_range(0x5820, 0x5827),
1101	regmap_reg_range(0x5830, 0x5837),
1102	regmap_reg_range(0x5840, 0x584b),
1103	regmap_reg_range(0x5900, 0x5907),
1104	regmap_reg_range(0x5914, 0x5915),
1105	regmap_reg_range(0x5a00, 0x5a03),
1106	regmap_reg_range(0x5a04, 0x5a07),
1107	regmap_reg_range(0x5b00, 0x5b01),
1108	regmap_reg_range(0x5b04, 0x5b04),
1109
1110	/* port 6 */
1111	regmap_reg_range(0x6000, 0x6001),
1112	regmap_reg_range(0x6013, 0x6013),
1113	regmap_reg_range(0x6017, 0x6017),
1114	regmap_reg_range(0x601b, 0x601b),
1115	regmap_reg_range(0x601f, 0x6020),
1116	regmap_reg_range(0x6030, 0x6030),
1117	regmap_reg_range(0x6100, 0x6115),
1118	regmap_reg_range(0x611a, 0x611f),
1119	regmap_reg_range(0x6122, 0x6127),
1120	regmap_reg_range(0x612a, 0x612b),
1121	regmap_reg_range(0x6136, 0x6139),
1122	regmap_reg_range(0x613e, 0x613f),
1123	regmap_reg_range(0x6300, 0x6301),
1124	regmap_reg_range(0x6400, 0x6401),
1125	regmap_reg_range(0x6403, 0x6403),
1126	regmap_reg_range(0x6410, 0x6417),
1127	regmap_reg_range(0x6420, 0x6423),
1128	regmap_reg_range(0x6500, 0x6507),
1129	regmap_reg_range(0x6600, 0x6612),
1130	regmap_reg_range(0x6800, 0x680f),
1131	regmap_reg_range(0x6820, 0x6827),
1132	regmap_reg_range(0x6830, 0x6837),
1133	regmap_reg_range(0x6840, 0x684b),
1134	regmap_reg_range(0x6900, 0x6907),
1135	regmap_reg_range(0x6914, 0x6915),
1136	regmap_reg_range(0x6a00, 0x6a03),
1137	regmap_reg_range(0x6a04, 0x6a07),
1138	regmap_reg_range(0x6b00, 0x6b01),
1139	regmap_reg_range(0x6b04, 0x6b04),
1140};
1141
1142static const struct regmap_access_table ksz9896_register_set = {
1143	.yes_ranges = ksz9896_valid_regs,
1144	.n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs),
1145};
1146
1147static const struct regmap_range ksz8873_valid_regs[] = {
1148	regmap_reg_range(0x00, 0x01),
1149	/* global control register */
1150	regmap_reg_range(0x02, 0x0f),
1151
1152	/* port registers */
1153	regmap_reg_range(0x10, 0x1d),
1154	regmap_reg_range(0x1e, 0x1f),
1155	regmap_reg_range(0x20, 0x2d),
1156	regmap_reg_range(0x2e, 0x2f),
1157	regmap_reg_range(0x30, 0x39),
1158	regmap_reg_range(0x3f, 0x3f),
1159
1160	/* advanced control registers */
1161	regmap_reg_range(0x60, 0x6f),
1162	regmap_reg_range(0x70, 0x75),
1163	regmap_reg_range(0x76, 0x78),
1164	regmap_reg_range(0x79, 0x7a),
1165	regmap_reg_range(0x7b, 0x83),
1166	regmap_reg_range(0x8e, 0x99),
1167	regmap_reg_range(0x9a, 0xa5),
1168	regmap_reg_range(0xa6, 0xa6),
1169	regmap_reg_range(0xa7, 0xaa),
1170	regmap_reg_range(0xab, 0xae),
1171	regmap_reg_range(0xaf, 0xba),
1172	regmap_reg_range(0xbb, 0xbc),
1173	regmap_reg_range(0xbd, 0xbd),
1174	regmap_reg_range(0xc0, 0xc0),
1175	regmap_reg_range(0xc2, 0xc2),
1176	regmap_reg_range(0xc3, 0xc3),
1177	regmap_reg_range(0xc4, 0xc4),
1178	regmap_reg_range(0xc6, 0xc6),
1179};
1180
1181static const struct regmap_access_table ksz8873_register_set = {
1182	.yes_ranges = ksz8873_valid_regs,
1183	.n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs),
1184};
1185
1186const struct ksz_chip_data ksz_switch_chips[] = {
1187	[KSZ8563] = {
1188		.chip_id = KSZ8563_CHIP_ID,
1189		.dev_name = "KSZ8563",
1190		.num_vlans = 4096,
1191		.num_alus = 4096,
1192		.num_statics = 16,
1193		.cpu_ports = 0x07,	/* can be configured as cpu port */
1194		.port_cnt = 3,		/* total port count */
1195		.port_nirqs = 3,
1196		.num_tx_queues = 4,
1197		.tc_cbs_supported = true,
1198		.tc_ets_supported = true,
1199		.ops = &ksz9477_dev_ops,
1200		.mib_names = ksz9477_mib_names,
1201		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1202		.reg_mib_cnt = MIB_COUNTER_NUM,
1203		.regs = ksz9477_regs,
1204		.masks = ksz9477_masks,
1205		.shifts = ksz9477_shifts,
1206		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1207		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1208		.supports_mii = {false, false, true},
1209		.supports_rmii = {false, false, true},
1210		.supports_rgmii = {false, false, true},
1211		.internal_phy = {true, true, false},
1212		.gbit_capable = {false, false, true},
1213		.wr_table = &ksz8563_register_set,
1214		.rd_table = &ksz8563_register_set,
1215	},
1216
1217	[KSZ8795] = {
1218		.chip_id = KSZ8795_CHIP_ID,
1219		.dev_name = "KSZ8795",
1220		.num_vlans = 4096,
1221		.num_alus = 0,
1222		.num_statics = 8,
1223		.cpu_ports = 0x10,	/* can be configured as cpu port */
1224		.port_cnt = 5,		/* total cpu and user ports */
1225		.num_tx_queues = 4,
1226		.ops = &ksz8_dev_ops,
1227		.ksz87xx_eee_link_erratum = true,
1228		.mib_names = ksz9477_mib_names,
1229		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1230		.reg_mib_cnt = MIB_COUNTER_NUM,
1231		.regs = ksz8795_regs,
1232		.masks = ksz8795_masks,
1233		.shifts = ksz8795_shifts,
1234		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1235		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1236		.supports_mii = {false, false, false, false, true},
1237		.supports_rmii = {false, false, false, false, true},
1238		.supports_rgmii = {false, false, false, false, true},
1239		.internal_phy = {true, true, true, true, false},
1240	},
1241
1242	[KSZ8794] = {
1243		/* WARNING
1244		 * =======
1245		 * KSZ8794 is similar to KSZ8795, except the port map
1246		 * contains a gap between external and CPU ports, the
1247		 * port map is NOT continuous. The per-port register
1248		 * map is shifted accordingly too, i.e. registers at
1249		 * offset 0x40 are NOT used on KSZ8794 and they ARE
1250		 * used on KSZ8795 for external port 3.
1251		 *           external  cpu
1252		 * KSZ8794   0,1,2      4
1253		 * KSZ8795   0,1,2,3    4
1254		 * KSZ8765   0,1,2,3    4
1255		 * port_cnt is configured as 5, even though it is 4
1256		 */
1257		.chip_id = KSZ8794_CHIP_ID,
1258		.dev_name = "KSZ8794",
1259		.num_vlans = 4096,
1260		.num_alus = 0,
1261		.num_statics = 8,
1262		.cpu_ports = 0x10,	/* can be configured as cpu port */
1263		.port_cnt = 5,		/* total cpu and user ports */
1264		.num_tx_queues = 4,
1265		.ops = &ksz8_dev_ops,
1266		.ksz87xx_eee_link_erratum = true,
1267		.mib_names = ksz9477_mib_names,
1268		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1269		.reg_mib_cnt = MIB_COUNTER_NUM,
1270		.regs = ksz8795_regs,
1271		.masks = ksz8795_masks,
1272		.shifts = ksz8795_shifts,
1273		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1274		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1275		.supports_mii = {false, false, false, false, true},
1276		.supports_rmii = {false, false, false, false, true},
1277		.supports_rgmii = {false, false, false, false, true},
1278		.internal_phy = {true, true, true, false, false},
1279	},
1280
1281	[KSZ8765] = {
1282		.chip_id = KSZ8765_CHIP_ID,
1283		.dev_name = "KSZ8765",
1284		.num_vlans = 4096,
1285		.num_alus = 0,
1286		.num_statics = 8,
1287		.cpu_ports = 0x10,	/* can be configured as cpu port */
1288		.port_cnt = 5,		/* total cpu and user ports */
1289		.num_tx_queues = 4,
1290		.ops = &ksz8_dev_ops,
1291		.ksz87xx_eee_link_erratum = true,
1292		.mib_names = ksz9477_mib_names,
1293		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1294		.reg_mib_cnt = MIB_COUNTER_NUM,
1295		.regs = ksz8795_regs,
1296		.masks = ksz8795_masks,
1297		.shifts = ksz8795_shifts,
1298		.xmii_ctrl0 = ksz8795_xmii_ctrl0,
1299		.xmii_ctrl1 = ksz8795_xmii_ctrl1,
1300		.supports_mii = {false, false, false, false, true},
1301		.supports_rmii = {false, false, false, false, true},
1302		.supports_rgmii = {false, false, false, false, true},
1303		.internal_phy = {true, true, true, true, false},
1304	},
1305
1306	[KSZ8830] = {
1307		.chip_id = KSZ8830_CHIP_ID,
1308		.dev_name = "KSZ8863/KSZ8873",
1309		.num_vlans = 16,
1310		.num_alus = 0,
1311		.num_statics = 8,
1312		.cpu_ports = 0x4,	/* can be configured as cpu port */
1313		.port_cnt = 3,
1314		.num_tx_queues = 4,
1315		.ops = &ksz8_dev_ops,
1316		.mib_names = ksz88xx_mib_names,
1317		.mib_cnt = ARRAY_SIZE(ksz88xx_mib_names),
1318		.reg_mib_cnt = MIB_COUNTER_NUM,
1319		.regs = ksz8863_regs,
1320		.masks = ksz8863_masks,
1321		.shifts = ksz8863_shifts,
1322		.supports_mii = {false, false, true},
1323		.supports_rmii = {false, false, true},
1324		.internal_phy = {true, true, false},
1325		.wr_table = &ksz8873_register_set,
1326		.rd_table = &ksz8873_register_set,
1327	},
1328
1329	[KSZ9477] = {
1330		.chip_id = KSZ9477_CHIP_ID,
1331		.dev_name = "KSZ9477",
1332		.num_vlans = 4096,
1333		.num_alus = 4096,
1334		.num_statics = 16,
1335		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1336		.port_cnt = 7,		/* total physical port count */
1337		.port_nirqs = 4,
1338		.num_tx_queues = 4,
1339		.tc_cbs_supported = true,
1340		.tc_ets_supported = true,
1341		.ops = &ksz9477_dev_ops,
1342		.mib_names = ksz9477_mib_names,
1343		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1344		.reg_mib_cnt = MIB_COUNTER_NUM,
1345		.regs = ksz9477_regs,
1346		.masks = ksz9477_masks,
1347		.shifts = ksz9477_shifts,
1348		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1349		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1350		.supports_mii	= {false, false, false, false,
1351				   false, true, false},
1352		.supports_rmii	= {false, false, false, false,
1353				   false, true, false},
1354		.supports_rgmii = {false, false, false, false,
1355				   false, true, false},
1356		.internal_phy	= {true, true, true, true,
1357				   true, false, false},
1358		.gbit_capable	= {true, true, true, true, true, true, true},
1359		.wr_table = &ksz9477_register_set,
1360		.rd_table = &ksz9477_register_set,
1361	},
1362
1363	[KSZ9896] = {
1364		.chip_id = KSZ9896_CHIP_ID,
1365		.dev_name = "KSZ9896",
1366		.num_vlans = 4096,
1367		.num_alus = 4096,
1368		.num_statics = 16,
1369		.cpu_ports = 0x3F,	/* can be configured as cpu port */
1370		.port_cnt = 6,		/* total physical port count */
1371		.port_nirqs = 2,
1372		.num_tx_queues = 4,
1373		.ops = &ksz9477_dev_ops,
1374		.mib_names = ksz9477_mib_names,
1375		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1376		.reg_mib_cnt = MIB_COUNTER_NUM,
1377		.regs = ksz9477_regs,
1378		.masks = ksz9477_masks,
1379		.shifts = ksz9477_shifts,
1380		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1381		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1382		.supports_mii	= {false, false, false, false,
1383				   false, true},
1384		.supports_rmii	= {false, false, false, false,
1385				   false, true},
1386		.supports_rgmii = {false, false, false, false,
1387				   false, true},
1388		.internal_phy	= {true, true, true, true,
1389				   true, false},
1390		.gbit_capable	= {true, true, true, true, true, true},
1391		.wr_table = &ksz9896_register_set,
1392		.rd_table = &ksz9896_register_set,
1393	},
1394
1395	[KSZ9897] = {
1396		.chip_id = KSZ9897_CHIP_ID,
1397		.dev_name = "KSZ9897",
1398		.num_vlans = 4096,
1399		.num_alus = 4096,
1400		.num_statics = 16,
1401		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1402		.port_cnt = 7,		/* total physical port count */
1403		.port_nirqs = 2,
1404		.num_tx_queues = 4,
1405		.ops = &ksz9477_dev_ops,
1406		.mib_names = ksz9477_mib_names,
1407		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1408		.reg_mib_cnt = MIB_COUNTER_NUM,
1409		.regs = ksz9477_regs,
1410		.masks = ksz9477_masks,
1411		.shifts = ksz9477_shifts,
1412		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1413		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1414		.supports_mii	= {false, false, false, false,
1415				   false, true, true},
1416		.supports_rmii	= {false, false, false, false,
1417				   false, true, true},
1418		.supports_rgmii = {false, false, false, false,
1419				   false, true, true},
1420		.internal_phy	= {true, true, true, true,
1421				   true, false, false},
1422		.gbit_capable	= {true, true, true, true, true, true, true},
1423	},
1424
1425	[KSZ9893] = {
1426		.chip_id = KSZ9893_CHIP_ID,
1427		.dev_name = "KSZ9893",
1428		.num_vlans = 4096,
1429		.num_alus = 4096,
1430		.num_statics = 16,
1431		.cpu_ports = 0x07,	/* can be configured as cpu port */
1432		.port_cnt = 3,		/* total port count */
1433		.port_nirqs = 2,
1434		.num_tx_queues = 4,
1435		.ops = &ksz9477_dev_ops,
1436		.mib_names = ksz9477_mib_names,
1437		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1438		.reg_mib_cnt = MIB_COUNTER_NUM,
1439		.regs = ksz9477_regs,
1440		.masks = ksz9477_masks,
1441		.shifts = ksz9477_shifts,
1442		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1443		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1444		.supports_mii = {false, false, true},
1445		.supports_rmii = {false, false, true},
1446		.supports_rgmii = {false, false, true},
1447		.internal_phy = {true, true, false},
1448		.gbit_capable = {true, true, true},
1449	},
1450
1451	[KSZ9563] = {
1452		.chip_id = KSZ9563_CHIP_ID,
1453		.dev_name = "KSZ9563",
1454		.num_vlans = 4096,
1455		.num_alus = 4096,
1456		.num_statics = 16,
1457		.cpu_ports = 0x07,	/* can be configured as cpu port */
1458		.port_cnt = 3,		/* total port count */
1459		.port_nirqs = 3,
1460		.num_tx_queues = 4,
1461		.tc_cbs_supported = true,
1462		.tc_ets_supported = true,
1463		.ops = &ksz9477_dev_ops,
1464		.mib_names = ksz9477_mib_names,
1465		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1466		.reg_mib_cnt = MIB_COUNTER_NUM,
1467		.regs = ksz9477_regs,
1468		.masks = ksz9477_masks,
1469		.shifts = ksz9477_shifts,
1470		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1471		.xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */
1472		.supports_mii = {false, false, true},
1473		.supports_rmii = {false, false, true},
1474		.supports_rgmii = {false, false, true},
1475		.internal_phy = {true, true, false},
1476		.gbit_capable = {true, true, true},
1477	},
1478
1479	[KSZ8567] = {
1480		.chip_id = KSZ8567_CHIP_ID,
1481		.dev_name = "KSZ8567",
1482		.num_vlans = 4096,
1483		.num_alus = 4096,
1484		.num_statics = 16,
1485		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1486		.port_cnt = 7,		/* total port count */
1487		.port_nirqs = 3,
1488		.num_tx_queues = 4,
1489		.tc_cbs_supported = true,
1490		.tc_ets_supported = true,
