1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Microchip KSZ8795 switch driver
4 *
5 * Copyright (C) 2017 Microchip Technology Inc.
6 *	Tristram Ha <Tristram.Ha@microchip.com>
7 */
8
9#include <linux/bitfield.h>
10#include <linux/delay.h>
11#include <linux/export.h>
12#include <linux/gpio.h>
13#include <linux/if_vlan.h>
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/platform_data/microchip-ksz.h>
17#include <linux/phy.h>
18#include <linux/etherdevice.h>
19#include <linux/if_bridge.h>
20#include <linux/micrel_phy.h>
21#include <net/dsa.h>
22#include <net/switchdev.h>
23#include <linux/phylink.h>
24
25#include "ksz_common.h"
26#include "ksz8795_reg.h"
27#include "ksz8.h"
28
29static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
30{
31	regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0);
32}
33
34static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
35			 bool set)
36{
37	regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset),
38			   bits, set ? bits : 0);
39}
40
41static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
42{
43	const u16 *regs;
44	u16 ctrl_addr;
45	int ret = 0;
46
47	regs = dev->info->regs;
48
49	mutex_lock(&dev->alu_mutex);
50
51	ctrl_addr = IND_ACC_TABLE(table) | addr;
52	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
53	if (!ret)
54		ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
55
56	mutex_unlock(&dev->alu_mutex);
57
58	return ret;
59}
60
61int ksz8_reset_switch(struct ksz_device *dev)
62{
63	if (ksz_is_ksz88x3(dev)) {
64		/* reset switch */
65		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
66			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
67		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
68			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
69	} else {
70		/* reset switch */
71		ksz_write8(dev, REG_POWER_MANAGEMENT_1,
72			   SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
73		ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
74	}
75
76	return 0;
77}
78
79static int ksz8863_change_mtu(struct ksz_device *dev, int frame_size)
80{
81	u8 ctrl2 = 0;
82
83	if (frame_size <= KSZ8_LEGAL_PACKET_SIZE)
84		ctrl2 |= KSZ8863_LEGAL_PACKET_ENABLE;
85	else if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
86		ctrl2 |= KSZ8863_HUGE_PACKET_ENABLE;
87
88	return ksz_rmw8(dev, REG_SW_CTRL_2, KSZ8863_LEGAL_PACKET_ENABLE |
89			KSZ8863_HUGE_PACKET_ENABLE, ctrl2);
90}
91
92static int ksz8795_change_mtu(struct ksz_device *dev, int frame_size)
93{
94	u8 ctrl1 = 0, ctrl2 = 0;
95	int ret;
96
97	if (frame_size > KSZ8_LEGAL_PACKET_SIZE)
98		ctrl2 |= SW_LEGAL_PACKET_DISABLE;
99	if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
100		ctrl1 |= SW_HUGE_PACKET;
101
102	ret = ksz_rmw8(dev, REG_SW_CTRL_1, SW_HUGE_PACKET, ctrl1);
103	if (ret)
104		return ret;
105
106	return ksz_rmw8(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, ctrl2);
107}
108
109int ksz8_change_mtu(struct ksz_device *dev, int port, int mtu)
110{
111	u16 frame_size;
112
113	if (!dsa_is_cpu_port(dev->ds, port))
114		return 0;
115
116	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
117
118	switch (dev->chip_id) {
119	case KSZ8795_CHIP_ID:
120	case KSZ8794_CHIP_ID:
121	case KSZ8765_CHIP_ID:
122		return ksz8795_change_mtu(dev, frame_size);
123	case KSZ8830_CHIP_ID:
124		return ksz8863_change_mtu(dev, frame_size);
125	}
126
127	return -EOPNOTSUPP;
128}
129
130static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
131{
132	u8 hi, lo;
133
134	/* Number of queues can only be 1, 2, or 4. */
135	switch (queue) {
136	case 4:
137	case 3:
138		queue = PORT_QUEUE_SPLIT_4;
139		break;
140	case 2:
141		queue = PORT_QUEUE_SPLIT_2;
142		break;
143	default:
144		queue = PORT_QUEUE_SPLIT_1;
145	}
146	ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
147	ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
148	lo &= ~PORT_QUEUE_SPLIT_L;
149	if (queue & PORT_QUEUE_SPLIT_2)
150		lo |= PORT_QUEUE_SPLIT_L;
151	hi &= ~PORT_QUEUE_SPLIT_H;
152	if (queue & PORT_QUEUE_SPLIT_4)
153		hi |= PORT_QUEUE_SPLIT_H;
154	ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
155	ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
156
157	/* Default is port based for egress rate limit. */
158	if (queue != PORT_QUEUE_SPLIT_1)
159		ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
160			true);
161}
162
163void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
164{
165	const u32 *masks;
166	const u16 *regs;
167	u16 ctrl_addr;
168	u32 data;
169	u8 check;
170	int loop;
171
172	masks = dev->info->masks;
173	regs = dev->info->regs;
174
175	ctrl_addr = addr + dev->info->reg_mib_cnt * port;
176	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
177
178	mutex_lock(&dev->alu_mutex);
179	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
180
181	/* It is almost guaranteed to always read the valid bit because of
182	 * slow SPI speed.
183	 */
184	for (loop = 2; loop > 0; loop--) {
185		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
186
187		if (check & masks[MIB_COUNTER_VALID]) {
188			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
189			if (check & masks[MIB_COUNTER_OVERFLOW])
190				*cnt += MIB_COUNTER_VALUE + 1;
191			*cnt += data & MIB_COUNTER_VALUE;
192			break;
193		}
194	}
195	mutex_unlock(&dev->alu_mutex);
196}
197
198static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
199			      u64 *dropped, u64 *cnt)
200{
201	const u32 *masks;
202	const u16 *regs;
203	u16 ctrl_addr;
204	u32 data;
205	u8 check;
206	int loop;
207
208	masks = dev->info->masks;
209	regs = dev->info->regs;
210
211	addr -= dev->info->reg_mib_cnt;
212	ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
213	ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
214	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
215
216	mutex_lock(&dev->alu_mutex);
217	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
218
219	/* It is almost guaranteed to always read the valid bit because of
220	 * slow SPI speed.
