1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * Author: Artem Bityutskiy (���������������� ����������)
6 */
7
8/*
9 * UBI attaching sub-system.
10 *
11 * This sub-system is responsible for attaching MTD devices and it also
12 * implements flash media scanning.
13 *
14 * The attaching information is represented by a &struct ubi_attach_info'
15 * object. Information about volumes is represented by &struct ubi_ainf_volume
16 * objects which are kept in volume RB-tree with root at the @volumes field.
17 * The RB-tree is indexed by the volume ID.
18 *
19 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
20 * objects are kept in per-volume RB-trees with the root at the corresponding
21 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
22 * per-volume objects and each of these objects is the root of RB-tree of
23 * per-LEB objects.
24 *
25 * Corrupted physical eraseblocks are put to the @corr list, free physical
26 * eraseblocks are put to the @free list and the physical eraseblock to be
27 * erased are put to the @erase list.
28 *
29 * About corruptions
30 * ~~~~~~~~~~~~~~~~~
31 *
32 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
33 * whether the headers are corrupted or not. Sometimes UBI also protects the
34 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
35 * when it moves the contents of a PEB for wear-leveling purposes.
36 *
37 * UBI tries to distinguish between 2 types of corruptions.
38 *
39 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
40 * tries to handle them gracefully, without printing too many warnings and
41 * error messages. The idea is that we do not lose important data in these
42 * cases - we may lose only the data which were being written to the media just
43 * before the power cut happened, and the upper layers (e.g., UBIFS) are
44 * supposed to handle such data losses (e.g., by using the FS journal).
45 *
46 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
47 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
48 * PEBs in the @erase list are scheduled for erasure later.
49 *
50 * 2. Unexpected corruptions which are not caused by power cuts. During
51 * attaching, such PEBs are put to the @corr list and UBI preserves them.
52 * Obviously, this lessens the amount of available PEBs, and if at some  point
53 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
54 * about such PEBs every time the MTD device is attached.
55 *
56 * However, it is difficult to reliably distinguish between these types of
57 * corruptions and UBI's strategy is as follows (in case of attaching by
58 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
59 * the data area does not contain all 0xFFs, and there were no bit-flips or
60 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
61 * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
62 * are as follows.
63 *   o If the data area contains only 0xFFs, there are no data, and it is safe
64 *     to just erase this PEB - this is corruption type 1.
65 *   o If the data area has bit-flips or data integrity errors (ECC errors on
66 *     NAND), it is probably a PEB which was being erased when power cut
67 *     happened, so this is corruption type 1. However, this is just a guess,
68 *     which might be wrong.
69 *   o Otherwise this is corruption type 2.
70 */
71
72#include <linux/err.h>
73#include <linux/slab.h>
74#include <linux/crc32.h>
75#include <linux/math64.h>
76#include <linux/random.h>
77#include "ubi.h"
78
79static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
80
81#define AV_FIND		BIT(0)
82#define AV_ADD		BIT(1)
83#define AV_FIND_OR_ADD	(AV_FIND | AV_ADD)
84
85/**
86 * find_or_add_av - internal function to find a volume, add a volume or do
87 *		    both (find and add if missing).
88 * @ai: attaching information
89 * @vol_id: the requested volume ID
90 * @flags: a combination of the %AV_FIND and %AV_ADD flags describing the
91 *	   expected operation. If only %AV_ADD is set, -EEXIST is returned
92 *	   if the volume already exists. If only %AV_FIND is set, NULL is
93 *	   returned if the volume does not exist. And if both flags are
94 *	   set, the helper first tries to find an existing volume, and if
95 *	   it does not exist it creates a new one.
96 * @created: in value used to inform the caller whether it"s a newly created
97 *	     volume or not.
98 *
99 * This function returns a pointer to a volume description or an ERR_PTR if
100 * the operation failed. It can also return NULL if only %AV_FIND is set and
101 * the volume does not exist.
102 */
103static struct ubi_ainf_volume *find_or_add_av(struct ubi_attach_info *ai,
104					      int vol_id, unsigned int flags,
105					      bool *created)
106{
107	struct ubi_ainf_volume *av;
108	struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
109
110	/* Walk the volume RB-tree to look if this volume is already present */
111	while (*p) {
112		parent = *p;
113		av = rb_entry(parent, struct ubi_ainf_volume, rb);
114
115		if (vol_id == av->vol_id) {
116			*created = false;
117
118			if (!(flags & AV_FIND))
119				return ERR_PTR(-EEXIST);
120
121			return av;
122		}
123
124		if (vol_id > av->vol_id)
125			p = &(*p)->rb_left;
126		else
127			p = &(*p)->rb_right;
128	}
129
130	if (!(flags & AV_ADD))
131		return NULL;
132
133	/* The volume is absent - add it */
134	av = kzalloc(sizeof(*av), GFP_KERNEL);
135	if (!av)
136		return ERR_PTR(-ENOMEM);
137
138	av->vol_id = vol_id;
139
140	if (vol_id > ai->highest_vol_id)
141		ai->highest_vol_id = vol_id;
142
143	rb_link_node(&av->rb, parent, p);
144	rb_insert_color(&av->rb, &ai->volumes);
145	ai->vols_found += 1;
146	*created = true;
147	dbg_bld("added volume %d", vol_id);
148	return av;
149}
150
151/**
152 * ubi_find_or_add_av - search for a volume in the attaching information and
153 *			add one if it does not exist.
