1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Lantiq / Intel GSWIP switch driver for VRX200, xRX300 and xRX330 SoCs
4 *
5 * Copyright (C) 2010 Lantiq Deutschland
6 * Copyright (C) 2012 John Crispin <john@phrozen.org>
7 * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8 *
9 * The VLAN and bridge model the GSWIP hardware uses does not directly
10 * matches the model DSA uses.
11 *
12 * The hardware has 64 possible table entries for bridges with one VLAN
13 * ID, one flow id and a list of ports for each bridge. All entries which
14 * match the same flow ID are combined in the mac learning table, they
15 * act as one global bridge.
16 * The hardware does not support VLAN filter on the port, but on the
17 * bridge, this driver converts the DSA model to the hardware.
18 *
19 * The CPU gets all the exception frames which do not match any forwarding
20 * rule and the CPU port is also added to all bridges. This makes it possible
21 * to handle all the special cases easily in software.
22 * At the initialization the driver allocates one bridge table entry for
23 * each switch port which is used when the port is used without an
24 * explicit bridge. This prevents the frames from being forwarded
25 * between all LAN ports by default.
26 */
27
28#include <linux/clk.h>
29#include <linux/delay.h>
30#include <linux/etherdevice.h>
31#include <linux/firmware.h>
32#include <linux/if_bridge.h>
33#include <linux/if_vlan.h>
34#include <linux/iopoll.h>
35#include <linux/mfd/syscon.h>
36#include <linux/module.h>
37#include <linux/of_mdio.h>
38#include <linux/of_net.h>
39#include <linux/of_platform.h>
40#include <linux/phy.h>
41#include <linux/phylink.h>
42#include <linux/platform_device.h>
43#include <linux/regmap.h>
44#include <linux/reset.h>
45#include <net/dsa.h>
46#include <dt-bindings/mips/lantiq_rcu_gphy.h>
47
48#include "lantiq_pce.h"
49
50/* GSWIP MDIO Registers */
51#define GSWIP_MDIO_GLOB			0x00
52#define  GSWIP_MDIO_GLOB_ENABLE		BIT(15)
53#define GSWIP_MDIO_CTRL			0x08
54#define  GSWIP_MDIO_CTRL_BUSY		BIT(12)
55#define  GSWIP_MDIO_CTRL_RD		BIT(11)
56#define  GSWIP_MDIO_CTRL_WR		BIT(10)
57#define  GSWIP_MDIO_CTRL_PHYAD_MASK	0x1f
58#define  GSWIP_MDIO_CTRL_PHYAD_SHIFT	5
59#define  GSWIP_MDIO_CTRL_REGAD_MASK	0x1f
60#define GSWIP_MDIO_READ			0x09
61#define GSWIP_MDIO_WRITE		0x0A
62#define GSWIP_MDIO_MDC_CFG0		0x0B
63#define GSWIP_MDIO_MDC_CFG1		0x0C
64#define GSWIP_MDIO_PHYp(p)		(0x15 - (p))
65#define  GSWIP_MDIO_PHY_LINK_MASK	0x6000
66#define  GSWIP_MDIO_PHY_LINK_AUTO	0x0000
67#define  GSWIP_MDIO_PHY_LINK_DOWN	0x4000
68#define  GSWIP_MDIO_PHY_LINK_UP		0x2000
69#define  GSWIP_MDIO_PHY_SPEED_MASK	0x1800
70#define  GSWIP_MDIO_PHY_SPEED_AUTO	0x1800
71#define  GSWIP_MDIO_PHY_SPEED_M10	0x0000
72#define  GSWIP_MDIO_PHY_SPEED_M100	0x0800
73#define  GSWIP_MDIO_PHY_SPEED_G1	0x1000
74#define  GSWIP_MDIO_PHY_FDUP_MASK	0x0600
75#define  GSWIP_MDIO_PHY_FDUP_AUTO	0x0000
76#define  GSWIP_MDIO_PHY_FDUP_EN		0x0200
77#define  GSWIP_MDIO_PHY_FDUP_DIS	0x0600
78#define  GSWIP_MDIO_PHY_FCONTX_MASK	0x0180
79#define  GSWIP_MDIO_PHY_FCONTX_AUTO	0x0000
80#define  GSWIP_MDIO_PHY_FCONTX_EN	0x0100
81#define  GSWIP_MDIO_PHY_FCONTX_DIS	0x0180
82#define  GSWIP_MDIO_PHY_FCONRX_MASK	0x0060
83#define  GSWIP_MDIO_PHY_FCONRX_AUTO	0x0000
84#define  GSWIP_MDIO_PHY_FCONRX_EN	0x0020
85#define  GSWIP_MDIO_PHY_FCONRX_DIS	0x0060
86#define  GSWIP_MDIO_PHY_ADDR_MASK	0x001f
87#define  GSWIP_MDIO_PHY_MASK		(GSWIP_MDIO_PHY_ADDR_MASK | \
88					 GSWIP_MDIO_PHY_FCONRX_MASK | \
89					 GSWIP_MDIO_PHY_FCONTX_MASK | \
90					 GSWIP_MDIO_PHY_LINK_MASK | \
91					 GSWIP_MDIO_PHY_SPEED_MASK | \
92					 GSWIP_MDIO_PHY_FDUP_MASK)
93
94/* GSWIP MII Registers */
95#define GSWIP_MII_CFGp(p)		(0x2 * (p))
96#define  GSWIP_MII_CFG_RESET		BIT(15)
97#define  GSWIP_MII_CFG_EN		BIT(14)
98#define  GSWIP_MII_CFG_ISOLATE		BIT(13)
99#define  GSWIP_MII_CFG_LDCLKDIS		BIT(12)
100#define  GSWIP_MII_CFG_RGMII_IBS	BIT(8)
101#define  GSWIP_MII_CFG_RMII_CLK		BIT(7)
102#define  GSWIP_MII_CFG_MODE_MIIP	0x0
103#define  GSWIP_MII_CFG_MODE_MIIM	0x1
104#define  GSWIP_MII_CFG_MODE_RMIIP	0x2
105#define  GSWIP_MII_CFG_MODE_RMIIM	0x3
106#define  GSWIP_MII_CFG_MODE_RGMII	0x4
107#define  GSWIP_MII_CFG_MODE_GMII	0x9
108#define  GSWIP_MII_CFG_MODE_MASK	0xf
109#define  GSWIP_MII_CFG_RATE_M2P5	0x00
110#define  GSWIP_MII_CFG_RATE_M25	0x10
111#define  GSWIP_MII_CFG_RATE_M125	0x20
112#define  GSWIP_MII_CFG_RATE_M50	0x30
113#define  GSWIP_MII_CFG_RATE_AUTO	0x40
114#define  GSWIP_MII_CFG_RATE_MASK	0x70
115#define GSWIP_MII_PCDU0			0x01
116#define GSWIP_MII_PCDU1			0x03
117#define GSWIP_MII_PCDU5			0x05
118#define  GSWIP_MII_PCDU_TXDLY_MASK	GENMASK(2, 0)
119#define  GSWIP_MII_PCDU_RXDLY_MASK	GENMASK(9, 7)
120
121/* GSWIP Core Registers */
122#define GSWIP_SWRES			0x000
123#define  GSWIP_SWRES_R1			BIT(1)	/* GSWIP Software reset */
124#define  GSWIP_SWRES_R0			BIT(0)	/* GSWIP Hardware reset */
125#define GSWIP_VERSION			0x013
126#define  GSWIP_VERSION_REV_SHIFT	0
127#define  GSWIP_VERSION_REV_MASK		GENMASK(7, 0)
128#define  GSWIP_VERSION_MOD_SHIFT	8
129#define  GSWIP_VERSION_MOD_MASK		GENMASK(15, 8)
130#define   GSWIP_VERSION_2_0		0x100
131#define   GSWIP_VERSION_2_1		0x021
132#define   GSWIP_VERSION_2_2		0x122
133#define   GSWIP_VERSION_2_2_ETC		0x022
134
135#define GSWIP_BM_RAM_VAL(x)		(0x043 - (x))
136#define GSWIP_BM_RAM_ADDR		0x044
137#define GSWIP_BM_RAM_CTRL		0x045
138#define  GSWIP_BM_RAM_CTRL_BAS		BIT(15)
139#define  GSWIP_BM_RAM_CTRL_OPMOD	BIT(5)
140#define  GSWIP_BM_RAM_CTRL_ADDR_MASK	GENMASK(4, 0)
141#define GSWIP_BM_QUEUE_GCTRL		0x04A
142#define  GSWIP_BM_QUEUE_GCTRL_GL_MOD	BIT(10)
143/* buffer management Port Configuration Register */
144#define GSWIP_BM_PCFGp(p)		(0x080 + ((p) * 2))
145#define  GSWIP_BM_PCFG_CNTEN		BIT(0)	/* RMON Counter Enable */