221	 */
222	for (loop = 2; loop > 0; loop--) {
223		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
224
225		if (check & masks[MIB_COUNTER_VALID]) {
226			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
227			if (addr < 2) {
228				u64 total;
229
230				total = check & MIB_TOTAL_BYTES_H;
231				total <<= 32;
232				*cnt += total;
233				*cnt += data;
234				if (check & masks[MIB_COUNTER_OVERFLOW]) {
235					total = MIB_TOTAL_BYTES_H + 1;
236					total <<= 32;
237					*cnt += total;
238				}
239			} else {
240				if (check & masks[MIB_COUNTER_OVERFLOW])
241					*cnt += MIB_PACKET_DROPPED + 1;
242				*cnt += data & MIB_PACKET_DROPPED;
243			}
244			break;
245		}
246	}
247	mutex_unlock(&dev->alu_mutex);
248}
249
250static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
251			      u64 *dropped, u64 *cnt)
252{
253	u32 *last = (u32 *)dropped;
254	const u16 *regs;
255	u16 ctrl_addr;
256	u32 data;
257	u32 cur;
258
259	regs = dev->info->regs;
260
261	addr -= dev->info->reg_mib_cnt;
262	ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
263			   KSZ8863_MIB_PACKET_DROPPED_RX_0;
264	ctrl_addr += port;
265	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
266
267	mutex_lock(&dev->alu_mutex);
268	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
269	ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
270	mutex_unlock(&dev->alu_mutex);
271
272	data &= MIB_PACKET_DROPPED;
273	cur = last[addr];
274	if (data != cur) {
275		last[addr] = data;
276		if (data < cur)
277			data += MIB_PACKET_DROPPED + 1;
278		data -= cur;
279		*cnt += data;
280	}
281}
282
283void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
284		    u64 *dropped, u64 *cnt)
285{
286	if (ksz_is_ksz88x3(dev))
287		ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
288	else
289		ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
290}
291
292void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
293{
294	if (ksz_is_ksz88x3(dev))
295		return;
296
297	/* enable the port for flush/freeze function */
298	if (freeze)
299		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
300	ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
301
302	/* disable the port after freeze is done */
303	if (!freeze)
304		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
305}
306
307void ksz8_port_init_cnt(struct ksz_device *dev, int port)
308{
309	struct ksz_port_mib *mib = &dev->ports[port].mib;
310	u64 *dropped;
311
312	if (!ksz_is_ksz88x3(dev)) {
313		/* flush all enabled port MIB counters */
314		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
315		ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
316		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
317	}
318
319	mib->cnt_ptr = 0;
320
321	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
322	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
323		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
324					&mib->counters[mib->cnt_ptr]);
325		++mib->cnt_ptr;
326	}
327
328	/* last one in storage */
329	dropped = &mib->counters[dev->info->mib_cnt];
330
331	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
332	while (mib->cnt_ptr < dev->info->mib_cnt) {
333		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
334					dropped, &mib->counters[mib->cnt_ptr]);
335		++mib->cnt_ptr;
336	}
337}
338
339static int ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
340{
341	const u16 *regs;
342	u16 ctrl_addr;
343	int ret;
344
345	regs = dev->info->regs;
346
347	ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
348
349	mutex_lock(&dev->alu_mutex);
350	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
351	if (ret)
352		goto unlock_alu;
353
354	ret = ksz_read64(dev, regs[REG_IND_DATA_HI], data);
355unlock_alu:
356	mutex_unlock(&dev->alu_mutex);
357
358	return ret;
359}
360
361static int ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
362{
363	const u16 *regs;
364	u16 ctrl_addr;
365	int ret;
366
367	regs = dev->info->regs;
368
369	ctrl_addr = IND_ACC_TABLE(table) | addr;
370
371	mutex_lock(&dev->alu_mutex);
372	ret = ksz_write64(dev, regs[REG_IND_DATA_HI], data);
373	if (ret)
374		goto unlock_alu;
375
376	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
377unlock_alu:
378	mutex_unlock(&dev->alu_mutex);
379
380	return ret;
381}
382
383static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
384{
385	int timeout = 100;
386	const u32 *masks;
387	const u16 *regs;
388
389	masks = dev->info->masks;
390	regs = dev->info->regs;
391
392	do {
393		ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
394		timeout--;
395	} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
396
397	/* Entry is not ready for accessing. */
398	if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
399		return -EAGAIN;
400	/* Entry is ready for accessing. */
401	} else {
402		ksz_read8(dev, regs[REG_IND_DATA_8], data);
403
404		/* There is no valid entry in the table. */
405		if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
406			return -ENXIO;
407	}
408	return 0;
409}
410
411int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
412			 u8 *fid, u8 *src_port, u8 *timestamp, u16 *entries)
413{
414	u32 data_hi, data_lo;
415	const u8 *shifts;
416	const u32 *masks;
417	const u16 *regs;
418	u16 ctrl_addr;
419	u8 data;
420	int rc;
421
422	shifts = dev->info->shifts;
423	masks = dev->info->masks;
424	regs = dev->info->regs;
425
426	ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
427
428	mutex_lock(&dev->alu_mutex);
429	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
430
431	rc = ksz8_valid_dyn_entry(dev, &data);
432	if (rc == -EAGAIN) {
433		if (addr == 0)
434			*entries = 0;
435	} else if (rc == -ENXIO) {
436		*entries = 0;
437	/* At least one valid entry in the table. */
438	} else {
439		u64 buf = 0;
440		int cnt;
441
442		ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
443		data_hi = (u32)(buf >> 32);
444		data_lo = (u32)buf;
445
446		/* Check out how many valid entry in the table. */
447		cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
448		cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
449		cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
450			shifts[DYNAMIC_MAC_ENTRIES];
451		*entries = cnt + 1;
452
453		*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
454			shifts[DYNAMIC_MAC_FID];
455		*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
456			shifts[DYNAMIC_MAC_SRC_PORT];
457		*timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >>
458			shifts[DYNAMIC_MAC_TIMESTAMP];
459
460		mac_addr[5] = (u8)data_lo;
461		mac_addr[4] = (u8)(data_lo >> 8);
462		mac_addr[3] = (u8)(data_lo >> 16);
463		mac_addr[2] = (u8)(data_lo >> 24);
464
465		mac_addr[1] = (u8)data_hi;
466		mac_addr[0] = (u8)(data_hi >> 8);
467		rc = 0;
468	}
469	mutex_unlock(&dev->alu_mutex);
470
471	return rc;
472}
473
474static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
475				struct alu_struct *alu, bool *valid)
476{
477	u32 data_hi, data_lo;
478	const u8 *shifts;
479	const u32 *masks;
480	u64 data;
481	int ret;
482
483	shifts = dev->info->shifts;
484	masks = dev->info->masks;
485
486	ret = ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
487	if (ret)
488		return ret;
489
490	data_hi = data >> 32;
491	data_lo = (u32)data;
492
493	if (!(data_hi & (masks[STATIC_MAC_TABLE_VALID] |
494			 masks[STATIC_MAC_TABLE_OVERRIDE]))) {
495		*valid = false;
496		return 0;
497	}
498
499	alu->mac[5] = (u8)data_lo;
500	alu->mac[4] = (u8)(data_lo >> 8);
501	alu->mac[3] = (u8)(data_lo >> 16);
502	alu->mac[2] = (u8)(data_lo >> 24);
503	alu->mac[1] = (u8)data_hi;
504	alu->mac[0] = (u8)(data_hi >> 8);
505	alu->port_forward =
506		(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
507			shifts[STATIC_MAC_FWD_PORTS];
508	alu->is_override = (data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
509
510	/* KSZ8795 family switches have STATIC_MAC_TABLE_USE_FID and
511	 * STATIC_MAC_TABLE_FID definitions off by 1 when doing read on the
512	 * static MAC table compared to doing write.