154 * @ai: attaching information
155 * @vol_id: the requested volume ID
156 * @created: whether the volume has been created or not
157 *
158 * This function returns a pointer to the new volume description or an
159 * ERR_PTR if the operation failed.
160 */
161static struct ubi_ainf_volume *ubi_find_or_add_av(struct ubi_attach_info *ai,
162						  int vol_id, bool *created)
163{
164	return find_or_add_av(ai, vol_id, AV_FIND_OR_ADD, created);
165}
166
167/**
168 * ubi_alloc_aeb - allocate an aeb element
169 * @ai: attaching information
170 * @pnum: physical eraseblock number
171 * @ec: erase counter of the physical eraseblock
172 *
173 * Allocate an aeb object and initialize the pnum and ec information.
174 * vol_id and lnum are set to UBI_UNKNOWN, and the other fields are
175 * initialized to zero.
176 * Note that the element is not added in any list or RB tree.
177 */
178struct ubi_ainf_peb *ubi_alloc_aeb(struct ubi_attach_info *ai, int pnum,
179				   int ec)
180{
181	struct ubi_ainf_peb *aeb;
182
183	aeb = kmem_cache_zalloc(ai->aeb_slab_cache, GFP_KERNEL);
184	if (!aeb)
185		return NULL;
186
187	aeb->pnum = pnum;
188	aeb->ec = ec;
189	aeb->vol_id = UBI_UNKNOWN;
190	aeb->lnum = UBI_UNKNOWN;
191
192	return aeb;
193}
194
195/**
196 * ubi_free_aeb - free an aeb element
197 * @ai: attaching information
198 * @aeb: the element to free
199 *
200 * Free an aeb object. The caller must have removed the element from any list
201 * or RB tree.
202 */
203void ubi_free_aeb(struct ubi_attach_info *ai, struct ubi_ainf_peb *aeb)
204{
205	kmem_cache_free(ai->aeb_slab_cache, aeb);
206}
207
208/**
209 * add_to_list - add physical eraseblock to a list.
210 * @ai: attaching information
211 * @pnum: physical eraseblock number to add
212 * @vol_id: the last used volume id for the PEB
213 * @lnum: the last used LEB number for the PEB
214 * @ec: erase counter of the physical eraseblock
215 * @to_head: if not zero, add to the head of the list
216 * @list: the list to add to
217 *
218 * This function allocates a 'struct ubi_ainf_peb' object for physical
219 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
220 * It stores the @lnum and @vol_id alongside, which can both be
221 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
222 * If @to_head is not zero, PEB will be added to the head of the list, which
223 * basically means it will be processed first later. E.g., we add corrupted
224 * PEBs (corrupted due to power cuts) to the head of the erase list to make
225 * sure we erase them first and get rid of corruptions ASAP. This function
226 * returns zero in case of success and a negative error code in case of
227 * failure.
228 */
229static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
230		       int lnum, int ec, int to_head, struct list_head *list)
231{
232	struct ubi_ainf_peb *aeb;
233
234	if (list == &ai->free) {
235		dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
236	} else if (list == &ai->erase) {
237		dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
238	} else if (list == &ai->alien) {
239		dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
240		ai->alien_peb_count += 1;
241	} else
242		BUG();
243
244	aeb = ubi_alloc_aeb(ai, pnum, ec);
245	if (!aeb)
246		return -ENOMEM;
247
248	aeb->vol_id = vol_id;
249	aeb->lnum = lnum;
250	if (to_head)
251		list_add(&aeb->u.list, list);
252	else
253		list_add_tail(&aeb->u.list, list);
254	return 0;
255}
256
257/**
258 * add_corrupted - add a corrupted physical eraseblock.
259 * @ai: attaching information
260 * @pnum: physical eraseblock number to add
261 * @ec: erase counter of the physical eraseblock
262 *
263 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
264 * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
265 * was presumably not caused by a power cut. Returns zero in case of success
266 * and a negative error code in case of failure.
267 */
268static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
269{
270	struct ubi_ainf_peb *aeb;
271
272	dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
273
274	aeb = ubi_alloc_aeb(ai, pnum, ec);
275	if (!aeb)
276		return -ENOMEM;
277
278	ai->corr_peb_count += 1;
279	list_add(&aeb->u.list, &ai->corr);
280	return 0;
281}
282
283/**
284 * add_fastmap - add a Fastmap related physical eraseblock.
285 * @ai: attaching information
286 * @pnum: physical eraseblock number the VID header came from
287 * @vid_hdr: the volume identifier header
288 * @ec: erase counter of the physical eraseblock
289 *
290 * This function allocates a 'struct ubi_ainf_peb' object for a Fastamp
291 * physical eraseblock @pnum and adds it to the 'fastmap' list.
292 * Such blocks can be Fastmap super and data blocks from both the most
293 * recent Fastmap we're attaching from or from old Fastmaps which will
294 * be erased.
