1// SPDX-License-Identifier: GPL-2.0-only
2/* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
3 *
4 * MCP2510 support and bug fixes by Christian Pellegrin
5 * <chripell@evolware.org>
6 *
7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
8 *
9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10 * Written under contract by:
11 *   Chris Elston, Katalix Systems, Ltd.
12 *
13 * Based on Microchip MCP251x CAN controller driver written by
14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
15 *
16 * Based on CAN bus driver for the CCAN controller written by
17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18 * - Simon Kallweit, intefo AG
19 * Copyright 2007
20 */
21
22#include <linux/bitfield.h>
23#include <linux/can/core.h>
24#include <linux/can/dev.h>
25#include <linux/clk.h>
26#include <linux/completion.h>
27#include <linux/delay.h>
28#include <linux/device.h>
29#include <linux/ethtool.h>
30#include <linux/freezer.h>
31#include <linux/gpio.h>
32#include <linux/gpio/driver.h>
33#include <linux/interrupt.h>
34#include <linux/io.h>
35#include <linux/iopoll.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/netdevice.h>
39#include <linux/platform_device.h>
40#include <linux/property.h>
41#include <linux/regulator/consumer.h>
42#include <linux/slab.h>
43#include <linux/spi/spi.h>
44#include <linux/uaccess.h>
45
46/* SPI interface instruction set */
47#define INSTRUCTION_WRITE	0x02
48#define INSTRUCTION_READ	0x03
49#define INSTRUCTION_BIT_MODIFY	0x05
50#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
51#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
52#define INSTRUCTION_RESET	0xC0
53#define RTS_TXB0		0x01
54#define RTS_TXB1		0x02
55#define RTS_TXB2		0x04
56#define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))
57
58/* MPC251x registers */
59#define BFPCTRL			0x0c
60#  define BFPCTRL_B0BFM		BIT(0)
61#  define BFPCTRL_B1BFM		BIT(1)
62#  define BFPCTRL_BFM(n)	(BFPCTRL_B0BFM << (n))
63#  define BFPCTRL_BFM_MASK	GENMASK(1, 0)
64#  define BFPCTRL_B0BFE		BIT(2)
65#  define BFPCTRL_B1BFE		BIT(3)
66#  define BFPCTRL_BFE(n)	(BFPCTRL_B0BFE << (n))
67#  define BFPCTRL_BFE_MASK	GENMASK(3, 2)
68#  define BFPCTRL_B0BFS		BIT(4)
69#  define BFPCTRL_B1BFS		BIT(5)
70#  define BFPCTRL_BFS(n)	(BFPCTRL_B0BFS << (n))
71#  define BFPCTRL_BFS_MASK	GENMASK(5, 4)
72#define TXRTSCTRL		0x0d
73#  define TXRTSCTRL_B0RTSM	BIT(0)
74#  define TXRTSCTRL_B1RTSM	BIT(1)
75#  define TXRTSCTRL_B2RTSM	BIT(2)
76#  define TXRTSCTRL_RTSM(n)	(TXRTSCTRL_B0RTSM << (n))
77#  define TXRTSCTRL_RTSM_MASK	GENMASK(2, 0)
78#  define TXRTSCTRL_B0RTS	BIT(3)
79#  define TXRTSCTRL_B1RTS	BIT(4)
80#  define TXRTSCTRL_B2RTS	BIT(5)
81#  define TXRTSCTRL_RTS(n)	(TXRTSCTRL_B0RTS << (n))
82#  define TXRTSCTRL_RTS_MASK	GENMASK(5, 3)
83#define CANSTAT	      0x0e
84#define CANCTRL	      0x0f
85#  define CANCTRL_REQOP_MASK	    0xe0
86#  define CANCTRL_REQOP_CONF	    0x80
87#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
88#  define CANCTRL_REQOP_LOOPBACK    0x40
89#  define CANCTRL_REQOP_SLEEP	    0x20
90#  define CANCTRL_REQOP_NORMAL	    0x00
91#  define CANCTRL_OSM		    0x08
92#  define CANCTRL_ABAT		    0x10
93#define TEC	      0x1c
94#define REC	      0x1d
95#define CNF1	      0x2a
96#  define CNF1_SJW_SHIFT   6
97#define CNF2	      0x29
98#  define CNF2_BTLMODE	   0x80
99#  define CNF2_SAM         0x40
100#  define CNF2_PS1_SHIFT   3
101#define CNF3	      0x28
102#  define CNF3_SOF	   0x08
103#  define CNF3_WAKFIL	   0x04
104#  define CNF3_PHSEG2_MASK 0x07
105#define CANINTE	      0x2b
106#  define CANINTE_MERRE 0x80
107#  define CANINTE_WAKIE 0x40
108#  define CANINTE_ERRIE 0x20
109#  define CANINTE_TX2IE 0x10
110#  define CANINTE_TX1IE 0x08
111#  define CANINTE_TX0IE 0x04
112#  define CANINTE_RX1IE 0x02
113#  define CANINTE_RX0IE 0x01
114#define CANINTF	      0x2c
115#  define CANINTF_MERRF 0x80
116#  define CANINTF_WAKIF 0x40
117#  define CANINTF_ERRIF 0x20
118#  define CANINTF_TX2IF 0x10
119#  define CANINTF_TX1IF 0x08
120#  define CANINTF_TX0IF 0x04
121#  define CANINTF_RX1IF 0x02
122#  define CANINTF_RX0IF 0x01
123#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
124#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
125#  define CANINTF_ERR (CANINTF_ERRIF)
126#define EFLG	      0x2d
127#  define EFLG_EWARN	0x01
128#  define EFLG_RXWAR	0x02
129#  define EFLG_TXWAR	0x04
130#  define EFLG_RXEP	0x08
131#  define EFLG_TXEP	0x10
132#  define EFLG_TXBO	0x20
133#  define EFLG_RX0OVR	0x40
134#  define EFLG_RX1OVR	0x80
135#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
136#  define TXBCTRL_ABTF	0x40
137#  define TXBCTRL_MLOA	0x20
138#  define TXBCTRL_TXERR 0x10
139#  define TXBCTRL_TXREQ 0x08
140#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
141#  define SIDH_SHIFT    3
142#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
