1// SPDX-License-Identifier: (GPL-2.0 OR MIT)
2/*
3 * DSA driver for:
4 * Hirschmann Hellcreek TSN switch.
5 *
6 * Copyright (C) 2019,2020 Hochschule Offenburg
7 * Copyright (C) 2019,2020 Linutronix GmbH
8 * Authors: Kamil Alkhouri <kamil.alkhouri@hs-offenburg.de>
9 *	    Kurt Kanzenbach <kurt@linutronix.de>
10 */
11
12#include <linux/of.h>
13#include <linux/ptp_clock_kernel.h>
14#include "hellcreek.h"
15#include "hellcreek_ptp.h"
16#include "hellcreek_hwtstamp.h"
17
18u16 hellcreek_ptp_read(struct hellcreek *hellcreek, unsigned int offset)
19{
20	return readw(hellcreek->ptp_base + offset);
21}
22
23void hellcreek_ptp_write(struct hellcreek *hellcreek, u16 data,
24			 unsigned int offset)
25{
26	writew(data, hellcreek->ptp_base + offset);
27}
28
29/* Get nanoseconds from PTP clock */
30static u64 hellcreek_ptp_clock_read(struct hellcreek *hellcreek)
31{
32	u16 nsl, nsh;
33
34	/* Take a snapshot */
35	hellcreek_ptp_write(hellcreek, PR_COMMAND_C_SS, PR_COMMAND_C);
36
37	/* The time of the day is saved as 96 bits. However, due to hardware
38	 * limitations the seconds are not or only partly kept in the PTP
39	 * core. Currently only three bits for the seconds are available. That's
40	 * why only the nanoseconds are used and the seconds are tracked in
41	 * software. Anyway due to internal locking all five registers should be
42	 * read.
43	 */
44	nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C);
45	nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C);
46	nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C);
47	nsh = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C);
48	nsl = hellcreek_ptp_read(hellcreek, PR_SS_SYNC_DATA_C);
49
50	return (u64)nsl | ((u64)nsh << 16);
51}
52
53static u64 __hellcreek_ptp_gettime(struct hellcreek *hellcreek)
54{
55	u64 ns;
56
57	ns = hellcreek_ptp_clock_read(hellcreek);
58	if (ns < hellcreek->last_ts)
59		hellcreek->seconds++;
60	hellcreek->last_ts = ns;
61	ns += hellcreek->seconds * NSEC_PER_SEC;
62
63	return ns;
64}
65
66/* Retrieve the seconds parts in nanoseconds for a packet timestamped with @ns.
67 * There has to be a check whether an overflow occurred between the packet
68 * arrival and now. If so use the correct seconds (-1) for calculating the
69 * packet arrival time.
70 */
71u64 hellcreek_ptp_gettime_seconds(struct hellcreek *hellcreek, u64 ns)
72{
73	u64 s;
74
75	__hellcreek_ptp_gettime(hellcreek);
76	if (hellcreek->last_ts > ns)
77		s = hellcreek->seconds * NSEC_PER_SEC;
78	else
79		s = (hellcreek->seconds - 1) * NSEC_PER_SEC;
80
81	return s;
82}
83
84static int hellcreek_ptp_gettime(struct ptp_clock_info *ptp,
85				 struct timespec64 *ts)
86{
87	struct hellcreek *hellcreek = ptp_to_hellcreek(ptp);
88	u64 ns;
89
90	mutex_lock(&hellcreek->ptp_lock);
91	ns = __hellcreek_ptp_gettime(hellcreek);
92	mutex_unlock(&hellcreek->ptp_lock);
93
94	*ts = ns_to_timespec64(ns);
95
96	return 0;
97}
98
99static int hellcreek_ptp_settime(struct ptp_clock_info *ptp,
100				 const struct timespec64 *ts)
101{
102	struct hellcreek *hellcreek = ptp_to_hellcreek(ptp);
103	u16 secl, nsh, nsl;
104
105	secl = ts->tv_sec & 0xffff;
106	nsh  = ((u32)ts->tv_nsec & 0xffff0000) >> 16;
107	nsl  = ts->tv_nsec & 0xffff;
108
109	mutex_lock(&hellcreek->ptp_lock);
110
111	/* Update overflow data structure */
112	hellcreek->seconds = ts->tv_sec;
113	hellcreek->last_ts = ts->tv_nsec;
114
115	/* Set time in clock */
116	hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_WRITE_C);
117	hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_WRITE_C);
118	hellcreek_ptp_write(hellcreek, secl, PR_CLOCK_WRITE_C);
119	hellcreek_ptp_write(hellcreek, nsh,  PR_CLOCK_WRITE_C);
120	hellcreek_ptp_write(hellcreek, nsl,  PR_CLOCK_WRITE_C);
121
122	mutex_unlock(&hellcreek->ptp_lock);
123
124	return 0;
125}
126
127static int hellcreek_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
128{
129	struct hellcreek *hellcreek = ptp_to_hellcreek(ptp);
130	u16 negative = 0, addendh, addendl;
131	u32 addend;
132	u64 adj;
133
134	if (scaled_ppm < 0) {
135		negative = 1;
136		scaled_ppm = -scaled_ppm;
137	}
138
139	/* IP-Core adjusts the nominal frequency by adding or subtracting 1 ns
140	 * from the 8 ns (period of the oscillator) every time the accumulator
141	 * register overflows. The value stored in the addend register is added
142	 * to the accumulator register every 8 ns.