146#define  GSWIP_BM_PCFG_IGCNT		BIT(1)	/* Ingres Special Tag RMON count */
147/* buffer management Port Control Register */
148#define GSWIP_BM_RMON_CTRLp(p)		(0x81 + ((p) * 2))
149#define  GSWIP_BM_CTRL_RMON_RAM1_RES	BIT(0)	/* Software Reset for RMON RAM 1 */
150#define  GSWIP_BM_CTRL_RMON_RAM2_RES	BIT(1)	/* Software Reset for RMON RAM 2 */
151
152/* PCE */
153#define GSWIP_PCE_TBL_KEY(x)		(0x447 - (x))
154#define GSWIP_PCE_TBL_MASK		0x448
155#define GSWIP_PCE_TBL_VAL(x)		(0x44D - (x))
156#define GSWIP_PCE_TBL_ADDR		0x44E
157#define GSWIP_PCE_TBL_CTRL		0x44F
158#define  GSWIP_PCE_TBL_CTRL_BAS		BIT(15)
159#define  GSWIP_PCE_TBL_CTRL_TYPE	BIT(13)
160#define  GSWIP_PCE_TBL_CTRL_VLD		BIT(12)
161#define  GSWIP_PCE_TBL_CTRL_KEYFORM	BIT(11)
162#define  GSWIP_PCE_TBL_CTRL_GMAP_MASK	GENMASK(10, 7)
163#define  GSWIP_PCE_TBL_CTRL_OPMOD_MASK	GENMASK(6, 5)
164#define  GSWIP_PCE_TBL_CTRL_OPMOD_ADRD	0x00
165#define  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR	0x20
166#define  GSWIP_PCE_TBL_CTRL_OPMOD_KSRD	0x40
167#define  GSWIP_PCE_TBL_CTRL_OPMOD_KSWR	0x60
168#define  GSWIP_PCE_TBL_CTRL_ADDR_MASK	GENMASK(4, 0)
169#define GSWIP_PCE_PMAP1			0x453	/* Monitoring port map */
170#define GSWIP_PCE_PMAP2			0x454	/* Default Multicast port map */
171#define GSWIP_PCE_PMAP3			0x455	/* Default Unknown Unicast port map */
172#define GSWIP_PCE_GCTRL_0		0x456
173#define  GSWIP_PCE_GCTRL_0_MTFL		BIT(0)  /* MAC Table Flushing */
174#define  GSWIP_PCE_GCTRL_0_MC_VALID	BIT(3)
175#define  GSWIP_PCE_GCTRL_0_VLAN		BIT(14) /* VLAN aware Switching */
176#define GSWIP_PCE_GCTRL_1		0x457
177#define  GSWIP_PCE_GCTRL_1_MAC_GLOCK	BIT(2)	/* MAC Address table lock */
178#define  GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD	BIT(3) /* Mac address table lock forwarding mode */
179#define GSWIP_PCE_PCTRL_0p(p)		(0x480 + ((p) * 0xA))
180#define  GSWIP_PCE_PCTRL_0_TVM		BIT(5)	/* Transparent VLAN mode */
181#define  GSWIP_PCE_PCTRL_0_VREP		BIT(6)	/* VLAN Replace Mode */
182#define  GSWIP_PCE_PCTRL_0_INGRESS	BIT(11)	/* Accept special tag in ingress */
183#define  GSWIP_PCE_PCTRL_0_PSTATE_LISTEN	0x0
184#define  GSWIP_PCE_PCTRL_0_PSTATE_RX		0x1
185#define  GSWIP_PCE_PCTRL_0_PSTATE_TX		0x2
186#define  GSWIP_PCE_PCTRL_0_PSTATE_LEARNING	0x3
187#define  GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING	0x7
188#define  GSWIP_PCE_PCTRL_0_PSTATE_MASK	GENMASK(2, 0)
189#define GSWIP_PCE_VCTRL(p)		(0x485 + ((p) * 0xA))
190#define  GSWIP_PCE_VCTRL_UVR		BIT(0)	/* Unknown VLAN Rule */
191#define  GSWIP_PCE_VCTRL_VIMR		BIT(3)	/* VLAN Ingress Member violation rule */
192#define  GSWIP_PCE_VCTRL_VEMR		BIT(4)	/* VLAN Egress Member violation rule */
193#define  GSWIP_PCE_VCTRL_VSR		BIT(5)	/* VLAN Security */
194#define  GSWIP_PCE_VCTRL_VID0		BIT(6)	/* Priority Tagged Rule */
195#define GSWIP_PCE_DEFPVID(p)		(0x486 + ((p) * 0xA))
196
197#define GSWIP_MAC_FLEN			0x8C5
198#define GSWIP_MAC_CTRL_0p(p)		(0x903 + ((p) * 0xC))
199#define  GSWIP_MAC_CTRL_0_PADEN		BIT(8)
200#define  GSWIP_MAC_CTRL_0_FCS_EN	BIT(7)
201#define  GSWIP_MAC_CTRL_0_FCON_MASK	0x0070
202#define  GSWIP_MAC_CTRL_0_FCON_AUTO	0x0000
203#define  GSWIP_MAC_CTRL_0_FCON_RX	0x0010
204#define  GSWIP_MAC_CTRL_0_FCON_TX	0x0020
205#define  GSWIP_MAC_CTRL_0_FCON_RXTX	0x0030
206#define  GSWIP_MAC_CTRL_0_FCON_NONE	0x0040
207#define  GSWIP_MAC_CTRL_0_FDUP_MASK	0x000C
208#define  GSWIP_MAC_CTRL_0_FDUP_AUTO	0x0000
209#define  GSWIP_MAC_CTRL_0_FDUP_EN	0x0004
210#define  GSWIP_MAC_CTRL_0_FDUP_DIS	0x000C
211#define  GSWIP_MAC_CTRL_0_GMII_MASK	0x0003
212#define  GSWIP_MAC_CTRL_0_GMII_AUTO	0x0000
213#define  GSWIP_MAC_CTRL_0_GMII_MII	0x0001
214#define  GSWIP_MAC_CTRL_0_GMII_RGMII	0x0002
215#define GSWIP_MAC_CTRL_2p(p)		(0x905 + ((p) * 0xC))
216#define GSWIP_MAC_CTRL_2_LCHKL		BIT(2) /* Frame Length Check Long Enable */
217#define GSWIP_MAC_CTRL_2_MLEN		BIT(3) /* Maximum Untagged Frame Lnegth */
218
219/* Ethernet Switch Fetch DMA Port Control Register */
220#define GSWIP_FDMA_PCTRLp(p)		(0xA80 + ((p) * 0x6))
221#define  GSWIP_FDMA_PCTRL_EN		BIT(0)	/* FDMA Port Enable */
222#define  GSWIP_FDMA_PCTRL_STEN		BIT(1)	/* Special Tag Insertion Enable */
223#define  GSWIP_FDMA_PCTRL_VLANMOD_MASK	GENMASK(4, 3)	/* VLAN Modification Control */
224#define  GSWIP_FDMA_PCTRL_VLANMOD_SHIFT	3	/* VLAN Modification Control */
225#define  GSWIP_FDMA_PCTRL_VLANMOD_DIS	(0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
226#define  GSWIP_FDMA_PCTRL_VLANMOD_PRIO	(0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
227#define  GSWIP_FDMA_PCTRL_VLANMOD_ID	(0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
228#define  GSWIP_FDMA_PCTRL_VLANMOD_BOTH	(0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
229
230/* Ethernet Switch Store DMA Port Control Register */
231#define GSWIP_SDMA_PCTRLp(p)		(0xBC0 + ((p) * 0x6))
232#define  GSWIP_SDMA_PCTRL_EN		BIT(0)	/* SDMA Port Enable */
233#define  GSWIP_SDMA_PCTRL_FCEN		BIT(1)	/* Flow Control Enable */
234#define  GSWIP_SDMA_PCTRL_PAUFWD	BIT(3)	/* Pause Frame Forwarding */
235
236#define GSWIP_TABLE_ACTIVE_VLAN		0x01
237#define GSWIP_TABLE_VLAN_MAPPING	0x02
238#define GSWIP_TABLE_MAC_BRIDGE		0x0b
239#define  GSWIP_TABLE_MAC_BRIDGE_STATIC	0x01	/* Static not, aging entry */
240
241#define XRX200_GPHY_FW_ALIGN	(16 * 1024)
242
243/* Maximum packet size supported by the switch. In theory this should be 10240,
244 * but long packets currently cause lock-ups with an MTU of over 2526. Medium
245 * packets are sometimes dropped (e.g. TCP over 2477, UDP over 2516-2519, ICMP
246 * over 2526), hence an MTU value of 2400 seems safe. This issue only affects
247 * packet reception. This is probably caused by the PPA engine, which is on the
248 * RX part of the device. Packet transmission works properly up to 10240.