143#  define SIDL_SID_MASK    7
144#  define SIDL_SID_SHIFT   5
145#  define SIDL_EXIDE_SHIFT 3
146#  define SIDL_EID_SHIFT   16
147#  define SIDL_EID_MASK    3
148#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
149#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
150#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
151#  define DLC_RTR_SHIFT    6
152#define TXBCTRL_OFF 0
153#define TXBSIDH_OFF 1
154#define TXBSIDL_OFF 2
155#define TXBEID8_OFF 3
156#define TXBEID0_OFF 4
157#define TXBDLC_OFF  5
158#define TXBDAT_OFF  6
159#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
160#  define RXBCTRL_BUKT	0x04
161#  define RXBCTRL_RXM0	0x20
162#  define RXBCTRL_RXM1	0x40
163#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
164#  define RXBSIDH_SHIFT 3
165#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
166#  define RXBSIDL_IDE   0x08
167#  define RXBSIDL_SRR   0x10
168#  define RXBSIDL_EID   3
169#  define RXBSIDL_SHIFT 5
170#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
171#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
172#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
173#  define RXBDLC_LEN_MASK  0x0f
174#  define RXBDLC_RTR       0x40
175#define RXBCTRL_OFF 0
176#define RXBSIDH_OFF 1
177#define RXBSIDL_OFF 2
178#define RXBEID8_OFF 3
179#define RXBEID0_OFF 4
180#define RXBDLC_OFF  5
181#define RXBDAT_OFF  6
182#define RXFSID(n) ((n < 3) ? 0 : 4)
183#define RXFSIDH(n) ((n) * 4 + RXFSID(n))
184#define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
185#define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
186#define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
187#define RXMSIDH(n) ((n) * 4 + 0x20)
188#define RXMSIDL(n) ((n) * 4 + 0x21)
189#define RXMEID8(n) ((n) * 4 + 0x22)
190#define RXMEID0(n) ((n) * 4 + 0x23)
191
192#define GET_BYTE(val, byte)			\
193	(((val) >> ((byte) * 8)) & 0xff)
194#define SET_BYTE(val, byte)			\
195	(((val) & 0xff) << ((byte) * 8))
196
197/* Buffer size required for the largest SPI transfer (i.e., reading a
198 * frame)
199 */
200#define CAN_FRAME_MAX_DATA_LEN	8
201#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
202#define CAN_FRAME_MAX_BITS	128
203
204#define TX_ECHO_SKB_MAX	1
205
206#define MCP251X_OST_DELAY_MS	(5)
207
208#define DEVICE_NAME "mcp251x"
209
210static const struct can_bittiming_const mcp251x_bittiming_const = {
211	.name = DEVICE_NAME,
212	.tseg1_min = 3,
213	.tseg1_max = 16,
214	.tseg2_min = 2,
215	.tseg2_max = 8,
216	.sjw_max = 4,
217	.brp_min = 1,
218	.brp_max = 64,
219	.brp_inc = 1,
220};
221
222enum mcp251x_model {
223	CAN_MCP251X_MCP2510	= 0x2510,
224	CAN_MCP251X_MCP2515	= 0x2515,
225	CAN_MCP251X_MCP25625	= 0x25625,
226};
227
228struct mcp251x_priv {
229	struct can_priv	   can;
230	struct net_device *net;
231	struct spi_device *spi;
232	enum mcp251x_model model;
233
234	struct mutex mcp_lock; /* SPI device lock */
235
236	u8 *spi_tx_buf;
237	u8 *spi_rx_buf;
238
239	struct sk_buff *tx_skb;
240
241	struct workqueue_struct *wq;
242	struct work_struct tx_work;
243	struct work_struct restart_work;
244
245	int force_quit;
246	int after_suspend;
247#define AFTER_SUSPEND_UP 1
248#define AFTER_SUSPEND_DOWN 2
249#define AFTER_SUSPEND_POWER 4
250#define AFTER_SUSPEND_RESTART 8
251	int restart_tx;
252	bool tx_busy;
253
254	struct regulator *power;
255	struct regulator *transceiver;
256	struct clk *clk;
257#ifdef CONFIG_GPIOLIB
258	struct gpio_chip gpio;
259	u8 reg_bfpctrl;
260#endif
261};
262
263#define MCP251X_IS(_model) \
264static inline int mcp251x_is_##_model(struct spi_device *spi) \
265{ \
266	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
267	return priv->model == CAN_MCP251X_MCP##_model; \
268}
269
270MCP251X_IS(2510);
271
272static void mcp251x_clean(struct net_device *net)
273{
274	struct mcp251x_priv *priv = netdev_priv(net);
275
276	if (priv->tx_skb || priv->tx_busy)
277		net->stats.tx_errors++;
278	dev_kfree_skb(priv->tx_skb);
279	if (priv->tx_busy)
280		can_free_echo_skb(priv->net, 0, NULL);
281	priv->tx_skb = NULL;
282	priv->tx_busy = false;
283}
284
285/* Note about handling of error return of mcp251x_spi_trans: accessing
286 * registers via SPI is not really different conceptually than using
287 * normal I/O assembler instructions, although it's much more
288 * complicated from a practical POV. So it's not advisable to always
289 * check the return value of this function. Imagine that every
290 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
291 * error();", it would be a great mess (well there are some situation
292 * when exception handling C++ like could be useful after all). So we
293 * just check that transfers are OK at the beginning of our
294 * conversation with the chip and to avoid doing really nasty things
295 * (like injecting bogus packets in the network stack).