1491		.ops = &ksz9477_dev_ops,
1492		.mib_names = ksz9477_mib_names,
1493		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1494		.reg_mib_cnt = MIB_COUNTER_NUM,
1495		.regs = ksz9477_regs,
1496		.masks = ksz9477_masks,
1497		.shifts = ksz9477_shifts,
1498		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1499		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1500		.supports_mii	= {false, false, false, false,
1501				   false, true, true},
1502		.supports_rmii	= {false, false, false, false,
1503				   false, true, true},
1504		.supports_rgmii = {false, false, false, false,
1505				   false, true, true},
1506		.internal_phy	= {true, true, true, true,
1507				   true, false, false},
1508		.gbit_capable	= {false, false, false, false, false,
1509				   true, true},
1510	},
1511
1512	[KSZ9567] = {
1513		.chip_id = KSZ9567_CHIP_ID,
1514		.dev_name = "KSZ9567",
1515		.num_vlans = 4096,
1516		.num_alus = 4096,
1517		.num_statics = 16,
1518		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1519		.port_cnt = 7,		/* total physical port count */
1520		.port_nirqs = 3,
1521		.num_tx_queues = 4,
1522		.tc_cbs_supported = true,
1523		.tc_ets_supported = true,
1524		.ops = &ksz9477_dev_ops,
1525		.mib_names = ksz9477_mib_names,
1526		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1527		.reg_mib_cnt = MIB_COUNTER_NUM,
1528		.regs = ksz9477_regs,
1529		.masks = ksz9477_masks,
1530		.shifts = ksz9477_shifts,
1531		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1532		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1533		.supports_mii	= {false, false, false, false,
1534				   false, true, true},
1535		.supports_rmii	= {false, false, false, false,
1536				   false, true, true},
1537		.supports_rgmii = {false, false, false, false,
1538				   false, true, true},
1539		.internal_phy	= {true, true, true, true,
1540				   true, false, false},
1541		.gbit_capable	= {true, true, true, true, true, true, true},
1542	},
1543
1544	[LAN9370] = {
1545		.chip_id = LAN9370_CHIP_ID,
1546		.dev_name = "LAN9370",
1547		.num_vlans = 4096,
1548		.num_alus = 1024,
1549		.num_statics = 256,
1550		.cpu_ports = 0x10,	/* can be configured as cpu port */
1551		.port_cnt = 5,		/* total physical port count */
1552		.port_nirqs = 6,
1553		.num_tx_queues = 8,
1554		.tc_cbs_supported = true,
1555		.tc_ets_supported = true,
1556		.ops = &lan937x_dev_ops,
1557		.mib_names = ksz9477_mib_names,
1558		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1559		.reg_mib_cnt = MIB_COUNTER_NUM,
1560		.regs = ksz9477_regs,
1561		.masks = lan937x_masks,
1562		.shifts = lan937x_shifts,
1563		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1564		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1565		.supports_mii = {false, false, false, false, true},
1566		.supports_rmii = {false, false, false, false, true},
1567		.supports_rgmii = {false, false, false, false, true},
1568		.internal_phy = {true, true, true, true, false},
1569	},
1570
1571	[LAN9371] = {
1572		.chip_id = LAN9371_CHIP_ID,
1573		.dev_name = "LAN9371",
1574		.num_vlans = 4096,
1575		.num_alus = 1024,
1576		.num_statics = 256,
1577		.cpu_ports = 0x30,	/* can be configured as cpu port */
1578		.port_cnt = 6,		/* total physical port count */
1579		.port_nirqs = 6,
1580		.num_tx_queues = 8,
1581		.tc_cbs_supported = true,
1582		.tc_ets_supported = true,
1583		.ops = &lan937x_dev_ops,
1584		.mib_names = ksz9477_mib_names,
1585		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1586		.reg_mib_cnt = MIB_COUNTER_NUM,
1587		.regs = ksz9477_regs,
1588		.masks = lan937x_masks,
1589		.shifts = lan937x_shifts,
1590		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1591		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1592		.supports_mii = {false, false, false, false, true, true},
1593		.supports_rmii = {false, false, false, false, true, true},
1594		.supports_rgmii = {false, false, false, false, true, true},
1595		.internal_phy = {true, true, true, true, false, false},
1596	},
1597
1598	[LAN9372] = {
1599		.chip_id = LAN9372_CHIP_ID,
1600		.dev_name = "LAN9372",
1601		.num_vlans = 4096,
1602		.num_alus = 1024,
1603		.num_statics = 256,
1604		.cpu_ports = 0x30,	/* can be configured as cpu port */
1605		.port_cnt = 8,		/* total physical port count */
1606		.port_nirqs = 6,
1607		.num_tx_queues = 8,
1608		.tc_cbs_supported = true,
1609		.tc_ets_supported = true,
1610		.ops = &lan937x_dev_ops,
1611		.mib_names = ksz9477_mib_names,
1612		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1613		.reg_mib_cnt = MIB_COUNTER_NUM,
1614		.regs = ksz9477_regs,
1615		.masks = lan937x_masks,
1616		.shifts = lan937x_shifts,
1617		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1618		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1619		.supports_mii	= {false, false, false, false,
1620				   true, true, false, false},
1621		.supports_rmii	= {false, false, false, false,
1622				   true, true, false, false},
1623		.supports_rgmii = {false, false, false, false,
1624				   true, true, false, false},
1625		.internal_phy	= {true, true, true, true,
1626				   false, false, true, true},
1627	},
1628
1629	[LAN9373] = {
1630		.chip_id = LAN9373_CHIP_ID,
1631		.dev_name = "LAN9373",
1632		.num_vlans = 4096,
1633		.num_alus = 1024,
1634		.num_statics = 256,
1635		.cpu_ports = 0x38,	/* can be configured as cpu port */
1636		.port_cnt = 5,		/* total physical port count */
1637		.port_nirqs = 6,
1638		.num_tx_queues = 8,
1639		.tc_cbs_supported = true,
1640		.tc_ets_supported = true,
1641		.ops = &lan937x_dev_ops,
1642		.mib_names = ksz9477_mib_names,
1643		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1644		.reg_mib_cnt = MIB_COUNTER_NUM,
1645		.regs = ksz9477_regs,
1646		.masks = lan937x_masks,
1647		.shifts = lan937x_shifts,
1648		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1649		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1650		.supports_mii	= {false, false, false, false,
1651				   true, true, false, false},
1652		.supports_rmii	= {false, false, false, false,
1653				   true, true, false, false},
1654		.supports_rgmii = {false, false, false, false,
1655				   true, true, false, false},
1656		.internal_phy	= {true, true, true, false,
1657				   false, false, true, true},
1658	},
1659
1660	[LAN9374] = {
1661		.chip_id = LAN9374_CHIP_ID,
1662		.dev_name = "LAN9374",
1663		.num_vlans = 4096,
1664		.num_alus = 1024,
1665		.num_statics = 256,
1666		.cpu_ports = 0x30,	/* can be configured as cpu port */
1667		.port_cnt = 8,		/* total physical port count */
1668		.port_nirqs = 6,
1669		.num_tx_queues = 8,
1670		.tc_cbs_supported = true,
1671		.tc_ets_supported = true,
1672		.ops = &lan937x_dev_ops,
1673		.mib_names = ksz9477_mib_names,
1674		.mib_cnt = ARRAY_SIZE(ksz9477_mib_names),
1675		.reg_mib_cnt = MIB_COUNTER_NUM,
1676		.regs = ksz9477_regs,
1677		.masks = lan937x_masks,
1678		.shifts = lan937x_shifts,
1679		.xmii_ctrl0 = ksz9477_xmii_ctrl0,
1680		.xmii_ctrl1 = ksz9477_xmii_ctrl1,
1681		.supports_mii	= {false, false, false, false,
1682				   true, true, false, false},
1683		.supports_rmii	= {false, false, false, false,
1684				   true, true, false, false},
1685		.supports_rgmii = {false, false, false, false,
1686				   true, true, false, false},
1687		.internal_phy	= {true, true, true, true,
1688				   false, false, true, true},
1689	},
1690};
1691EXPORT_SYMBOL_GPL(ksz_switch_chips);
1692
1693static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num)
1694{
1695	int i;
1696
1697	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1698		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1699
1700		if (chip->chip_id == prod_num)
1701			return chip;
1702	}
1703
1704	return NULL;
1705}
1706
1707static int ksz_check_device_id(struct ksz_device *dev)
1708{
1709	const struct ksz_chip_data *expected_chip_data;
1710	u32 expected_chip_id;
1711
1712	if (dev->pdata) {
1713		expected_chip_id = dev->pdata->chip_id;
1714		expected_chip_data = ksz_lookup_info(expected_chip_id);
1715		if (WARN_ON(!expected_chip_data))
1716			return -ENODEV;
1717	} else {
1718		expected_chip_data = of_device_get_match_data(dev->dev);
1719		expected_chip_id = expected_chip_data->chip_id;
1720	}
1721
1722	if (expected_chip_id != dev->chip_id) {
1723		dev_err(dev->dev,
1724			"Device tree specifies chip %s but found %s, please fix it!\n",
1725			expected_chip_data->dev_name, dev->info->dev_name);
1726		return -ENODEV;
1727	}
1728
1729	return 0;
1730}
1731
1732static void ksz_phylink_get_caps(struct dsa_switch *ds, int port,
1733				 struct phylink_config *config)
1734{
1735	struct ksz_device *dev = ds->priv;
1736
1737	if (dev->info->supports_mii[port])
1738		__set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces);
1739
1740	if (dev->info->supports_rmii[port])
1741		__set_bit(PHY_INTERFACE_MODE_RMII,
1742			  config->supported_interfaces);
1743
1744	if (dev->info->supports_rgmii[port])
1745		phy_interface_set_rgmii(config->supported_interfaces);
1746
1747	if (dev->info->internal_phy[port]) {
1748		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1749			  config->supported_interfaces);
1750		/* Compatibility for phylib's default interface type when the
1751		 * phy-mode property is absent
1752		 */
1753		__set_bit(PHY_INTERFACE_MODE_GMII,
1754			  config->supported_interfaces);
1755	}
1756
1757	if (dev->dev_ops->get_caps)
1758		dev->dev_ops->get_caps(dev, port, config);
1759}
1760
1761void ksz_r_mib_stats64(struct ksz_device *dev, int port)
1762{
1763	struct ethtool_pause_stats *pstats;
1764	struct rtnl_link_stats64 *stats;
1765	struct ksz_stats_raw *raw;
1766	struct ksz_port_mib *mib;
1767
1768	mib = &dev->ports[port].mib;
1769	stats = &mib->stats64;
1770	pstats = &mib->pause_stats;
1771	raw = (struct ksz_stats_raw *)mib->counters;
1772
1773	spin_lock(&mib->stats64_lock);
1774
1775	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
1776		raw->rx_pause;
1777	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
1778		raw->tx_pause;
1779
1780	/* HW counters are counting bytes + FCS which is not acceptable
1781	 * for rtnl_link_stats64 interface
1782	 */
1783	stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN;
1784	stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN;
1785
1786	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
1787		raw->rx_oversize;
1788
1789	stats->rx_crc_errors = raw->rx_crc_err;
1790	stats->rx_frame_errors = raw->rx_align_err;
1791	stats->rx_dropped = raw->rx_discards;
1792	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
1793		stats->rx_frame_errors  + stats->rx_dropped;
1794
1795	stats->tx_window_errors = raw->tx_late_col;
1796	stats->tx_fifo_errors = raw->tx_discards;
1797	stats->tx_aborted_errors = raw->tx_exc_col;
1798	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
1799		stats->tx_aborted_errors;
1800
1801	stats->multicast = raw->rx_mcast;
1802	stats->collisions = raw->tx_total_col;
1803
1804	pstats->tx_pause_frames = raw->tx_pause;
1805	pstats->rx_pause_frames = raw->rx_pause;
1806
1807	spin_unlock(&mib->stats64_lock);
1808}
1809
1810void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port)
1811{
1812	struct ethtool_pause_stats *pstats;
1813	struct rtnl_link_stats64 *stats;
1814	struct ksz88xx_stats_raw *raw;
1815	struct ksz_port_mib *mib;
1816
1817	mib = &dev->ports[port].mib;
1818	stats = &mib->stats64;
1819	pstats = &mib->pause_stats;
1820	raw = (struct ksz88xx_stats_raw *)mib->counters;
1821
1822	spin_lock(&mib->stats64_lock);
1823
1824	stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast +
1825		raw->rx_pause;
1826	stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast +
1827		raw->tx_pause;
1828
1829	/* HW counters are counting bytes + FCS which is not acceptable
1830	 * for rtnl_link_stats64 interface
1831	 */
1832	stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN;
1833	stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN;
1834
1835	stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments +
1836		raw->rx_oversize;
1837
1838	stats->rx_crc_errors = raw->rx_crc_err;
1839	stats->rx_frame_errors = raw->rx_align_err;
1840	stats->rx_dropped = raw->rx_discards;
1841	stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors +
1842		stats->rx_frame_errors  + stats->rx_dropped;
1843
1844	stats->tx_window_errors = raw->tx_late_col;
1845	stats->tx_fifo_errors = raw->tx_discards;
1846	stats->tx_aborted_errors = raw->tx_exc_col;
1847	stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors +
1848		stats->tx_aborted_errors;
1849
1850	stats->multicast = raw->rx_mcast;
1851	stats->collisions = raw->tx_total_col;
1852
1853	pstats->tx_pause_frames = raw->tx_pause;
1854	pstats->rx_pause_frames = raw->rx_pause;
1855
1856	spin_unlock(&mib->stats64_lock);
1857}
1858
1859static void ksz_get_stats64(struct dsa_switch *ds, int port,
1860			    struct rtnl_link_stats64 *s)
1861{
1862	struct ksz_device *dev = ds->priv;
1863	struct ksz_port_mib *mib;
1864
1865	mib = &dev->ports[port].mib;
1866
1867	spin_lock(&mib->stats64_lock);
1868	memcpy(s, &mib->stats64, sizeof(*s));
1869	spin_unlock(&mib->stats64_lock);
1870}
1871
1872static void ksz_get_pause_stats(struct dsa_switch *ds, int port,
1873				struct ethtool_pause_stats *pause_stats)
1874{
1875	struct ksz_device *dev = ds->priv;
1876	struct ksz_port_mib *mib;
1877
1878	mib = &dev->ports[port].mib;
1879
1880	spin_lock(&mib->stats64_lock);
1881	memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats));
1882	spin_unlock(&mib->stats64_lock);
1883}
1884
1885static void ksz_get_strings(struct dsa_switch *ds, int port,
1886			    u32 stringset, uint8_t *buf)
1887{
1888	struct ksz_device *dev = ds->priv;
1889	int i;
1890
1891	if (stringset != ETH_SS_STATS)
1892		return;
1893
1894	for (i = 0; i < dev->info->mib_cnt; i++) {
1895		memcpy(buf + i * ETH_GSTRING_LEN,
1896		       dev->info->mib_names[i].string, ETH_GSTRING_LEN);
1897	}
1898}
1899
1900/**
1901 * ksz_update_port_member - Adjust port forwarding rules based on STP state and
1902 *			    isolation settings.