249 */
250#define GSWIP_MAX_PACKET_LENGTH	2400
251
252struct gswip_hw_info {
253	int max_ports;
254	int cpu_port;
255	const struct dsa_switch_ops *ops;
256};
257
258struct xway_gphy_match_data {
259	char *fe_firmware_name;
260	char *ge_firmware_name;
261};
262
263struct gswip_gphy_fw {
264	struct clk *clk_gate;
265	struct reset_control *reset;
266	u32 fw_addr_offset;
267	char *fw_name;
268};
269
270struct gswip_vlan {
271	struct net_device *bridge;
272	u16 vid;
273	u8 fid;
274};
275
276struct gswip_priv {
277	__iomem void *gswip;
278	__iomem void *mdio;
279	__iomem void *mii;
280	const struct gswip_hw_info *hw_info;
281	const struct xway_gphy_match_data *gphy_fw_name_cfg;
282	struct dsa_switch *ds;
283	struct device *dev;
284	struct regmap *rcu_regmap;
285	struct gswip_vlan vlans[64];
286	int num_gphy_fw;
287	struct gswip_gphy_fw *gphy_fw;
288	u32 port_vlan_filter;
289	struct mutex pce_table_lock;
290};
291
292struct gswip_pce_table_entry {
293	u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
294	u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
295	u16 key[8];
296	u16 val[5];
297	u16 mask;
298	u8 gmap;
299	bool type;
300	bool valid;
301	bool key_mode;
302};
303
304struct gswip_rmon_cnt_desc {
305	unsigned int size;
306	unsigned int offset;
307	const char *name;
308};
309
310#define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
311
312static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
313	/** Receive Packet Count (only packets that are accepted and not discarded). */
314	MIB_DESC(1, 0x1F, "RxGoodPkts"),
315	MIB_DESC(1, 0x23, "RxUnicastPkts"),
316	MIB_DESC(1, 0x22, "RxMulticastPkts"),
317	MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
318	MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
319	MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
320	MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
321	MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
322	MIB_DESC(1, 0x20, "RxGoodPausePkts"),
323	MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
324	MIB_DESC(1, 0x12, "Rx64BytePkts"),
325	MIB_DESC(1, 0x13, "Rx127BytePkts"),
326	MIB_DESC(1, 0x14, "Rx255BytePkts"),
327	MIB_DESC(1, 0x15, "Rx511BytePkts"),
328	MIB_DESC(1, 0x16, "Rx1023BytePkts"),
329	/** Receive Size 1024-1522 (or more, if configured) Packet Count. */
330	MIB_DESC(1, 0x17, "RxMaxBytePkts"),
331	MIB_DESC(1, 0x18, "RxDroppedPkts"),
332	MIB_DESC(1, 0x19, "RxFilteredPkts"),
333	MIB_DESC(2, 0x24, "RxGoodBytes"),
334	MIB_DESC(2, 0x26, "RxBadBytes"),
335	MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
336	MIB_DESC(1, 0x0C, "TxGoodPkts"),
337	MIB_DESC(1, 0x06, "TxUnicastPkts"),
338	MIB_DESC(1, 0x07, "TxMulticastPkts"),
339	MIB_DESC(1, 0x00, "Tx64BytePkts"),
340	MIB_DESC(1, 0x01, "Tx127BytePkts"),
341	MIB_DESC(1, 0x02, "Tx255BytePkts"),
342	MIB_DESC(1, 0x03, "Tx511BytePkts"),
343	MIB_DESC(1, 0x04, "Tx1023BytePkts"),
344	/** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
345	MIB_DESC(1, 0x05, "TxMaxBytePkts"),
346	MIB_DESC(1, 0x08, "TxSingleCollCount"),
347	MIB_DESC(1, 0x09, "TxMultCollCount"),
348	MIB_DESC(1, 0x0A, "TxLateCollCount"),
349	MIB_DESC(1, 0x0B, "TxExcessCollCount"),
350	MIB_DESC(1, 0x0D, "TxPauseCount"),
351	MIB_DESC(1, 0x10, "TxDroppedPkts"),
352	MIB_DESC(2, 0x0E, "TxGoodBytes"),
353};
354
355static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
356{
357	return __raw_readl(priv->gswip + (offset * 4));
358}
359
360static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
361{
362	__raw_writel(val, priv->gswip + (offset * 4));
363}
364
365static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
366			      u32 offset)
367{
368	u32 val = gswip_switch_r(priv, offset);
369
370	val &= ~(clear);
371	val |= set;
372	gswip_switch_w(priv, val, offset);
373}
374
375static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
376				  u32 cleared)
377{
378	u32 val;
379
380	return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
381				  (val & cleared) == 0, 20, 50000);
382}
383
384static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
385{
386	return __raw_readl(priv->mdio + (offset * 4));
387}
388
389static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
390{
391	__raw_writel(val, priv->mdio + (offset * 4));
392}
393
394static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
395			    u32 offset)
396{
397	u32 val = gswip_mdio_r(priv, offset);
398
399	val &= ~(clear);
400	val |= set;
401	gswip_mdio_w(priv, val, offset);
402}
403
404static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
405{
406	return __raw_readl(priv->mii + (offset * 4));
407}
408
409static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
410{
411	__raw_writel(val, priv->mii + (offset * 4));
412}
413
414static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
415			   u32 offset)
416{
417	u32 val = gswip_mii_r(priv, offset);
418
419	val &= ~(clear);
420	val |= set;
421	gswip_mii_w(priv, val, offset);
422}
423
424static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
425			       int port)
426{
427	/* There's no MII_CFG register for the CPU port */
428	if (!dsa_is_cpu_port(priv->ds, port))
429		gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(port));
430}
431
432static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
433				int port)
434{
435	switch (port) {
436	case 0:
437		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
438		break;
439	case 1:
440		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
441		break;
442	case 5:
443		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
444		break;
445	}
446}
447
448static int gswip_mdio_poll(struct gswip_priv *priv)
449{
450	int cnt = 100;
451
452	while (likely(cnt--)) {
453		u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
454
455		if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
456			return 0;
457		usleep_range(20, 40);
458	}
459
460	return -ETIMEDOUT;
461}
462
463static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
464{
465	struct gswip_priv *priv = bus->priv;
466	int err;
467
468	err = gswip_mdio_poll(priv);
469	if (err) {
470		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
471		return err;
472	}
473
474	gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
475	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
476		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
477		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
478		GSWIP_MDIO_CTRL);
479
480	return 0;
481}
482
483static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
484{
485	struct gswip_priv *priv = bus->priv;
486	int err;
487
488	err = gswip_mdio_poll(priv);
489	if (err) {
490		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
491		return err;
492	}
493
494	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
495		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
496		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
497		GSWIP_MDIO_CTRL);
498
499	err = gswip_mdio_poll(priv);
500	if (err) {
501		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
502		return err;
503	}
504
505	return gswip_mdio_r(priv, GSWIP_MDIO_READ);
506}
507
508static int gswip_mdio(struct gswip_priv *priv)
509{
510	struct device_node *mdio_np, *switch_np = priv->dev->of_node;
511	struct device *dev = priv->dev;
512	struct mii_bus *bus;
513	int err = 0;
514
515	mdio_np = of_get_compatible_child(switch_np, "lantiq,xrx200-mdio");
516	if (!of_device_is_available(mdio_np))
517		goto out_put_node;
518
519	bus = devm_mdiobus_alloc(dev);
520	if (!bus) {
521		err = -ENOMEM;
522		goto out_put_node;
523	}
524
525	bus->priv = priv;
526	bus->read = gswip_mdio_rd;
527	bus->write = gswip_mdio_wr;
528	bus->name = "lantiq,xrx200-mdio";
529	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mii", dev_name(priv->dev));
530	bus->parent = priv->dev;
531
532	err = devm_of_mdiobus_register(dev, bus, mdio_np);
533
534out_put_node:
535	of_node_put(mdio_np);
536
537	return err;
538}
539
540static int gswip_pce_table_entry_read(struct gswip_priv *priv,
541				      struct gswip_pce_table_entry *tbl)
542{
543	int i;
544	int err;
545	u16 crtl;
546	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
547					GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
548
549	mutex_lock(&priv->pce_table_lock);
550
551	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
552				     GSWIP_PCE_TBL_CTRL_BAS);
553	if (err) {
554		mutex_unlock(&priv->pce_table_lock);
555		return err;
556	}
557
558	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
559	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
560				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
561			  tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
562			  GSWIP_PCE_TBL_CTRL);
563
564	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
565				     GSWIP_PCE_TBL_CTRL_BAS);
566	if (err) {
567		mutex_unlock(&priv->pce_table_lock);
568		return err;
569	}
570
571	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
572		tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
573
574	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
575		tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
576
577	tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
578
579	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
580
581	tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
582	tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
583	tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
584
585	mutex_unlock(&priv->pce_table_lock);
586
587	return 0;
588}
589
590static int gswip_pce_table_entry_write(struct gswip_priv *priv,
591				       struct gswip_pce_table_entry *tbl)
592{
593	int i;
594	int err;
595	u16 crtl;
596	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
597					GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
598
599	mutex_lock(&priv->pce_table_lock);
600
601	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
602				     GSWIP_PCE_TBL_CTRL_BAS);
603	if (err) {
604		mutex_unlock(&priv->pce_table_lock);
605		return err;
606	}
607
608	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
609	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
610				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
611			  tbl->table | addr_mode,
612			  GSWIP_PCE_TBL_CTRL);
613
614	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
615		gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
616
617	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
618		gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
619
620	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
621				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
622			  tbl->table | addr_mode,
623			  GSWIP_PCE_TBL_CTRL);
624
625	gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
626
627	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
628	crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
629		  GSWIP_PCE_TBL_CTRL_GMAP_MASK);
630	if (tbl->type)
631		crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
632	if (tbl->valid)
633		crtl |= GSWIP_PCE_TBL_CTRL_VLD;
634	crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
635	crtl |= GSWIP_PCE_TBL_CTRL_BAS;
636	gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
637
638	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
639				     GSWIP_PCE_TBL_CTRL_BAS);
640
641	mutex_unlock(&priv->pce_table_lock);
642
643	return err;
644}
645
646/* Add the LAN port into a bridge with the CPU port by
647 * default. This prevents automatic forwarding of
648 * packages between the LAN ports when no explicit
649 * bridge is configured.