295 */
296static int add_fastmap(struct ubi_attach_info *ai, int pnum,
297		       struct ubi_vid_hdr *vid_hdr, int ec)
298{
299	struct ubi_ainf_peb *aeb;
300
301	aeb = ubi_alloc_aeb(ai, pnum, ec);
302	if (!aeb)
303		return -ENOMEM;
304
305	aeb->vol_id = be32_to_cpu(vid_hdr->vol_id);
306	aeb->sqnum = be64_to_cpu(vid_hdr->sqnum);
307	list_add(&aeb->u.list, &ai->fastmap);
308
309	dbg_bld("add to fastmap list: PEB %d, vol_id %d, sqnum: %llu", pnum,
310		aeb->vol_id, aeb->sqnum);
311
312	return 0;
313}
314
315/**
316 * validate_vid_hdr - check volume identifier header.
317 * @ubi: UBI device description object
318 * @vid_hdr: the volume identifier header to check
319 * @av: information about the volume this logical eraseblock belongs to
320 * @pnum: physical eraseblock number the VID header came from
321 *
322 * This function checks that data stored in @vid_hdr is consistent. Returns
323 * non-zero if an inconsistency was found and zero if not.
324 *
325 * Note, UBI does sanity check of everything it reads from the flash media.
326 * Most of the checks are done in the I/O sub-system. Here we check that the
327 * information in the VID header is consistent to the information in other VID
328 * headers of the same volume.
329 */
330static int validate_vid_hdr(const struct ubi_device *ubi,
331			    const struct ubi_vid_hdr *vid_hdr,
332			    const struct ubi_ainf_volume *av, int pnum)
333{
334	int vol_type = vid_hdr->vol_type;
335	int vol_id = be32_to_cpu(vid_hdr->vol_id);
336	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
337	int data_pad = be32_to_cpu(vid_hdr->data_pad);
338
339	if (av->leb_count != 0) {
340		int av_vol_type;
341
342		/*
343		 * This is not the first logical eraseblock belonging to this
344		 * volume. Ensure that the data in its VID header is consistent
345		 * to the data in previous logical eraseblock headers.
346		 */
347
348		if (vol_id != av->vol_id) {
349			ubi_err(ubi, "inconsistent vol_id");
350			goto bad;
351		}
352
353		if (av->vol_type == UBI_STATIC_VOLUME)
354			av_vol_type = UBI_VID_STATIC;
355		else
356			av_vol_type = UBI_VID_DYNAMIC;
357
358		if (vol_type != av_vol_type) {
359			ubi_err(ubi, "inconsistent vol_type");
360			goto bad;
361		}
362
363		if (used_ebs != av->used_ebs) {
364			ubi_err(ubi, "inconsistent used_ebs");
365			goto bad;
366		}
367
368		if (data_pad != av->data_pad) {
369			ubi_err(ubi, "inconsistent data_pad");
370			goto bad;
371		}
372	}
373
374	return 0;
375
376bad:
377	ubi_err(ubi, "inconsistent VID header at PEB %d", pnum);
378	ubi_dump_vid_hdr(vid_hdr);
379	ubi_dump_av(av);
380	return -EINVAL;
381}
382
383/**
384 * add_volume - add volume to the attaching information.
385 * @ai: attaching information
386 * @vol_id: ID of the volume to add
387 * @pnum: physical eraseblock number
388 * @vid_hdr: volume identifier header
389 *
390 * If the volume corresponding to the @vid_hdr logical eraseblock is already
391 * present in the attaching information, this function does nothing. Otherwise
392 * it adds corresponding volume to the attaching information. Returns a pointer
393 * to the allocated "av" object in case of success and a negative error code in
394 * case of failure.
395 */
396static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
397					  int vol_id, int pnum,
398					  const struct ubi_vid_hdr *vid_hdr)
399{
400	struct ubi_ainf_volume *av;
401	bool created;
402
403	ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
404
405	av = ubi_find_or_add_av(ai, vol_id, &created);
406	if (IS_ERR(av) || !created)
407		return av;
408
409	av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
410	av->data_pad = be32_to_cpu(vid_hdr->data_pad);
411	av->compat = vid_hdr->compat;
412	av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
413							    : UBI_STATIC_VOLUME;
414
415	return av;
416}
417
418/**
419 * ubi_compare_lebs - find out which logical eraseblock is newer.
420 * @ubi: UBI device description object
421 * @aeb: first logical eraseblock to compare
422 * @pnum: physical eraseblock number of the second logical eraseblock to
423 * compare
424 * @vid_hdr: volume identifier header of the second logical eraseblock
425 *
426 * This function compares 2 copies of a LEB and informs which one is newer. In
427 * case of success this function returns a positive value, in case of failure, a
428 * negative error code is returned. The success return codes use the following
429 * bits:
430 *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
431 *       second PEB (described by @pnum and @vid_hdr);
432 *     o bit 0 is set: the second PEB is newer;
433 *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
434 *     o bit 1 is set: bit-flips were detected in the newer LEB;
435 *     o bit 2 is cleared: the older LEB is not corrupted;
436 *     o bit 2 is set: the older LEB is corrupted.