296 */
297static int mcp251x_spi_trans(struct spi_device *spi, int len)
298{
299	struct mcp251x_priv *priv = spi_get_drvdata(spi);
300	struct spi_transfer t = {
301		.tx_buf = priv->spi_tx_buf,
302		.rx_buf = priv->spi_rx_buf,
303		.len = len,
304		.cs_change = 0,
305	};
306	struct spi_message m;
307	int ret;
308
309	spi_message_init(&m);
310	spi_message_add_tail(&t, &m);
311
312	ret = spi_sync(spi, &m);
313	if (ret)
314		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
315	return ret;
316}
317
318static int mcp251x_spi_write(struct spi_device *spi, int len)
319{
320	struct mcp251x_priv *priv = spi_get_drvdata(spi);
321	int ret;
322
323	ret = spi_write(spi, priv->spi_tx_buf, len);
324	if (ret)
325		dev_err(&spi->dev, "spi write failed: ret = %d\n", ret);
326
327	return ret;
328}
329
330static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
331{
332	struct mcp251x_priv *priv = spi_get_drvdata(spi);
333	u8 val = 0;
334
335	priv->spi_tx_buf[0] = INSTRUCTION_READ;
336	priv->spi_tx_buf[1] = reg;
337
338	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
339		spi_write_then_read(spi, priv->spi_tx_buf, 2, &val, 1);
340	} else {
341		mcp251x_spi_trans(spi, 3);
342		val = priv->spi_rx_buf[2];
343	}
344
345	return val;
346}
347
348static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
349{
350	struct mcp251x_priv *priv = spi_get_drvdata(spi);
351
352	priv->spi_tx_buf[0] = INSTRUCTION_READ;
353	priv->spi_tx_buf[1] = reg;
354
355	if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
356		u8 val[2] = { 0 };
357
358		spi_write_then_read(spi, priv->spi_tx_buf, 2, val, 2);
359		*v1 = val[0];
360		*v2 = val[1];
361	} else {
362		mcp251x_spi_trans(spi, 4);
363
364		*v1 = priv->spi_rx_buf[2];
365		*v2 = priv->spi_rx_buf[3];
366	}
367}
368
369static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
370{
371	struct mcp251x_priv *priv = spi_get_drvdata(spi);
372
373	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
374	priv->spi_tx_buf[1] = reg;
375	priv->spi_tx_buf[2] = val;
376
377	mcp251x_spi_write(spi, 3);
378}
379
380static void mcp251x_write_2regs(struct spi_device *spi, u8 reg, u8 v1, u8 v2)
381{
382	struct mcp251x_priv *priv = spi_get_drvdata(spi);
383
384	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
385	priv->spi_tx_buf[1] = reg;
386	priv->spi_tx_buf[2] = v1;
387	priv->spi_tx_buf[3] = v2;
388
389	mcp251x_spi_write(spi, 4);
390}
391
392static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
393			       u8 mask, u8 val)
394{
395	struct mcp251x_priv *priv = spi_get_drvdata(spi);
396
397	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
398	priv->spi_tx_buf[1] = reg;
399	priv->spi_tx_buf[2] = mask;
400	priv->spi_tx_buf[3] = val;
401
402	mcp251x_spi_write(spi, 4);
403}
404
405static u8 mcp251x_read_stat(struct spi_device *spi)
406{
407	return mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK;
408}
409
410#define mcp251x_read_stat_poll_timeout(addr, val, cond, delay_us, timeout_us) \
411	readx_poll_timeout(mcp251x_read_stat, addr, val, cond, \
412			   delay_us, timeout_us)
413
414#ifdef CONFIG_GPIOLIB
415enum {
416	MCP251X_GPIO_TX0RTS = 0,		/* inputs */
417	MCP251X_GPIO_TX1RTS,
418	MCP251X_GPIO_TX2RTS,
419	MCP251X_GPIO_RX0BF,			/* outputs */
420	MCP251X_GPIO_RX1BF,
421};
422
423#define MCP251X_GPIO_INPUT_MASK \
424	GENMASK(MCP251X_GPIO_TX2RTS, MCP251X_GPIO_TX0RTS)
425#define MCP251X_GPIO_OUTPUT_MASK \
426	GENMASK(MCP251X_GPIO_RX1BF, MCP251X_GPIO_RX0BF)
427
428static const char * const mcp251x_gpio_names[] = {
429	[MCP251X_GPIO_TX0RTS] = "TX0RTS",	/* inputs */
430	[MCP251X_GPIO_TX1RTS] = "TX1RTS",
431	[MCP251X_GPIO_TX2RTS] = "TX2RTS",
432	[MCP251X_GPIO_RX0BF] = "RX0BF",		/* outputs */
433	[MCP251X_GPIO_RX1BF] = "RX1BF",
434};
435
436static inline bool mcp251x_gpio_is_input(unsigned int offset)
437{
438	return offset <= MCP251X_GPIO_TX2RTS;
439}
440
441static int mcp251x_gpio_request(struct gpio_chip *chip,
442				unsigned int offset)
443{
444	struct mcp251x_priv *priv = gpiochip_get_data(chip);
445	u8 val;
446
447	/* nothing to be done for inputs */
448	if (mcp251x_gpio_is_input(offset))
449		return 0;
450
451	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
452
453	mutex_lock(&priv->mcp_lock);
454	mcp251x_write_bits(priv->spi, BFPCTRL, val, val);
455	mutex_unlock(&priv->mcp_lock);
456
457	priv->reg_bfpctrl |= val;
458
459	return 0;
460}
461
462static void mcp251x_gpio_free(struct gpio_chip *chip,
463			      unsigned int offset)
464{
465	struct mcp251x_priv *priv = gpiochip_get_data(chip);
466	u8 val;
467
468	/* nothing to be done for inputs */
469	if (mcp251x_gpio_is_input(offset))
470		return;
471
472	val = BFPCTRL_BFE(offset - MCP251X_GPIO_RX0BF);
473
474	mutex_lock(&priv->mcp_lock);
475	mcp251x_write_bits(priv->spi, BFPCTRL, val, 0);
476	mutex_unlock(&priv->mcp_lock);
477
478	priv->reg_bfpctrl &= ~val;
479}
480
481static int mcp251x_gpio_get_direction(struct gpio_chip *chip,
482				      unsigned int offset)
483{
484	if (mcp251x_gpio_is_input(offset))
485		return GPIOF_DIR_IN;
486
487	return GPIOF_DIR_OUT;
488}
489
490static int mcp251x_gpio_get(struct gpio_chip *chip, unsigned int offset)
491{
492	struct mcp251x_priv *priv = gpiochip_get_data(chip);
493	u8 reg, mask, val;
494
495	if (mcp251x_gpio_is_input(offset)) {
496		reg = TXRTSCTRL;
497		mask = TXRTSCTRL_RTS(offset);
498	} else {
499		reg = BFPCTRL;
500		mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
501	}
502
503	mutex_lock(&priv->mcp_lock);
504	val = mcp251x_read_reg(priv->spi, reg);
505	mutex_unlock(&priv->mcp_lock);
506
507	return !!(val & mask);
508}
509
510static int mcp251x_gpio_get_multiple(struct gpio_chip *chip,