650 */
651static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
652{
653	struct gswip_pce_table_entry vlan_active = {0,};
654	struct gswip_pce_table_entry vlan_mapping = {0,};
655	unsigned int cpu_port = priv->hw_info->cpu_port;
656	unsigned int max_ports = priv->hw_info->max_ports;
657	int err;
658
659	if (port >= max_ports) {
660		dev_err(priv->dev, "single port for %i supported\n", port);
661		return -EIO;
662	}
663
664	vlan_active.index = port + 1;
665	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
666	vlan_active.key[0] = 0; /* vid */
667	vlan_active.val[0] = port + 1 /* fid */;
668	vlan_active.valid = add;
669	err = gswip_pce_table_entry_write(priv, &vlan_active);
670	if (err) {
671		dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
672		return err;
673	}
674
675	if (!add)
676		return 0;
677
678	vlan_mapping.index = port + 1;
679	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
680	vlan_mapping.val[0] = 0 /* vid */;
681	vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
682	vlan_mapping.val[2] = 0;
683	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
684	if (err) {
685		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
686		return err;
687	}
688
689	return 0;
690}
691
692static int gswip_port_enable(struct dsa_switch *ds, int port,
693			     struct phy_device *phydev)
694{
695	struct gswip_priv *priv = ds->priv;
696	int err;
697
698	if (!dsa_is_user_port(ds, port))
699		return 0;
700
701	if (!dsa_is_cpu_port(ds, port)) {
702		err = gswip_add_single_port_br(priv, port, true);
703		if (err)
704			return err;
705	}
706
707	/* RMON Counter Enable for port */
708	gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
709
710	/* enable port fetch/store dma & VLAN Modification */
711	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
712				   GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
713			 GSWIP_FDMA_PCTRLp(port));
714	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
715			  GSWIP_SDMA_PCTRLp(port));
716
717	if (!dsa_is_cpu_port(ds, port)) {
718		u32 mdio_phy = 0;
719
720		if (phydev)
721			mdio_phy = phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK;
722
723		gswip_mdio_mask(priv, GSWIP_MDIO_PHY_ADDR_MASK, mdio_phy,
724				GSWIP_MDIO_PHYp(port));
725	}
726
727	return 0;
728}
729
730static void gswip_port_disable(struct dsa_switch *ds, int port)
731{
732	struct gswip_priv *priv = ds->priv;
733
734	if (!dsa_is_user_port(ds, port))
735		return;
736
737	gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
738			  GSWIP_FDMA_PCTRLp(port));
739	gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
740			  GSWIP_SDMA_PCTRLp(port));
741}
742
743static int gswip_pce_load_microcode(struct gswip_priv *priv)
744{
745	int i;
746	int err;
747
748	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
749				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
750			  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
751	gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
752
753	for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
754		gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
755		gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
756			       GSWIP_PCE_TBL_VAL(0));
757		gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
758			       GSWIP_PCE_TBL_VAL(1));
759		gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
760			       GSWIP_PCE_TBL_VAL(2));
761		gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
762			       GSWIP_PCE_TBL_VAL(3));
763
764		/* start the table access: */
765		gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
766				  GSWIP_PCE_TBL_CTRL);
767		err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
768					     GSWIP_PCE_TBL_CTRL_BAS);
769		if (err)
770			return err;
771	}
772
773	/* tell the switch that the microcode is loaded */
774	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
775			  GSWIP_PCE_GCTRL_0);
776
777	return 0;
778}
779
780static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
781				     bool vlan_filtering,
782				     struct netlink_ext_ack *extack)
783{
784	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
785	struct gswip_priv *priv = ds->priv;
786
787	/* Do not allow changing the VLAN filtering options while in bridge */
788	if (bridge && !!(priv->port_vlan_filter & BIT(port)) != vlan_filtering) {
789		NL_SET_ERR_MSG_MOD(extack,
790				   "Dynamic toggling of vlan_filtering not supported");
791		return -EIO;
792	}
793
794	if (vlan_filtering) {
795		/* Use port based VLAN tag */
796		gswip_switch_mask(priv,
797				  GSWIP_PCE_VCTRL_VSR,
798				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
799				  GSWIP_PCE_VCTRL_VEMR,
800				  GSWIP_PCE_VCTRL(port));
801		gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
802				  GSWIP_PCE_PCTRL_0p(port));
803	} else {
804		/* Use port based VLAN tag */
805		gswip_switch_mask(priv,
806				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
807				  GSWIP_PCE_VCTRL_VEMR,
808				  GSWIP_PCE_VCTRL_VSR,
809				  GSWIP_PCE_VCTRL(port));
810		gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
811				  GSWIP_PCE_PCTRL_0p(port));
812	}
813
814	return 0;
815}
816
817static int gswip_setup(struct dsa_switch *ds)
818{
819	struct gswip_priv *priv = ds->priv;
820	unsigned int cpu_port = priv->hw_info->cpu_port;
821	int i;
822	int err;
823
824	gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
825	usleep_range(5000, 10000);
826	gswip_switch_w(priv, 0, GSWIP_SWRES);
827
828	/* disable port fetch/store dma on all ports */
829	for (i = 0; i < priv->hw_info->max_ports; i++) {
830		gswip_port_disable(ds, i);
831		gswip_port_vlan_filtering(ds, i, false, NULL);
832	}
833
834	/* enable Switch */
835	gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
836
837	err = gswip_pce_load_microcode(priv);
838	if (err) {
839		dev_err(priv->dev, "writing PCE microcode failed, %i", err);
840		return err;
841	}
842
843	/* Default unknown Broadcast/Multicast/Unicast port maps */
844	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
845	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
846	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
847
848	/* Deactivate MDIO PHY auto polling. Some PHYs as the AR8030 have an
849	 * interoperability problem with this auto polling mechanism because
850	 * their status registers think that the link is in a different state
851	 * than it actually is. For the AR8030 it has the BMSR_ESTATEN bit set
852	 * as well as ESTATUS_1000_TFULL and ESTATUS_1000_XFULL. This makes the
853	 * auto polling state machine consider the link being negotiated with
854	 * 1Gbit/s. Since the PHY itself is a Fast Ethernet RMII PHY this leads
855	 * to the switch port being completely dead (RX and TX are both not
856	 * working).
857	 * Also with various other PHY / port combinations (PHY11G GPHY, PHY22F
858	 * GPHY, external RGMII PEF7071/7072) any traffic would stop. Sometimes
859	 * it would work fine for a few minutes to hours and then stop, on
860	 * other device it would no traffic could be sent or received at all.
861	 * Testing shows that when PHY auto polling is disabled these problems
862	 * go away.
863	 */
864	gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
865
866	/* Configure the MDIO Clock 2.5 MHz */
867	gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
868
869	/* Disable the xMII interface and clear it's isolation bit */
870	for (i = 0; i < priv->hw_info->max_ports; i++)
871		gswip_mii_mask_cfg(priv,
872				   GSWIP_MII_CFG_EN | GSWIP_MII_CFG_ISOLATE,
873				   0, i);
874
875	/* enable special tag insertion on cpu port */
876	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
877			  GSWIP_FDMA_PCTRLp(cpu_port));
878
879	/* accept special tag in ingress direction */
880	gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
881			  GSWIP_PCE_PCTRL_0p(cpu_port));
882
883	gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
884			  GSWIP_BM_QUEUE_GCTRL);
885
886	/* VLAN aware Switching */
887	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
888
889	/* Flush MAC Table */
890	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
891
892	err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
893				     GSWIP_PCE_GCTRL_0_MTFL);
894	if (err) {
895		dev_err(priv->dev, "MAC flushing didn't finish\n");
896		return err;
897	}
898
899	ds->mtu_enforcement_ingress = true;
900
901	gswip_port_enable(ds, cpu_port, NULL);
902
903	ds->configure_vlan_while_not_filtering = false;
904
905	return 0;
906}
907
908static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
909						    int port,
910						    enum dsa_tag_protocol mp)
911{
912	return DSA_TAG_PROTO_GSWIP;
913}
914
915static int gswip_vlan_active_create(struct gswip_priv *priv,
916				    struct net_device *bridge,
917				    int fid, u16 vid)
918{
919	struct gswip_pce_table_entry vlan_active = {0,};
920	unsigned int max_ports = priv->hw_info->max_ports;
921	int idx = -1;
922	int err;
923	int i;
924
925	/* Look for a free slot */
926	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
927		if (!priv->vlans[i].bridge) {
928			idx = i;
929			break;
930		}
931	}
932
933	if (idx == -1)
934		return -ENOSPC;
935
936	if (fid == -1)
937		fid = idx;
938
939	vlan_active.index = idx;
940	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
941	vlan_active.key[0] = vid;
942	vlan_active.val[0] = fid;
943	vlan_active.valid = true;
944
945	err = gswip_pce_table_entry_write(priv, &vlan_active);
946	if (err) {
947		dev_err(priv->dev, "failed to write active VLAN: %d\n",	err);
948		return err;
949	}
950
951	priv->vlans[idx].bridge = bridge;
952	priv->vlans[idx].vid = vid;
953	priv->vlans[idx].fid = fid;
954
955	return idx;
956}
957
958static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
959{
960	struct gswip_pce_table_entry vlan_active = {0,};
961	int err;
962
963	vlan_active.index = idx;
964	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
965	vlan_active.valid = false;
966	err = gswip_pce_table_entry_write(priv, &vlan_active);
967	if (err)
968		dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
969	priv->vlans[idx].bridge = NULL;
970
971	return err;
972}
973
974static int gswip_vlan_add_unaware(struct gswip_priv *priv,
975				  struct net_device *bridge, int port)
976{
977	struct gswip_pce_table_entry vlan_mapping = {0,};
978	unsigned int max_ports = priv->hw_info->max_ports;
979	unsigned int cpu_port = priv->hw_info->cpu_port;
980	bool active_vlan_created = false;
981	int idx = -1;
982	int i;
983	int err;
984
985	/* Check if there is already a page for this bridge */
986	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
987		if (priv->vlans[i].bridge == bridge) {
988			idx = i;
989			break;
990		}
991	}
992
993	/* If this bridge is not programmed yet, add a Active VLAN table
994	 * entry in a free slot and prepare the VLAN mapping table entry.