513	 */
514	if (ksz_is_ksz87xx(dev))
515		data_hi >>= 1;
516	alu->is_static = true;
517	alu->is_use_fid = (data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
518	alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
519		shifts[STATIC_MAC_FID];
520
521	*valid = true;
522
523	return 0;
524}
525
526static int ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
527				struct alu_struct *alu)
528{
529	u32 data_hi, data_lo;
530	const u8 *shifts;
531	const u32 *masks;
532	u64 data;
533
534	shifts = dev->info->shifts;
535	masks = dev->info->masks;
536
537	data_lo = ((u32)alu->mac[2] << 24) |
538		((u32)alu->mac[3] << 16) |
539		((u32)alu->mac[4] << 8) | alu->mac[5];
540	data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
541	data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
542
543	if (alu->is_override)
544		data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
545	if (alu->is_use_fid) {
546		data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
547		data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
548	}
549	if (alu->is_static)
550		data_hi |= masks[STATIC_MAC_TABLE_VALID];
551	else
552		data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
553
554	data = (u64)data_hi << 32 | data_lo;
555
556	return ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
557}
558
559static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
560			   u8 *member, u8 *valid)
561{
562	const u8 *shifts;
563	const u32 *masks;
564
565	shifts = dev->info->shifts;
566	masks = dev->info->masks;
567
568	*fid = vlan & masks[VLAN_TABLE_FID];
569	*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
570			shifts[VLAN_TABLE_MEMBERSHIP_S];
571	*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
572}
573
574static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
575			 u16 *vlan)
576{
577	const u8 *shifts;
578	const u32 *masks;
579
580	shifts = dev->info->shifts;
581	masks = dev->info->masks;
582
583	*vlan = fid;
584	*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
585	if (valid)
586		*vlan |= masks[VLAN_TABLE_VALID];
587}
588
589static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
590{
591	const u8 *shifts;
592	u64 data;
593	int i;
594
595	shifts = dev->info->shifts;
596
597	ksz8_r_table(dev, TABLE_VLAN, addr, &data);
598	addr *= 4;
599	for (i = 0; i < 4; i++) {
600		dev->vlan_cache[addr + i].table[0] = (u16)data;
601		data >>= shifts[VLAN_TABLE];
602	}
603}
604
605static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
606{
607	int index;
608	u16 *data;
609	u16 addr;
610	u64 buf;
611
612	data = (u16 *)&buf;
613	addr = vid / 4;
614	index = vid & 3;
615	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
616	*vlan = data[index];
617}
618
619static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
620{
621	int index;
622	u16 *data;
623	u16 addr;
624	u64 buf;
625
626	data = (u16 *)&buf;
627	addr = vid / 4;
628	index = vid & 3;
629	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
630	data[index] = vlan;
631	dev->vlan_cache[vid].table[0] = vlan;
632	ksz8_w_table(dev, TABLE_VLAN, addr, buf);
633}
634
635/**
636 * ksz879x_get_loopback - KSZ879x specific function to get loopback
637 *                        configuration status for a specific port
638 * @dev: Pointer to the device structure
639 * @port: Port number to query
640 * @val: Pointer to store the result
641 *
642 * This function reads the SMI registers to determine whether loopback mode
643 * is enabled for a specific port.
644 *
645 * Return: 0 on success, error code on failure.
646 */
647static int ksz879x_get_loopback(struct ksz_device *dev, u16 port,
648				u16 *val)
649{
650	u8 stat3;
651	int ret;
652
653	ret = ksz_pread8(dev, port, REG_PORT_STATUS_3, &stat3);
654	if (ret)
655		return ret;
656
657	if (stat3 & PORT_PHY_LOOPBACK)
658		*val |= BMCR_LOOPBACK;
659
660	return 0;
661}
662
663/**
664 * ksz879x_set_loopback - KSZ879x specific function  to set loopback mode for
665 *			  a specific port
666 * @dev: Pointer to the device structure.
667 * @port: Port number to modify.
668 * @val: Value indicating whether to enable or disable loopback mode.
669 *
670 * This function translates loopback bit of the BMCR register into the
671 * corresponding hardware register bit value and writes it to the SMI interface.
672 *
673 * Return: 0 on success, error code on failure.
674 */
675static int ksz879x_set_loopback(struct ksz_device *dev, u16 port, u16 val)
676{
677	u8 stat3 = 0;
678
679	if (val & BMCR_LOOPBACK)
680		stat3 |= PORT_PHY_LOOPBACK;
681
682	return ksz_prmw8(dev, port, REG_PORT_STATUS_3, PORT_PHY_LOOPBACK,
683			 stat3);
684}
685
686/**
687 * ksz8_r_phy_ctrl - Translates and reads from the SMI interface to a MIIM PHY
688 *		     Control register (Reg. 31).
689 * @dev: The KSZ device instance.
690 * @port: The port number to be read.
691 * @val: The value read from the SMI interface.
692 *
693 * This function reads the SMI interface and translates the hardware register
694 * bit values into their corresponding control settings for a MIIM PHY Control
695 * register.
696 *
697 * Return: 0 on success, error code on failure.
698 */
699static int ksz8_r_phy_ctrl(struct ksz_device *dev, int port, u16 *val)
700{
701	const u16 *regs = dev->info->regs;
702	u8 reg_val;
703	int ret;
704
705	*val = 0;
706
707	ret = ksz_pread8(dev, port, regs[P_LINK_STATUS], &reg_val);
708	if (ret < 0)
709		return ret;
710
711	if (reg_val & PORT_MDIX_STATUS)
712		*val |= KSZ886X_CTRL_MDIX_STAT;
713
714	ret = ksz_pread8(dev, port, REG_PORT_LINK_MD_CTRL, &reg_val);
715	if (ret < 0)
716		return ret;
717
718	if (reg_val & PORT_FORCE_LINK)
719		*val |= KSZ886X_CTRL_FORCE_LINK;
720
721	if (reg_val & PORT_POWER_SAVING)
722		*val |= KSZ886X_CTRL_PWRSAVE;
723
724	if (reg_val & PORT_PHY_REMOTE_LOOPBACK)
725		*val |= KSZ886X_CTRL_REMOTE_LOOPBACK;
726
727	return 0;
728}
729
730/**
731 * ksz8_r_phy_bmcr - Translates and reads from the SMI interface to a MIIM PHY
732 *		     Basic mode control register (Reg. 0).
733 * @dev: The KSZ device instance.
734 * @port: The port number to be read.
735 * @val: The value read from the SMI interface.
736 *
737 * This function reads the SMI interface and translates the hardware register
738 * bit values into their corresponding control settings for a MIIM PHY Basic
739 * mode control register.
740 *
741 * MIIM Bit Mapping Comparison between KSZ8794 and KSZ8873
742 * -------------------------------------------------------------------
743 * MIIM Bit                    | KSZ8794 Reg/Bit             | KSZ8873 Reg/Bit
744 * ----------------------------+-----------------------------+----------------
745 * Bit 15 - Soft Reset         | 0xF/4                       | Not supported
746 * Bit 14 - Loopback           | 0xD/0 (MAC), 0xF/7 (PHY)    ~ 0xD/0 (PHY)
747 * Bit 13 - Force 100          | 0xC/6                       = 0xC/6
748 * Bit 12 - AN Enable          | 0xC/7 (reverse logic)       ~ 0xC/7
749 * Bit 11 - Power Down         | 0xD/3                       = 0xD/3
750 * Bit 10 - PHY Isolate        | 0xF/5                       | Not supported
751 * Bit 9 - Restart AN          | 0xD/5                       = 0xD/5
752 * Bit 8 - Force Full-Duplex   | 0xC/5                       = 0xC/5
753 * Bit 7 - Collision Test/Res. | Not supported               | Not supported
754 * Bit 6 - Reserved            | Not supported               | Not supported
755 * Bit 5 - Hp_mdix             | 0x9/7                       ~ 0xF/7
756 * Bit 4 - Force MDI           | 0xD/1                       = 0xD/1
757 * Bit 3 - Disable MDIX        | 0xD/2                       = 0xD/2
758 * Bit 2 - Disable Far-End F.  | ????                        | 0xD/4
759 * Bit 1 - Disable Transmit    | 0xD/6                       = 0xD/6
760 * Bit 0 - Disable LED         | 0xD/7                       = 0xD/7
761 * -------------------------------------------------------------------
762 *
763 * Return: 0 on success, error code on failure.