511				     unsigned long *maskp, unsigned long *bitsp)
512{
513	struct mcp251x_priv *priv = gpiochip_get_data(chip);
514	unsigned long bits = 0;
515	u8 val;
516
517	mutex_lock(&priv->mcp_lock);
518	if (maskp[0] & MCP251X_GPIO_INPUT_MASK) {
519		val = mcp251x_read_reg(priv->spi, TXRTSCTRL);
520		val = FIELD_GET(TXRTSCTRL_RTS_MASK, val);
521		bits |= FIELD_PREP(MCP251X_GPIO_INPUT_MASK, val);
522	}
523	if (maskp[0] & MCP251X_GPIO_OUTPUT_MASK) {
524		val = mcp251x_read_reg(priv->spi, BFPCTRL);
525		val = FIELD_GET(BFPCTRL_BFS_MASK, val);
526		bits |= FIELD_PREP(MCP251X_GPIO_OUTPUT_MASK, val);
527	}
528	mutex_unlock(&priv->mcp_lock);
529
530	bitsp[0] = bits;
531	return 0;
532}
533
534static void mcp251x_gpio_set(struct gpio_chip *chip, unsigned int offset,
535			     int value)
536{
537	struct mcp251x_priv *priv = gpiochip_get_data(chip);
538	u8 mask, val;
539
540	mask = BFPCTRL_BFS(offset - MCP251X_GPIO_RX0BF);
541	val = value ? mask : 0;
542
543	mutex_lock(&priv->mcp_lock);
544	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
545	mutex_unlock(&priv->mcp_lock);
546
547	priv->reg_bfpctrl &= ~mask;
548	priv->reg_bfpctrl |= val;
549}
550
551static void
552mcp251x_gpio_set_multiple(struct gpio_chip *chip,
553			  unsigned long *maskp, unsigned long *bitsp)
554{
555	struct mcp251x_priv *priv = gpiochip_get_data(chip);
556	u8 mask, val;
557
558	mask = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, maskp[0]);
559	mask = FIELD_PREP(BFPCTRL_BFS_MASK, mask);
560
561	val = FIELD_GET(MCP251X_GPIO_OUTPUT_MASK, bitsp[0]);
562	val = FIELD_PREP(BFPCTRL_BFS_MASK, val);
563
564	if (!mask)
565		return;
566
567	mutex_lock(&priv->mcp_lock);
568	mcp251x_write_bits(priv->spi, BFPCTRL, mask, val);
569	mutex_unlock(&priv->mcp_lock);
570
571	priv->reg_bfpctrl &= ~mask;
572	priv->reg_bfpctrl |= val;
573}
574
575static void mcp251x_gpio_restore(struct spi_device *spi)
576{
577	struct mcp251x_priv *priv = spi_get_drvdata(spi);
578
579	mcp251x_write_reg(spi, BFPCTRL, priv->reg_bfpctrl);
580}
581
582static int mcp251x_gpio_setup(struct mcp251x_priv *priv)
583{
584	struct gpio_chip *gpio = &priv->gpio;
585
586	if (!device_property_present(&priv->spi->dev, "gpio-controller"))
587		return 0;
588
589	/* gpiochip handles TX[0..2]RTS and RX[0..1]BF */
590	gpio->label = priv->spi->modalias;
591	gpio->parent = &priv->spi->dev;
592	gpio->owner = THIS_MODULE;
593	gpio->request = mcp251x_gpio_request;
594	gpio->free = mcp251x_gpio_free;
595	gpio->get_direction = mcp251x_gpio_get_direction;
596	gpio->get = mcp251x_gpio_get;
597	gpio->get_multiple = mcp251x_gpio_get_multiple;
598	gpio->set = mcp251x_gpio_set;
599	gpio->set_multiple = mcp251x_gpio_set_multiple;
600	gpio->base = -1;
601	gpio->ngpio = ARRAY_SIZE(mcp251x_gpio_names);
602	gpio->names = mcp251x_gpio_names;
603	gpio->can_sleep = true;
604
605	return devm_gpiochip_add_data(&priv->spi->dev, gpio, priv);
606}
607#else
608static inline void mcp251x_gpio_restore(struct spi_device *spi)
609{
610}
611
612static inline int mcp251x_gpio_setup(struct mcp251x_priv *priv)
613{
614	return 0;
615}
616#endif
617
618static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
619				int len, int tx_buf_idx)
620{
621	struct mcp251x_priv *priv = spi_get_drvdata(spi);
622
623	if (mcp251x_is_2510(spi)) {
624		int i;
625
626		for (i = 1; i < TXBDAT_OFF + len; i++)
627			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
628					  buf[i]);
629	} else {
630		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
631		mcp251x_spi_write(spi, TXBDAT_OFF + len);
632	}
633}
634
635static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
636			  int tx_buf_idx)
637{
638	struct mcp251x_priv *priv = spi_get_drvdata(spi);
639	u32 sid, eid, exide, rtr;
640	u8 buf[SPI_TRANSFER_BUF_LEN];
641
642	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
643	if (exide)
644		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
645	else
646		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
647	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
648	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
649
650	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
651	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
652	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
653		(exide << SIDL_EXIDE_SHIFT) |
654		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
655	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
656	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
657	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->len;
658	memcpy(buf + TXBDAT_OFF, frame->data, frame->len);
659	mcp251x_hw_tx_frame(spi, buf, frame->len, tx_buf_idx);
660
661	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
662	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
663	mcp251x_spi_write(priv->spi, 1);
664}
665
666static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
667				int buf_idx)
668{
669	struct mcp251x_priv *priv = spi_get_drvdata(spi);
670
671	if (mcp251x_is_2510(spi)) {
672		int i, len;
673
674		for (i = 1; i < RXBDAT_OFF; i++)
675			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
676
677		len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
678		for (; i < (RXBDAT_OFF + len); i++)
679			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
680	} else {
681		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
682		if (spi->controller->flags & SPI_CONTROLLER_HALF_DUPLEX) {
683			spi_write_then_read(spi, priv->spi_tx_buf, 1,
684					    priv->spi_rx_buf,
685					    SPI_TRANSFER_BUF_LEN);
686			memcpy(buf + 1, priv->spi_rx_buf,
687			       SPI_TRANSFER_BUF_LEN - 1);