1903 * @dev: A pointer to the struct ksz_device representing the device.
1904 * @port: The port number to adjust.
1905 *
1906 * This function dynamically adjusts the port membership configuration for a
1907 * specified port and other device ports, based on Spanning Tree Protocol (STP)
1908 * states and port isolation settings. Each port, including the CPU port, has a
1909 * membership register, represented as a bitfield, where each bit corresponds
1910 * to a port number. A set bit indicates permission to forward frames to that
1911 * port. This function iterates over all ports, updating the membership register
1912 * to reflect current forwarding permissions:
1913 *
1914 * 1. Forwards frames only to ports that are part of the same bridge group and
1915 *    in the BR_STATE_FORWARDING state.
1916 * 2. Takes into account the isolation status of ports; ports in the
1917 *    BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward
1918 *    frames to each other, even if they are in the same bridge group.
1919 * 3. Ensures that the CPU port is included in the membership based on its
1920 *    upstream port configuration, allowing for management and control traffic
1921 *    to flow as required.
1922 */
1923static void ksz_update_port_member(struct ksz_device *dev, int port)
1924{
1925	struct ksz_port *p = &dev->ports[port];
1926	struct dsa_switch *ds = dev->ds;
1927	u8 port_member = 0, cpu_port;
1928	const struct dsa_port *dp;
1929	int i, j;
1930
1931	if (!dsa_is_user_port(ds, port))
1932		return;
1933
1934	dp = dsa_to_port(ds, port);
1935	cpu_port = BIT(dsa_upstream_port(ds, port));
1936
1937	for (i = 0; i < ds->num_ports; i++) {
1938		const struct dsa_port *other_dp = dsa_to_port(ds, i);
1939		struct ksz_port *other_p = &dev->ports[i];
1940		u8 val = 0;
1941
1942		if (!dsa_is_user_port(ds, i))
1943			continue;
1944		if (port == i)
1945			continue;
1946		if (!dsa_port_bridge_same(dp, other_dp))
1947			continue;
1948		if (other_p->stp_state != BR_STATE_FORWARDING)
1949			continue;
1950
1951		/* At this point we know that "port" and "other" port [i] are in
1952		 * the same bridge group and that "other" port [i] is in
1953		 * forwarding stp state. If "port" is also in forwarding stp
1954		 * state, we can allow forwarding from port [port] to port [i].
1955		 * Except if both ports are isolated.
1956		 */
1957		if (p->stp_state == BR_STATE_FORWARDING &&
1958		    !(p->isolated && other_p->isolated)) {
1959			val |= BIT(port);
1960			port_member |= BIT(i);
1961		}
1962
1963		/* Retain port [i]'s relationship to other ports than [port] */
1964		for (j = 0; j < ds->num_ports; j++) {
1965			const struct dsa_port *third_dp;
1966			struct ksz_port *third_p;
1967
1968			if (j == i)
1969				continue;
1970			if (j == port)
1971				continue;
1972			if (!dsa_is_user_port(ds, j))
1973				continue;
1974			third_p = &dev->ports[j];
1975			if (third_p->stp_state != BR_STATE_FORWARDING)
1976				continue;
1977
1978			third_dp = dsa_to_port(ds, j);
1979
1980			/* Now we updating relation of the "other" port [i] to
1981			 * the "third" port [j]. We already know that "other"
1982			 * port [i] is in forwarding stp state and that "third"
1983			 * port [j] is in forwarding stp state too.
1984			 * We need to check if "other" port [i] and "third" port
1985			 * [j] are in the same bridge group and not isolated
1986			 * before allowing forwarding from port [i] to port [j].
1987			 */
1988			if (dsa_port_bridge_same(other_dp, third_dp) &&
1989			    !(other_p->isolated && third_p->isolated))
1990				val |= BIT(j);
1991		}
1992
1993		dev->dev_ops->cfg_port_member(dev, i, val | cpu_port);
1994	}
1995
1996	dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port);
1997}
1998
1999static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum)
2000{
2001	struct ksz_device *dev = bus->priv;
2002	u16 val;
2003	int ret;
2004
2005	ret = dev->dev_ops->r_phy(dev, addr, regnum, &val);
2006	if (ret < 0)
2007		return ret;
2008
2009	return val;
2010}
2011
2012static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum,
2013			     u16 val)
2014{
2015	struct ksz_device *dev = bus->priv;
2016
2017	return dev->dev_ops->w_phy(dev, addr, regnum, val);
2018}
2019
2020static int ksz_irq_phy_setup(struct ksz_device *dev)
2021{
2022	struct dsa_switch *ds = dev->ds;
2023	int phy;
2024	int irq;
2025	int ret;
2026
2027	for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++) {
2028		if (BIT(phy) & ds->phys_mii_mask) {
2029			irq = irq_find_mapping(dev->ports[phy].pirq.domain,
2030					       PORT_SRC_PHY_INT);
2031			if (irq < 0) {
2032				ret = irq;
2033				goto out;
2034			}
2035			ds->user_mii_bus->irq[phy] = irq;
2036		}
2037	}
2038	return 0;
2039out:
2040	while (phy--)
2041		if (BIT(phy) & ds->phys_mii_mask)
2042			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2043
2044	return ret;
2045}
2046
2047static void ksz_irq_phy_free(struct ksz_device *dev)
2048{
2049	struct dsa_switch *ds = dev->ds;
2050	int phy;
2051
2052	for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++)
2053		if (BIT(phy) & ds->phys_mii_mask)
2054			irq_dispose_mapping(ds->user_mii_bus->irq[phy]);
2055}
2056
2057static int ksz_mdio_register(struct ksz_device *dev)
2058{
2059	struct dsa_switch *ds = dev->ds;
2060	struct device_node *mdio_np;
2061	struct mii_bus *bus;
2062	int ret;
2063
2064	mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio");
2065	if (!mdio_np)
2066		return 0;
2067
2068	bus = devm_mdiobus_alloc(ds->dev);
2069	if (!bus) {
2070		of_node_put(mdio_np);
2071		return -ENOMEM;
2072	}
2073
2074	bus->priv = dev;
2075	bus->read = ksz_sw_mdio_read;
2076	bus->write = ksz_sw_mdio_write;
2077	bus->name = "ksz user smi";
2078	snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index);
2079	bus->parent = ds->dev;
2080	bus->phy_mask = ~ds->phys_mii_mask;
2081
2082	ds->user_mii_bus = bus;
2083
2084	if (dev->irq > 0) {
2085		ret = ksz_irq_phy_setup(dev);
2086		if (ret) {
2087			of_node_put(mdio_np);
2088			return ret;
2089		}
2090	}
2091
2092	ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np);
2093	if (ret) {
2094		dev_err(ds->dev, "unable to register MDIO bus %s\n",
2095			bus->id);
2096		if (dev->irq > 0)
2097			ksz_irq_phy_free(dev);
2098	}
2099
2100	of_node_put(mdio_np);
2101
2102	return ret;
2103}
2104
2105static void ksz_irq_mask(struct irq_data *d)
2106{
2107	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2108
2109	kirq->masked |= BIT(d->hwirq);
2110}
2111
2112static void ksz_irq_unmask(struct irq_data *d)
2113{
2114	struct ksz_irq *kirq = irq_data_get_irq_chip_data(d);
2115
2116	kirq->masked &= ~BIT(d->hwirq);
2117}
2118
2119static void ksz_irq_bus_lock(struct irq_data *d)
2120{
2121	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2122
2123	mutex_lock(&kirq->dev->lock_irq);
2124}
2125
2126static void ksz_irq_bus_sync_unlock(struct irq_data *d)
2127{
2128	struct ksz_irq *kirq  = irq_data_get_irq_chip_data(d);
2129	struct ksz_device *dev = kirq->dev;
2130	int ret;
2131
2132	ret = ksz_write32(dev, kirq->reg_mask, kirq->masked);
2133	if (ret)
2134		dev_err(dev->dev, "failed to change IRQ mask\n");
2135
2136	mutex_unlock(&dev->lock_irq);
2137}
2138
2139static const struct irq_chip ksz_irq_chip = {
2140	.name			= "ksz-irq",
2141	.irq_mask		= ksz_irq_mask,
2142	.irq_unmask		= ksz_irq_unmask,
2143	.irq_bus_lock		= ksz_irq_bus_lock,
2144	.irq_bus_sync_unlock	= ksz_irq_bus_sync_unlock,
2145};
2146
2147static int ksz_irq_domain_map(struct irq_domain *d,
2148			      unsigned int irq, irq_hw_number_t hwirq)
2149{
2150	irq_set_chip_data(irq, d->host_data);
2151	irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq);
2152	irq_set_noprobe(irq);
2153
2154	return 0;
2155}
2156
2157static const struct irq_domain_ops ksz_irq_domain_ops = {
2158	.map	= ksz_irq_domain_map,
2159	.xlate	= irq_domain_xlate_twocell,
2160};
2161
2162static void ksz_irq_free(struct ksz_irq *kirq)
2163{
2164	int irq, virq;
2165
2166	free_irq(kirq->irq_num, kirq);
2167
2168	for (irq = 0; irq < kirq->nirqs; irq++) {
2169		virq = irq_find_mapping(kirq->domain, irq);
2170		irq_dispose_mapping(virq);
2171	}
2172
2173	irq_domain_remove(kirq->domain);
2174}
2175
2176static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id)
2177{
2178	struct ksz_irq *kirq = dev_id;
2179	unsigned int nhandled = 0;
2180	struct ksz_device *dev;
2181	unsigned int sub_irq;
2182	u8 data;
2183	int ret;
2184	u8 n;
2185
2186	dev = kirq->dev;
2187
2188	/* Read interrupt status register */
2189	ret = ksz_read8(dev, kirq->reg_status, &data);
2190	if (ret)
2191		goto out;
2192
2193	for (n = 0; n < kirq->nirqs; ++n) {
2194		if (data & BIT(n)) {
2195			sub_irq = irq_find_mapping(kirq->domain, n);
2196			handle_nested_irq(sub_irq);
2197			++nhandled;
2198		}
2199	}
2200out:
2201	return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE);
2202}
2203
2204static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq)
2205{
2206	int ret, n;
2207
2208	kirq->dev = dev;
2209	kirq->masked = ~0;
2210
2211	kirq->domain = irq_domain_add_simple(dev->dev->of_node, kirq->nirqs, 0,
2212					     &ksz_irq_domain_ops, kirq);
2213	if (!kirq->domain)
2214		return -ENOMEM;
2215
2216	for (n = 0; n < kirq->nirqs; n++)
2217		irq_create_mapping(kirq->domain, n);
2218
2219	ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn,
2220				   IRQF_ONESHOT, kirq->name, kirq);
2221	if (ret)
2222		goto out;
2223
2224	return 0;
2225
2226out:
2227	ksz_irq_free(kirq);
2228
2229	return ret;
2230}
2231
2232static int ksz_girq_setup(struct ksz_device *dev)
2233{
2234	struct ksz_irq *girq = &dev->girq;
2235
2236	girq->nirqs = dev->info->port_cnt;
2237	girq->reg_mask = REG_SW_PORT_INT_MASK__1;
2238	girq->reg_status = REG_SW_PORT_INT_STATUS__1;
2239	snprintf(girq->name, sizeof(girq->name), "global_port_irq");
2240
2241	girq->irq_num = dev->irq;
2242
2243	return ksz_irq_common_setup(dev, girq);
2244}
2245
2246static int ksz_pirq_setup(struct ksz_device *dev, u8 p)
2247{
2248	struct ksz_irq *pirq = &dev->ports[p].pirq;
2249
2250	pirq->nirqs = dev->info->port_nirqs;
2251	pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK);
2252	pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS);
2253	snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p);
2254
2255	pirq->irq_num = irq_find_mapping(dev->girq.domain, p);
2256	if (pirq->irq_num < 0)
2257		return pirq->irq_num;
2258
2259	return ksz_irq_common_setup(dev, pirq);
2260}
2261
2262static int ksz_parse_drive_strength(struct ksz_device *dev);
2263
2264static int ksz_setup(struct dsa_switch *ds)
2265{
2266	struct ksz_device *dev = ds->priv;
2267	struct dsa_port *dp;
2268	struct ksz_port *p;
2269	const u16 *regs;
2270	int ret;
2271
2272	regs = dev->info->regs;
2273
2274	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
2275				       dev->info->num_vlans, GFP_KERNEL);
2276	if (!dev->vlan_cache)
2277		return -ENOMEM;
2278
2279	ret = dev->dev_ops->reset(dev);
2280	if (ret) {
2281		dev_err(ds->dev, "failed to reset switch\n");
2282		return ret;
2283	}
2284
2285	ret = ksz_parse_drive_strength(dev);
2286	if (ret)
2287		return ret;
2288
2289	/* set broadcast storm protection 10% rate */
2290	regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL],
2291			   BROADCAST_STORM_RATE,
2292			   (BROADCAST_STORM_VALUE *
2293			   BROADCAST_STORM_PROT_RATE) / 100);
2294
2295	dev->dev_ops->config_cpu_port(ds);
2296
2297	dev->dev_ops->enable_stp_addr(dev);
2298
2299	ds->num_tx_queues = dev->info->num_tx_queues;
2300
2301	regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL],
2302			   MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE);
2303
2304	ksz_init_mib_timer(dev);
2305
2306	ds->configure_vlan_while_not_filtering = false;
2307
2308	if (dev->dev_ops->setup) {
2309		ret = dev->dev_ops->setup(ds);
2310		if (ret)
2311			return ret;
2312	}
2313
2314	/* Start with learning disabled on standalone user ports, and enabled
2315	 * on the CPU port. In lack of other finer mechanisms, learning on the
2316	 * CPU port will avoid flooding bridge local addresses on the network
2317	 * in some cases.