143	 *
144	 * addend value = (2^30 * accumulator_overflow_rate) /
145	 *                oscillator_frequency
146	 * where:
147	 *
148	 * oscillator_frequency = 125 MHz
149	 * accumulator_overflow_rate = 125 MHz * scaled_ppm * 2^-16 * 10^-6 * 8
150	 */
151	adj = scaled_ppm;
152	adj <<= 11;
153	addend = (u32)div_u64(adj, 15625);
154
155	addendh = (addend & 0xffff0000) >> 16;
156	addendl = addend & 0xffff;
157
158	negative = (negative << 15) & 0x8000;
159
160	mutex_lock(&hellcreek->ptp_lock);
161
162	/* Set drift register */
163	hellcreek_ptp_write(hellcreek, negative, PR_CLOCK_DRIFT_C);
164	hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_DRIFT_C);
165	hellcreek_ptp_write(hellcreek, 0x00, PR_CLOCK_DRIFT_C);
166	hellcreek_ptp_write(hellcreek, addendh,  PR_CLOCK_DRIFT_C);
167	hellcreek_ptp_write(hellcreek, addendl,  PR_CLOCK_DRIFT_C);
168
169	mutex_unlock(&hellcreek->ptp_lock);
170
171	return 0;
172}
173
174static int hellcreek_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
175{
176	struct hellcreek *hellcreek = ptp_to_hellcreek(ptp);
177	u16 negative = 0, counth, countl;
178	u32 count_val;
179
180	/* If the offset is larger than IP-Core slow offset resources. Don't
181	 * consider slow adjustment. Rather, add the offset directly to the
182	 * current time
183	 */
184	if (abs(delta) > MAX_SLOW_OFFSET_ADJ) {
185		struct timespec64 now, then = ns_to_timespec64(delta);
186
187		hellcreek_ptp_gettime(ptp, &now);
188		now = timespec64_add(now, then);
189		hellcreek_ptp_settime(ptp, &now);
190
191		return 0;
192	}
193
194	if (delta < 0) {
195		negative = 1;
196		delta = -delta;
197	}
198
199	/* 'count_val' does not exceed the maximum register size (2^30) */
200	count_val = div_s64(delta, MAX_NS_PER_STEP);
201
202	counth = (count_val & 0xffff0000) >> 16;
203	countl = count_val & 0xffff;
204
205	negative = (negative << 15) & 0x8000;
206
207	mutex_lock(&hellcreek->ptp_lock);
208
209	/* Set offset write register */
210	hellcreek_ptp_write(hellcreek, negative, PR_CLOCK_OFFSET_C);
211	hellcreek_ptp_write(hellcreek, MAX_NS_PER_STEP, PR_CLOCK_OFFSET_C);
212	hellcreek_ptp_write(hellcreek, MIN_CLK_CYCLES_BETWEEN_STEPS,
213			    PR_CLOCK_OFFSET_C);
214	hellcreek_ptp_write(hellcreek, countl,  PR_CLOCK_OFFSET_C);
215	hellcreek_ptp_write(hellcreek, counth,  PR_CLOCK_OFFSET_C);
216
217	mutex_unlock(&hellcreek->ptp_lock);
218
219	return 0;
220}
221
222static int hellcreek_ptp_enable(struct ptp_clock_info *ptp,
223				struct ptp_clock_request *rq, int on)
224{
225	return -EOPNOTSUPP;
226}
227
228static void hellcreek_ptp_overflow_check(struct work_struct *work)
229{
230	struct delayed_work *dw = to_delayed_work(work);
231	struct hellcreek *hellcreek;
232
233	hellcreek = dw_overflow_to_hellcreek(dw);
234
235	mutex_lock(&hellcreek->ptp_lock);
236	__hellcreek_ptp_gettime(hellcreek);
237	mutex_unlock(&hellcreek->ptp_lock);
238
239	schedule_delayed_work(&hellcreek->overflow_work,
240			      HELLCREEK_OVERFLOW_PERIOD);
241}
242
243static enum led_brightness hellcreek_get_brightness(struct hellcreek *hellcreek,
244						    int led)
245{
246	return (hellcreek->status_out & led) ? 1 : 0;
247}
248
249static void hellcreek_set_brightness(struct hellcreek *hellcreek, int led,
250				     enum led_brightness b)
251{
252	mutex_lock(&hellcreek->ptp_lock);
253
254	if (b)
255		hellcreek->status_out |= led;