688		} else {
689			mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
690			memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
691		}
692	}
693}
694
695static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
696{
697	struct mcp251x_priv *priv = spi_get_drvdata(spi);
698	struct sk_buff *skb;
699	struct can_frame *frame;
700	u8 buf[SPI_TRANSFER_BUF_LEN];
701
702	skb = alloc_can_skb(priv->net, &frame);
703	if (!skb) {
704		dev_err(&spi->dev, "cannot allocate RX skb\n");
705		priv->net->stats.rx_dropped++;
706		return;
707	}
708
709	mcp251x_hw_rx_frame(spi, buf, buf_idx);
710	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
711		/* Extended ID format */
712		frame->can_id = CAN_EFF_FLAG;
713		frame->can_id |=
714			/* Extended ID part */
715			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
716			SET_BYTE(buf[RXBEID8_OFF], 1) |
717			SET_BYTE(buf[RXBEID0_OFF], 0) |
718			/* Standard ID part */
719			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
720			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
721		/* Remote transmission request */
722		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
723			frame->can_id |= CAN_RTR_FLAG;
724	} else {
725		/* Standard ID format */
726		frame->can_id =
727			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
728			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
729		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
730			frame->can_id |= CAN_RTR_FLAG;
731	}
732	/* Data length */
733	frame->len = can_cc_dlc2len(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
734	if (!(frame->can_id & CAN_RTR_FLAG)) {
735		memcpy(frame->data, buf + RXBDAT_OFF, frame->len);
736
737		priv->net->stats.rx_bytes += frame->len;
738	}
739	priv->net->stats.rx_packets++;
740
741	netif_rx(skb);
742}
743
744static void mcp251x_hw_sleep(struct spi_device *spi)
745{
746	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
747}
748
749/* May only be called when device is sleeping! */
750static int mcp251x_hw_wake(struct spi_device *spi)
751{
752	u8 value;
753	int ret;
754
755	/* Force wakeup interrupt to wake device, but don't execute IST */
756	disable_irq(spi->irq);
757	mcp251x_write_2regs(spi, CANINTE, CANINTE_WAKIE, CANINTF_WAKIF);
758
759	/* Wait for oscillator startup timer after wake up */
760	mdelay(MCP251X_OST_DELAY_MS);
761
762	/* Put device into config mode */
763	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_CONF);
764
765	/* Wait for the device to enter config mode */
766	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
767					     MCP251X_OST_DELAY_MS * 1000,
768					     USEC_PER_SEC);
769	if (ret) {
770		dev_err(&spi->dev, "MCP251x didn't enter in config mode\n");
771		return ret;
772	}
773
774	/* Disable and clear pending interrupts */
775	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
776	enable_irq(spi->irq);
777
778	return 0;
779}
780
781static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
782					   struct net_device *net)
783{
784	struct mcp251x_priv *priv = netdev_priv(net);
785	struct spi_device *spi = priv->spi;
786
787	if (priv->tx_skb || priv->tx_busy) {
788		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
789		return NETDEV_TX_BUSY;
790	}
791
792	if (can_dev_dropped_skb(net, skb))
793		return NETDEV_TX_OK;
794
795	netif_stop_queue(net);
796	priv->tx_skb = skb;
797	queue_work(priv->wq, &priv->tx_work);
798
799	return NETDEV_TX_OK;
800}
801
802static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
803{
804	struct mcp251x_priv *priv = netdev_priv(net);
805
806	switch (mode) {
807	case CAN_MODE_START:
808		mcp251x_clean(net);
809		/* We have to delay work since SPI I/O may sleep */
810		priv->can.state = CAN_STATE_ERROR_ACTIVE;
811		priv->restart_tx = 1;
812		if (priv->can.restart_ms == 0)
813			priv->after_suspend = AFTER_SUSPEND_RESTART;
814		queue_work(priv->wq, &priv->restart_work);
815		break;
816	default:
817		return -EOPNOTSUPP;
818	}
819
820	return 0;
821}
822
823static int mcp251x_set_normal_mode(struct spi_device *spi)
824{
825	struct mcp251x_priv *priv = spi_get_drvdata(spi);
826	u8 value;
827	int ret;
828
829	/* Enable interrupts */
830	mcp251x_write_reg(spi, CANINTE,
831			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
832			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
833
834	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
835		/* Put device into loopback mode */
836		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
837	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
838		/* Put device into listen-only mode */
839		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
840	} else {
841		/* Put device into normal mode */
842		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
843
844		/* Wait for the device to enter normal mode */
845		ret = mcp251x_read_stat_poll_timeout(spi, value, value == 0,
846						     MCP251X_OST_DELAY_MS * 1000,
847						     USEC_PER_SEC);
848		if (ret) {
849			dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
850			return ret;
851		}
852	}
853	priv->can.state = CAN_STATE_ERROR_ACTIVE;
854	return 0;
855}
856
857static int mcp251x_do_set_bittiming(struct net_device *net)
858{
859	struct mcp251x_priv *priv = netdev_priv(net);
860	struct can_bittiming *bt = &priv->can.bittiming;
861	struct spi_device *spi = priv->spi;
862
863	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
864			  (bt->brp - 1));
865	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
866			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
867			   CNF2_SAM : 0) |
868			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