437 */
438int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
439			int pnum, const struct ubi_vid_hdr *vid_hdr)
440{
441	int len, err, second_is_newer, bitflips = 0, corrupted = 0;
442	uint32_t data_crc, crc;
443	struct ubi_vid_io_buf *vidb = NULL;
444	unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
445
446	if (sqnum2 == aeb->sqnum) {
447		/*
448		 * This must be a really ancient UBI image which has been
449		 * created before sequence numbers support has been added. At
450		 * that times we used 32-bit LEB versions stored in logical
451		 * eraseblocks. That was before UBI got into mainline. We do not
452		 * support these images anymore. Well, those images still work,
453		 * but only if no unclean reboots happened.
454		 */
455		ubi_err(ubi, "unsupported on-flash UBI format");
456		return -EINVAL;
457	}
458
459	/* Obviously the LEB with lower sequence counter is older */
460	second_is_newer = (sqnum2 > aeb->sqnum);
461
462	/*
463	 * Now we know which copy is newer. If the copy flag of the PEB with
464	 * newer version is not set, then we just return, otherwise we have to
465	 * check data CRC. For the second PEB we already have the VID header,
466	 * for the first one - we'll need to re-read it from flash.
467	 *
468	 * Note: this may be optimized so that we wouldn't read twice.
469	 */
470
471	if (second_is_newer) {
472		if (!vid_hdr->copy_flag) {
473			/* It is not a copy, so it is newer */
474			dbg_bld("second PEB %d is newer, copy_flag is unset",
475				pnum);
476			return 1;
477		}
478	} else {
479		if (!aeb->copy_flag) {
480			/* It is not a copy, so it is newer */
481			dbg_bld("first PEB %d is newer, copy_flag is unset",
482				pnum);
483			return bitflips << 1;
484		}
485
486		vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL);
487		if (!vidb)
488			return -ENOMEM;
489
490		pnum = aeb->pnum;
491		err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 0);
492		if (err) {
493			if (err == UBI_IO_BITFLIPS)
494				bitflips = 1;
495			else {
496				ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d",
497					pnum, err);
498				if (err > 0)
499					err = -EIO;
500
501				goto out_free_vidh;
502			}
503		}
504
505		vid_hdr = ubi_get_vid_hdr(vidb);
506	}
507
508	/* Read the data of the copy and check the CRC */
509
510	len = be32_to_cpu(vid_hdr->data_size);
511
512	mutex_lock(&ubi->buf_mutex);
513	err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
514	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
515		goto out_unlock;
516
517	data_crc = be32_to_cpu(vid_hdr->data_crc);
518	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
519	if (crc != data_crc) {
520		dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
521			pnum, crc, data_crc);
522		corrupted = 1;
523		bitflips = 0;
524		second_is_newer = !second_is_newer;
525	} else {
526		dbg_bld("PEB %d CRC is OK", pnum);
527		bitflips |= !!err;
528	}
529	mutex_unlock(&ubi->buf_mutex);
530
531	ubi_free_vid_buf(vidb);
532
533	if (second_is_newer)
534		dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
535	else
536		dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
537
538	return second_is_newer | (bitflips << 1) | (corrupted << 2);
539
540out_unlock:
541	mutex_unlock(&ubi->buf_mutex);
542out_free_vidh:
543	ubi_free_vid_buf(vidb);
544	return err;
545}
546
547/**
548 * ubi_add_to_av - add used physical eraseblock to the attaching information.
549 * @ubi: UBI device description object
550 * @ai: attaching information
551 * @pnum: the physical eraseblock number
552 * @ec: erase counter
553 * @vid_hdr: the volume identifier header
554 * @bitflips: if bit-flips were detected when this physical eraseblock was read
555 *
556 * This function adds information about a used physical eraseblock to the
557 * 'used' tree of the corresponding volume. The function is rather complex
558 * because it has to handle cases when this is not the first physical
559 * eraseblock belonging to the same logical eraseblock, and the newer one has
560 * to be picked, while the older one has to be dropped. This function returns
561 * zero in case of success and a negative error code in case of failure.
562 */
563int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
564		  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
565{
566	int err, vol_id, lnum;
567	unsigned long long sqnum;
568	struct ubi_ainf_volume *av;
569	struct ubi_ainf_peb *aeb;
570	struct rb_node **p, *parent = NULL;
571
572	vol_id = be32_to_cpu(vid_hdr->vol_id);
573	lnum = be32_to_cpu(vid_hdr->lnum);
574	sqnum = be64_to_cpu(vid_hdr->sqnum);
575
576	dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
577		pnum, vol_id, lnum, ec, sqnum, bitflips);
578
579	av = add_volume(ai, vol_id, pnum, vid_hdr);
580	if (IS_ERR(av))
581		return PTR_ERR(av);
582
583	if (ai->max_sqnum < sqnum)
584		ai->max_sqnum = sqnum;
585
586	/*
587	 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
588	 * if this is the first instance of this logical eraseblock or not.