2318	 */
2319	p = &dev->ports[dev->cpu_port];
2320	p->learning = true;
2321
2322	if (dev->irq > 0) {
2323		ret = ksz_girq_setup(dev);
2324		if (ret)
2325			return ret;
2326
2327		dsa_switch_for_each_user_port(dp, dev->ds) {
2328			ret = ksz_pirq_setup(dev, dp->index);
2329			if (ret)
2330				goto out_girq;
2331
2332			ret = ksz_ptp_irq_setup(ds, dp->index);
2333			if (ret)
2334				goto out_pirq;
2335		}
2336	}
2337
2338	ret = ksz_ptp_clock_register(ds);
2339	if (ret) {
2340		dev_err(dev->dev, "Failed to register PTP clock: %d\n", ret);
2341		goto out_ptpirq;
2342	}
2343
2344	ret = ksz_mdio_register(dev);
2345	if (ret < 0) {
2346		dev_err(dev->dev, "failed to register the mdio");
2347		goto out_ptp_clock_unregister;
2348	}
2349
2350	/* start switch */
2351	regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL],
2352			   SW_START, SW_START);
2353
2354	return 0;
2355
2356out_ptp_clock_unregister:
2357	ksz_ptp_clock_unregister(ds);
2358out_ptpirq:
2359	if (dev->irq > 0)
2360		dsa_switch_for_each_user_port(dp, dev->ds)
2361			ksz_ptp_irq_free(ds, dp->index);
2362out_pirq:
2363	if (dev->irq > 0)
2364		dsa_switch_for_each_user_port(dp, dev->ds)
2365			ksz_irq_free(&dev->ports[dp->index].pirq);
2366out_girq:
2367	if (dev->irq > 0)
2368		ksz_irq_free(&dev->girq);
2369
2370	return ret;
2371}
2372
2373static void ksz_teardown(struct dsa_switch *ds)
2374{
2375	struct ksz_device *dev = ds->priv;
2376	struct dsa_port *dp;
2377
2378	ksz_ptp_clock_unregister(ds);
2379
2380	if (dev->irq > 0) {
2381		dsa_switch_for_each_user_port(dp, dev->ds) {
2382			ksz_ptp_irq_free(ds, dp->index);
2383
2384			ksz_irq_free(&dev->ports[dp->index].pirq);
2385		}
2386
2387		ksz_irq_free(&dev->girq);
2388	}
2389
2390	if (dev->dev_ops->teardown)
2391		dev->dev_ops->teardown(ds);
2392}
2393
2394static void port_r_cnt(struct ksz_device *dev, int port)
2395{
2396	struct ksz_port_mib *mib = &dev->ports[port].mib;
2397	u64 *dropped;
2398
2399	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
2400	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
2401		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
2402					&mib->counters[mib->cnt_ptr]);
2403		++mib->cnt_ptr;
2404	}
2405
2406	/* last one in storage */
2407	dropped = &mib->counters[dev->info->mib_cnt];
2408
2409	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
2410	while (mib->cnt_ptr < dev->info->mib_cnt) {
2411		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
2412					dropped, &mib->counters[mib->cnt_ptr]);
2413		++mib->cnt_ptr;
2414	}
2415	mib->cnt_ptr = 0;
2416}
2417
2418static void ksz_mib_read_work(struct work_struct *work)
2419{
2420	struct ksz_device *dev = container_of(work, struct ksz_device,
2421					      mib_read.work);
2422	struct ksz_port_mib *mib;
2423	struct ksz_port *p;
2424	int i;
2425
2426	for (i = 0; i < dev->info->port_cnt; i++) {
2427		if (dsa_is_unused_port(dev->ds, i))
2428			continue;
2429
2430		p = &dev->ports[i];
2431		mib = &p->mib;
2432		mutex_lock(&mib->cnt_mutex);
2433
2434		/* Only read MIB counters when the port is told to do.
2435		 * If not, read only dropped counters when link is not up.
2436		 */
2437		if (!p->read) {
2438			const struct dsa_port *dp = dsa_to_port(dev->ds, i);
2439
2440			if (!netif_carrier_ok(dp->user))
2441				mib->cnt_ptr = dev->info->reg_mib_cnt;
2442		}
2443		port_r_cnt(dev, i);
2444		p->read = false;
2445
2446		if (dev->dev_ops->r_mib_stat64)
2447			dev->dev_ops->r_mib_stat64(dev, i);
2448
2449		mutex_unlock(&mib->cnt_mutex);
2450	}
2451
2452	schedule_delayed_work(&dev->mib_read, dev->mib_read_interval);
2453}
2454
2455void ksz_init_mib_timer(struct ksz_device *dev)
2456{
2457	int i;
2458
2459	INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work);
2460
2461	for (i = 0; i < dev->info->port_cnt; i++) {
2462		struct ksz_port_mib *mib = &dev->ports[i].mib;
2463
2464		dev->dev_ops->port_init_cnt(dev, i);
2465
2466		mib->cnt_ptr = 0;
2467		memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64));
2468	}
2469}
2470
2471static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
2472{
2473	struct ksz_device *dev = ds->priv;
2474	u16 val = 0xffff;
2475	int ret;
2476
2477	ret = dev->dev_ops->r_phy(dev, addr, reg, &val);
2478	if (ret)
2479		return ret;
2480
2481	return val;
2482}
2483
2484static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
2485{
2486	struct ksz_device *dev = ds->priv;
2487	int ret;
2488
2489	ret = dev->dev_ops->w_phy(dev, addr, reg, val);
2490	if (ret)
2491		return ret;
2492
2493	return 0;
2494}
2495
2496static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port)
2497{
2498	struct ksz_device *dev = ds->priv;
2499
2500	switch (dev->chip_id) {
2501	case KSZ8830_CHIP_ID:
2502		/* Silicon Errata Sheet (DS80000830A):
2503		 * Port 1 does not work with LinkMD Cable-Testing.
2504		 * Port 1 does not respond to received PAUSE control frames.
2505		 */
2506		if (!port)
2507			return MICREL_KSZ8_P1_ERRATA;
2508		break;
2509	case KSZ9477_CHIP_ID:
2510		/* KSZ9477 Errata DS80000754C
2511		 *
2512		 * Module 4: Energy Efficient Ethernet (EEE) feature select must
2513		 * be manually disabled
2514		 *   The EEE feature is enabled by default, but it is not fully
2515		 *   operational. It must be manually disabled through register
2516		 *   controls. If not disabled, the PHY ports can auto-negotiate
2517		 *   to enable EEE, and this feature can cause link drops when
2518		 *   linked to another device supporting EEE.
2519		 */
2520		return MICREL_NO_EEE;
2521	}
2522
2523	return 0;
2524}
2525
2526static void ksz_mac_link_down(struct dsa_switch *ds, int port,
2527			      unsigned int mode, phy_interface_t interface)
2528{
2529	struct ksz_device *dev = ds->priv;
2530	struct ksz_port *p = &dev->ports[port];
2531
2532	/* Read all MIB counters when the link is going down. */
2533	p->read = true;
2534	/* timer started */
2535	if (dev->mib_read_interval)
2536		schedule_delayed_work(&dev->mib_read, 0);
2537}
2538
2539static int ksz_sset_count(struct dsa_switch *ds, int port, int sset)
2540{
2541	struct ksz_device *dev = ds->priv;
2542
2543	if (sset != ETH_SS_STATS)
2544		return 0;
2545
2546	return dev->info->mib_cnt;
2547}
2548
2549static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
2550				  uint64_t *buf)
2551{
2552	const struct dsa_port *dp = dsa_to_port(ds, port);
2553	struct ksz_device *dev = ds->priv;
2554	struct ksz_port_mib *mib;
2555
2556	mib = &dev->ports[port].mib;
2557	mutex_lock(&mib->cnt_mutex);
2558
2559	/* Only read dropped counters if no link. */
2560	if (!netif_carrier_ok(dp->user))
2561		mib->cnt_ptr = dev->info->reg_mib_cnt;
2562	port_r_cnt(dev, port);
2563	memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64));
2564	mutex_unlock(&mib->cnt_mutex);
2565}
2566
2567static int ksz_port_bridge_join(struct dsa_switch *ds, int port,
2568				struct dsa_bridge bridge,
2569				bool *tx_fwd_offload,
2570				struct netlink_ext_ack *extack)
2571{
2572	/* port_stp_state_set() will be called after to put the port in
2573	 * appropriate state so there is no need to do anything.
2574	 */
2575
2576	return 0;
2577}
2578
2579static void ksz_port_bridge_leave(struct dsa_switch *ds, int port,
2580				  struct dsa_bridge bridge)
2581{
2582	/* port_stp_state_set() will be called after to put the port in
2583	 * forwarding state so there is no need to do anything.
2584	 */
2585}
2586
2587static void ksz_port_fast_age(struct dsa_switch *ds, int port)
2588{
2589	struct ksz_device *dev = ds->priv;
2590
2591	dev->dev_ops->flush_dyn_mac_table(dev, port);
2592}
2593
2594static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
2595{
2596	struct ksz_device *dev = ds->priv;
2597
2598	if (!dev->dev_ops->set_ageing_time)
2599		return -EOPNOTSUPP;
2600
2601	return dev->dev_ops->set_ageing_time(dev, msecs);
2602}
2603
2604static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
2605			    const unsigned char *addr, u16 vid,
2606			    struct dsa_db db)
2607{
2608	struct ksz_device *dev = ds->priv;
2609
2610	if (!dev->dev_ops->fdb_add)
2611		return -EOPNOTSUPP;
2612
2613	return dev->dev_ops->fdb_add(dev, port, addr, vid, db);
2614}
2615
2616static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
2617			    const unsigned char *addr,
2618			    u16 vid, struct dsa_db db)
2619{
2620	struct ksz_device *dev = ds->priv;
2621
2622	if (!dev->dev_ops->fdb_del)
2623		return -EOPNOTSUPP;
2624
2625	return dev->dev_ops->fdb_del(dev, port, addr, vid, db);
2626}
2627
2628static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
2629			     dsa_fdb_dump_cb_t *cb, void *data)
2630{
2631	struct ksz_device *dev = ds->priv;
2632
2633	if (!dev->dev_ops->fdb_dump)
2634		return -EOPNOTSUPP;
2635
2636	return dev->dev_ops->fdb_dump(dev, port, cb, data);
2637}
2638
2639static int ksz_port_mdb_add(struct dsa_switch *ds, int port,
2640			    const struct switchdev_obj_port_mdb *mdb,
2641			    struct dsa_db db)
2642{
2643	struct ksz_device *dev = ds->priv;
2644
2645	if (!dev->dev_ops->mdb_add)
2646		return -EOPNOTSUPP;
2647
2648	return dev->dev_ops->mdb_add(dev, port, mdb, db);
2649}
2650
2651static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
2652			    const struct switchdev_obj_port_mdb *mdb,
2653			    struct dsa_db db)
2654{
2655	struct ksz_device *dev = ds->priv;
2656
2657	if (!dev->dev_ops->mdb_del)
2658		return -EOPNOTSUPP;
2659
2660	return dev->dev_ops->mdb_del(dev, port, mdb, db);
2661}
2662
2663static int ksz_port_setup(struct dsa_switch *ds, int port)
2664{
2665	struct ksz_device *dev = ds->priv;
2666
2667	if (!dsa_is_user_port(ds, port))
2668		return 0;
2669
2670	/* setup user port */
2671	dev->dev_ops->port_setup(dev, port, false);
2672
2673	/* port_stp_state_set() will be called after to enable the port so
2674	 * there is no need to do anything.