764 */
765static int ksz8_r_phy_bmcr(struct ksz_device *dev, u16 port, u16 *val)
766{
767	const u16 *regs = dev->info->regs;
768	u8 restart, speed, ctrl;
769	int ret;
770
771	*val = 0;
772
773	ret = ksz_pread8(dev, port, regs[P_NEG_RESTART_CTRL], &restart);
774	if (ret)
775		return ret;
776
777	ret = ksz_pread8(dev, port, regs[P_SPEED_STATUS], &speed);
778	if (ret)
779		return ret;
780
781	ret = ksz_pread8(dev, port, regs[P_FORCE_CTRL], &ctrl);
782	if (ret)
783		return ret;
784
785	if (ctrl & PORT_FORCE_100_MBIT)
786		*val |= BMCR_SPEED100;
787
788	if (ksz_is_ksz88x3(dev)) {
789		if (restart & KSZ8873_PORT_PHY_LOOPBACK)
790			*val |= BMCR_LOOPBACK;
791
792		if ((ctrl & PORT_AUTO_NEG_ENABLE))
793			*val |= BMCR_ANENABLE;
794	} else {
795		ret = ksz879x_get_loopback(dev, port, val);
796		if (ret)
797			return ret;
798
799		if (!(ctrl & PORT_AUTO_NEG_DISABLE))
800			*val |= BMCR_ANENABLE;
801	}
802
803	if (restart & PORT_POWER_DOWN)
804		*val |= BMCR_PDOWN;
805
806	if (restart & PORT_AUTO_NEG_RESTART)
807		*val |= BMCR_ANRESTART;
808
809	if (ctrl & PORT_FORCE_FULL_DUPLEX)
810		*val |= BMCR_FULLDPLX;
811
812	if (speed & PORT_HP_MDIX)
813		*val |= KSZ886X_BMCR_HP_MDIX;
814
815	if (restart & PORT_FORCE_MDIX)
816		*val |= KSZ886X_BMCR_FORCE_MDI;
817
818	if (restart & PORT_AUTO_MDIX_DISABLE)
819		*val |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
820
821	if (restart & PORT_TX_DISABLE)
822		*val |= KSZ886X_BMCR_DISABLE_TRANSMIT;
823
824	if (restart & PORT_LED_OFF)
825		*val |= KSZ886X_BMCR_DISABLE_LED;
826
827	return 0;
828}
829
830int ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
831{
832	u8 ctrl, link, val1, val2;
833	int processed = true;
834	const u16 *regs;
835	u16 data = 0;
836	u16 p = phy;
837	int ret;
838
839	regs = dev->info->regs;
840
841	switch (reg) {
842	case MII_BMCR:
843		ret = ksz8_r_phy_bmcr(dev, p, &data);
844		if (ret)
845			return ret;
846		break;
847	case MII_BMSR:
848		ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
849		if (ret)
850			return ret;
851
852		data = BMSR_100FULL |
853		       BMSR_100HALF |
854		       BMSR_10FULL |
855		       BMSR_10HALF |
856		       BMSR_ANEGCAPABLE;
857		if (link & PORT_AUTO_NEG_COMPLETE)
858			data |= BMSR_ANEGCOMPLETE;
859		if (link & PORT_STAT_LINK_GOOD)
860			data |= BMSR_LSTATUS;
861		break;
862	case MII_PHYSID1:
863		data = KSZ8795_ID_HI;
864		break;
865	case MII_PHYSID2:
866		if (ksz_is_ksz88x3(dev))
867			data = KSZ8863_ID_LO;
868		else
869			data = KSZ8795_ID_LO;
870		break;
871	case MII_ADVERTISE:
872		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
873		if (ret)
874			return ret;
875
876		data = ADVERTISE_CSMA;
877		if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
878			data |= ADVERTISE_PAUSE_CAP;
879		if (ctrl & PORT_AUTO_NEG_100BTX_FD)
880			data |= ADVERTISE_100FULL;
881		if (ctrl & PORT_AUTO_NEG_100BTX)
882			data |= ADVERTISE_100HALF;
883		if (ctrl & PORT_AUTO_NEG_10BT_FD)
884			data |= ADVERTISE_10FULL;
885		if (ctrl & PORT_AUTO_NEG_10BT)
886			data |= ADVERTISE_10HALF;
887		break;
888	case MII_LPA:
889		ret = ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
890		if (ret)
891			return ret;
892
893		data = LPA_SLCT;
894		if (link & PORT_REMOTE_SYM_PAUSE)
895			data |= LPA_PAUSE_CAP;
896		if (link & PORT_REMOTE_100BTX_FD)
897			data |= LPA_100FULL;
898		if (link & PORT_REMOTE_100BTX)
899			data |= LPA_100HALF;
900		if (link & PORT_REMOTE_10BT_FD)
901			data |= LPA_10FULL;
902		if (link & PORT_REMOTE_10BT)
903			data |= LPA_10HALF;
904		if (data & ~LPA_SLCT)
905			data |= LPA_LPACK;
906		break;
907	case PHY_REG_LINK_MD:
908		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
909		if (ret)
910			return ret;
911
912		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
913		if (ret)
914			return ret;
915
916		if (val1 & PORT_START_CABLE_DIAG)
917			data |= PHY_START_CABLE_DIAG;
918
919		if (val1 & PORT_CABLE_10M_SHORT)
920			data |= PHY_CABLE_10M_SHORT;
921
922		data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
923				FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
924
925		data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
926				(FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
927				FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
928		break;
929	case PHY_REG_PHY_CTRL:
930		ret = ksz8_r_phy_ctrl(dev, p, &data);
931		if (ret)
932			return ret;
933
934		break;
935	default:
936		processed = false;
937		break;
938	}
939	if (processed)
940		*val = data;
941
942	return 0;
943}
944
945/**
946 * ksz8_w_phy_ctrl - Translates and writes to the SMI interface from a MIIM PHY
947 *		     Control register (Reg. 31).
948 * @dev: The KSZ device instance.
949 * @port: The port number to be configured.
950 * @val: The register value to be written.
951 *
952 * This function translates control settings from a MIIM PHY Control register
953 * into their corresponding hardware register bit values for the SMI
954 * interface.
955 *
956 * Return: 0 on success, error code on failure.
957 */
958static int ksz8_w_phy_ctrl(struct ksz_device *dev, int port, u16 val)
959{
960	u8 reg_val = 0;
961	int ret;
962
963	if (val & KSZ886X_CTRL_FORCE_LINK)
964		reg_val |= PORT_FORCE_LINK;
965
966	if (val & KSZ886X_CTRL_PWRSAVE)
967		reg_val |= PORT_POWER_SAVING;
968
969	if (val & KSZ886X_CTRL_REMOTE_LOOPBACK)
970		reg_val |= PORT_PHY_REMOTE_LOOPBACK;
971
972	ret = ksz_prmw8(dev, port, REG_PORT_LINK_MD_CTRL, PORT_FORCE_LINK |
973			PORT_POWER_SAVING | PORT_PHY_REMOTE_LOOPBACK, reg_val);
974	return ret;
975}
976
977/**
978 * ksz8_w_phy_bmcr - Translates and writes to the SMI interface from a MIIM PHY
979 *		     Basic mode control register (Reg. 0).
980 * @dev: The KSZ device instance.
981 * @port: The port number to be configured.
982 * @val: The register value to be written.
983 *
984 * This function translates control settings from a MIIM PHY Basic mode control
985 * register into their corresponding hardware register bit values for the SMI
986 * interface.