869			  (bt->prop_seg - 1));
870	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
871			   (bt->phase_seg2 - 1));
872	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
873		mcp251x_read_reg(spi, CNF1),
874		mcp251x_read_reg(spi, CNF2),
875		mcp251x_read_reg(spi, CNF3));
876
877	return 0;
878}
879
880static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
881{
882	mcp251x_do_set_bittiming(net);
883
884	mcp251x_write_reg(spi, RXBCTRL(0),
885			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
886	mcp251x_write_reg(spi, RXBCTRL(1),
887			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
888	return 0;
889}
890
891static int mcp251x_hw_reset(struct spi_device *spi)
892{
893	struct mcp251x_priv *priv = spi_get_drvdata(spi);
894	u8 value;
895	int ret;
896
897	/* Wait for oscillator startup timer after power up */
898	mdelay(MCP251X_OST_DELAY_MS);
899
900	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
901	ret = mcp251x_spi_write(spi, 1);
902	if (ret)
903		return ret;
904
905	/* Wait for oscillator startup timer after reset */
906	mdelay(MCP251X_OST_DELAY_MS);
907
908	/* Wait for reset to finish */
909	ret = mcp251x_read_stat_poll_timeout(spi, value, value == CANCTRL_REQOP_CONF,
910					     MCP251X_OST_DELAY_MS * 1000,
911					     USEC_PER_SEC);
912	if (ret)
913		dev_err(&spi->dev, "MCP251x didn't enter in conf mode after reset\n");
914	return ret;
915}
916
917static int mcp251x_hw_probe(struct spi_device *spi)
918{
919	u8 ctrl;
920	int ret;
921
922	ret = mcp251x_hw_reset(spi);
923	if (ret)
924		return ret;
925
926	ctrl = mcp251x_read_reg(spi, CANCTRL);
927
928	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
929
930	/* Check for power up default value */
931	if ((ctrl & 0x17) != 0x07)
932		return -ENODEV;
933
934	return 0;
935}
936
937static int mcp251x_power_enable(struct regulator *reg, int enable)
938{
939	if (IS_ERR_OR_NULL(reg))
940		return 0;
941
942	if (enable)
943		return regulator_enable(reg);
944	else
945		return regulator_disable(reg);
946}
947
948static int mcp251x_stop(struct net_device *net)
949{
950	struct mcp251x_priv *priv = netdev_priv(net);
951	struct spi_device *spi = priv->spi;
952
953	close_candev(net);
954
955	priv->force_quit = 1;
956	free_irq(spi->irq, priv);
957
958	mutex_lock(&priv->mcp_lock);
959
960	/* Disable and clear pending interrupts */
961	mcp251x_write_2regs(spi, CANINTE, 0x00, 0x00);
962
963	mcp251x_write_reg(spi, TXBCTRL(0), 0);
964	mcp251x_clean(net);
965
966	mcp251x_hw_sleep(spi);
967
968	mcp251x_power_enable(priv->transceiver, 0);
969
970	priv->can.state = CAN_STATE_STOPPED;
971
972	mutex_unlock(&priv->mcp_lock);
973
974	return 0;
975}
976
977static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
978{
979	struct sk_buff *skb;
980	struct can_frame *frame;
981
982	skb = alloc_can_err_skb(net, &frame);
983	if (skb) {
984		frame->can_id |= can_id;
985		frame->data[1] = data1;
986		netif_rx(skb);
987	} else {
988		netdev_err(net, "cannot allocate error skb\n");
989	}
990}
991
992static void mcp251x_tx_work_handler(struct work_struct *ws)
993{
994	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
995						 tx_work);
996	struct spi_device *spi = priv->spi;
997	struct net_device *net = priv->net;
998	struct can_frame *frame;
999
1000	mutex_lock(&priv->mcp_lock);
1001	if (priv->tx_skb) {
1002		if (priv->can.state == CAN_STATE_BUS_OFF) {
1003			mcp251x_clean(net);
1004		} else {
1005			frame = (struct can_frame *)priv->tx_skb->data;
1006
1007			if (frame->len > CAN_FRAME_MAX_DATA_LEN)
1008				frame->len = CAN_FRAME_MAX_DATA_LEN;
1009			mcp251x_hw_tx(spi, frame, 0);
1010			priv->tx_busy = true;
1011			can_put_echo_skb(priv->tx_skb, net, 0, 0);
1012			priv->tx_skb = NULL;
1013		}
1014	}
1015	mutex_unlock(&priv->mcp_lock);
1016}
1017
1018static void mcp251x_restart_work_handler(struct work_struct *ws)
1019{
1020	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
1021						 restart_work);
1022	struct spi_device *spi = priv->spi;
1023	struct net_device *net = priv->net;
1024
1025	mutex_lock(&priv->mcp_lock);
1026	if (priv->after_suspend) {
1027		if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1028			mcp251x_hw_reset(spi);
1029			mcp251x_setup(net, spi);
1030			mcp251x_gpio_restore(spi);
1031		} else {
1032			mcp251x_hw_wake(spi);
1033		}
1034		priv->force_quit = 0;
1035		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
1036			mcp251x_set_normal_mode(spi);
1037		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
1038			netif_device_attach(net);
1039			mcp251x_clean(net);
1040			mcp251x_set_normal_mode(spi);
1041			netif_wake_queue(net);
1042		} else {
1043			mcp251x_hw_sleep(spi);
1044		}
1045		priv->after_suspend = 0;
1046	}
1047
1048	if (priv->restart_tx) {
1049		priv->restart_tx = 0;
1050		mcp251x_write_reg(spi, TXBCTRL(0), 0);
1051		mcp251x_clean(net);
1052		netif_wake_queue(net);
1053		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
1054	}
1055	mutex_unlock(&priv->mcp_lock);
1056}
1057
1058static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
1059{
1060	struct mcp251x_priv *priv = dev_id;
1061	struct spi_device *spi = priv->spi;
1062	struct net_device *net = priv->net;
1063
1064	mutex_lock(&priv->mcp_lock);
1065	while (!priv->force_quit) {
1066		enum can_state new_state;
1067		u8 intf, eflag;
1068		u8 clear_intf = 0;
1069		int can_id = 0, data1 = 0;
1070
1071		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
1072
1073		/* receive buffer 0 */
1074		if (intf & CANINTF_RX0IF) {
1075			mcp251x_hw_rx(spi, 0);
1076			/* Free one buffer ASAP
1077			 * (The MCP2515/25625 does this automatically.)