589	 */
590	p = &av->root.rb_node;
591	while (*p) {
592		int cmp_res;
593
594		parent = *p;
595		aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
596		if (lnum != aeb->lnum) {
597			if (lnum < aeb->lnum)
598				p = &(*p)->rb_left;
599			else
600				p = &(*p)->rb_right;
601			continue;
602		}
603
604		/*
605		 * There is already a physical eraseblock describing the same
606		 * logical eraseblock present.
607		 */
608
609		dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
610			aeb->pnum, aeb->sqnum, aeb->ec);
611
612		/*
613		 * Make sure that the logical eraseblocks have different
614		 * sequence numbers. Otherwise the image is bad.
615		 *
616		 * However, if the sequence number is zero, we assume it must
617		 * be an ancient UBI image from the era when UBI did not have
618		 * sequence numbers. We still can attach these images, unless
619		 * there is a need to distinguish between old and new
620		 * eraseblocks, in which case we'll refuse the image in
621		 * 'ubi_compare_lebs()'. In other words, we attach old clean
622		 * images, but refuse attaching old images with duplicated
623		 * logical eraseblocks because there was an unclean reboot.
624		 */
625		if (aeb->sqnum == sqnum && sqnum != 0) {
626			ubi_err(ubi, "two LEBs with same sequence number %llu",
627				sqnum);
628			ubi_dump_aeb(aeb, 0);
629			ubi_dump_vid_hdr(vid_hdr);
630			return -EINVAL;
631		}
632
633		/*
634		 * Now we have to drop the older one and preserve the newer
635		 * one.
636		 */
637		cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
638		if (cmp_res < 0)
639			return cmp_res;
640
641		if (cmp_res & 1) {
642			/*
643			 * This logical eraseblock is newer than the one
644			 * found earlier.
645			 */
646			err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
647			if (err)
648				return err;
649
650			err = add_to_list(ai, aeb->pnum, aeb->vol_id,
651					  aeb->lnum, aeb->ec, cmp_res & 4,
652					  &ai->erase);
653			if (err)
654				return err;
655
656			aeb->ec = ec;
657			aeb->pnum = pnum;
658			aeb->vol_id = vol_id;
659			aeb->lnum = lnum;
660			aeb->scrub = ((cmp_res & 2) || bitflips);
661			aeb->copy_flag = vid_hdr->copy_flag;
662			aeb->sqnum = sqnum;
663
664			if (av->highest_lnum == lnum)
665				av->last_data_size =
666					be32_to_cpu(vid_hdr->data_size);
667
668			return 0;
669		} else {
670			/*
671			 * This logical eraseblock is older than the one found
672			 * previously.
673			 */
674			return add_to_list(ai, pnum, vol_id, lnum, ec,
675					   cmp_res & 4, &ai->erase);
676		}
677	}
678
679	/*
680	 * We've met this logical eraseblock for the first time, add it to the
681	 * attaching information.
682	 */
683
684	err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
685	if (err)
686		return err;
687
688	aeb = ubi_alloc_aeb(ai, pnum, ec);
689	if (!aeb)
690		return -ENOMEM;
691
692	aeb->vol_id = vol_id;
693	aeb->lnum = lnum;
694	aeb->scrub = bitflips;
695	aeb->copy_flag = vid_hdr->copy_flag;
696	aeb->sqnum = sqnum;
697
698	if (av->highest_lnum <= lnum) {
699		av->highest_lnum = lnum;
700		av->last_data_size = be32_to_cpu(vid_hdr->data_size);
701	}
702
703	av->leb_count += 1;
704	rb_link_node(&aeb->u.rb, parent, p);
705	rb_insert_color(&aeb->u.rb, &av->root);
706	return 0;
707}
708
709/**
710 * ubi_add_av - add volume to the attaching information.
711 * @ai: attaching information
712 * @vol_id: the requested volume ID
713 *
714 * This function returns a pointer to the new volume description or an
715 * ERR_PTR if the operation failed.
716 */
717struct ubi_ainf_volume *ubi_add_av(struct ubi_attach_info *ai, int vol_id)
718{
719	bool created;
720
721	return find_or_add_av(ai, vol_id, AV_ADD, &created);
722}
723
724/**
725 * ubi_find_av - find volume in the attaching information.
726 * @ai: attaching information
727 * @vol_id: the requested volume ID
728 *
729 * This function returns a pointer to the volume description or %NULL if there
730 * are no data about this volume in the attaching information.
731 */
732struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
733				    int vol_id)
734{
735	bool created;
736
737	return find_or_add_av((struct ubi_attach_info *)ai, vol_id, AV_FIND,
738			      &created);
739}
740
741static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av,
742		       struct list_head *list);
743
744/**
745 * ubi_remove_av - delete attaching information about a volume.
746 * @ai: attaching information
747 * @av: the volume attaching information to delete
748 */
749void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
750{
751	dbg_bld("remove attaching information about volume %d", av->vol_id);
752
753	rb_erase(&av->rb, &ai->volumes);
754	destroy_av(ai, av, &ai->erase);
755	ai->vols_found -= 1;
756}
757
758/**
759 * early_erase_peb - erase a physical eraseblock.