987 *
988 * MIIM Bit Mapping Comparison between KSZ8794 and KSZ8873
989 * -------------------------------------------------------------------
990 * MIIM Bit                    | KSZ8794 Reg/Bit             | KSZ8873 Reg/Bit
991 * ----------------------------+-----------------------------+----------------
992 * Bit 15 - Soft Reset         | 0xF/4                       | Not supported
993 * Bit 14 - Loopback           | 0xD/0 (MAC), 0xF/7 (PHY)    ~ 0xD/0 (PHY)
994 * Bit 13 - Force 100          | 0xC/6                       = 0xC/6
995 * Bit 12 - AN Enable          | 0xC/7 (reverse logic)       ~ 0xC/7
996 * Bit 11 - Power Down         | 0xD/3                       = 0xD/3
997 * Bit 10 - PHY Isolate        | 0xF/5                       | Not supported
998 * Bit 9 - Restart AN          | 0xD/5                       = 0xD/5
999 * Bit 8 - Force Full-Duplex   | 0xC/5                       = 0xC/5
1000 * Bit 7 - Collision Test/Res. | Not supported               | Not supported
1001 * Bit 6 - Reserved            | Not supported               | Not supported
1002 * Bit 5 - Hp_mdix             | 0x9/7                       ~ 0xF/7
1003 * Bit 4 - Force MDI           | 0xD/1                       = 0xD/1
1004 * Bit 3 - Disable MDIX        | 0xD/2                       = 0xD/2
1005 * Bit 2 - Disable Far-End F.  | ????                        | 0xD/4
1006 * Bit 1 - Disable Transmit    | 0xD/6                       = 0xD/6
1007 * Bit 0 - Disable LED         | 0xD/7                       = 0xD/7
1008 * -------------------------------------------------------------------
1009 *
1010 * Return: 0 on success, error code on failure.
1011 */
1012static int ksz8_w_phy_bmcr(struct ksz_device *dev, u16 port, u16 val)
1013{
1014	u8 restart, speed, ctrl, restart_mask;
1015	const u16 *regs = dev->info->regs;
1016	int ret;
1017
1018	/* Do not support PHY reset function. */
1019	if (val & BMCR_RESET)
1020		return 0;
1021
1022	speed = 0;
1023	if (val & KSZ886X_BMCR_HP_MDIX)
1024		speed |= PORT_HP_MDIX;
1025
1026	ret = ksz_prmw8(dev, port, regs[P_SPEED_STATUS], PORT_HP_MDIX, speed);
1027	if (ret)
1028		return ret;
1029
1030	ctrl = 0;
1031	if (ksz_is_ksz88x3(dev)) {
1032		if ((val & BMCR_ANENABLE))
1033			ctrl |= PORT_AUTO_NEG_ENABLE;
1034	} else {
1035		if (!(val & BMCR_ANENABLE))
1036			ctrl |= PORT_AUTO_NEG_DISABLE;
1037
1038		/* Fiber port does not support auto-negotiation. */
1039		if (dev->ports[port].fiber)
1040			ctrl |= PORT_AUTO_NEG_DISABLE;
1041	}
1042
1043	if (val & BMCR_SPEED100)
1044		ctrl |= PORT_FORCE_100_MBIT;
1045
1046	if (val & BMCR_FULLDPLX)
1047		ctrl |= PORT_FORCE_FULL_DUPLEX;
1048
1049	ret = ksz_prmw8(dev, port, regs[P_FORCE_CTRL], PORT_FORCE_100_MBIT |
1050		 /* PORT_AUTO_NEG_ENABLE and PORT_AUTO_NEG_DISABLE are the same
1051		  * bits
1052		  */
1053		 PORT_FORCE_FULL_DUPLEX | PORT_AUTO_NEG_ENABLE, ctrl);
1054	if (ret)
1055		return ret;
1056
1057	restart = 0;
1058	restart_mask = PORT_LED_OFF | PORT_TX_DISABLE | PORT_AUTO_NEG_RESTART |
1059		PORT_POWER_DOWN | PORT_AUTO_MDIX_DISABLE | PORT_FORCE_MDIX;
1060
1061	if (val & KSZ886X_BMCR_DISABLE_LED)
1062		restart |= PORT_LED_OFF;
1063
1064	if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
1065		restart |= PORT_TX_DISABLE;
1066
1067	if (val & BMCR_ANRESTART)
1068		restart |= PORT_AUTO_NEG_RESTART;
1069
1070	if (val & BMCR_PDOWN)
1071		restart |= PORT_POWER_DOWN;
1072
1073	if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
1074		restart |= PORT_AUTO_MDIX_DISABLE;
1075
1076	if (val & KSZ886X_BMCR_FORCE_MDI)
1077		restart |= PORT_FORCE_MDIX;
1078
1079	if (ksz_is_ksz88x3(dev)) {
1080		restart_mask |= KSZ8873_PORT_PHY_LOOPBACK;
1081
1082		if (val & BMCR_LOOPBACK)
1083			restart |= KSZ8873_PORT_PHY_LOOPBACK;
1084	} else {
1085		ret = ksz879x_set_loopback(dev, port, val);
1086		if (ret)
1087			return ret;
1088	}
1089
1090	return ksz_prmw8(dev, port, regs[P_NEG_RESTART_CTRL], restart_mask,
1091			 restart);
1092}
1093
1094int ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
1095{
1096	const u16 *regs;
1097	u8 ctrl, data;
1098	u16 p = phy;
1099	int ret;
1100
1101	regs = dev->info->regs;
1102
1103	switch (reg) {
1104	case MII_BMCR:
1105		ret = ksz8_w_phy_bmcr(dev, p, val);
1106		if (ret)
1107			return ret;
1108		break;
1109	case MII_ADVERTISE:
1110		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
1111		if (ret)
1112			return ret;
1113
1114		data = ctrl;
1115		data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
1116			  PORT_AUTO_NEG_100BTX_FD |
1117			  PORT_AUTO_NEG_100BTX |
1118			  PORT_AUTO_NEG_10BT_FD |
1119			  PORT_AUTO_NEG_10BT);
1120		if (val & ADVERTISE_PAUSE_CAP)
1121			data |= PORT_AUTO_NEG_SYM_PAUSE;
1122		if (val & ADVERTISE_100FULL)
1123			data |= PORT_AUTO_NEG_100BTX_FD;
1124		if (val & ADVERTISE_100HALF)
1125			data |= PORT_AUTO_NEG_100BTX;
1126		if (val & ADVERTISE_10FULL)
1127			data |= PORT_AUTO_NEG_10BT_FD;
1128		if (val & ADVERTISE_10HALF)
1129			data |= PORT_AUTO_NEG_10BT;
1130
1131		if (data != ctrl) {
1132			ret = ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
1133			if (ret)
1134				return ret;
1135		}
1136		break;
1137	case PHY_REG_LINK_MD:
1138		if (val & PHY_START_CABLE_DIAG)
1139			ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
1140		break;
1141
1142	case PHY_REG_PHY_CTRL:
1143		ret = ksz8_w_phy_ctrl(dev, p, val);
1144		if (ret)
1145			return ret;
1146		break;
1147	default:
1148		break;
1149	}
1150
1151	return 0;
1152}
1153
1154void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
1155{
1156	u8 data;
1157
1158	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1159	data &= ~PORT_VLAN_MEMBERSHIP;
1160	data |= (member & dev->port_mask);
1161	ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
1162}
1163
1164void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
1165{