1078			 */
1079			if (mcp251x_is_2510(spi))
1080				mcp251x_write_bits(spi, CANINTF,
1081						   CANINTF_RX0IF, 0x00);
1082
1083			/* check if buffer 1 is already known to be full, no need to re-read */
1084			if (!(intf & CANINTF_RX1IF)) {
1085				u8 intf1, eflag1;
1086
1087				/* intf needs to be read again to avoid a race condition */
1088				mcp251x_read_2regs(spi, CANINTF, &intf1, &eflag1);
1089
1090				/* combine flags from both operations for error handling */
1091				intf |= intf1;
1092				eflag |= eflag1;
1093			}
1094		}
1095
1096		/* receive buffer 1 */
1097		if (intf & CANINTF_RX1IF) {
1098			mcp251x_hw_rx(spi, 1);
1099			/* The MCP2515/25625 does this automatically. */
1100			if (mcp251x_is_2510(spi))
1101				clear_intf |= CANINTF_RX1IF;
1102		}
1103
1104		/* mask out flags we don't care about */
1105		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
1106
1107		/* any error or tx interrupt we need to clear? */
1108		if (intf & (CANINTF_ERR | CANINTF_TX))
1109			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
1110		if (clear_intf)
1111			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
1112
1113		if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
1114			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
1115
1116		/* Update can state */
1117		if (eflag & EFLG_TXBO) {
1118			new_state = CAN_STATE_BUS_OFF;
1119			can_id |= CAN_ERR_BUSOFF;
1120		} else if (eflag & EFLG_TXEP) {
1121			new_state = CAN_STATE_ERROR_PASSIVE;
1122			can_id |= CAN_ERR_CRTL;
1123			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
1124		} else if (eflag & EFLG_RXEP) {
1125			new_state = CAN_STATE_ERROR_PASSIVE;
1126			can_id |= CAN_ERR_CRTL;
1127			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
1128		} else if (eflag & EFLG_TXWAR) {
1129			new_state = CAN_STATE_ERROR_WARNING;
1130			can_id |= CAN_ERR_CRTL;
1131			data1 |= CAN_ERR_CRTL_TX_WARNING;
1132		} else if (eflag & EFLG_RXWAR) {
1133			new_state = CAN_STATE_ERROR_WARNING;
1134			can_id |= CAN_ERR_CRTL;
1135			data1 |= CAN_ERR_CRTL_RX_WARNING;
1136		} else {
1137			new_state = CAN_STATE_ERROR_ACTIVE;
1138		}
1139
1140		/* Update can state statistics */
1141		switch (priv->can.state) {
1142		case CAN_STATE_ERROR_ACTIVE:
1143			if (new_state >= CAN_STATE_ERROR_WARNING &&
1144			    new_state <= CAN_STATE_BUS_OFF)
1145				priv->can.can_stats.error_warning++;
1146			fallthrough;
1147		case CAN_STATE_ERROR_WARNING:
1148			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
1149			    new_state <= CAN_STATE_BUS_OFF)
1150				priv->can.can_stats.error_passive++;
1151			break;
1152		default:
1153			break;
1154		}
1155		priv->can.state = new_state;
1156
1157		if (intf & CANINTF_ERRIF) {
1158			/* Handle overflow counters */
1159			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
1160				if (eflag & EFLG_RX0OVR) {
1161					net->stats.rx_over_errors++;
1162					net->stats.rx_errors++;
1163				}
1164				if (eflag & EFLG_RX1OVR) {
1165					net->stats.rx_over_errors++;
1166					net->stats.rx_errors++;
1167				}
1168				can_id |= CAN_ERR_CRTL;
1169				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
1170			}
1171			mcp251x_error_skb(net, can_id, data1);
1172		}
1173
1174		if (priv->can.state == CAN_STATE_BUS_OFF) {
1175			if (priv->can.restart_ms == 0) {
1176				priv->force_quit = 1;
1177				priv->can.can_stats.bus_off++;
1178				can_bus_off(net);
1179				mcp251x_hw_sleep(spi);
1180				break;
1181			}
1182		}
1183
1184		if (intf == 0)
1185			break;
1186
1187		if (intf & CANINTF_TX) {
1188			if (priv->tx_busy) {
1189				net->stats.tx_packets++;
1190				net->stats.tx_bytes += can_get_echo_skb(net, 0,
1191									NULL);
1192				priv->tx_busy = false;
1193			}
1194			netif_wake_queue(net);
1195		}
1196	}
1197	mutex_unlock(&priv->mcp_lock);
1198	return IRQ_HANDLED;
1199}
1200
1201static int mcp251x_open(struct net_device *net)
1202{
1203	struct mcp251x_priv *priv = netdev_priv(net);
1204	struct spi_device *spi = priv->spi;
1205	unsigned long flags = 0;
1206	int ret;
1207
1208	ret = open_candev(net);
1209	if (ret) {
1210		dev_err(&spi->dev, "unable to set initial baudrate!\n");
1211		return ret;
1212	}
1213
1214	mutex_lock(&priv->mcp_lock);
1215	mcp251x_power_enable(priv->transceiver, 1);
1216
1217	priv->force_quit = 0;
1218	priv->tx_skb = NULL;
1219	priv->tx_busy = false;
1220
1221	if (!dev_fwnode(&spi->dev))
1222		flags = IRQF_TRIGGER_FALLING;
1223
1224	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
1225				   flags | IRQF_ONESHOT, dev_name(&spi->dev),
1226				   priv);
1227	if (ret) {
1228		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
1229		goto out_close;
1230	}
1231
1232	ret = mcp251x_hw_wake(spi);
1233	if (ret)
1234		goto out_free_irq;
1235	ret = mcp251x_setup(net, spi);
1236	if (ret)
1237		goto out_free_irq;
1238	ret = mcp251x_set_normal_mode(spi);
1239	if (ret)
1240		goto out_free_irq;
1241
1242	netif_wake_queue(net);
1243	mutex_unlock(&priv->mcp_lock);
1244
1245	return 0;
1246
1247out_free_irq:
1248	free_irq(spi->irq, priv);
1249	mcp251x_hw_sleep(spi);
1250out_close:
1251	mcp251x_power_enable(priv->transceiver, 0);
1252	close_candev(net);
1253	mutex_unlock(&priv->mcp_lock);
1254	return ret;
1255}
1256
1257static const struct net_device_ops mcp251x_netdev_ops = {
1258	.ndo_open = mcp251x_open,
1259	.ndo_stop = mcp251x_stop,
1260	.ndo_start_xmit = mcp251x_hard_start_xmit,
1261	.ndo_change_mtu = can_change_mtu,
1262};
1263
1264static const struct ethtool_ops mcp251x_ethtool_ops = {
1265	.get_ts_info = ethtool_op_get_ts_info,
1266};
1267
1268static const struct of_device_id mcp251x_of_match[] = {
1269	{
1270		.compatible	= "microchip,mcp2510",
1271		.data		= (void *)CAN_MCP251X_MCP2510,
1272	},
1273	{
1274		.compatible	= "microchip,mcp2515",
1275		.data		= (void *)CAN_MCP251X_MCP2515,
1276	},
1277	{
1278		.compatible	= "microchip,mcp25625",
1279		.data		= (void *)CAN_MCP251X_MCP25625,
1280	},
1281	{ }
1282};
1283MODULE_DEVICE_TABLE(of, mcp251x_of_match);
1284
1285static const struct spi_device_id mcp251x_id_table[] = {
1286	{
1287		.name		= "mcp2510",
1288		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
1289	},
1290	{
1291		.name		= "mcp2515",
1292		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
1293	},
1294	{
1295		.name		= "mcp25625",
1296		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP25625,