995	 */
996	if (idx == -1) {
997		idx = gswip_vlan_active_create(priv, bridge, -1, 0);
998		if (idx < 0)
999			return idx;
1000		active_vlan_created = true;
1001
1002		vlan_mapping.index = idx;
1003		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1004		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
1005		vlan_mapping.val[0] = 0;
1006	} else {
1007		/* Read the existing VLAN mapping entry from the switch */
1008		vlan_mapping.index = idx;
1009		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1010		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1011		if (err) {
1012			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1013				err);
1014			return err;
1015		}
1016	}
1017
1018	/* Update the VLAN mapping entry and write it to the switch */
1019	vlan_mapping.val[1] |= BIT(cpu_port);
1020	vlan_mapping.val[1] |= BIT(port);
1021	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1022	if (err) {
1023		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1024		/* In case an Active VLAN was creaetd delete it again */
1025		if (active_vlan_created)
1026			gswip_vlan_active_remove(priv, idx);
1027		return err;
1028	}
1029
1030	gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1031	return 0;
1032}
1033
1034static int gswip_vlan_add_aware(struct gswip_priv *priv,
1035				struct net_device *bridge, int port,
1036				u16 vid, bool untagged,
1037				bool pvid)
1038{
1039	struct gswip_pce_table_entry vlan_mapping = {0,};
1040	unsigned int max_ports = priv->hw_info->max_ports;
1041	unsigned int cpu_port = priv->hw_info->cpu_port;
1042	bool active_vlan_created = false;
1043	int idx = -1;
1044	int fid = -1;
1045	int i;
1046	int err;
1047
1048	/* Check if there is already a page for this bridge */
1049	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1050		if (priv->vlans[i].bridge == bridge) {
1051			if (fid != -1 && fid != priv->vlans[i].fid)
1052				dev_err(priv->dev, "one bridge with multiple flow ids\n");
1053			fid = priv->vlans[i].fid;
1054			if (priv->vlans[i].vid == vid) {
1055				idx = i;
1056				break;
1057			}
1058		}
1059	}
1060
1061	/* If this bridge is not programmed yet, add a Active VLAN table
1062	 * entry in a free slot and prepare the VLAN mapping table entry.
1063	 */
1064	if (idx == -1) {
1065		idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1066		if (idx < 0)
1067			return idx;
1068		active_vlan_created = true;
1069
1070		vlan_mapping.index = idx;
1071		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1072		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
1073		vlan_mapping.val[0] = vid;
1074	} else {
1075		/* Read the existing VLAN mapping entry from the switch */
1076		vlan_mapping.index = idx;
1077		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1078		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1079		if (err) {
1080			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1081				err);
1082			return err;
1083		}
1084	}
1085
1086	vlan_mapping.val[0] = vid;
1087	/* Update the VLAN mapping entry and write it to the switch */
1088	vlan_mapping.val[1] |= BIT(cpu_port);
1089	vlan_mapping.val[2] |= BIT(cpu_port);
1090	vlan_mapping.val[1] |= BIT(port);
1091	if (untagged)
1092		vlan_mapping.val[2] &= ~BIT(port);
1093	else
1094		vlan_mapping.val[2] |= BIT(port);
1095	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1096	if (err) {
1097		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1098		/* In case an Active VLAN was creaetd delete it again */
1099		if (active_vlan_created)
1100			gswip_vlan_active_remove(priv, idx);
1101		return err;
1102	}
1103
1104	if (pvid)
1105		gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1106
1107	return 0;
1108}
1109
1110static int gswip_vlan_remove(struct gswip_priv *priv,
1111			     struct net_device *bridge, int port,
1112			     u16 vid, bool pvid, bool vlan_aware)
1113{
1114	struct gswip_pce_table_entry vlan_mapping = {0,};
1115	unsigned int max_ports = priv->hw_info->max_ports;
1116	unsigned int cpu_port = priv->hw_info->cpu_port;
1117	int idx = -1;
1118	int i;
1119	int err;
1120
1121	/* Check if there is already a page for this bridge */
1122	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1123		if (priv->vlans[i].bridge == bridge &&
1124		    (!vlan_aware || priv->vlans[i].vid == vid)) {
1125			idx = i;
1126			break;
1127		}
1128	}
1129
1130	if (idx == -1) {
1131		dev_err(priv->dev, "bridge to leave does not exists\n");
1132		return -ENOENT;
1133	}
1134
1135	vlan_mapping.index = idx;
1136	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1137	err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1138	if (err) {
1139		dev_err(priv->dev, "failed to read VLAN mapping: %d\n",	err);
1140		return err;
1141	}
1142
1143	vlan_mapping.val[1] &= ~BIT(port);
1144	vlan_mapping.val[2] &= ~BIT(port);
1145	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1146	if (err) {
1147		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1148		return err;
1149	}
1150
1151	/* In case all ports are removed from the bridge, remove the VLAN */
1152	if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1153		err = gswip_vlan_active_remove(priv, idx);
1154		if (err) {
1155			dev_err(priv->dev, "failed to write active VLAN: %d\n",
1156				err);
1157			return err;
1158		}
1159	}
1160
1161	/* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1162	if (pvid)
1163		gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1164
1165	return 0;
1166}
1167
1168static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1169				  struct dsa_bridge bridge,
1170				  bool *tx_fwd_offload,
1171				  struct netlink_ext_ack *extack)
1172{
1173	struct net_device *br = bridge.dev;
1174	struct gswip_priv *priv = ds->priv;
1175	int err;
1176
1177	/* When the bridge uses VLAN filtering we have to configure VLAN
1178	 * specific bridges. No bridge is configured here.
1179	 */
1180	if (!br_vlan_enabled(br)) {
1181		err = gswip_vlan_add_unaware(priv, br, port);
1182		if (err)
1183			return err;
1184		priv->port_vlan_filter &= ~BIT(port);
1185	} else {
1186		priv->port_vlan_filter |= BIT(port);
1187	}
1188	return gswip_add_single_port_br(priv, port, false);
1189}
1190
1191static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1192				    struct dsa_bridge bridge)
1193{
1194	struct net_device *br = bridge.dev;
1195	struct gswip_priv *priv = ds->priv;
1196
1197	gswip_add_single_port_br(priv, port, true);
1198
1199	/* When the bridge uses VLAN filtering we have to configure VLAN
1200	 * specific bridges. No bridge is configured here.
1201	 */
1202	if (!br_vlan_enabled(br))
1203		gswip_vlan_remove(priv, br, port, 0, true, false);
1204}
1205
1206static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1207				   const struct switchdev_obj_port_vlan *vlan,
1208				   struct netlink_ext_ack *extack)
1209{
1210	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1211	struct gswip_priv *priv = ds->priv;
1212	unsigned int max_ports = priv->hw_info->max_ports;
1213	int pos = max_ports;
1214	int i, idx = -1;
1215
1216	/* We only support VLAN filtering on bridges */
1217	if (!dsa_is_cpu_port(ds, port) && !bridge)
1218		return -EOPNOTSUPP;
1219
1220	/* Check if there is already a page for this VLAN */
1221	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1222		if (priv->vlans[i].bridge == bridge &&
1223		    priv->vlans[i].vid == vlan->vid) {
1224			idx = i;
1225			break;
1226		}
1227	}
1228
1229	/* If this VLAN is not programmed yet, we have to reserve
1230	 * one entry in the VLAN table. Make sure we start at the
1231	 * next position round.
1232	 */
1233	if (idx == -1) {
1234		/* Look for a free slot */
1235		for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1236			if (!priv->vlans[pos].bridge) {
1237				idx = pos;
1238				pos++;
1239				break;
1240			}
1241		}
1242
1243		if (idx == -1) {
1244			NL_SET_ERR_MSG_MOD(extack, "No slot in VLAN table");
1245			return -ENOSPC;
1246		}
1247	}
1248
1249	return 0;
1250}
1251
1252static int gswip_port_vlan_add(struct dsa_switch *ds, int port,
1253			       const struct switchdev_obj_port_vlan *vlan,
1254			       struct netlink_ext_ack *extack)
1255{
1256	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1257	struct gswip_priv *priv = ds->priv;
1258	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1259	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1260	int err;
1261
1262	err = gswip_port_vlan_prepare(ds, port, vlan, extack);
1263	if (err)
1264		return err;
1265
1266	/* We have to receive all packets on the CPU port and should not
1267	 * do any VLAN filtering here. This is also called with bridge
1268	 * NULL and then we do not know for which bridge to configure
1269	 * this.
1270	 */
1271	if (dsa_is_cpu_port(ds, port))
1272		return 0;
1273
1274	return gswip_vlan_add_aware(priv, bridge, port, vlan->vid,
1275				    untagged, pvid);
1276}
1277
1278static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1279			       const struct switchdev_obj_port_vlan *vlan)
1280{
1281	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1282	struct gswip_priv *priv = ds->priv;
1283	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1284
1285	/* We have to receive all packets on the CPU port and should not
1286	 * do any VLAN filtering here. This is also called with bridge
1287	 * NULL and then we do not know for which bridge to configure
1288	 * this.