1166	u8 learn[DSA_MAX_PORTS];
1167	int first, index, cnt;
1168	const u16 *regs;
1169
1170	regs = dev->info->regs;
1171
1172	if ((uint)port < dev->info->port_cnt) {
1173		first = port;
1174		cnt = port + 1;
1175	} else {
1176		/* Flush all ports. */
1177		first = 0;
1178		cnt = dev->info->port_cnt;
1179	}
1180	for (index = first; index < cnt; index++) {
1181		ksz_pread8(dev, index, regs[P_STP_CTRL], &learn[index]);
1182		if (!(learn[index] & PORT_LEARN_DISABLE))
1183			ksz_pwrite8(dev, index, regs[P_STP_CTRL],
1184				    learn[index] | PORT_LEARN_DISABLE);
1185	}
1186	ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
1187	for (index = first; index < cnt; index++) {
1188		if (!(learn[index] & PORT_LEARN_DISABLE))
1189			ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index]);
1190	}
1191}
1192
1193int ksz8_fdb_dump(struct ksz_device *dev, int port,
1194		  dsa_fdb_dump_cb_t *cb, void *data)
1195{
1196	int ret = 0;
1197	u16 i = 0;
1198	u16 entries = 0;
1199	u8 timestamp = 0;
1200	u8 fid;
1201	u8 src_port;
1202	u8 mac[ETH_ALEN];
1203
1204	do {
1205		ret = ksz8_r_dyn_mac_table(dev, i, mac, &fid, &src_port,
1206					   &timestamp, &entries);
1207		if (!ret && port == src_port) {
1208			ret = cb(mac, fid, false, data);
1209			if (ret)
1210				break;
1211		}
1212		i++;
1213	} while (i < entries);
1214	if (i >= entries)
1215		ret = 0;
1216
1217	return ret;
1218}
1219
1220static int ksz8_add_sta_mac(struct ksz_device *dev, int port,
1221			    const unsigned char *addr, u16 vid)
1222{
1223	struct alu_struct alu;
1224	int index, ret;
1225	int empty = 0;
1226
1227	alu.port_forward = 0;
1228	for (index = 0; index < dev->info->num_statics; index++) {
1229		bool valid;
1230
1231		ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1232		if (ret)
1233			return ret;
1234		if (!valid) {
1235			/* Remember the first empty entry. */
1236			if (!empty)
1237				empty = index + 1;
1238			continue;
1239		}
1240
1241		if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1242			break;
1243	}
1244
1245	/* no available entry */
1246	if (index == dev->info->num_statics && !empty)
1247		return -ENOSPC;
1248
1249	/* add entry */
1250	if (index == dev->info->num_statics) {
1251		index = empty - 1;
1252		memset(&alu, 0, sizeof(alu));
1253		memcpy(alu.mac, addr, ETH_ALEN);
1254		alu.is_static = true;
1255	}
1256	alu.port_forward |= BIT(port);
1257	if (vid) {
1258		alu.is_use_fid = true;
1259
1260		/* Need a way to map VID to FID. */
1261		alu.fid = vid;
1262	}
1263
1264	return ksz8_w_sta_mac_table(dev, index, &alu);
1265}
1266
1267static int ksz8_del_sta_mac(struct ksz_device *dev, int port,
1268			    const unsigned char *addr, u16 vid)
1269{
1270	struct alu_struct alu;
1271	int index, ret;
1272
1273	for (index = 0; index < dev->info->num_statics; index++) {
1274		bool valid;
1275
1276		ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1277		if (ret)
1278			return ret;
1279		if (!valid)
1280			continue;
1281
1282		if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1283			break;
1284	}
1285
1286	/* no available entry */
1287	if (index == dev->info->num_statics)
1288		return 0;
1289
1290	/* clear port */
1291	alu.port_forward &= ~BIT(port);
1292	if (!alu.port_forward)
1293		alu.is_static = false;
1294
1295	return ksz8_w_sta_mac_table(dev, index, &alu);
1296}
1297
1298int ksz8_mdb_add(struct ksz_device *dev, int port,
1299		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1300{
1301	return ksz8_add_sta_mac(dev, port, mdb->addr, mdb->vid);
1302}
1303
1304int ksz8_mdb_del(struct ksz_device *dev, int port,
1305		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1306{
1307	return ksz8_del_sta_mac(dev, port, mdb->addr, mdb->vid);
1308}
1309
1310int ksz8_fdb_add(struct ksz_device *dev, int port, const unsigned char *addr,
1311		 u16 vid, struct dsa_db db)
1312{
1313	return ksz8_add_sta_mac(dev, port, addr, vid);
1314}
1315
1316int ksz8_fdb_del(struct ksz_device *dev, int port, const unsigned char *addr,
1317		 u16 vid, struct dsa_db db)
1318{
1319	return ksz8_del_sta_mac(dev, port, addr, vid);
1320}
1321
1322int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
1323			     struct netlink_ext_ack *extack)
1324{
1325	if (ksz_is_ksz88x3(dev))
1326		return -ENOTSUPP;
1327
1328	/* Discard packets with VID not enabled on the switch */
1329	ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1330
1331	/* Discard packets with VID not enabled on the ingress port */
1332	for (port = 0; port < dev->phy_port_cnt; ++port)
1333		ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1334			     flag);
1335
1336	return 0;
1337}
1338
1339static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1340{
1341	if (ksz_is_ksz88x3(dev)) {
1342		ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
1343			0x03 << (4 - 2 * port), state);
1344	} else {
1345		ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
1346	}
1347}
1348
1349int ksz8_port_vlan_add(struct ksz_device *dev, int port,
1350		       const struct switchdev_obj_port_vlan *vlan,
1351		       struct netlink_ext_ack *extack)
1352{
1353	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1354	struct ksz_port *p = &dev->ports[port];
1355	u16 data, new_pvid = 0;
1356	u8 fid, member, valid;
1357
1358	if (ksz_is_ksz88x3(dev))
1359		return -ENOTSUPP;
1360
1361	/* If a VLAN is added with untagged flag different from the
1362	 * port's Remove Tag flag, we need to change the latter.
1363	 * Ignore VID 0, which is always untagged.
1364	 * Ignore CPU port, which will always be tagged.
1365	 */
1366	if (untagged != p->remove_tag && vlan->vid != 0 &&
1367	    port != dev->cpu_port) {
1368		unsigned int vid;
1369
1370		/* Reject attempts to add a VLAN that requires the
1371		 * Remove Tag flag to be changed, unless there are no
1372		 * other VLANs currently configured.