2675	 */
2676
2677	return 0;
2678}
2679
2680void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
2681{
2682	struct ksz_device *dev = ds->priv;
2683	struct ksz_port *p;
2684	const u16 *regs;
2685	u8 data;
2686
2687	regs = dev->info->regs;
2688
2689	ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
2690	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
2691
2692	p = &dev->ports[port];
2693
2694	switch (state) {
2695	case BR_STATE_DISABLED:
2696		data |= PORT_LEARN_DISABLE;
2697		break;
2698	case BR_STATE_LISTENING:
2699		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
2700		break;
2701	case BR_STATE_LEARNING:
2702		data |= PORT_RX_ENABLE;
2703		if (!p->learning)
2704			data |= PORT_LEARN_DISABLE;
2705		break;
2706	case BR_STATE_FORWARDING:
2707		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2708		if (!p->learning)
2709			data |= PORT_LEARN_DISABLE;
2710		break;
2711	case BR_STATE_BLOCKING:
2712		data |= PORT_LEARN_DISABLE;
2713		break;
2714	default:
2715		dev_err(ds->dev, "invalid STP state: %d\n", state);
2716		return;
2717	}
2718
2719	ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
2720
2721	p->stp_state = state;
2722
2723	ksz_update_port_member(dev, port);
2724}
2725
2726static void ksz_port_teardown(struct dsa_switch *ds, int port)
2727{
2728	struct ksz_device *dev = ds->priv;
2729
2730	switch (dev->chip_id) {
2731	case KSZ8563_CHIP_ID:
2732	case KSZ8567_CHIP_ID:
2733	case KSZ9477_CHIP_ID:
2734	case KSZ9563_CHIP_ID:
2735	case KSZ9567_CHIP_ID:
2736	case KSZ9893_CHIP_ID:
2737	case KSZ9896_CHIP_ID:
2738	case KSZ9897_CHIP_ID:
2739		if (dsa_is_user_port(ds, port))
2740			ksz9477_port_acl_free(dev, port);
2741	}
2742}
2743
2744static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port,
2745				     struct switchdev_brport_flags flags,
2746				     struct netlink_ext_ack *extack)
2747{
2748	if (flags.mask & ~(BR_LEARNING | BR_ISOLATED))
2749		return -EINVAL;
2750
2751	return 0;
2752}
2753
2754static int ksz_port_bridge_flags(struct dsa_switch *ds, int port,
2755				 struct switchdev_brport_flags flags,
2756				 struct netlink_ext_ack *extack)
2757{
2758	struct ksz_device *dev = ds->priv;
2759	struct ksz_port *p = &dev->ports[port];
2760
2761	if (flags.mask & (BR_LEARNING | BR_ISOLATED)) {
2762		if (flags.mask & BR_LEARNING)
2763			p->learning = !!(flags.val & BR_LEARNING);
2764
2765		if (flags.mask & BR_ISOLATED)
2766			p->isolated = !!(flags.val & BR_ISOLATED);
2767
2768		/* Make the change take effect immediately */
2769		ksz_port_stp_state_set(ds, port, p->stp_state);
2770	}
2771
2772	return 0;
2773}
2774
2775static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
2776						  int port,
2777						  enum dsa_tag_protocol mp)
2778{
2779	struct ksz_device *dev = ds->priv;
2780	enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE;
2781
2782	if (dev->chip_id == KSZ8795_CHIP_ID ||
2783	    dev->chip_id == KSZ8794_CHIP_ID ||
2784	    dev->chip_id == KSZ8765_CHIP_ID)
2785		proto = DSA_TAG_PROTO_KSZ8795;
2786
2787	if (dev->chip_id == KSZ8830_CHIP_ID ||
2788	    dev->chip_id == KSZ8563_CHIP_ID ||
2789	    dev->chip_id == KSZ9893_CHIP_ID ||
2790	    dev->chip_id == KSZ9563_CHIP_ID)
2791		proto = DSA_TAG_PROTO_KSZ9893;
2792
2793	if (dev->chip_id == KSZ8567_CHIP_ID ||
2794	    dev->chip_id == KSZ9477_CHIP_ID ||
2795	    dev->chip_id == KSZ9896_CHIP_ID ||
2796	    dev->chip_id == KSZ9897_CHIP_ID ||
2797	    dev->chip_id == KSZ9567_CHIP_ID)
2798		proto = DSA_TAG_PROTO_KSZ9477;
2799
2800	if (is_lan937x(dev))
2801		proto = DSA_TAG_PROTO_LAN937X;
2802
2803	return proto;
2804}
2805
2806static int ksz_connect_tag_protocol(struct dsa_switch *ds,
2807				    enum dsa_tag_protocol proto)
2808{
2809	struct ksz_tagger_data *tagger_data;
2810
2811	switch (proto) {
2812	case DSA_TAG_PROTO_KSZ8795:
2813		return 0;
2814	case DSA_TAG_PROTO_KSZ9893:
2815	case DSA_TAG_PROTO_KSZ9477:
2816	case DSA_TAG_PROTO_LAN937X:
2817		tagger_data = ksz_tagger_data(ds);
2818		tagger_data->xmit_work_fn = ksz_port_deferred_xmit;
2819		return 0;
2820	default:
2821		return -EPROTONOSUPPORT;
2822	}
2823}
2824
2825static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port,
2826				   bool flag, struct netlink_ext_ack *extack)
2827{
2828	struct ksz_device *dev = ds->priv;
2829
2830	if (!dev->dev_ops->vlan_filtering)
2831		return -EOPNOTSUPP;
2832
2833	return dev->dev_ops->vlan_filtering(dev, port, flag, extack);
2834}
2835
2836static int ksz_port_vlan_add(struct dsa_switch *ds, int port,
2837			     const struct switchdev_obj_port_vlan *vlan,
2838			     struct netlink_ext_ack *extack)
2839{
2840	struct ksz_device *dev = ds->priv;
2841
2842	if (!dev->dev_ops->vlan_add)
2843		return -EOPNOTSUPP;
2844
2845	return dev->dev_ops->vlan_add(dev, port, vlan, extack);
2846}
2847
2848static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
2849			     const struct switchdev_obj_port_vlan *vlan)
2850{
2851	struct ksz_device *dev = ds->priv;
2852
2853	if (!dev->dev_ops->vlan_del)
2854		return -EOPNOTSUPP;
2855
2856	return dev->dev_ops->vlan_del(dev, port, vlan);
2857}
2858
2859static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
2860			       struct dsa_mall_mirror_tc_entry *mirror,
2861			       bool ingress, struct netlink_ext_ack *extack)
2862{
2863	struct ksz_device *dev = ds->priv;
2864
2865	if (!dev->dev_ops->mirror_add)
2866		return -EOPNOTSUPP;
2867
2868	return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack);
2869}
2870
2871static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
2872				struct dsa_mall_mirror_tc_entry *mirror)
2873{
2874	struct ksz_device *dev = ds->priv;
2875
2876	if (dev->dev_ops->mirror_del)
2877		dev->dev_ops->mirror_del(dev, port, mirror);
2878}
2879
2880static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu)
2881{
2882	struct ksz_device *dev = ds->priv;
2883
2884	if (!dev->dev_ops->change_mtu)
2885		return -EOPNOTSUPP;
2886
2887	return dev->dev_ops->change_mtu(dev, port, mtu);
2888}
2889
2890static int ksz_max_mtu(struct dsa_switch *ds, int port)
2891{
2892	struct ksz_device *dev = ds->priv;
2893
2894	switch (dev->chip_id) {
2895	case KSZ8795_CHIP_ID:
2896	case KSZ8794_CHIP_ID:
2897	case KSZ8765_CHIP_ID:
2898		return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
2899	case KSZ8830_CHIP_ID:
2900		return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
2901	case KSZ8563_CHIP_ID:
2902	case KSZ8567_CHIP_ID:
2903	case KSZ9477_CHIP_ID:
2904	case KSZ9563_CHIP_ID:
2905	case KSZ9567_CHIP_ID:
2906	case KSZ9893_CHIP_ID:
2907	case KSZ9896_CHIP_ID:
2908	case KSZ9897_CHIP_ID:
2909	case LAN9370_CHIP_ID:
2910	case LAN9371_CHIP_ID:
2911	case LAN9372_CHIP_ID:
2912	case LAN9373_CHIP_ID:
2913	case LAN9374_CHIP_ID:
2914		return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN;
2915	}
2916
2917	return -EOPNOTSUPP;
2918}
2919
2920static int ksz_validate_eee(struct dsa_switch *ds, int port)
2921{
2922	struct ksz_device *dev = ds->priv;
2923
2924	if (!dev->info->internal_phy[port])
2925		return -EOPNOTSUPP;
2926
2927	switch (dev->chip_id) {
2928	case KSZ8563_CHIP_ID:
2929	case KSZ8567_CHIP_ID:
2930	case KSZ9477_CHIP_ID:
2931	case KSZ9563_CHIP_ID:
2932	case KSZ9567_CHIP_ID:
2933	case KSZ9893_CHIP_ID:
2934	case KSZ9896_CHIP_ID:
2935	case KSZ9897_CHIP_ID:
2936		return 0;
2937	}
2938
2939	return -EOPNOTSUPP;
2940}
2941
2942static int ksz_get_mac_eee(struct dsa_switch *ds, int port,
2943			   struct ethtool_keee *e)
2944{
2945	int ret;
2946
2947	ret = ksz_validate_eee(ds, port);
2948	if (ret)
2949		return ret;
2950
2951	/* There is no documented control of Tx LPI configuration. */
2952	e->tx_lpi_enabled = true;
2953
2954	/* There is no documented control of Tx LPI timer. According to tests
2955	 * Tx LPI timer seems to be set by default to minimal value.
2956	 */
2957	e->tx_lpi_timer = 0;
2958
2959	return 0;
2960}
2961
2962static int ksz_set_mac_eee(struct dsa_switch *ds, int port,
2963			   struct ethtool_keee *e)
2964{
2965	struct ksz_device *dev = ds->priv;
2966	int ret;
2967
2968	ret = ksz_validate_eee(ds, port);
2969	if (ret)
2970		return ret;
2971
2972	if (!e->tx_lpi_enabled) {
2973		dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n");
2974		return -EINVAL;
2975	}
2976
2977	if (e->tx_lpi_timer) {
2978		dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n");
2979		return -EINVAL;
2980	}
2981
2982	return 0;
2983}
2984
2985static void ksz_set_xmii(struct ksz_device *dev, int port,
2986			 phy_interface_t interface)
2987{
2988	const u8 *bitval = dev->info->xmii_ctrl1;
2989	struct ksz_port *p = &dev->ports[port];
2990	const u16 *regs = dev->info->regs;
2991	u8 data8;
2992
2993	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
2994
2995	data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE |
2996		   P_RGMII_ID_EG_ENABLE);
2997
2998	switch (interface) {
2999	case PHY_INTERFACE_MODE_MII:
3000		data8 |= bitval[P_MII_SEL];
3001		break;
3002	case PHY_INTERFACE_MODE_RMII:
3003		data8 |= bitval[P_RMII_SEL];
3004		break;
3005	case PHY_INTERFACE_MODE_GMII:
3006		data8 |= bitval[P_GMII_SEL];
3007		break;
3008	case PHY_INTERFACE_MODE_RGMII:
3009	case PHY_INTERFACE_MODE_RGMII_ID:
3010	case PHY_INTERFACE_MODE_RGMII_TXID:
3011	case PHY_INTERFACE_MODE_RGMII_RXID:
3012		data8 |= bitval[P_RGMII_SEL];
3013		/* On KSZ9893, disable RGMII in-band status support */
3014		if (dev->chip_id == KSZ9893_CHIP_ID ||
3015		    dev->chip_id == KSZ8563_CHIP_ID ||
3016		    dev->chip_id == KSZ9563_CHIP_ID)
3017			data8 &= ~P_MII_MAC_MODE;
3018		break;
3019	default:
3020		dev_err(dev->dev, "Unsupported interface '%s' for port %d\n",
3021			phy_modes(interface), port);
3022		return;
3023	}
3024
3025	if (p->rgmii_tx_val)
3026		data8 |= P_RGMII_ID_EG_ENABLE;
3027
3028	if (p->rgmii_rx_val)
3029		data8 |= P_RGMII_ID_IG_ENABLE;
3030
3031	/* Write the updated value */
3032	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3033}
3034
3035phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit)
3036{
3037	const u8 *bitval = dev->info->xmii_ctrl1;
3038	const u16 *regs = dev->info->regs;
3039	phy_interface_t interface;
3040	u8 data8;
3041	u8 val;
3042
3043	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3044
3045	val = FIELD_GET(P_MII_SEL_M, data8);
3046
3047	if (val == bitval[P_MII_SEL]) {
3048		if (gbit)
3049			interface = PHY_INTERFACE_MODE_GMII;
3050		else
3051			interface = PHY_INTERFACE_MODE_MII;
3052	} else if (val == bitval[P_RMII_SEL]) {
3053		interface = PHY_INTERFACE_MODE_RGMII;
3054	} else {
3055		interface = PHY_INTERFACE_MODE_RGMII;
3056		if (data8 & P_RGMII_ID_EG_ENABLE)
3057			interface = PHY_INTERFACE_MODE_RGMII_TXID;
3058		if (data8 & P_RGMII_ID_IG_ENABLE) {
3059			interface = PHY_INTERFACE_MODE_RGMII_RXID;
3060			if (data8 & P_RGMII_ID_EG_ENABLE)
3061				interface = PHY_INTERFACE_MODE_RGMII_ID;
3062		}
3063	}
3064
3065	return interface;
3066}
3067
3068static void ksz_phylink_mac_config(struct dsa_switch *ds, int port,
3069				   unsigned int mode,
3070				   const struct phylink_link_state *state)
3071{
3072	struct ksz_device *dev = ds->priv;
3073
3074	if (ksz_is_ksz88x3(dev)) {
3075		dev->ports[port].manual_flow = !(state->pause & MLO_PAUSE_AN);
3076		return;
3077	}
3078
3079	/* Internal PHYs */
3080	if (dev->info->internal_phy[port])
3081		return;
3082
3083	if (phylink_autoneg_inband(mode)) {
3084		dev_err(dev->dev, "In-band AN not supported!\n");
3085		return;
3086	}
3087
3088	ksz_set_xmii(dev, port, state->interface);
3089
3090	if (dev->dev_ops->phylink_mac_config)
3091		dev->dev_ops->phylink_mac_config(dev, port, mode, state);
3092
3093	if (dev->dev_ops->setup_rgmii_delay)
3094		dev->dev_ops->setup_rgmii_delay(dev, port);
3095}
3096
3097bool ksz_get_gbit(struct ksz_device *dev, int port)
3098{
3099	const u8 *bitval = dev->info->xmii_ctrl1;
3100	const u16 *regs = dev->info->regs;
3101	bool gbit = false;
3102	u8 data8;
3103	bool val;
3104
3105	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3106
3107	val = FIELD_GET(P_GMII_1GBIT_M, data8);
3108
3109	if (val == bitval[P_GMII_1GBIT])
3110		gbit = true;
3111
3112	return gbit;
3113}
3114
3115static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit)
3116{
3117	const u8 *bitval = dev->info->xmii_ctrl1;
3118	const u16 *regs = dev->info->regs;
3119	u8 data8;
3120
3121	ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8);
3122
3123	data8 &= ~P_GMII_1GBIT_M;
3124
3125	if (gbit)
3126		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]);
3127	else
3128		data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]);
3129
3130	/* Write the updated value */
3131	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8);
3132}
3133
3134static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed)
3135{
3136	const u8 *bitval = dev->info->xmii_ctrl0;
3137	const u16 *regs = dev->info->regs;
3138	u8 data8;
3139
3140	ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8);
3141
3142	data8 &= ~P_MII_100MBIT_M;