760 * @ubi: UBI device description object
761 * @ai: attaching information
762 * @pnum: physical eraseblock number to erase;
763 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
764 *
765 * This function erases physical eraseblock 'pnum', and writes the erase
766 * counter header to it. This function should only be used on UBI device
767 * initialization stages, when the EBA sub-system had not been yet initialized.
768 * This function returns zero in case of success and a negative error code in
769 * case of failure.
770 */
771static int early_erase_peb(struct ubi_device *ubi,
772			   const struct ubi_attach_info *ai, int pnum, int ec)
773{
774	int err;
775	struct ubi_ec_hdr *ec_hdr;
776
777	if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
778		/*
779		 * Erase counter overflow. Upgrade UBI and use 64-bit
780		 * erase counters internally.
781		 */
782		ubi_err(ubi, "erase counter overflow at PEB %d, EC %d",
783			pnum, ec);
784		return -EINVAL;
785	}
786
787	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
788	if (!ec_hdr)
789		return -ENOMEM;
790
791	ec_hdr->ec = cpu_to_be64(ec);
792
793	err = ubi_io_sync_erase(ubi, pnum, 0);
794	if (err < 0)
795		goto out_free;
796
797	err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
798
799out_free:
800	kfree(ec_hdr);
801	return err;
802}
803
804/**
805 * ubi_early_get_peb - get a free physical eraseblock.
806 * @ubi: UBI device description object
807 * @ai: attaching information
808 *
809 * This function returns a free physical eraseblock. It is supposed to be
810 * called on the UBI initialization stages when the wear-leveling sub-system is
811 * not initialized yet. This function picks a physical eraseblocks from one of
812 * the lists, writes the EC header if it is needed, and removes it from the
813 * list.
814 *
815 * This function returns a pointer to the "aeb" of the found free PEB in case
816 * of success and an error code in case of failure.
817 */
818struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
819				       struct ubi_attach_info *ai)
820{
821	int err = 0;
822	struct ubi_ainf_peb *aeb, *tmp_aeb;
823
824	if (!list_empty(&ai->free)) {
825		aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
826		list_del(&aeb->u.list);
827		dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
828		return aeb;
829	}
830
831	/*
832	 * We try to erase the first physical eraseblock from the erase list
833	 * and pick it if we succeed, or try to erase the next one if not. And
834	 * so forth. We don't want to take care about bad eraseblocks here -
835	 * they'll be handled later.
836	 */
837	list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
838		if (aeb->ec == UBI_UNKNOWN)
839			aeb->ec = ai->mean_ec;
840
841		err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
842		if (err)
843			continue;
844
845		aeb->ec += 1;
846		list_del(&aeb->u.list);
847		dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
848		return aeb;
849	}
850
851	ubi_err(ubi, "no free eraseblocks");
852	return ERR_PTR(-ENOSPC);
853}
854
855/**
856 * check_corruption - check the data area of PEB.
857 * @ubi: UBI device description object
858 * @vid_hdr: the (corrupted) VID header of this PEB
859 * @pnum: the physical eraseblock number to check
860 *
861 * This is a helper function which is used to distinguish between VID header
862 * corruptions caused by power cuts and other reasons. If the PEB contains only
863 * 0xFF bytes in the data area, the VID header is most probably corrupted
864 * because of a power cut (%0 is returned in this case). Otherwise, it was
865 * probably corrupted for some other reasons (%1 is returned in this case). A
866 * negative error code is returned if a read error occurred.
867 *
868 * If the corruption reason was a power cut, UBI can safely erase this PEB.
869 * Otherwise, it should preserve it to avoid possibly destroying important
870 * information.
871 */
872static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
873			    int pnum)
874{
875	int err;
876
877	mutex_lock(&ubi->buf_mutex);
878	memset(ubi->peb_buf, 0x00, ubi->leb_size);
879
880	err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
881			  ubi->leb_size);
882	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
883		/*
884		 * Bit-flips or integrity errors while reading the data area.
885		 * It is difficult to say for sure what type of corruption is
886		 * this, but presumably a power cut happened while this PEB was
887		 * erased, so it became unstable and corrupted, and should be
888		 * erased.
889		 */
890		err = 0;
891		goto out_unlock;
892	}
893
894	if (err)
895		goto out_unlock;
896
897	if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
898		goto out_unlock;
899
900	ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
901		pnum);
902	ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
903	ubi_dump_vid_hdr(vid_hdr);
904	pr_err("hexdump of PEB %d offset %d, length %d",
905	       pnum, ubi->leb_start, ubi->leb_size);
906	ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
907			       ubi->peb_buf, ubi->leb_size, 1);
908	err = 1;
909
910out_unlock:
911	mutex_unlock(&ubi->buf_mutex);
912	return err;
913}
914
915static bool vol_ignored(int vol_id)
916{
917	switch (vol_id) {
918		case UBI_LAYOUT_VOLUME_ID:
919		return true;
920	}
921
922#ifdef CONFIG_MTD_UBI_FASTMAP
923	return ubi_is_fm_vol(vol_id);
924#else
925	return false;
926#endif
927}
928
929/**
930 * scan_peb - scan and process UBI headers of a PEB.