1373		 */
1374		for (vid = 1; vid < dev->info->num_vlans; ++vid) {
1375			/* Skip the VID we are going to add or reconfigure */
1376			if (vid == vlan->vid)
1377				continue;
1378
1379			ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1380				       &fid, &member, &valid);
1381			if (valid && (member & BIT(port)))
1382				return -EINVAL;
1383		}
1384
1385		ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1386		p->remove_tag = untagged;
1387	}
1388
1389	ksz8_r_vlan_table(dev, vlan->vid, &data);
1390	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1391
1392	/* First time to setup the VLAN entry. */
1393	if (!valid) {
1394		/* Need to find a way to map VID to FID. */
1395		fid = 1;
1396		valid = 1;
1397	}
1398	member |= BIT(port);
1399
1400	ksz8_to_vlan(dev, fid, member, valid, &data);
1401	ksz8_w_vlan_table(dev, vlan->vid, data);
1402
1403	/* change PVID */
1404	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1405		new_pvid = vlan->vid;
1406
1407	if (new_pvid) {
1408		u16 vid;
1409
1410		ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1411		vid &= ~VLAN_VID_MASK;
1412		vid |= new_pvid;
1413		ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1414
1415		ksz8_port_enable_pvid(dev, port, true);
1416	}
1417
1418	return 0;
1419}
1420
1421int ksz8_port_vlan_del(struct ksz_device *dev, int port,
1422		       const struct switchdev_obj_port_vlan *vlan)
1423{
1424	u16 data, pvid;
1425	u8 fid, member, valid;
1426
1427	if (ksz_is_ksz88x3(dev))
1428		return -ENOTSUPP;
1429
1430	ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1431	pvid = pvid & 0xFFF;
1432
1433	ksz8_r_vlan_table(dev, vlan->vid, &data);
1434	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1435
1436	member &= ~BIT(port);
1437
1438	/* Invalidate the entry if no more member. */
1439	if (!member) {
1440		fid = 0;
1441		valid = 0;
1442	}
1443
1444	ksz8_to_vlan(dev, fid, member, valid, &data);
1445	ksz8_w_vlan_table(dev, vlan->vid, data);
1446
1447	if (pvid == vlan->vid)
1448		ksz8_port_enable_pvid(dev, port, false);
1449
1450	return 0;
1451}
1452
1453int ksz8_port_mirror_add(struct ksz_device *dev, int port,
1454			 struct dsa_mall_mirror_tc_entry *mirror,
1455			 bool ingress, struct netlink_ext_ack *extack)
1456{
1457	if (ingress) {
1458		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1459		dev->mirror_rx |= BIT(port);
1460	} else {
1461		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1462		dev->mirror_tx |= BIT(port);
1463	}
1464
1465	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1466
1467	/* configure mirror port */
1468	if (dev->mirror_rx || dev->mirror_tx)
1469		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1470			     PORT_MIRROR_SNIFFER, true);
1471
1472	return 0;
1473}
1474
1475void ksz8_port_mirror_del(struct ksz_device *dev, int port,
1476			  struct dsa_mall_mirror_tc_entry *mirror)
1477{
1478	u8 data;
1479
1480	if (mirror->ingress) {
1481		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1482		dev->mirror_rx &= ~BIT(port);
1483	} else {
1484		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1485		dev->mirror_tx &= ~BIT(port);
1486	}
1487
1488	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1489
1490	if (!dev->mirror_rx && !dev->mirror_tx)
1491		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1492			     PORT_MIRROR_SNIFFER, false);
1493}
1494
1495static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1496{
1497	struct ksz_port *p = &dev->ports[port];
1498
1499	if (!ksz_is_ksz87xx(dev))
1500		return;
1501
1502	if (!p->interface && dev->compat_interface) {
1503		dev_warn(dev->dev,
1504			 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1505			 "Please update your device tree.\n",
1506			 port);
1507		p->interface = dev->compat_interface;
1508	}
1509}
1510
1511void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1512{
1513	struct dsa_switch *ds = dev->ds;
1514	const u32 *masks;
1515	u8 member;
1516
1517	masks = dev->info->masks;
1518
1519	/* enable broadcast storm limit */
1520	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1521
1522	if (!ksz_is_ksz88x3(dev))
1523		ksz8795_set_prio_queue(dev, port, 4);
1524
1525	/* disable DiffServ priority */
1526	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
1527
1528	/* replace priority */
1529	ksz_port_cfg(dev, port, P_802_1P_CTRL,
1530		     masks[PORT_802_1P_REMAPPING], false);
1531
1532	/* enable 802.1p priority */
1533	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
1534
1535	if (cpu_port)
1536		member = dsa_user_ports(ds);
1537	else
1538		member = BIT(dsa_upstream_port(ds, port));
1539
1540	ksz8_cfg_port_member(dev, port, member);
1541}
1542
1543static void ksz88x3_config_rmii_clk(struct ksz_device *dev)
1544{
1545	struct dsa_port *cpu_dp = dsa_to_port(dev->ds, dev->cpu_port);
1546	bool rmii_clk_internal;
1547
1548	if (!ksz_is_ksz88x3(dev))
1549		return;
1550
1551	rmii_clk_internal = of_property_read_bool(cpu_dp->dn,
1552						  "microchip,rmii-clk-internal");
1553
1554	ksz_cfg(dev, KSZ88X3_REG_FVID_AND_HOST_MODE,
1555		KSZ88X3_PORT3_RMII_CLK_INTERNAL, rmii_clk_internal);
1556}
1557
1558void ksz8_config_cpu_port(struct dsa_switch *ds)
1559{
1560	struct ksz_device *dev = ds->priv;
1561	struct ksz_port *p;
1562	const u32 *masks;
1563	const u16 *regs;
1564	u8 remote;
1565	int i;
1566
1567	masks = dev->info->masks;
1568	regs = dev->info->regs;
1569
1570	ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1571
1572	ksz8_port_setup(dev, dev->cpu_port, true);
1573
1574	ksz8795_cpu_interface_select(dev, dev->cpu_port);
1575	ksz88x3_config_rmii_clk(dev);
1576
1577	for (i = 0; i < dev->phy_port_cnt; i++) {
1578		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1579	}
1580	for (i = 0; i < dev->phy_port_cnt; i++) {
1581		p = &dev->ports[i];
1582
1583		if (!ksz_is_ksz88x3(dev)) {
1584			ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1585			if (remote & KSZ8_PORT_FIBER_MODE)
1586				p->fiber = 1;
1587		}
1588		if (p->fiber)
1589			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1590				     PORT_FORCE_FLOW_CTRL, true);
1591		else
1592			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1593				     PORT_FORCE_FLOW_CTRL, false);
1594	}
1595}
1596
1597/**
1598 * ksz8_phy_port_link_up - Configures ports with integrated PHYs
1599 * @dev: The KSZ device instance.
1600 * @port: The port number to configure.
1601 * @duplex: The desired duplex mode.
1602 * @tx_pause: If true, enables transmit pause.
1603 * @rx_pause: If true, enables receive pause.
1604 *
1605 * Description:
1606 * The function configures flow control settings for a given port based on the
1607 * desired settings and current duplex mode.
1608 *
1609 * According to the KSZ8873 datasheet, the PORT_FORCE_FLOW_CTRL bit in the
1610 * Port Control 2 register (0x1A for Port 1, 0x22 for Port 2, 0x32 for Port 3)
1611 * determines how flow control is handled on the port:
1612 *    "1 = will always enable full-duplex flow control on the port, regardless
1613 *         of AN result.
1614 *     0 = full-duplex flow control is enabled based on AN result."
1615 *
1616 * This means that the flow control behavior depends on the state of this bit:
1617 * - If PORT_FORCE_FLOW_CTRL is set to 1, the switch will ignore AN results and
1618 *   force flow control on the port.
1619 * - If PORT_FORCE_FLOW_CTRL is set to 0, the switch will enable or disable
1620 *   flow control based on the AN results.
1621 *
1622 * However, there is a potential limitation in this configuration. It is
1623 * currently not possible to force disable flow control on a port if we still
1624 * advertise pause support. While such a configuration is not currently
1625 * supported by Linux, and may not make practical sense, it's important to be
1626 * aware of this limitation when working with the KSZ8873 and similar devices.
1627 */
1628static void ksz8_phy_port_link_up(struct ksz_device *dev, int port, int duplex,
1629				  bool tx_pause, bool rx_pause)
1630{
1631	const u16 *regs = dev->info->regs;
1632	u8 sctrl = 0;
1633
1634	/* The KSZ8795 switch differs from the KSZ8873 by supporting
1635	 * asymmetric pause control. However, since a single bit is used to
1636	 * control both RX and TX pause, we can't enforce asymmetric pause
1637	 * control - both TX and RX pause will be either enabled or disabled
1638	 * together.