256	else
257		hellcreek->status_out &= ~led;
258
259	hellcreek_ptp_write(hellcreek, hellcreek->status_out, STATUS_OUT);
260
261	mutex_unlock(&hellcreek->ptp_lock);
262}
263
264static void hellcreek_led_sync_good_set(struct led_classdev *ldev,
265					enum led_brightness b)
266{
267	struct hellcreek *hellcreek = led_to_hellcreek(ldev, led_sync_good);
268
269	hellcreek_set_brightness(hellcreek, STATUS_OUT_SYNC_GOOD, b);
270}
271
272static enum led_brightness hellcreek_led_sync_good_get(struct led_classdev *ldev)
273{
274	struct hellcreek *hellcreek = led_to_hellcreek(ldev, led_sync_good);
275
276	return hellcreek_get_brightness(hellcreek, STATUS_OUT_SYNC_GOOD);
277}
278
279static void hellcreek_led_is_gm_set(struct led_classdev *ldev,
280				    enum led_brightness b)
281{
282	struct hellcreek *hellcreek = led_to_hellcreek(ldev, led_is_gm);
283
284	hellcreek_set_brightness(hellcreek, STATUS_OUT_IS_GM, b);
285}
286
287static enum led_brightness hellcreek_led_is_gm_get(struct led_classdev *ldev)
288{
289	struct hellcreek *hellcreek = led_to_hellcreek(ldev, led_is_gm);
290
291	return hellcreek_get_brightness(hellcreek, STATUS_OUT_IS_GM);
292}
293
294/* There two available LEDs internally called sync_good and is_gm. However, the
295 * user might want to use a different label and specify the default state. Take
296 * those properties from device tree.
297 */
298static int hellcreek_led_setup(struct hellcreek *hellcreek)
299{
300	struct device_node *leds, *led = NULL;
301	enum led_default_state state;
302	const char *label;
303	int ret = -EINVAL;
304
305	of_node_get(hellcreek->dev->of_node);
306	leds = of_find_node_by_name(hellcreek->dev->of_node, "leds");
307	if (!leds) {
308		dev_err(hellcreek->dev, "No LEDs specified in device tree!\n");
309		return ret;
310	}
311
312	hellcreek->status_out = 0;
313
314	led = of_get_next_available_child(leds, led);
315	if (!led) {
316		dev_err(hellcreek->dev, "First LED not specified!\n");
317		goto out;
318	}
319
320	ret = of_property_read_string(led, "label", &label);
321	hellcreek->led_sync_good.name = ret ? "sync_good" : label;
322
323	state = led_init_default_state_get(of_fwnode_handle(led));
324	switch (state) {
325	case LEDS_DEFSTATE_ON:
326		hellcreek->led_sync_good.brightness = 1;
327		break;
328	case LEDS_DEFSTATE_KEEP:
329		hellcreek->led_sync_good.brightness =
330			hellcreek_get_brightness(hellcreek, STATUS_OUT_SYNC_GOOD);
331		break;
332	default:
333		hellcreek->led_sync_good.brightness = 0;
334	}
335
336	hellcreek->led_sync_good.max_brightness = 1;
337	hellcreek->led_sync_good.brightness_set = hellcreek_led_sync_good_set;
338	hellcreek->led_sync_good.brightness_get = hellcreek_led_sync_good_get;
339
340	led = of_get_next_available_child(leds, led);
341	if (!led) {
342		dev_err(hellcreek->dev, "Second LED not specified!\n");
343		ret = -EINVAL;
344		goto out;
345	}
346
347	ret = of_property_read_string(led, "label", &label);
348	hellcreek->led_is_gm.name = ret ? "is_gm" : label;
349
350	state = led_init_default_state_get(of_fwnode_handle(led));
351	switch (state) {
352	case LEDS_DEFSTATE_ON:
353		hellcreek->led_is_gm.brightness = 1;
354		break;
355	case LEDS_DEFSTATE_KEEP:
356		hellcreek->led_is_gm.brightness =
357			hellcreek_get_brightness(hellcreek, STATUS_OUT_IS_GM);
358		break;
359	default:
360		hellcreek->led_is_gm.brightness = 0;