931 * @ubi: UBI device description object
932 * @ai: attaching information
933 * @pnum: the physical eraseblock number
934 * @fast: true if we're scanning for a Fastmap
935 *
936 * This function reads UBI headers of PEB @pnum, checks them, and adds
937 * information about this PEB to the corresponding list or RB-tree in the
938 * "attaching info" structure. Returns zero if the physical eraseblock was
939 * successfully handled and a negative error code in case of failure.
940 */
941static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
942		    int pnum, bool fast)
943{
944	struct ubi_ec_hdr *ech = ai->ech;
945	struct ubi_vid_io_buf *vidb = ai->vidb;
946	struct ubi_vid_hdr *vidh = ubi_get_vid_hdr(vidb);
947	long long ec;
948	int err, bitflips = 0, vol_id = -1, ec_err = 0;
949
950	dbg_bld("scan PEB %d", pnum);
951
952	/* Skip bad physical eraseblocks */
953	err = ubi_io_is_bad(ubi, pnum);
954	if (err < 0)
955		return err;
956	else if (err) {
957		ai->bad_peb_count += 1;
958		return 0;
959	}
960
961	err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
962	if (err < 0)
963		return err;
964	switch (err) {
965	case 0:
966		break;
967	case UBI_IO_BITFLIPS:
968		bitflips = 1;
969		break;
970	case UBI_IO_FF:
971		ai->empty_peb_count += 1;
972		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
973				   UBI_UNKNOWN, 0, &ai->erase);
974	case UBI_IO_FF_BITFLIPS:
975		ai->empty_peb_count += 1;
976		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
977				   UBI_UNKNOWN, 1, &ai->erase);
978	case UBI_IO_BAD_HDR_EBADMSG:
979	case UBI_IO_BAD_HDR:
980		/*
981		 * We have to also look at the VID header, possibly it is not
982		 * corrupted. Set %bitflips flag in order to make this PEB be
983		 * moved and EC be re-created.
984		 */
985		ec_err = err;
986		ec = UBI_UNKNOWN;
987		bitflips = 1;
988		break;
989	default:
990		ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d",
991			err);
992		return -EINVAL;
993	}
994
995	if (!ec_err) {
996		int image_seq;
997
998		/* Make sure UBI version is OK */
999		if (ech->version != UBI_VERSION) {
1000			ubi_err(ubi, "this UBI version is %d, image version is %d",
1001				UBI_VERSION, (int)ech->version);
1002			return -EINVAL;
1003		}
1004
1005		ec = be64_to_cpu(ech->ec);
1006		if (ec > UBI_MAX_ERASECOUNTER) {
1007			/*
1008			 * Erase counter overflow. The EC headers have 64 bits
1009			 * reserved, but we anyway make use of only 31 bit
1010			 * values, as this seems to be enough for any existing
1011			 * flash. Upgrade UBI and use 64-bit erase counters
1012			 * internally.
1013			 */
1014			ubi_err(ubi, "erase counter overflow, max is %d",
1015				UBI_MAX_ERASECOUNTER);
1016			ubi_dump_ec_hdr(ech);
1017			return -EINVAL;
1018		}
1019
1020		/*
1021		 * Make sure that all PEBs have the same image sequence number.
1022		 * This allows us to detect situations when users flash UBI
1023		 * images incorrectly, so that the flash has the new UBI image
1024		 * and leftovers from the old one. This feature was added
1025		 * relatively recently, and the sequence number was always
1026		 * zero, because old UBI implementations always set it to zero.
1027		 * For this reasons, we do not panic if some PEBs have zero
1028		 * sequence number, while other PEBs have non-zero sequence
1029		 * number.
1030		 */
1031		image_seq = be32_to_cpu(ech->image_seq);
1032		if (!ubi->image_seq)
1033			ubi->image_seq = image_seq;
1034		if (image_seq && ubi->image_seq != image_seq) {
1035			ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d",
1036				image_seq, pnum, ubi->image_seq);
1037			ubi_dump_ec_hdr(ech);
1038			return -EINVAL;
1039		}
1040	}
1041
1042	/* OK, we've done with the EC header, let's look at the VID header */
1043
1044	err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 0);
1045	if (err < 0)
1046		return err;
1047	switch (err) {
1048	case 0:
1049		break;
1050	case UBI_IO_BITFLIPS:
1051		bitflips = 1;
1052		break;
1053	case UBI_IO_BAD_HDR_EBADMSG:
1054		if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
1055			/*
1056			 * Both EC and VID headers are corrupted and were read
1057			 * with data integrity error, probably this is a bad
1058			 * PEB, bit it is not marked as bad yet. This may also
1059			 * be a result of power cut during erasure.
1060			 */
1061			ai->maybe_bad_peb_count += 1;
1062		fallthrough;
1063	case UBI_IO_BAD_HDR:
1064			/*
1065			 * If we're facing a bad VID header we have to drop *all*
1066			 * Fastmap data structures we find. The most recent Fastmap
1067			 * could be bad and therefore there is a chance that we attach
1068			 * from an old one. On a fine MTD stack a PEB must not render
1069			 * bad all of a sudden, but the reality is different.
1070			 * So, let's be paranoid and help finding the root cause by
1071			 * falling back to scanning mode instead of attaching with a
1072			 * bad EBA table and cause data corruption which is hard to
1073			 * analyze.