1639	 *
1640	 * If auto-negotiation is enabled, we usually allow the flow control to
1641	 * be determined by the auto-negotiation process based on the
1642	 * capabilities of both link partners. However, for KSZ8873, the
1643	 * PORT_FORCE_FLOW_CTRL bit may be set by the hardware bootstrap,
1644	 * ignoring the auto-negotiation result. Thus, even in auto-negotiation
1645	 * mode, we need to ensure that the PORT_FORCE_FLOW_CTRL bit is
1646	 * properly cleared.
1647	 *
1648	 * In the absence of pause auto-negotiation, we will enforce symmetric
1649	 * pause control for both variants of switches - KSZ8873 and KSZ8795.
1650	 *
1651	 * Autoneg Pause Autoneg      rx,tx	PORT_FORCE_FLOW_CTRL
1652	 * 1		1		x	0
1653	 * 0		1		x	0 (flow control probably disabled)
1654	 * x		0		1	1 (flow control force enabled)
1655	 * 1		0		0	0 (flow control still depends on
1656	 *					   aneg result due to hardware)
1657	 * 0		0		0	0 (flow control probably disabled)
1658	 */
1659	if (dev->ports[port].manual_flow && tx_pause)
1660		sctrl |= PORT_FORCE_FLOW_CTRL;
1661
1662	ksz_prmw8(dev, port, regs[P_STP_CTRL], PORT_FORCE_FLOW_CTRL, sctrl);
1663}
1664
1665/**
1666 * ksz8_cpu_port_link_up - Configures the CPU port of the switch.
1667 * @dev: The KSZ device instance.
1668 * @speed: The desired link speed.
1669 * @duplex: The desired duplex mode.
1670 * @tx_pause: If true, enables transmit pause.
1671 * @rx_pause: If true, enables receive pause.
1672 *
1673 * Description:
1674 * The function configures flow control and speed settings for the CPU
1675 * port of the switch based on the desired settings, current duplex mode, and
1676 * speed.
1677 */
1678static void ksz8_cpu_port_link_up(struct ksz_device *dev, int speed, int duplex,
1679				  bool tx_pause, bool rx_pause)
1680{
1681	const u16 *regs = dev->info->regs;
1682	u8 ctrl = 0;
1683
1684	/* SW_FLOW_CTRL, SW_HALF_DUPLEX, and SW_10_MBIT bits are bootstrappable
1685	 * at least on KSZ8873. They can have different values depending on your
1686	 * board setup.
1687	 */
1688	if (tx_pause || rx_pause)
1689		ctrl |= SW_FLOW_CTRL;
1690
1691	if (duplex == DUPLEX_HALF)
1692		ctrl |= SW_HALF_DUPLEX;
1693
1694	/* This hardware only supports SPEED_10 and SPEED_100. For SPEED_10
1695	 * we need to set the SW_10_MBIT bit. Otherwise, we can leave it 0.
1696	 */
1697	if (speed == SPEED_10)
1698		ctrl |= SW_10_MBIT;
1699
1700	ksz_rmw8(dev, regs[S_BROADCAST_CTRL], SW_HALF_DUPLEX | SW_FLOW_CTRL |
1701		 SW_10_MBIT, ctrl);
1702}
1703
1704void ksz8_phylink_mac_link_up(struct ksz_device *dev, int port,
1705			      unsigned int mode, phy_interface_t interface,
1706			      struct phy_device *phydev, int speed, int duplex,
1707			      bool tx_pause, bool rx_pause)
1708{
1709	/* If the port is the CPU port, apply special handling. Only the CPU
1710	 * port is configured via global registers.
1711	 */
1712	if (dev->cpu_port == port)
1713		ksz8_cpu_port_link_up(dev, speed, duplex, tx_pause, rx_pause);
1714	else if (dev->info->internal_phy[port])
1715		ksz8_phy_port_link_up(dev, port, duplex, tx_pause, rx_pause);
1716}
1717
1718static int ksz8_handle_global_errata(struct dsa_switch *ds)
1719{
1720	struct ksz_device *dev = ds->priv;
1721	int ret = 0;
1722
1723	/* KSZ87xx Errata DS80000687C.
1724	 * Module 2: Link drops with some EEE link partners.
1725	 *   An issue with the EEE next page exchange between the
1726	 *   KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1727	 *   the link dropping.
1728	 */
1729	if (dev->info->ksz87xx_eee_link_erratum)
1730		ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
1731
1732	return ret;
1733}
1734
1735int ksz8_enable_stp_addr(struct ksz_device *dev)
1736{
1737	struct alu_struct alu;
1738
1739	/* Setup STP address for STP operation. */
1740	memset(&alu, 0, sizeof(alu));
1741	ether_addr_copy(alu.mac, eth_stp_addr);
1742	alu.is_static = true;
1743	alu.is_override = true;
1744	alu.port_forward = dev->info->cpu_ports;
1745
1746	return ksz8_w_sta_mac_table(dev, 0, &alu);
1747}
1748
1749int ksz8_setup(struct dsa_switch *ds)
1750{
1751	struct ksz_device *dev = ds->priv;
1752	int i;
1753
1754	ds->mtu_enforcement_ingress = true;
1755
1756	/* We rely on software untagging on the CPU port, so that we
1757	 * can support both tagged and untagged VLANs
1758	 */
1759	ds->untag_bridge_pvid = true;
1760
1761	/* VLAN filtering is partly controlled by the global VLAN
1762	 * Enable flag
1763	 */
1764	ds->vlan_filtering_is_global = true;
1765
1766	/* Enable automatic fast aging when link changed detected. */
1767	ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1768
1769	/* Enable aggressive back off algorithm in half duplex mode. */
1770	regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_1,
1771			   SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1772
1773	/*
1774	 * Make sure unicast VLAN boundary is set as default and
1775	 * enable no excessive collision drop.
1776	 */
1777	regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_2,
1778			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1779			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1780
1781	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1782
1783	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1784
1785	if (!ksz_is_ksz88x3(dev))
1786		ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1787
1788	for (i = 0; i < (dev->info->num_vlans / 4); i++)
1789		ksz8_r_vlan_entries(dev, i);
1790
1791	return ksz8_handle_global_errata(ds);
1792}
1793
1794void ksz8_get_caps(struct ksz_device *dev, int port,
1795		   struct phylink_config *config)
1796{
1797	config->mac_capabilities = MAC_10 | MAC_100;
1798
1799	/* Silicon Errata Sheet (DS80000830A):
1800	 * "Port 1 does not respond to received flow control PAUSE frames"
1801	 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1802	 * switches.
1803	 */
1804	if (!ksz_is_ksz88x3(dev) || port)
1805		config->mac_capabilities |= MAC_SYM_PAUSE;
1806
1807	/* Asym pause is not supported on KSZ8863 and KSZ8873 */
1808	if (!ksz_is_ksz88x3(dev))
1809		config->mac_capabilities |= MAC_ASYM_PAUSE;
1810}
1811
1812u32 ksz8_get_port_addr(int port, int offset)
1813{
1814	return PORT_CTRL_ADDR(port, offset);
1815}
1816
1817int ksz8_switch_init(struct ksz_device *dev)
1818{
1819	dev->cpu_port = fls(dev->info->cpu_ports) - 1;
1820	dev->phy_port_cnt = dev->info->port_cnt - 1;
1821	dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
1822
1823	return 0;
1824}
1825
1826void ksz8_switch_exit(struct ksz_device *dev)
1827{
1828	ksz8_reset_switch(dev);
1829}
1830
1831MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1832MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1833MODULE_LICENSE("GPL");
1834