361	}
362
363	hellcreek->led_is_gm.max_brightness = 1;
364	hellcreek->led_is_gm.brightness_set = hellcreek_led_is_gm_set;
365	hellcreek->led_is_gm.brightness_get = hellcreek_led_is_gm_get;
366
367	/* Set initial state */
368	if (hellcreek->led_sync_good.brightness == 1)
369		hellcreek_set_brightness(hellcreek, STATUS_OUT_SYNC_GOOD, 1);
370	if (hellcreek->led_is_gm.brightness == 1)
371		hellcreek_set_brightness(hellcreek, STATUS_OUT_IS_GM, 1);
372
373	/* Register both leds */
374	led_classdev_register(hellcreek->dev, &hellcreek->led_sync_good);
375	led_classdev_register(hellcreek->dev, &hellcreek->led_is_gm);
376
377	ret = 0;
378
379out:
380	of_node_put(leds);
381
382	return ret;
383}
384
385int hellcreek_ptp_setup(struct hellcreek *hellcreek)
386{
387	u16 status;
388	int ret;
389
390	/* Set up the overflow work */
391	INIT_DELAYED_WORK(&hellcreek->overflow_work,
392			  hellcreek_ptp_overflow_check);
393
394	/* Setup PTP clock */
395	hellcreek->ptp_clock_info.owner = THIS_MODULE;
396	snprintf(hellcreek->ptp_clock_info.name,
397		 sizeof(hellcreek->ptp_clock_info.name),
398		 dev_name(hellcreek->dev));
399
400	/* IP-Core can add up to 0.5 ns per 8 ns cycle, which means
401	 * accumulator_overflow_rate shall not exceed 62.5 MHz (which adjusts
402	 * the nominal frequency by 6.25%)
403	 */
404	hellcreek->ptp_clock_info.max_adj     = 62500000;
405	hellcreek->ptp_clock_info.n_alarm     = 0;
406	hellcreek->ptp_clock_info.n_pins      = 0;
407	hellcreek->ptp_clock_info.n_ext_ts    = 0;
408	hellcreek->ptp_clock_info.n_per_out   = 0;
409	hellcreek->ptp_clock_info.pps	      = 0;
410	hellcreek->ptp_clock_info.adjfine     = hellcreek_ptp_adjfine;
411	hellcreek->ptp_clock_info.adjtime     = hellcreek_ptp_adjtime;
412	hellcreek->ptp_clock_info.gettime64   = hellcreek_ptp_gettime;
413	hellcreek->ptp_clock_info.settime64   = hellcreek_ptp_settime;
414	hellcreek->ptp_clock_info.enable      = hellcreek_ptp_enable;
415	hellcreek->ptp_clock_info.do_aux_work = hellcreek_hwtstamp_work;
416
417	hellcreek->ptp_clock = ptp_clock_register(&hellcreek->ptp_clock_info,
418						  hellcreek->dev);
419	if (IS_ERR(hellcreek->ptp_clock))
420		return PTR_ERR(hellcreek->ptp_clock);
421
422	/* Enable the offset correction process, if no offset correction is
423	 * already taking place
424	 */
425	status = hellcreek_ptp_read(hellcreek, PR_CLOCK_STATUS_C);
426	if (!(status & PR_CLOCK_STATUS_C_OFS_ACT))
427		hellcreek_ptp_write(hellcreek,
428				    status | PR_CLOCK_STATUS_C_ENA_OFS,
429				    PR_CLOCK_STATUS_C);
430
431	/* Enable the drift correction process */
432	hellcreek_ptp_write(hellcreek, status | PR_CLOCK_STATUS_C_ENA_DRIFT,
433			    PR_CLOCK_STATUS_C);
434
435	/* LED setup */
436	ret = hellcreek_led_setup(hellcreek);
437	if (ret) {
438		if (hellcreek->ptp_clock)
439			ptp_clock_unregister(hellcreek->ptp_clock);
440		return ret;
441	}
442
443	schedule_delayed_work(&hellcreek->overflow_work,
444			      HELLCREEK_OVERFLOW_PERIOD);
445
446	return 0;
447}
448
449void hellcreek_ptp_free(struct hellcreek *hellcreek)
450{
451	led_classdev_unregister(&hellcreek->led_is_gm);
452	led_classdev_unregister(&hellcreek->led_sync_good);
453	cancel_delayed_work_sync(&hellcreek->overflow_work);
454	if (hellcreek->ptp_clock)
455		ptp_clock_unregister(hellcreek->ptp_clock);
456	hellcreek->ptp_clock = NULL;
457}
458