3143
3144	if (speed == SPEED_100)
3145		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]);
3146	else
3147		data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]);
3148
3149	/* Write the updated value */
3150	ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8);
3151}
3152
3153static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed)
3154{
3155	if (speed == SPEED_1000)
3156		ksz_set_gbit(dev, port, true);
3157	else
3158		ksz_set_gbit(dev, port, false);
3159
3160	if (speed == SPEED_100 || speed == SPEED_10)
3161		ksz_set_100_10mbit(dev, port, speed);
3162}
3163
3164static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex,
3165				bool tx_pause, bool rx_pause)
3166{
3167	const u8 *bitval = dev->info->xmii_ctrl0;
3168	const u32 *masks = dev->info->masks;
3169	const u16 *regs = dev->info->regs;
3170	u8 mask;
3171	u8 val;
3172
3173	mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] |
3174	       masks[P_MII_RX_FLOW_CTRL];
3175
3176	if (duplex == DUPLEX_FULL)
3177		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]);
3178	else
3179		val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]);
3180
3181	if (tx_pause)
3182		val |= masks[P_MII_TX_FLOW_CTRL];
3183
3184	if (rx_pause)
3185		val |= masks[P_MII_RX_FLOW_CTRL];
3186
3187	ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val);
3188}
3189
3190static void ksz9477_phylink_mac_link_up(struct ksz_device *dev, int port,
3191					unsigned int mode,
3192					phy_interface_t interface,
3193					struct phy_device *phydev, int speed,
3194					int duplex, bool tx_pause,
3195					bool rx_pause)
3196{
3197	struct ksz_port *p;
3198
3199	p = &dev->ports[port];
3200
3201	/* Internal PHYs */
3202	if (dev->info->internal_phy[port])
3203		return;
3204
3205	p->phydev.speed = speed;
3206
3207	ksz_port_set_xmii_speed(dev, port, speed);
3208
3209	ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause);
3210}
3211
3212static void ksz_phylink_mac_link_up(struct dsa_switch *ds, int port,
3213				    unsigned int mode,
3214				    phy_interface_t interface,
3215				    struct phy_device *phydev, int speed,
3216				    int duplex, bool tx_pause, bool rx_pause)
3217{
3218	struct ksz_device *dev = ds->priv;
3219
3220	dev->dev_ops->phylink_mac_link_up(dev, port, mode, interface, phydev,
3221					  speed, duplex, tx_pause, rx_pause);
3222}
3223
3224static int ksz_switch_detect(struct ksz_device *dev)
3225{
3226	u8 id1, id2, id4;
3227	u16 id16;
3228	u32 id32;
3229	int ret;
3230
3231	/* read chip id */
3232	ret = ksz_read16(dev, REG_CHIP_ID0, &id16);
3233	if (ret)
3234		return ret;
3235
3236	id1 = FIELD_GET(SW_FAMILY_ID_M, id16);
3237	id2 = FIELD_GET(SW_CHIP_ID_M, id16);
3238
3239	switch (id1) {
3240	case KSZ87_FAMILY_ID:
3241		if (id2 == KSZ87_CHIP_ID_95) {
3242			u8 val;
3243
3244			dev->chip_id = KSZ8795_CHIP_ID;
3245
3246			ksz_read8(dev, KSZ8_PORT_STATUS_0, &val);
3247			if (val & KSZ8_PORT_FIBER_MODE)
3248				dev->chip_id = KSZ8765_CHIP_ID;
3249		} else if (id2 == KSZ87_CHIP_ID_94) {
3250			dev->chip_id = KSZ8794_CHIP_ID;
3251		} else {
3252			return -ENODEV;
3253		}
3254		break;
3255	case KSZ88_FAMILY_ID:
3256		if (id2 == KSZ88_CHIP_ID_63)
3257			dev->chip_id = KSZ8830_CHIP_ID;
3258		else
3259			return -ENODEV;
3260		break;
3261	default:
3262		ret = ksz_read32(dev, REG_CHIP_ID0, &id32);
3263		if (ret)
3264			return ret;
3265
3266		dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32);
3267		id32 &= ~0xFF;
3268
3269		switch (id32) {
3270		case KSZ9477_CHIP_ID:
3271		case KSZ9896_CHIP_ID:
3272		case KSZ9897_CHIP_ID:
3273		case KSZ9567_CHIP_ID:
3274		case KSZ8567_CHIP_ID:
3275		case LAN9370_CHIP_ID:
3276		case LAN9371_CHIP_ID:
3277		case LAN9372_CHIP_ID:
3278		case LAN9373_CHIP_ID:
3279		case LAN9374_CHIP_ID:
3280			dev->chip_id = id32;
3281			break;
3282		case KSZ9893_CHIP_ID:
3283			ret = ksz_read8(dev, REG_CHIP_ID4,
3284					&id4);
3285			if (ret)
3286				return ret;
3287
3288			if (id4 == SKU_ID_KSZ8563)
3289				dev->chip_id = KSZ8563_CHIP_ID;
3290			else if (id4 == SKU_ID_KSZ9563)
3291				dev->chip_id = KSZ9563_CHIP_ID;
3292			else
3293				dev->chip_id = KSZ9893_CHIP_ID;
3294
3295			break;
3296		default:
3297			dev_err(dev->dev,
3298				"unsupported switch detected %x)\n", id32);
3299			return -ENODEV;
3300		}
3301	}
3302	return 0;
3303}
3304
3305static int ksz_cls_flower_add(struct dsa_switch *ds, int port,
3306			      struct flow_cls_offload *cls, bool ingress)
3307{
3308	struct ksz_device *dev = ds->priv;
3309
3310	switch (dev->chip_id) {
3311	case KSZ8563_CHIP_ID:
3312	case KSZ8567_CHIP_ID:
3313	case KSZ9477_CHIP_ID:
3314	case KSZ9563_CHIP_ID:
3315	case KSZ9567_CHIP_ID:
3316	case KSZ9893_CHIP_ID:
3317	case KSZ9896_CHIP_ID:
3318	case KSZ9897_CHIP_ID:
3319		return ksz9477_cls_flower_add(ds, port, cls, ingress);
3320	}
3321
3322	return -EOPNOTSUPP;
3323}
3324
3325static int ksz_cls_flower_del(struct dsa_switch *ds, int port,
3326			      struct flow_cls_offload *cls, bool ingress)
3327{
3328	struct ksz_device *dev = ds->priv;
3329
3330	switch (dev->chip_id) {
3331	case KSZ8563_CHIP_ID:
3332	case KSZ8567_CHIP_ID:
3333	case KSZ9477_CHIP_ID:
3334	case KSZ9563_CHIP_ID:
3335	case KSZ9567_CHIP_ID:
3336	case KSZ9893_CHIP_ID:
3337	case KSZ9896_CHIP_ID:
3338	case KSZ9897_CHIP_ID:
3339		return ksz9477_cls_flower_del(ds, port, cls, ingress);
3340	}
3341
3342	return -EOPNOTSUPP;
3343}
3344
3345/* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth
3346 * is converted to Hex-decimal using the successive multiplication method. On
3347 * every step, integer part is taken and decimal part is carry forwarded.
3348 */
3349static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw)
3350{
3351	u32 cinc = 0;
3352	u32 txrate;
3353	u32 rate;
3354	u8 temp;
3355	u8 i;
3356
3357	txrate = idle_slope - send_slope;
3358
3359	if (!txrate)
3360		return -EINVAL;
3361
3362	rate = idle_slope;
3363
3364	/* 24 bit register */
3365	for (i = 0; i < 6; i++) {
3366		rate = rate * 16;
3367
3368		temp = rate / txrate;
3369
3370		rate %= txrate;
3371
3372		cinc = ((cinc << 4) | temp);
3373	}
3374
3375	*bw = cinc;
3376
3377	return 0;
3378}
3379
3380static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler,
3381			     u8 shaper)
3382{
3383	return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0,
3384			   FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) |
3385			   FIELD_PREP(MTI_SHAPING_M, shaper));
3386}
3387
3388static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port,
3389			    struct tc_cbs_qopt_offload *qopt)
3390{
3391	struct ksz_device *dev = ds->priv;
3392	int ret;
3393	u32 bw;
3394
3395	if (!dev->info->tc_cbs_supported)
3396		return -EOPNOTSUPP;
3397
3398	if (qopt->queue > dev->info->num_tx_queues)
3399		return -EINVAL;
3400
3401	/* Queue Selection */
3402	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue);
3403	if (ret)
3404		return ret;
3405
3406	if (!qopt->enable)
3407		return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3408					 MTI_SHAPING_OFF);
3409
3410	/* High Credit */
3411	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK,
3412			   qopt->hicredit);
3413	if (ret)
3414		return ret;
3415
3416	/* Low Credit */
3417	ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK,
3418			   qopt->locredit);
3419	if (ret)
3420		return ret;
3421
3422	/* Credit Increment Register */
3423	ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw);
3424	if (ret)
3425		return ret;
3426
3427	if (dev->dev_ops->tc_cbs_set_cinc) {
3428		ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw);
3429		if (ret)
3430			return ret;
3431	}
3432
3433	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3434				 MTI_SHAPING_SRP);
3435}
3436
3437static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port)
3438{
3439	int queue, ret;
3440
3441	/* Configuration will not take effect until the last Port Queue X
3442	 * Egress Limit Control Register is written.
3443	 */
3444	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3445		ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue,
3446				  KSZ9477_OUT_RATE_NO_LIMIT);
3447		if (ret)
3448			return ret;
3449	}
3450
3451	return 0;
3452}
3453
3454static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p,
3455				 int band)
3456{
3457	/* Compared to queues, bands prioritize packets differently. In strict
3458	 * priority mode, the lowest priority is assigned to Queue 0 while the
3459	 * highest priority is given to Band 0.
3460	 */
3461	return p->bands - 1 - band;
3462}
3463
3464static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue)
3465{
3466	int ret;
3467
3468	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3469	if (ret)
3470		return ret;
3471
3472	return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO,
3473				 MTI_SHAPING_OFF);
3474}
3475
3476static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue,
3477			     int weight)
3478{
3479	int ret;
3480
3481	ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue);
3482	if (ret)
3483		return ret;
3484
3485	ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR,
3486				MTI_SHAPING_OFF);
3487	if (ret)
3488		return ret;
3489
3490	return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight);
3491}
3492
3493static int ksz_tc_ets_add(struct ksz_device *dev, int port,
3494			  struct tc_ets_qopt_offload_replace_params *p)
3495{
3496	int ret, band, tc_prio;
3497	u32 queue_map = 0;
3498
3499	/* In order to ensure proper prioritization, it is necessary to set the
3500	 * rate limit for the related queue to zero. Otherwise strict priority
3501	 * or WRR mode will not work. This is a hardware limitation.
3502	 */
3503	ret = ksz_disable_egress_rate_limit(dev, port);
3504	if (ret)
3505		return ret;
3506
3507	/* Configure queue scheduling mode for all bands. Currently only strict
3508	 * prio mode is supported.
3509	 */
3510	for (band = 0; band < p->bands; band++) {
3511		int queue = ksz_ets_band_to_queue(p, band);
3512
3513		ret = ksz_queue_set_strict(dev, port, queue);
3514		if (ret)
3515			return ret;
3516	}
3517
3518	/* Configure the mapping between traffic classes and queues. Note:
3519	 * priomap variable support 16 traffic classes, but the chip can handle
3520	 * only 8 classes.
3521	 */
3522	for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) {
3523		int queue;
3524
3525		if (tc_prio > KSZ9477_MAX_TC_PRIO)
3526			break;
3527
3528		queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]);
3529		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
3530	}
3531
3532	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3533}
3534
3535static int ksz_tc_ets_del(struct ksz_device *dev, int port)
3536{
3537	int ret, queue, tc_prio, s;
3538	u32 queue_map = 0;
3539
3540	/* To restore the default chip configuration, set all queues to use the
3541	 * WRR scheduler with a weight of 1.
3542	 */
3543	for (queue = 0; queue < dev->info->num_tx_queues; queue++) {
3544		ret = ksz_queue_set_wrr(dev, port, queue,
3545					KSZ9477_DEFAULT_WRR_WEIGHT);
3546		if (ret)
3547			return ret;
3548	}
3549
3550	switch (dev->info->num_tx_queues) {
3551	case 2:
3552		s = 2;
3553		break;
3554	case 4:
3555		s = 1;
3556		break;
3557	case 8:
3558		s = 0;
3559		break;
3560	default:
3561		return -EINVAL;
3562	}
3563
3564	/* Revert the queue mapping for TC-priority to its default setting on
3565	 * the chip.
3566	 */
3567	for (tc_prio = 0; tc_prio <= KSZ9477_MAX_TC_PRIO; tc_prio++) {
3568		int queue;
3569
3570		queue = tc_prio >> s;
3571		queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S);
3572	}
3573
3574	return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map);
3575}
3576
3577static int ksz_tc_ets_validate(struct ksz_device *dev, int port,
3578			       struct tc_ets_qopt_offload_replace_params *p)
3579{
3580	int band;
3581
3582	/* Since it is not feasible to share one port among multiple qdisc,
3583	 * the user must configure all available queues appropriately.
3584	 */
3585	if (p->bands != dev->info->num_tx_queues) {
3586		dev_err(dev->dev, "Not supported amount of bands. It should be %d\n",
3587			dev->info->num_tx_queues);
3588		return -EOPNOTSUPP;
3589	}
3590
3591	for (band = 0; band < p->bands; ++band) {
3592		/* The KSZ switches utilize a weighted round robin configuration
3593		 * where a certain number of packets can be transmitted from a
3594		 * queue before the next queue is serviced. For more information
3595		 * on this, refer to section 5.2.8.4 of the KSZ8565R
3596		 * documentation on the Port Transmit Queue Control 1 Register.
3597		 * However, the current ETS Qdisc implementation (as of February
3598		 * 2023) assigns a weight to each queue based on the number of
3599		 * bytes or extrapolated bandwidth in percentages. Since this
3600		 * differs from the KSZ switches' method and we don't want to
3601		 * fake support by converting bytes to packets, it is better to
3602		 * return an error instead.