1289	 */
1290	if (dsa_is_cpu_port(ds, port))
1291		return 0;
1292
1293	return gswip_vlan_remove(priv, bridge, port, vlan->vid, pvid, true);
1294}
1295
1296static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1297{
1298	struct gswip_priv *priv = ds->priv;
1299	struct gswip_pce_table_entry mac_bridge = {0,};
1300	int i;
1301	int err;
1302
1303	for (i = 0; i < 2048; i++) {
1304		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1305		mac_bridge.index = i;
1306
1307		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1308		if (err) {
1309			dev_err(priv->dev, "failed to read mac bridge: %d\n",
1310				err);
1311			return;
1312		}
1313
1314		if (!mac_bridge.valid)
1315			continue;
1316
1317		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1318			continue;
1319
1320		if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1321			continue;
1322
1323		mac_bridge.valid = false;
1324		err = gswip_pce_table_entry_write(priv, &mac_bridge);
1325		if (err) {
1326			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1327				err);
1328			return;
1329		}
1330	}
1331}
1332
1333static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1334{
1335	struct gswip_priv *priv = ds->priv;
1336	u32 stp_state;
1337
1338	switch (state) {
1339	case BR_STATE_DISABLED:
1340		gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1341				  GSWIP_SDMA_PCTRLp(port));
1342		return;
1343	case BR_STATE_BLOCKING:
1344	case BR_STATE_LISTENING:
1345		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1346		break;
1347	case BR_STATE_LEARNING:
1348		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1349		break;
1350	case BR_STATE_FORWARDING:
1351		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1352		break;
1353	default:
1354		dev_err(priv->dev, "invalid STP state: %d\n", state);
1355		return;
1356	}
1357
1358	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1359			  GSWIP_SDMA_PCTRLp(port));
1360	gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1361			  GSWIP_PCE_PCTRL_0p(port));
1362}
1363
1364static int gswip_port_fdb(struct dsa_switch *ds, int port,
1365			  const unsigned char *addr, u16 vid, bool add)
1366{
1367	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1368	struct gswip_priv *priv = ds->priv;
1369	struct gswip_pce_table_entry mac_bridge = {0,};
1370	unsigned int max_ports = priv->hw_info->max_ports;
1371	int fid = -1;
1372	int i;
1373	int err;
1374
1375	if (!bridge)
1376		return -EINVAL;
1377
1378	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1379		if (priv->vlans[i].bridge == bridge) {
1380			fid = priv->vlans[i].fid;
1381			break;
1382		}
1383	}
1384
1385	if (fid == -1) {
1386		dev_err(priv->dev, "Port not part of a bridge\n");
1387		return -EINVAL;
1388	}
1389
1390	mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1391	mac_bridge.key_mode = true;
1392	mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1393	mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1394	mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1395	mac_bridge.key[3] = fid;
1396	mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1397	mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1398	mac_bridge.valid = add;
1399
1400	err = gswip_pce_table_entry_write(priv, &mac_bridge);
1401	if (err)
1402		dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1403
1404	return err;
1405}
1406
1407static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1408			      const unsigned char *addr, u16 vid,
1409			      struct dsa_db db)
1410{
1411	return gswip_port_fdb(ds, port, addr, vid, true);
1412}
1413
1414static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1415			      const unsigned char *addr, u16 vid,
1416			      struct dsa_db db)
1417{
1418	return gswip_port_fdb(ds, port, addr, vid, false);
1419}
1420
1421static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1422			       dsa_fdb_dump_cb_t *cb, void *data)
1423{
1424	struct gswip_priv *priv = ds->priv;
1425	struct gswip_pce_table_entry mac_bridge = {0,};
1426	unsigned char addr[6];
1427	int i;
1428	int err;
1429
1430	for (i = 0; i < 2048; i++) {
1431		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1432		mac_bridge.index = i;
1433
1434		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1435		if (err) {
1436			dev_err(priv->dev,
1437				"failed to read mac bridge entry %d: %d\n",
1438				i, err);
1439			return err;
1440		}
1441
1442		if (!mac_bridge.valid)
1443			continue;
1444
1445		addr[5] = mac_bridge.key[0] & 0xff;
1446		addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1447		addr[3] = mac_bridge.key[1] & 0xff;
1448		addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1449		addr[1] = mac_bridge.key[2] & 0xff;
1450		addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1451		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1452			if (mac_bridge.val[0] & BIT(port)) {
1453				err = cb(addr, 0, true, data);
1454				if (err)
1455					return err;
1456			}
1457		} else {
1458			if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port) {
1459				err = cb(addr, 0, false, data);
1460				if (err)
1461					return err;
1462			}
1463		}
1464	}
1465	return 0;
1466}
1467
1468static int gswip_port_max_mtu(struct dsa_switch *ds, int port)
1469{
1470	/* Includes 8 bytes for special header. */
1471	return GSWIP_MAX_PACKET_LENGTH - VLAN_ETH_HLEN - ETH_FCS_LEN;
1472}
1473
1474static int gswip_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1475{
1476	struct gswip_priv *priv = ds->priv;
1477	int cpu_port = priv->hw_info->cpu_port;
1478
1479	/* CPU port always has maximum mtu of user ports, so use it to set
1480	 * switch frame size, including 8 byte special header.
1481	 */
1482	if (port == cpu_port) {
1483		new_mtu += 8;
1484		gswip_switch_w(priv, VLAN_ETH_HLEN + new_mtu + ETH_FCS_LEN,
1485			       GSWIP_MAC_FLEN);
1486	}
1487
1488	/* Enable MLEN for ports with non-standard MTUs, including the special
1489	 * header on the CPU port added above.
1490	 */
1491	if (new_mtu != ETH_DATA_LEN)
1492		gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
1493				  GSWIP_MAC_CTRL_2p(port));
1494	else
1495		gswip_switch_mask(priv, GSWIP_MAC_CTRL_2_MLEN, 0,
1496				  GSWIP_MAC_CTRL_2p(port));
1497
1498	return 0;
1499}
1500
1501static void gswip_xrx200_phylink_get_caps(struct dsa_switch *ds, int port,
1502					  struct phylink_config *config)
1503{
1504	switch (port) {
1505	case 0:
1506	case 1:
1507		phy_interface_set_rgmii(config->supported_interfaces);
1508		__set_bit(PHY_INTERFACE_MODE_MII,
1509			  config->supported_interfaces);
1510		__set_bit(PHY_INTERFACE_MODE_REVMII,
1511			  config->supported_interfaces);
1512		__set_bit(PHY_INTERFACE_MODE_RMII,
1513			  config->supported_interfaces);
1514		break;
1515
1516	case 2:
1517	case 3:
1518	case 4:
1519		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1520			  config->supported_interfaces);
1521		break;
1522
1523	case 5:
1524		phy_interface_set_rgmii(config->supported_interfaces);
1525		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1526			  config->supported_interfaces);
1527		break;
1528	}
1529
1530	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1531		MAC_10 | MAC_100 | MAC_1000;
1532}
1533
1534static void gswip_xrx300_phylink_get_caps(struct dsa_switch *ds, int port,
1535					  struct phylink_config *config)
1536{
1537	switch (port) {
1538	case 0:
1539		phy_interface_set_rgmii(config->supported_interfaces);
1540		__set_bit(PHY_INTERFACE_MODE_GMII,
1541			  config->supported_interfaces);
1542		__set_bit(PHY_INTERFACE_MODE_RMII,
1543			  config->supported_interfaces);
1544		break;
1545
1546	case 1:
1547	case 2:
1548	case 3:
1549	case 4:
1550		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1551			  config->supported_interfaces);
1552		break;
1553
1554	case 5:
1555		phy_interface_set_rgmii(config->supported_interfaces);
1556		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1557			  config->supported_interfaces);
1558		__set_bit(PHY_INTERFACE_MODE_RMII,
1559			  config->supported_interfaces);
1560		break;
1561	}
1562
1563	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1564		MAC_10 | MAC_100 | MAC_1000;
1565}
1566
1567static void gswip_port_set_link(struct gswip_priv *priv, int port, bool link)
1568{
1569	u32 mdio_phy;
1570
1571	if (link)
1572		mdio_phy = GSWIP_MDIO_PHY_LINK_UP;
1573	else
1574		mdio_phy = GSWIP_MDIO_PHY_LINK_DOWN;
1575
1576	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_MASK, mdio_phy,
1577			GSWIP_MDIO_PHYp(port));
1578}
1579
1580static void gswip_port_set_speed(struct gswip_priv *priv, int port, int speed,
1581				 phy_interface_t interface)
1582{
1583	u32 mdio_phy = 0, mii_cfg = 0, mac_ctrl_0 = 0;
1584
1585	switch (speed) {
1586	case SPEED_10:
1587		mdio_phy = GSWIP_MDIO_PHY_SPEED_M10;
1588
1589		if (interface == PHY_INTERFACE_MODE_RMII)
1590			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1591		else
1592			mii_cfg = GSWIP_MII_CFG_RATE_M2P5;
1593
1594		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1595		break;
1596
1597	case SPEED_100:
1598		mdio_phy = GSWIP_MDIO_PHY_SPEED_M100;
1599
1600		if (interface == PHY_INTERFACE_MODE_RMII)
1601			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1602		else
1603			mii_cfg = GSWIP_MII_CFG_RATE_M25;
1604
1605		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1606		break;
1607
1608	case SPEED_1000:
1609		mdio_phy = GSWIP_MDIO_PHY_SPEED_G1;
1610
1611		mii_cfg = GSWIP_MII_CFG_RATE_M125;
1612
1613		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_RGMII;
1614		break;
1615	}
1616
1617	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_SPEED_MASK, mdio_phy,
1618			GSWIP_MDIO_PHYp(port));
1619	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_RATE_MASK, mii_cfg, port);
1620	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_GMII_MASK, mac_ctrl_0,
1621			  GSWIP_MAC_CTRL_0p(port));
1622}
1623
1624static void gswip_port_set_duplex(struct gswip_priv *priv, int port, int duplex)
1625{
1626	u32 mac_ctrl_0, mdio_phy;
1627
1628	if (duplex == DUPLEX_FULL) {
1629		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_EN;
1630		mdio_phy = GSWIP_MDIO_PHY_FDUP_EN;
1631	} else {
1632		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_DIS;
1633		mdio_phy = GSWIP_MDIO_PHY_FDUP_DIS;