1297	},
1298	{ }
1299};
1300MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
1301
1302static int mcp251x_can_probe(struct spi_device *spi)
1303{
1304	const void *match = device_get_match_data(&spi->dev);
1305	struct net_device *net;
1306	struct mcp251x_priv *priv;
1307	struct clk *clk;
1308	u32 freq;
1309	int ret;
1310
1311	clk = devm_clk_get_optional(&spi->dev, NULL);
1312	if (IS_ERR(clk))
1313		return PTR_ERR(clk);
1314
1315	freq = clk_get_rate(clk);
1316	if (freq == 0)
1317		device_property_read_u32(&spi->dev, "clock-frequency", &freq);
1318
1319	/* Sanity check */
1320	if (freq < 1000000 || freq > 25000000)
1321		return -ERANGE;
1322
1323	/* Allocate can/net device */
1324	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1325	if (!net)
1326		return -ENOMEM;
1327
1328	ret = clk_prepare_enable(clk);
1329	if (ret)
1330		goto out_free;
1331
1332	net->netdev_ops = &mcp251x_netdev_ops;
1333	net->ethtool_ops = &mcp251x_ethtool_ops;
1334	net->flags |= IFF_ECHO;
1335
1336	priv = netdev_priv(net);
1337	priv->can.bittiming_const = &mcp251x_bittiming_const;
1338	priv->can.do_set_mode = mcp251x_do_set_mode;
1339	priv->can.clock.freq = freq / 2;
1340	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1341		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1342	if (match)
1343		priv->model = (enum mcp251x_model)(uintptr_t)match;
1344	else
1345		priv->model = spi_get_device_id(spi)->driver_data;
1346	priv->net = net;
1347	priv->clk = clk;
1348
1349	spi_set_drvdata(spi, priv);
1350
1351	/* Configure the SPI bus */
1352	spi->bits_per_word = 8;
1353	if (mcp251x_is_2510(spi))
1354		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1355	else
1356		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1357	ret = spi_setup(spi);
1358	if (ret)
1359		goto out_clk;
1360
1361	priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1362	priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1363	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1364	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1365		ret = -EPROBE_DEFER;
1366		goto out_clk;
1367	}
1368
1369	ret = mcp251x_power_enable(priv->power, 1);
1370	if (ret)
1371		goto out_clk;
1372
1373	priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
1374				   0);
1375	if (!priv->wq) {
1376		ret = -ENOMEM;
1377		goto out_clk;
1378	}
1379	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
1380	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
1381
1382	priv->spi = spi;
1383	mutex_init(&priv->mcp_lock);
1384
1385	priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1386					GFP_KERNEL);
1387	if (!priv->spi_tx_buf) {
1388		ret = -ENOMEM;
1389		goto error_probe;
1390	}
1391
1392	priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1393					GFP_KERNEL);
1394	if (!priv->spi_rx_buf) {
1395		ret = -ENOMEM;
1396		goto error_probe;
1397	}
1398
1399	SET_NETDEV_DEV(net, &spi->dev);
1400
1401	/* Here is OK to not lock the MCP, no one knows about it yet */
1402	ret = mcp251x_hw_probe(spi);
1403	if (ret) {
1404		if (ret == -ENODEV)
1405			dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
1406				priv->model);
1407		goto error_probe;
1408	}
1409
1410	mcp251x_hw_sleep(spi);
1411
1412	ret = register_candev(net);
1413	if (ret)
1414		goto error_probe;
1415
1416	ret = mcp251x_gpio_setup(priv);
1417	if (ret)
1418		goto out_unregister_candev;
1419
1420	netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1421	return 0;
1422
1423out_unregister_candev:
1424	unregister_candev(net);
1425
1426error_probe:
1427	destroy_workqueue(priv->wq);
1428	priv->wq = NULL;
1429	mcp251x_power_enable(priv->power, 0);
1430
1431out_clk:
1432	clk_disable_unprepare(clk);
1433
1434out_free:
1435	free_candev(net);
1436
1437	dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1438	return ret;
1439}
1440
1441static void mcp251x_can_remove(struct spi_device *spi)
1442{
1443	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1444	struct net_device *net = priv->net;
1445
1446	unregister_candev(net);
1447
1448	mcp251x_power_enable(priv->power, 0);
1449
1450	destroy_workqueue(priv->wq);
1451	priv->wq = NULL;
1452
1453	clk_disable_unprepare(priv->clk);
1454
1455	free_candev(net);
1456}
1457
1458static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1459{
1460	struct spi_device *spi = to_spi_device(dev);
1461	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1462	struct net_device *net = priv->net;
1463
1464	priv->force_quit = 1;
1465	disable_irq(spi->irq);
1466	/* Note: at this point neither IST nor workqueues are running.
1467	 * open/stop cannot be called anyway so locking is not needed
1468	 */
1469	if (netif_running(net)) {
1470		netif_device_detach(net);
1471
1472		mcp251x_hw_sleep(spi);
1473		mcp251x_power_enable(priv->transceiver, 0);
1474		priv->after_suspend = AFTER_SUSPEND_UP;
1475	} else {
1476		priv->after_suspend = AFTER_SUSPEND_DOWN;
1477	}
1478
1479	mcp251x_power_enable(priv->power, 0);
1480	priv->after_suspend |= AFTER_SUSPEND_POWER;
1481
1482	return 0;
1483}
1484
1485static int __maybe_unused mcp251x_can_resume(struct device *dev)
1486{
1487	struct spi_device *spi = to_spi_device(dev);
1488	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1489
1490	if (priv->after_suspend & AFTER_SUSPEND_POWER)
1491		mcp251x_power_enable(priv->power, 1);
1492	if (priv->after_suspend & AFTER_SUSPEND_UP)
1493		mcp251x_power_enable(priv->transceiver, 1);
1494
1495	if (priv->after_suspend & (AFTER_SUSPEND_POWER | AFTER_SUSPEND_UP))
1496		queue_work(priv->wq, &priv->restart_work);
1497	else
1498		priv->after_suspend = 0;
1499
1500	priv->force_quit = 0;
1501	enable_irq(spi->irq);
1502	return 0;
1503}
1504
1505static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1506	mcp251x_can_resume);
1507
1508static struct spi_driver mcp251x_can_driver = {
1509	.driver = {
1510		.name = DEVICE_NAME,
1511		.of_match_table = mcp251x_of_match,
1512		.pm = &mcp251x_can_pm_ops,
1513	},
1514	.id_table = mcp251x_id_table,
1515	.probe = mcp251x_can_probe,
1516	.remove = mcp251x_can_remove,
1517};
1518module_spi_driver(mcp251x_can_driver);
1519
1520MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1521	      "Christian Pellegrin <chripell@evolware.org>");
1522MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1523MODULE_LICENSE("GPL v2");
1524