3603		 */
3604		if (p->quanta[band]) {
3605			dev_err(dev->dev, "Quanta/weights configuration is not supported.\n");
3606			return -EOPNOTSUPP;
3607		}
3608	}
3609
3610	return 0;
3611}
3612
3613static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port,
3614				  struct tc_ets_qopt_offload *qopt)
3615{
3616	struct ksz_device *dev = ds->priv;
3617	int ret;
3618
3619	if (!dev->info->tc_ets_supported)
3620		return -EOPNOTSUPP;
3621
3622	if (qopt->parent != TC_H_ROOT) {
3623		dev_err(dev->dev, "Parent should be \"root\"\n");
3624		return -EOPNOTSUPP;
3625	}
3626
3627	switch (qopt->command) {
3628	case TC_ETS_REPLACE:
3629		ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params);
3630		if (ret)
3631			return ret;
3632
3633		return ksz_tc_ets_add(dev, port, &qopt->replace_params);
3634	case TC_ETS_DESTROY:
3635		return ksz_tc_ets_del(dev, port);
3636	case TC_ETS_STATS:
3637	case TC_ETS_GRAFT:
3638		return -EOPNOTSUPP;
3639	}
3640
3641	return -EOPNOTSUPP;
3642}
3643
3644static int ksz_setup_tc(struct dsa_switch *ds, int port,
3645			enum tc_setup_type type, void *type_data)
3646{
3647	switch (type) {
3648	case TC_SETUP_QDISC_CBS:
3649		return ksz_setup_tc_cbs(ds, port, type_data);
3650	case TC_SETUP_QDISC_ETS:
3651		return ksz_tc_setup_qdisc_ets(ds, port, type_data);
3652	default:
3653		return -EOPNOTSUPP;
3654	}
3655}
3656
3657static void ksz_get_wol(struct dsa_switch *ds, int port,
3658			struct ethtool_wolinfo *wol)
3659{
3660	struct ksz_device *dev = ds->priv;
3661
3662	if (dev->dev_ops->get_wol)
3663		dev->dev_ops->get_wol(dev, port, wol);
3664}
3665
3666static int ksz_set_wol(struct dsa_switch *ds, int port,
3667		       struct ethtool_wolinfo *wol)
3668{
3669	struct ksz_device *dev = ds->priv;
3670
3671	if (dev->dev_ops->set_wol)
3672		return dev->dev_ops->set_wol(dev, port, wol);
3673
3674	return -EOPNOTSUPP;
3675}
3676
3677static int ksz_port_set_mac_address(struct dsa_switch *ds, int port,
3678				    const unsigned char *addr)
3679{
3680	struct dsa_port *dp = dsa_to_port(ds, port);
3681	struct ethtool_wolinfo wol;
3682
3683	if (dp->hsr_dev) {
3684		dev_err(ds->dev,
3685			"Cannot change MAC address on port %d with active HSR offload\n",
3686			port);
3687		return -EBUSY;
3688	}
3689
3690	ksz_get_wol(ds, dp->index, &wol);
3691	if (wol.wolopts & WAKE_MAGIC) {
3692		dev_err(ds->dev,
3693			"Cannot change MAC address on port %d with active Wake on Magic Packet\n",
3694			port);
3695		return -EBUSY;
3696	}
3697
3698	return 0;
3699}
3700
3701/**
3702 * ksz_is_port_mac_global_usable - Check if the MAC address on a given port
3703 *                                 can be used as a global address.
3704 * @ds: Pointer to the DSA switch structure.
3705 * @port: The port number on which the MAC address is to be checked.
3706 *
3707 * This function examines the MAC address set on the specified port and
3708 * determines if it can be used as a global address for the switch.
3709 *
3710 * Return: true if the port's MAC address can be used as a global address, false
3711 * otherwise.
3712 */
3713bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port)
3714{
3715	struct net_device *user = dsa_to_port(ds, port)->user;
3716	const unsigned char *addr = user->dev_addr;
3717	struct ksz_switch_macaddr *switch_macaddr;
3718	struct ksz_device *dev = ds->priv;
3719
3720	ASSERT_RTNL();
3721
3722	switch_macaddr = dev->switch_macaddr;
3723	if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr))
3724		return false;
3725
3726	return true;
3727}
3728
3729/**
3730 * ksz_switch_macaddr_get - Program the switch's MAC address register.
3731 * @ds: DSA switch instance.
3732 * @port: Port number.
3733 * @extack: Netlink extended acknowledgment.
3734 *
3735 * This function programs the switch's MAC address register with the MAC address
3736 * of the requesting user port. This single address is used by the switch for
3737 * multiple features like HSR self-address filtering and WoL. Other user ports
3738 * can share ownership of this address as long as their MAC address is the same.
3739 * The MAC addresses of user ports must not change while they have ownership of
3740 * the switch MAC address.
3741 *
3742 * Return: 0 on success, or other error codes on failure.
3743 */
3744int ksz_switch_macaddr_get(struct dsa_switch *ds, int port,
3745			   struct netlink_ext_ack *extack)
3746{
3747	struct net_device *user = dsa_to_port(ds, port)->user;
3748	const unsigned char *addr = user->dev_addr;
3749	struct ksz_switch_macaddr *switch_macaddr;
3750	struct ksz_device *dev = ds->priv;
3751	const u16 *regs = dev->info->regs;
3752	int i, ret;
3753
3754	/* Make sure concurrent MAC address changes are blocked */
3755	ASSERT_RTNL();
3756
3757	switch_macaddr = dev->switch_macaddr;
3758	if (switch_macaddr) {
3759		if (!ether_addr_equal(switch_macaddr->addr, addr)) {
3760			NL_SET_ERR_MSG_FMT_MOD(extack,
3761					       "Switch already configured for MAC address %pM",
3762					       switch_macaddr->addr);
3763			return -EBUSY;
3764		}
3765
3766		refcount_inc(&switch_macaddr->refcount);
3767		return 0;
3768	}
3769
3770	switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL);
3771	if (!switch_macaddr)
3772		return -ENOMEM;
3773
3774	ether_addr_copy(switch_macaddr->addr, addr);
3775	refcount_set(&switch_macaddr->refcount, 1);
3776	dev->switch_macaddr = switch_macaddr;
3777
3778	/* Program the switch MAC address to hardware */
3779	for (i = 0; i < ETH_ALEN; i++) {
3780		ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]);
3781		if (ret)
3782			goto macaddr_drop;
3783	}
3784
3785	return 0;
3786
3787macaddr_drop:
3788	dev->switch_macaddr = NULL;
3789	refcount_set(&switch_macaddr->refcount, 0);
3790	kfree(switch_macaddr);
3791
3792	return ret;
3793}
3794
3795void ksz_switch_macaddr_put(struct dsa_switch *ds)
3796{
3797	struct ksz_switch_macaddr *switch_macaddr;
3798	struct ksz_device *dev = ds->priv;
3799	const u16 *regs = dev->info->regs;
3800	int i;
3801
3802	/* Make sure concurrent MAC address changes are blocked */
3803	ASSERT_RTNL();
3804
3805	switch_macaddr = dev->switch_macaddr;
3806	if (!refcount_dec_and_test(&switch_macaddr->refcount))
3807		return;
3808
3809	for (i = 0; i < ETH_ALEN; i++)
3810		ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0);
3811
3812	dev->switch_macaddr = NULL;
3813	kfree(switch_macaddr);
3814}
3815
3816static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr,
3817			struct netlink_ext_ack *extack)
3818{
3819	struct ksz_device *dev = ds->priv;
3820	enum hsr_version ver;
3821	int ret;
3822
3823	ret = hsr_get_version(hsr, &ver);
3824	if (ret)
3825		return ret;
3826
3827	if (dev->chip_id != KSZ9477_CHIP_ID) {
3828		NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload");
3829		return -EOPNOTSUPP;
3830	}
3831
3832	/* KSZ9477 can support HW offloading of only 1 HSR device */
3833	if (dev->hsr_dev && hsr != dev->hsr_dev) {
3834		NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR");
3835		return -EOPNOTSUPP;
3836	}
3837
3838	/* KSZ9477 only supports HSR v0 and v1 */
3839	if (!(ver == HSR_V0 || ver == HSR_V1)) {
3840		NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported");
3841		return -EOPNOTSUPP;
3842	}
3843
3844	/* Self MAC address filtering, to avoid frames traversing
3845	 * the HSR ring more than once.
3846	 */
3847	ret = ksz_switch_macaddr_get(ds, port, extack);
3848	if (ret)
3849		return ret;
3850
3851	ksz9477_hsr_join(ds, port, hsr);
3852	dev->hsr_dev = hsr;
3853	dev->hsr_ports |= BIT(port);
3854
3855	return 0;
3856}
3857
3858static int ksz_hsr_leave(struct dsa_switch *ds, int port,
3859			 struct net_device *hsr)
3860{
3861	struct ksz_device *dev = ds->priv;
3862
3863	WARN_ON(dev->chip_id != KSZ9477_CHIP_ID);
3864
3865	ksz9477_hsr_leave(ds, port, hsr);
3866	dev->hsr_ports &= ~BIT(port);
3867	if (!dev->hsr_ports)
3868		dev->hsr_dev = NULL;
3869
3870	ksz_switch_macaddr_put(ds);
3871
3872	return 0;
3873}
3874
3875static const struct dsa_switch_ops ksz_switch_ops = {
3876	.get_tag_protocol	= ksz_get_tag_protocol,
3877	.connect_tag_protocol   = ksz_connect_tag_protocol,
3878	.get_phy_flags		= ksz_get_phy_flags,
3879	.setup			= ksz_setup,
3880	.teardown		= ksz_teardown,
3881	.phy_read		= ksz_phy_read16,
3882	.phy_write		= ksz_phy_write16,
3883	.phylink_get_caps	= ksz_phylink_get_caps,
3884	.phylink_mac_config	= ksz_phylink_mac_config,
3885	.phylink_mac_link_up	= ksz_phylink_mac_link_up,
3886	.phylink_mac_link_down	= ksz_mac_link_down,
3887	.port_setup		= ksz_port_setup,
3888	.set_ageing_time	= ksz_set_ageing_time,
3889	.get_strings		= ksz_get_strings,
3890	.get_ethtool_stats	= ksz_get_ethtool_stats,
3891	.get_sset_count		= ksz_sset_count,
3892	.port_bridge_join	= ksz_port_bridge_join,
3893	.port_bridge_leave	= ksz_port_bridge_leave,
3894	.port_hsr_join		= ksz_hsr_join,
3895	.port_hsr_leave		= ksz_hsr_leave,
3896	.port_set_mac_address	= ksz_port_set_mac_address,
3897	.port_stp_state_set	= ksz_port_stp_state_set,
3898	.port_teardown		= ksz_port_teardown,
3899	.port_pre_bridge_flags	= ksz_port_pre_bridge_flags,
3900	.port_bridge_flags	= ksz_port_bridge_flags,
3901	.port_fast_age		= ksz_port_fast_age,
3902	.port_vlan_filtering	= ksz_port_vlan_filtering,
3903	.port_vlan_add		= ksz_port_vlan_add,
3904	.port_vlan_del		= ksz_port_vlan_del,
3905	.port_fdb_dump		= ksz_port_fdb_dump,
3906	.port_fdb_add		= ksz_port_fdb_add,
3907	.port_fdb_del		= ksz_port_fdb_del,
3908	.port_mdb_add           = ksz_port_mdb_add,
3909	.port_mdb_del           = ksz_port_mdb_del,
3910	.port_mirror_add	= ksz_port_mirror_add,
3911	.port_mirror_del	= ksz_port_mirror_del,
3912	.get_stats64		= ksz_get_stats64,
3913	.get_pause_stats	= ksz_get_pause_stats,
3914	.port_change_mtu	= ksz_change_mtu,
3915	.port_max_mtu		= ksz_max_mtu,
3916	.get_wol		= ksz_get_wol,
3917	.set_wol		= ksz_set_wol,
3918	.get_ts_info		= ksz_get_ts_info,
3919	.port_hwtstamp_get	= ksz_hwtstamp_get,
3920	.port_hwtstamp_set	= ksz_hwtstamp_set,
3921	.port_txtstamp		= ksz_port_txtstamp,
3922	.port_rxtstamp		= ksz_port_rxtstamp,
3923	.cls_flower_add		= ksz_cls_flower_add,
3924	.cls_flower_del		= ksz_cls_flower_del,
3925	.port_setup_tc		= ksz_setup_tc,
3926	.get_mac_eee		= ksz_get_mac_eee,
3927	.set_mac_eee		= ksz_set_mac_eee,
3928};
3929
3930struct ksz_device *ksz_switch_alloc(struct device *base, void *priv)
3931{
3932	struct dsa_switch *ds;
3933	struct ksz_device *swdev;
3934
3935	ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL);
3936	if (!ds)
3937		return NULL;
3938
3939	ds->dev = base;
3940	ds->num_ports = DSA_MAX_PORTS;
3941	ds->ops = &ksz_switch_ops;
3942
3943	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
3944	if (!swdev)
3945		return NULL;
3946
3947	ds->priv = swdev;
3948	swdev->dev = base;
3949
3950	swdev->ds = ds;
3951	swdev->priv = priv;
3952
3953	return swdev;
3954}
3955EXPORT_SYMBOL(ksz_switch_alloc);
3956
3957/**
3958 * ksz_switch_shutdown - Shutdown routine for the switch device.
3959 * @dev: The switch device structure.
3960 *
3961 * This function is responsible for initiating a shutdown sequence for the
3962 * switch device. It invokes the reset operation defined in the device
3963 * operations, if available, to reset the switch. Subsequently, it calls the
3964 * DSA framework's shutdown function to ensure a proper shutdown of the DSA
3965 * switch.
3966 */
3967void ksz_switch_shutdown(struct ksz_device *dev)
3968{
3969	bool wol_enabled = false;
3970
3971	if (dev->dev_ops->wol_pre_shutdown)
3972		dev->dev_ops->wol_pre_shutdown(dev, &wol_enabled);
3973
3974	if (dev->dev_ops->reset && !wol_enabled)
3975		dev->dev_ops->reset(dev);
3976
3977	dsa_switch_shutdown(dev->ds);
3978}
3979EXPORT_SYMBOL(ksz_switch_shutdown);
3980
3981static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num,
3982				  struct device_node *port_dn)
3983{
3984	phy_interface_t phy_mode = dev->ports[port_num].interface;
3985	int rx_delay = -1, tx_delay = -1;
3986
3987	if (!phy_interface_mode_is_rgmii(phy_mode))
3988		return;
3989
3990	of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
3991	of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
3992
3993	if (rx_delay == -1 && tx_delay == -1) {
3994		dev_warn(dev->dev,
3995			 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, "
3996			 "please update device tree to specify \"rx-internal-delay-ps\" and "
3997			 "\"tx-internal-delay-ps\"",
3998			 port_num);
3999
4000		if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID ||
4001		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4002			rx_delay = 2000;
4003
4004		if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID ||
4005		    phy_mode == PHY_INTERFACE_MODE_RGMII_ID)
4006			tx_delay = 2000;
4007	}
4008
4009	if (rx_delay < 0)
4010		rx_delay = 0;
4011	if (tx_delay < 0)
4012		tx_delay = 0;
4013
4014	dev->ports[port_num].rgmii_rx_val = rx_delay;
4015	dev->ports[port_num].rgmii_tx_val = tx_delay;
4016}
4017
4018/**
4019 * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding
4020 *				 register value.