1634	}
1635
1636	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FDUP_MASK, mac_ctrl_0,
1637			  GSWIP_MAC_CTRL_0p(port));
1638	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_FDUP_MASK, mdio_phy,
1639			GSWIP_MDIO_PHYp(port));
1640}
1641
1642static void gswip_port_set_pause(struct gswip_priv *priv, int port,
1643				 bool tx_pause, bool rx_pause)
1644{
1645	u32 mac_ctrl_0, mdio_phy;
1646
1647	if (tx_pause && rx_pause) {
1648		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RXTX;
1649		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1650			   GSWIP_MDIO_PHY_FCONRX_EN;
1651	} else if (tx_pause) {
1652		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_TX;
1653		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1654			   GSWIP_MDIO_PHY_FCONRX_DIS;
1655	} else if (rx_pause) {
1656		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RX;
1657		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1658			   GSWIP_MDIO_PHY_FCONRX_EN;
1659	} else {
1660		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_NONE;
1661		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1662			   GSWIP_MDIO_PHY_FCONRX_DIS;
1663	}
1664
1665	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FCON_MASK,
1666			  mac_ctrl_0, GSWIP_MAC_CTRL_0p(port));
1667	gswip_mdio_mask(priv,
1668			GSWIP_MDIO_PHY_FCONTX_MASK |
1669			GSWIP_MDIO_PHY_FCONRX_MASK,
1670			mdio_phy, GSWIP_MDIO_PHYp(port));
1671}
1672
1673static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1674				     unsigned int mode,
1675				     const struct phylink_link_state *state)
1676{
1677	struct gswip_priv *priv = ds->priv;
1678	u32 miicfg = 0;
1679
1680	miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1681
1682	switch (state->interface) {
1683	case PHY_INTERFACE_MODE_MII:
1684	case PHY_INTERFACE_MODE_INTERNAL:
1685		miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1686		break;
1687	case PHY_INTERFACE_MODE_REVMII:
1688		miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1689		break;
1690	case PHY_INTERFACE_MODE_RMII:
1691		miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1692		break;
1693	case PHY_INTERFACE_MODE_RGMII:
1694	case PHY_INTERFACE_MODE_RGMII_ID:
1695	case PHY_INTERFACE_MODE_RGMII_RXID:
1696	case PHY_INTERFACE_MODE_RGMII_TXID:
1697		miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1698		break;
1699	case PHY_INTERFACE_MODE_GMII:
1700		miicfg |= GSWIP_MII_CFG_MODE_GMII;
1701		break;
1702	default:
1703		dev_err(ds->dev,
1704			"Unsupported interface: %d\n", state->interface);
1705		return;
1706	}
1707
1708	gswip_mii_mask_cfg(priv,
1709			   GSWIP_MII_CFG_MODE_MASK | GSWIP_MII_CFG_RMII_CLK |
1710			   GSWIP_MII_CFG_RGMII_IBS | GSWIP_MII_CFG_LDCLKDIS,
1711			   miicfg, port);
1712
1713	switch (state->interface) {
1714	case PHY_INTERFACE_MODE_RGMII_ID:
1715		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1716					  GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1717		break;
1718	case PHY_INTERFACE_MODE_RGMII_RXID:
1719		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1720		break;
1721	case PHY_INTERFACE_MODE_RGMII_TXID:
1722		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1723		break;
1724	default:
1725		break;
1726	}
1727}
1728
1729static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1730					unsigned int mode,
1731					phy_interface_t interface)
1732{
1733	struct gswip_priv *priv = ds->priv;
1734
1735	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1736
1737	if (!dsa_is_cpu_port(ds, port))
1738		gswip_port_set_link(priv, port, false);
1739}
1740
1741static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1742				      unsigned int mode,
1743				      phy_interface_t interface,
1744				      struct phy_device *phydev,
1745				      int speed, int duplex,
1746				      bool tx_pause, bool rx_pause)
1747{
1748	struct gswip_priv *priv = ds->priv;
1749
1750	if (!dsa_is_cpu_port(ds, port)) {
1751		gswip_port_set_link(priv, port, true);
1752		gswip_port_set_speed(priv, port, speed, interface);
1753		gswip_port_set_duplex(priv, port, duplex);
1754		gswip_port_set_pause(priv, port, tx_pause, rx_pause);
1755	}
1756
1757	gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1758}
1759
1760static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1761			      uint8_t *data)
1762{
1763	int i;
1764
1765	if (stringset != ETH_SS_STATS)
1766		return;
1767
1768	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1769		ethtool_puts(&data, gswip_rmon_cnt[i].name);
1770}
1771
1772static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1773				    u32 index)
1774{
1775	u32 result;
1776	int err;
1777
1778	gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1779	gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1780				GSWIP_BM_RAM_CTRL_OPMOD,
1781			      table | GSWIP_BM_RAM_CTRL_BAS,
1782			      GSWIP_BM_RAM_CTRL);
1783
1784	err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1785				     GSWIP_BM_RAM_CTRL_BAS);
1786	if (err) {
1787		dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1788			table, index);
1789		return 0;
1790	}
1791
1792	result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1793	result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1794
1795	return result;
1796}
1797
1798static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1799				    uint64_t *data)
1800{
1801	struct gswip_priv *priv = ds->priv;
1802	const struct gswip_rmon_cnt_desc *rmon_cnt;
1803	int i;
1804	u64 high;
1805
1806	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1807		rmon_cnt = &gswip_rmon_cnt[i];
1808
1809		data[i] = gswip_bcm_ram_entry_read(priv, port,
1810						   rmon_cnt->offset);
1811		if (rmon_cnt->size == 2) {
1812			high = gswip_bcm_ram_entry_read(priv, port,
1813							rmon_cnt->offset + 1);
1814			data[i] |= high << 32;
1815		}
1816	}
1817}
1818
1819static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1820{
1821	if (sset != ETH_SS_STATS)
1822		return 0;
1823
1824	return ARRAY_SIZE(gswip_rmon_cnt);
1825}
1826
1827static const struct dsa_switch_ops gswip_xrx200_switch_ops = {
1828	.get_tag_protocol	= gswip_get_tag_protocol,
1829	.setup			= gswip_setup,
1830	.port_enable		= gswip_port_enable,
1831	.port_disable		= gswip_port_disable,
1832	.port_bridge_join	= gswip_port_bridge_join,
1833	.port_bridge_leave	= gswip_port_bridge_leave,
1834	.port_fast_age		= gswip_port_fast_age,
1835	.port_vlan_filtering	= gswip_port_vlan_filtering,
1836	.port_vlan_add		= gswip_port_vlan_add,
1837	.port_vlan_del		= gswip_port_vlan_del,
1838	.port_stp_state_set	= gswip_port_stp_state_set,
1839	.port_fdb_add		= gswip_port_fdb_add,
1840	.port_fdb_del		= gswip_port_fdb_del,
1841	.port_fdb_dump		= gswip_port_fdb_dump,
1842	.port_change_mtu	= gswip_port_change_mtu,
1843	.port_max_mtu		= gswip_port_max_mtu,
1844	.phylink_get_caps	= gswip_xrx200_phylink_get_caps,
1845	.phylink_mac_config	= gswip_phylink_mac_config,
1846	.phylink_mac_link_down	= gswip_phylink_mac_link_down,
1847	.phylink_mac_link_up	= gswip_phylink_mac_link_up,
1848	.get_strings		= gswip_get_strings,
1849	.get_ethtool_stats	= gswip_get_ethtool_stats,
1850	.get_sset_count		= gswip_get_sset_count,
1851};
1852
1853static const struct dsa_switch_ops gswip_xrx300_switch_ops = {
1854	.get_tag_protocol	= gswip_get_tag_protocol,
1855	.setup			= gswip_setup,
1856	.port_enable		= gswip_port_enable,
1857	.port_disable		= gswip_port_disable,
1858	.port_bridge_join	= gswip_port_bridge_join,
1859	.port_bridge_leave	= gswip_port_bridge_leave,
1860	.port_fast_age		= gswip_port_fast_age,
1861	.port_vlan_filtering	= gswip_port_vlan_filtering,
1862	.port_vlan_add		= gswip_port_vlan_add,
1863	.port_vlan_del		= gswip_port_vlan_del,
1864	.port_stp_state_set	= gswip_port_stp_state_set,
1865	.port_fdb_add		= gswip_port_fdb_add,
1866	.port_fdb_del		= gswip_port_fdb_del,
1867	.port_fdb_dump		= gswip_port_fdb_dump,
1868	.port_change_mtu	= gswip_port_change_mtu,
1869	.port_max_mtu		= gswip_port_max_mtu,
1870	.phylink_get_caps	= gswip_xrx300_phylink_get_caps,
1871	.phylink_mac_config	= gswip_phylink_mac_config,
1872	.phylink_mac_link_down	= gswip_phylink_mac_link_down,
1873	.phylink_mac_link_up	= gswip_phylink_mac_link_up,
1874	.get_strings		= gswip_get_strings,
1875	.get_ethtool_stats	= gswip_get_ethtool_stats,
1876	.get_sset_count		= gswip_get_sset_count,
1877};
1878
1879static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1880	.fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1881	.ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1882};
1883
1884static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1885	.fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1886	.ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1887};
1888
1889static const struct xway_gphy_match_data xrx300_gphy_data = {
1890	.fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1891	.ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1892};
1893
1894static const struct of_device_id xway_gphy_match[] __maybe_unused = {
1895	{ .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1896	{ .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1897	{ .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1898	{ .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1899	{ .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1900	{},
1901};
1902
1903static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1904{
1905	struct device *dev = priv->dev;
1906	const struct firmware *fw;
1907	void *fw_addr;
1908	dma_addr_t dma_addr;
1909	dma_addr_t dev_addr;
1910	size_t size;
1911	int ret;
1912
1913	ret = clk_prepare_enable(gphy_fw->clk_gate);
1914	if (ret)
1915		return ret;
1916
1917	reset_control_assert(gphy_fw->reset);
1918
1919	/* The vendor BSP uses a 200ms delay after asserting the reset line.
1920	 * Without this some users are observing that the PHY is not coming up
1921	 * on the MDIO bus.
1922	 */
1923	msleep(200);
1924
1925	ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1926	if (ret) {
1927		dev_err(dev, "failed to load firmware: %s, error: %i\n",
1928			gphy_fw->fw_name, ret);
1929		return ret;
1930	}
1931
1932	/* GPHY cores need the firmware code in a persistent and contiguous
1933	 * memory area with a 16 kB boundary aligned start address.