4021 * @array:	The array of drive strength values to search.
4022 * @array_size:	The size of the array.
4023 * @microamp:	The drive strength value in microamp to be converted.
4024 *
4025 * This function searches the array of drive strength values for the given
4026 * microamp value and returns the corresponding register value for that drive.
4027 *
4028 * Returns: If found, the corresponding register value for that drive strength
4029 * is returned. Otherwise, -EINVAL is returned indicating an invalid value.
4030 */
4031static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array,
4032				     size_t array_size, int microamp)
4033{
4034	int i;
4035
4036	for (i = 0; i < array_size; i++) {
4037		if (array[i].microamp == microamp)
4038			return array[i].reg_val;
4039	}
4040
4041	return -EINVAL;
4042}
4043
4044/**
4045 * ksz_drive_strength_error() - Report invalid drive strength value
4046 * @dev:	ksz device
4047 * @array:	The array of drive strength values to search.
4048 * @array_size:	The size of the array.
4049 * @microamp:	Invalid drive strength value in microamp
4050 *
4051 * This function logs an error message when an unsupported drive strength value
4052 * is detected. It lists out all the supported drive strength values for
4053 * reference in the error message.
4054 */
4055static void ksz_drive_strength_error(struct ksz_device *dev,
4056				     const struct ksz_drive_strength *array,
4057				     size_t array_size, int microamp)
4058{
4059	char supported_values[100];
4060	size_t remaining_size;
4061	int added_len;
4062	char *ptr;
4063	int i;
4064
4065	remaining_size = sizeof(supported_values);
4066	ptr = supported_values;
4067
4068	for (i = 0; i < array_size; i++) {
4069		added_len = snprintf(ptr, remaining_size,
4070				     i == 0 ? "%d" : ", %d", array[i].microamp);
4071
4072		if (added_len >= remaining_size)
4073			break;
4074
4075		ptr += added_len;
4076		remaining_size -= added_len;
4077	}
4078
4079	dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n",
4080		microamp, supported_values);
4081}
4082
4083/**
4084 * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477
4085 *				    chip variants.
4086 * @dev:       ksz device
4087 * @props:     Array of drive strength properties to be applied
4088 * @num_props: Number of properties in the array
4089 *
4090 * This function configures the drive strength for various KSZ9477 chip variants
4091 * based on the provided properties. It handles chip-specific nuances and
4092 * ensures only valid drive strengths are written to the respective chip.
4093 *
4094 * Return: 0 on successful configuration, a negative error code on failure.
4095 */
4096static int ksz9477_drive_strength_write(struct ksz_device *dev,
4097					struct ksz_driver_strength_prop *props,
4098					int num_props)
4099{
4100	size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths);
4101	int i, ret, reg;
4102	u8 mask = 0;
4103	u8 val = 0;
4104
4105	if (props[KSZ_DRIVER_STRENGTH_IO].value != -1)
4106		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4107			 props[KSZ_DRIVER_STRENGTH_IO].name);
4108
4109	if (dev->chip_id == KSZ8795_CHIP_ID ||
4110	    dev->chip_id == KSZ8794_CHIP_ID ||
4111	    dev->chip_id == KSZ8765_CHIP_ID)
4112		reg = KSZ8795_REG_SW_CTRL_20;
4113	else
4114		reg = KSZ9477_REG_SW_IO_STRENGTH;
4115
4116	for (i = 0; i < num_props; i++) {
4117		if (props[i].value == -1)
4118			continue;
4119
4120		ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths,
4121						array_size, props[i].value);
4122		if (ret < 0) {
4123			ksz_drive_strength_error(dev, ksz9477_drive_strengths,
4124						 array_size, props[i].value);
4125			return ret;
4126		}
4127
4128		mask |= SW_DRIVE_STRENGTH_M << props[i].offset;
4129		val |= ret << props[i].offset;
4130	}
4131
4132	return ksz_rmw8(dev, reg, mask, val);
4133}
4134
4135/**
4136 * ksz8830_drive_strength_write() - Set the drive strength configuration for
4137 *				    KSZ8830 compatible chip variants.
4138 * @dev:       ksz device
4139 * @props:     Array of drive strength properties to be set
4140 * @num_props: Number of properties in the array
4141 *
4142 * This function applies the specified drive strength settings to KSZ8830 chip
4143 * variants (KSZ8873, KSZ8863).
4144 * It ensures the configurations align with what the chip variant supports and
4145 * warns or errors out on unsupported settings.
4146 *
4147 * Return: 0 on success, error code otherwise
4148 */
4149static int ksz8830_drive_strength_write(struct ksz_device *dev,
4150					struct ksz_driver_strength_prop *props,
4151					int num_props)
4152{
4153	size_t array_size = ARRAY_SIZE(ksz8830_drive_strengths);
4154	int microamp;
4155	int i, ret;
4156
4157	for (i = 0; i < num_props; i++) {
4158		if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO)
4159			continue;
4160
4161		dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4162			 props[i].name);
4163	}
4164
4165	microamp = props[KSZ_DRIVER_STRENGTH_IO].value;
4166	ret = ksz_drive_strength_to_reg(ksz8830_drive_strengths, array_size,
4167					microamp);
4168	if (ret < 0) {
4169		ksz_drive_strength_error(dev, ksz8830_drive_strengths,
4170					 array_size, microamp);
4171		return ret;
4172	}
4173
4174	return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12,
4175			KSZ8873_DRIVE_STRENGTH_16MA, ret);
4176}
4177
4178/**
4179 * ksz_parse_drive_strength() - Extract and apply drive strength configurations
4180 *				from device tree properties.
4181 * @dev:	ksz device
4182 *
4183 * This function reads the specified drive strength properties from the
4184 * device tree, validates against the supported chip variants, and sets
4185 * them accordingly. An error should be critical here, as the drive strength
4186 * settings are crucial for EMI compliance.
4187 *
4188 * Return: 0 on success, error code otherwise
4189 */
4190static int ksz_parse_drive_strength(struct ksz_device *dev)
4191{
4192	struct ksz_driver_strength_prop of_props[] = {
4193		[KSZ_DRIVER_STRENGTH_HI] = {
4194			.name = "microchip,hi-drive-strength-microamp",
4195			.offset = SW_HI_SPEED_DRIVE_STRENGTH_S,
4196			.value = -1,
4197		},
4198		[KSZ_DRIVER_STRENGTH_LO] = {
4199			.name = "microchip,lo-drive-strength-microamp",
4200			.offset = SW_LO_SPEED_DRIVE_STRENGTH_S,
4201			.value = -1,
4202		},
4203		[KSZ_DRIVER_STRENGTH_IO] = {
4204			.name = "microchip,io-drive-strength-microamp",
4205			.offset = 0, /* don't care */
4206			.value = -1,
4207		},
4208	};
4209	struct device_node *np = dev->dev->of_node;
4210	bool have_any_prop = false;
4211	int i, ret;
4212
4213	for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4214		ret = of_property_read_u32(np, of_props[i].name,
4215					   &of_props[i].value);
4216		if (ret && ret != -EINVAL)
4217			dev_warn(dev->dev, "Failed to read %s\n",
4218				 of_props[i].name);
4219		if (ret)
4220			continue;
4221
4222		have_any_prop = true;
4223	}
4224
4225	if (!have_any_prop)
4226		return 0;
4227
4228	switch (dev->chip_id) {
4229	case KSZ8830_CHIP_ID:
4230		return ksz8830_drive_strength_write(dev, of_props,
4231						    ARRAY_SIZE(of_props));
4232	case KSZ8795_CHIP_ID:
4233	case KSZ8794_CHIP_ID:
4234	case KSZ8765_CHIP_ID:
4235	case KSZ8563_CHIP_ID:
4236	case KSZ8567_CHIP_ID:
4237	case KSZ9477_CHIP_ID:
4238	case KSZ9563_CHIP_ID:
4239	case KSZ9567_CHIP_ID:
4240	case KSZ9893_CHIP_ID:
4241	case KSZ9896_CHIP_ID:
4242	case KSZ9897_CHIP_ID:
4243		return ksz9477_drive_strength_write(dev, of_props,
4244						    ARRAY_SIZE(of_props));
4245	default:
4246		for (i = 0; i < ARRAY_SIZE(of_props); i++) {
4247			if (of_props[i].value == -1)
4248				continue;
4249
4250			dev_warn(dev->dev, "%s is not supported by this chip variant\n",
4251				 of_props[i].name);
4252		}
4253	}
4254
4255	return 0;
4256}
4257
4258int ksz_switch_register(struct ksz_device *dev)
4259{
4260	const struct ksz_chip_data *info;
4261	struct device_node *port, *ports;
4262	phy_interface_t interface;
4263	unsigned int port_num;
4264	int ret;
4265	int i;
4266
4267	dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset",
4268						  GPIOD_OUT_LOW);
4269	if (IS_ERR(dev->reset_gpio))
4270		return PTR_ERR(dev->reset_gpio);
4271
4272	if (dev->reset_gpio) {
4273		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4274		usleep_range(10000, 12000);
4275		gpiod_set_value_cansleep(dev->reset_gpio, 0);
4276		msleep(100);
4277	}
4278
4279	mutex_init(&dev->dev_mutex);
4280	mutex_init(&dev->regmap_mutex);
4281	mutex_init(&dev->alu_mutex);
4282	mutex_init(&dev->vlan_mutex);
4283
4284	ret = ksz_switch_detect(dev);
4285	if (ret)
4286		return ret;
4287
4288	info = ksz_lookup_info(dev->chip_id);
4289	if (!info)
4290		return -ENODEV;
4291
4292	/* Update the compatible info with the probed one */
4293	dev->info = info;
4294
4295	dev_info(dev->dev, "found switch: %s, rev %i\n",
4296		 dev->info->dev_name, dev->chip_rev);
4297
4298	ret = ksz_check_device_id(dev);
4299	if (ret)
4300		return ret;
4301
4302	dev->dev_ops = dev->info->ops;
4303
4304	ret = dev->dev_ops->init(dev);
4305	if (ret)
4306		return ret;
4307
4308	dev->ports = devm_kzalloc(dev->dev,
4309				  dev->info->port_cnt * sizeof(struct ksz_port),
4310				  GFP_KERNEL);
4311	if (!dev->ports)
4312		return -ENOMEM;
4313
4314	for (i = 0; i < dev->info->port_cnt; i++) {
4315		spin_lock_init(&dev->ports[i].mib.stats64_lock);
4316		mutex_init(&dev->ports[i].mib.cnt_mutex);
4317		dev->ports[i].mib.counters =
4318			devm_kzalloc(dev->dev,
4319				     sizeof(u64) * (dev->info->mib_cnt + 1),
4320				     GFP_KERNEL);
4321		if (!dev->ports[i].mib.counters)
4322			return -ENOMEM;
4323
4324		dev->ports[i].ksz_dev = dev;
4325		dev->ports[i].num = i;
4326	}
4327
4328	/* set the real number of ports */
4329	dev->ds->num_ports = dev->info->port_cnt;
4330
4331	/* Host port interface will be self detected, or specifically set in
4332	 * device tree.
4333	 */
4334	for (port_num = 0; port_num < dev->info->port_cnt; ++port_num)
4335		dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA;
4336	if (dev->dev->of_node) {
4337		ret = of_get_phy_mode(dev->dev->of_node, &interface);
4338		if (ret == 0)
4339			dev->compat_interface = interface;
4340		ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports");
4341		if (!ports)
4342			ports = of_get_child_by_name(dev->dev->of_node, "ports");
4343		if (ports) {
4344			for_each_available_child_of_node(ports, port) {
4345				if (of_property_read_u32(port, "reg",
4346							 &port_num))
4347					continue;
4348				if (!(dev->port_mask & BIT(port_num))) {
4349					of_node_put(port);
4350					of_node_put(ports);
4351					return -EINVAL;
4352				}
4353				of_get_phy_mode(port,
4354						&dev->ports[port_num].interface);
4355
4356				ksz_parse_rgmii_delay(dev, port_num, port);
4357			}
4358			of_node_put(ports);
4359		}
4360		dev->synclko_125 = of_property_read_bool(dev->dev->of_node,
4361							 "microchip,synclko-125");
4362		dev->synclko_disable = of_property_read_bool(dev->dev->of_node,
4363							     "microchip,synclko-disable");
4364		if (dev->synclko_125 && dev->synclko_disable) {
4365			dev_err(dev->dev, "inconsistent synclko settings\n");
4366			return -EINVAL;
4367		}
4368
4369		dev->wakeup_source = of_property_read_bool(dev->dev->of_node,
4370							   "wakeup-source");
4371	}
4372
4373	ret = dsa_register_switch(dev->ds);
4374	if (ret) {
4375		dev->dev_ops->exit(dev);
4376		return ret;
4377	}
4378
4379	/* Read MIB counters every 30 seconds to avoid overflow. */
4380	dev->mib_read_interval = msecs_to_jiffies(5000);
4381
4382	/* Start the MIB timer. */
4383	schedule_delayed_work(&dev->mib_read, 0);
4384
4385	return ret;
4386}
4387EXPORT_SYMBOL(ksz_switch_register);
4388
4389void ksz_switch_remove(struct ksz_device *dev)
4390{
4391	/* timer started */
4392	if (dev->mib_read_interval) {
4393		dev->mib_read_interval = 0;
4394		cancel_delayed_work_sync(&dev->mib_read);
4395	}
4396
4397	dev->dev_ops->exit(dev);
4398	dsa_unregister_switch(dev->ds);
4399
4400	if (dev->reset_gpio)
4401		gpiod_set_value_cansleep(dev->reset_gpio, 1);
4402
4403}
4404EXPORT_SYMBOL(ksz_switch_remove);
4405
4406MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
4407MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
4408MODULE_LICENSE("GPL");
4409