1934	 */
1935	size = fw->size + XRX200_GPHY_FW_ALIGN;
1936
1937	fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1938	if (fw_addr) {
1939		fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1940		dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1941		memcpy(fw_addr, fw->data, fw->size);
1942	} else {
1943		dev_err(dev, "failed to alloc firmware memory\n");
1944		release_firmware(fw);
1945		return -ENOMEM;
1946	}
1947
1948	release_firmware(fw);
1949
1950	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1951	if (ret)
1952		return ret;
1953
1954	reset_control_deassert(gphy_fw->reset);
1955
1956	return ret;
1957}
1958
1959static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1960			       struct gswip_gphy_fw *gphy_fw,
1961			       struct device_node *gphy_fw_np, int i)
1962{
1963	struct device *dev = priv->dev;
1964	u32 gphy_mode;
1965	int ret;
1966	char gphyname[10];
1967
1968	snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1969
1970	gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1971	if (IS_ERR(gphy_fw->clk_gate)) {
1972		dev_err(dev, "Failed to lookup gate clock\n");
1973		return PTR_ERR(gphy_fw->clk_gate);
1974	}
1975
1976	ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1977	if (ret)
1978		return ret;
1979
1980	ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1981	/* Default to GE mode */
1982	if (ret)
1983		gphy_mode = GPHY_MODE_GE;
1984
1985	switch (gphy_mode) {
1986	case GPHY_MODE_FE:
1987		gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1988		break;
1989	case GPHY_MODE_GE:
1990		gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1991		break;
1992	default:
1993		dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1994		return -EINVAL;
1995	}
1996
1997	gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1998	if (IS_ERR(gphy_fw->reset))
1999		return dev_err_probe(dev, PTR_ERR(gphy_fw->reset),
2000				     "Failed to lookup gphy reset\n");
2001
2002	return gswip_gphy_fw_load(priv, gphy_fw);
2003}
2004
2005static void gswip_gphy_fw_remove(struct gswip_priv *priv,
2006				 struct gswip_gphy_fw *gphy_fw)
2007{
2008	int ret;
2009
2010	/* check if the device was fully probed */
2011	if (!gphy_fw->fw_name)
2012		return;
2013
2014	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
2015	if (ret)
2016		dev_err(priv->dev, "can not reset GPHY FW pointer");
2017
2018	clk_disable_unprepare(gphy_fw->clk_gate);
2019
2020	reset_control_put(gphy_fw->reset);
2021}
2022
2023static int gswip_gphy_fw_list(struct gswip_priv *priv,
2024			      struct device_node *gphy_fw_list_np, u32 version)
2025{
2026	struct device *dev = priv->dev;
2027	struct device_node *gphy_fw_np;
2028	const struct of_device_id *match;
2029	int err;
2030	int i = 0;
2031
2032	/* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
2033	 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
2034	 * needs a different GPHY firmware.
2035	 */
2036	if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
2037		switch (version) {
2038		case GSWIP_VERSION_2_0:
2039			priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
2040			break;
2041		case GSWIP_VERSION_2_1:
2042			priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
2043			break;
2044		default:
2045			dev_err(dev, "unknown GSWIP version: 0x%x", version);
2046			return -ENOENT;
2047		}
2048	}
2049
2050	match = of_match_node(xway_gphy_match, gphy_fw_list_np);
2051	if (match && match->data)
2052		priv->gphy_fw_name_cfg = match->data;
2053
2054	if (!priv->gphy_fw_name_cfg) {
2055		dev_err(dev, "GPHY compatible type not supported");
2056		return -ENOENT;
2057	}
2058
2059	priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
2060	if (!priv->num_gphy_fw)
2061		return -ENOENT;
2062
2063	priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
2064							   "lantiq,rcu");
2065	if (IS_ERR(priv->rcu_regmap))
2066		return PTR_ERR(priv->rcu_regmap);
2067
2068	priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
2069					   sizeof(*priv->gphy_fw),
2070					   GFP_KERNEL | __GFP_ZERO);
2071	if (!priv->gphy_fw)
2072		return -ENOMEM;
2073
2074	for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
2075		err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
2076					  gphy_fw_np, i);
2077		if (err) {
2078			of_node_put(gphy_fw_np);
2079			goto remove_gphy;
2080		}
2081		i++;
2082	}
2083
2084	/* The standalone PHY11G requires 300ms to be fully
2085	 * initialized and ready for any MDIO communication after being
2086	 * taken out of reset. For the SoC-internal GPHY variant there
2087	 * is no (known) documentation for the minimum time after a
2088	 * reset. Use the same value as for the standalone variant as
2089	 * some users have reported internal PHYs not being detected
2090	 * without any delay.
2091	 */
2092	msleep(300);
2093
2094	return 0;
2095
2096remove_gphy:
2097	for (i = 0; i < priv->num_gphy_fw; i++)
2098		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2099	return err;
2100}
2101
2102static int gswip_probe(struct platform_device *pdev)
2103{
2104	struct device_node *np, *gphy_fw_np;
2105	struct device *dev = &pdev->dev;
2106	struct gswip_priv *priv;
2107	int err;
2108	int i;
2109	u32 version;
2110
2111	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2112	if (!priv)
2113		return -ENOMEM;
2114
2115	priv->gswip = devm_platform_ioremap_resource(pdev, 0);
2116	if (IS_ERR(priv->gswip))
2117		return PTR_ERR(priv->gswip);
2118
2119	priv->mdio = devm_platform_ioremap_resource(pdev, 1);
2120	if (IS_ERR(priv->mdio))
2121		return PTR_ERR(priv->mdio);
2122
2123	priv->mii = devm_platform_ioremap_resource(pdev, 2);
2124	if (IS_ERR(priv->mii))
2125		return PTR_ERR(priv->mii);
2126
2127	priv->hw_info = of_device_get_match_data(dev);
2128	if (!priv->hw_info)
2129		return -EINVAL;
2130
2131	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
2132	if (!priv->ds)
2133		return -ENOMEM;
2134
2135	priv->ds->dev = dev;
2136	priv->ds->num_ports = priv->hw_info->max_ports;
2137	priv->ds->priv = priv;
2138	priv->ds->ops = priv->hw_info->ops;
2139	priv->dev = dev;
2140	mutex_init(&priv->pce_table_lock);
2141	version = gswip_switch_r(priv, GSWIP_VERSION);
2142
2143	np = dev->of_node;
2144	switch (version) {
2145	case GSWIP_VERSION_2_0:
2146	case GSWIP_VERSION_2_1:
2147		if (!of_device_is_compatible(np, "lantiq,xrx200-gswip"))
2148			return -EINVAL;
2149		break;
2150	case GSWIP_VERSION_2_2:
2151	case GSWIP_VERSION_2_2_ETC:
2152		if (!of_device_is_compatible(np, "lantiq,xrx300-gswip") &&
2153		    !of_device_is_compatible(np, "lantiq,xrx330-gswip"))
2154			return -EINVAL;
2155		break;
2156	default:
2157		dev_err(dev, "unknown GSWIP version: 0x%x", version);
2158		return -ENOENT;
2159	}
2160
2161	/* bring up the mdio bus */
2162	gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
2163	if (gphy_fw_np) {
2164		err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
2165		of_node_put(gphy_fw_np);
2166		if (err) {
2167			dev_err(dev, "gphy fw probe failed\n");
2168			return err;
2169		}
2170	}
2171
2172	/* bring up the mdio bus */
2173	err = gswip_mdio(priv);
2174	if (err) {
2175		dev_err(dev, "mdio probe failed\n");
2176		goto gphy_fw_remove;
2177	}
2178
2179	err = dsa_register_switch(priv->ds);
2180	if (err) {
2181		dev_err(dev, "dsa switch register failed: %i\n", err);
2182		goto gphy_fw_remove;
2183	}
2184	if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
2185		dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
2186			priv->hw_info->cpu_port);
2187		err = -EINVAL;
2188		goto disable_switch;
2189	}
2190
2191	platform_set_drvdata(pdev, priv);
2192
2193	dev_info(dev, "probed GSWIP version %lx mod %lx\n",
2194		 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
2195		 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
2196	return 0;
2197
2198disable_switch:
2199	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2200	dsa_unregister_switch(priv->ds);
2201gphy_fw_remove:
2202	for (i = 0; i < priv->num_gphy_fw; i++)
2203		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2204	return err;
2205}
2206
2207static void gswip_remove(struct platform_device *pdev)
2208{
2209	struct gswip_priv *priv = platform_get_drvdata(pdev);
2210	int i;
2211
2212	if (!priv)
2213		return;
2214
2215	/* disable the switch */
2216	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2217
2218	dsa_unregister_switch(priv->ds);
2219
2220	for (i = 0; i < priv->num_gphy_fw; i++)
2221		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2222}
2223
2224static void gswip_shutdown(struct platform_device *pdev)
2225{
2226	struct gswip_priv *priv = platform_get_drvdata(pdev);
2227
2228	if (!priv)
2229		return;
2230
2231	dsa_switch_shutdown(priv->ds);
2232
2233	platform_set_drvdata(pdev, NULL);
2234}
2235
2236static const struct gswip_hw_info gswip_xrx200 = {
2237	.max_ports = 7,
2238	.cpu_port = 6,
2239	.ops = &gswip_xrx200_switch_ops,
2240};
2241
2242static const struct gswip_hw_info gswip_xrx300 = {
2243	.max_ports = 7,
2244	.cpu_port = 6,
2245	.ops = &gswip_xrx300_switch_ops,
2246};
2247
2248static const struct of_device_id gswip_of_match[] = {
2249	{ .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
2250	{ .compatible = "lantiq,xrx300-gswip", .data = &gswip_xrx300 },
2251	{ .compatible = "lantiq,xrx330-gswip", .data = &gswip_xrx300 },
2252	{},
2253};
2254MODULE_DEVICE_TABLE(of, gswip_of_match);
2255
2256static struct platform_driver gswip_driver = {
2257	.probe = gswip_probe,
2258	.remove_new = gswip_remove,
2259	.shutdown = gswip_shutdown,
2260	.driver = {
2261		.name = "gswip",
2262		.of_match_table = gswip_of_match,
2263	},
2264};
2265
2266module_platform_driver(gswip_driver);
2267
2268MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
2269MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
2270MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
2271MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
2272MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
2273MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
2274MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
2275MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
2276MODULE_LICENSE("GPL v2");
2277