1074			 */
1075			if (fast)
1076				ai->force_full_scan = 1;
1077
1078		if (ec_err)
1079			/*
1080			 * Both headers are corrupted. There is a possibility
1081			 * that this a valid UBI PEB which has corresponding
1082			 * LEB, but the headers are corrupted. However, it is
1083			 * impossible to distinguish it from a PEB which just
1084			 * contains garbage because of a power cut during erase
1085			 * operation. So we just schedule this PEB for erasure.
1086			 *
1087			 * Besides, in case of NOR flash, we deliberately
1088			 * corrupt both headers because NOR flash erasure is
1089			 * slow and can start from the end.
1090			 */
1091			err = 0;
1092		else
1093			/*
1094			 * The EC was OK, but the VID header is corrupted. We
1095			 * have to check what is in the data area.
1096			 */
1097			err = check_corruption(ubi, vidh, pnum);
1098
1099		if (err < 0)
1100			return err;
1101		else if (!err)
1102			/* This corruption is caused by a power cut */
1103			err = add_to_list(ai, pnum, UBI_UNKNOWN,
1104					  UBI_UNKNOWN, ec, 1, &ai->erase);
1105		else
1106			/* This is an unexpected corruption */
1107			err = add_corrupted(ai, pnum, ec);
1108		if (err)
1109			return err;
1110		goto adjust_mean_ec;
1111	case UBI_IO_FF_BITFLIPS:
1112		err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
1113				  ec, 1, &ai->erase);
1114		if (err)
1115			return err;
1116		goto adjust_mean_ec;
1117	case UBI_IO_FF:
1118		if (ec_err || bitflips)
1119			err = add_to_list(ai, pnum, UBI_UNKNOWN,
1120					  UBI_UNKNOWN, ec, 1, &ai->erase);
1121		else
1122			err = add_to_list(ai, pnum, UBI_UNKNOWN,
1123					  UBI_UNKNOWN, ec, 0, &ai->free);
1124		if (err)
1125			return err;
1126		goto adjust_mean_ec;
1127	default:
1128		ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d",
1129			err);
1130		return -EINVAL;
1131	}
1132
1133	vol_id = be32_to_cpu(vidh->vol_id);
1134	if (vol_id > UBI_MAX_VOLUMES && !vol_ignored(vol_id)) {
1135		int lnum = be32_to_cpu(vidh->lnum);
1136
1137		/* Unsupported internal volume */
1138		switch (vidh->compat) {
1139		case UBI_COMPAT_DELETE:
1140			ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it",
1141				vol_id, lnum);
1142
1143			err = add_to_list(ai, pnum, vol_id, lnum,
1144					  ec, 1, &ai->erase);
1145			if (err)
1146				return err;
1147			return 0;
1148
1149		case UBI_COMPAT_RO:
1150			ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode",
1151				vol_id, lnum);
1152			ubi->ro_mode = 1;
1153			break;
1154
1155		case UBI_COMPAT_PRESERVE:
1156			ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found",
1157				vol_id, lnum);
1158			err = add_to_list(ai, pnum, vol_id, lnum,
1159					  ec, 0, &ai->alien);
1160			if (err)
1161				return err;
1162			return 0;
1163
1164		case UBI_COMPAT_REJECT:
1165			ubi_err(ubi, "incompatible internal volume %d:%d found",
1166				vol_id, lnum);
1167			return -EINVAL;
1168		}
1169	}
1170
1171	if (ec_err)
1172		ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d",
1173			 pnum);
1174
1175	if (ubi_is_fm_vol(vol_id))
1176		err = add_fastmap(ai, pnum, vidh, ec);
1177	else
1178		err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1179
1180	if (err)
1181		return err;
1182
1183adjust_mean_ec:
1184	if (!ec_err) {
1185		ai->ec_sum += ec;
1186		ai->ec_count += 1;
1187		if (ec > ai->max_ec)
1188			ai->max_ec = ec;
1189		if (ec < ai->min_ec)
1190			ai->min_ec = ec;
1191	}
1192
1193	return 0;
1194}
1195
1196/**
1197 * late_analysis - analyze the overall situation with PEB.
1198 * @ubi: UBI device description object
1199 * @ai: attaching information
1200 *
1201 * This is a helper function which takes a look what PEBs we have after we
1202 * gather information about all of them ("ai" is compete). It decides whether
1203 * the flash is empty and should be formatted of whether there are too many
1204 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1205 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1206 */
1207static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1208{
1209	struct ubi_ainf_peb *aeb;
1210	int max_corr, peb_count;
1211
1212	peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1213	max_corr = peb_count / 20 ?: 8;
1214
1215	/*
1216	 * Few corrupted PEBs is not a problem and may be just a result of
1217	 * unclean reboots. However, many of them may indicate some problems
1218	 * with the flash HW or driver.
1219	 */
1220	if (ai->corr_peb_count) {
1221		ubi_err(ubi, "%d PEBs are corrupted and preserved",
1222			ai->corr_peb_count);
1223		pr_err("Corrupted PEBs are:");
1224		list_for_each_entry(aeb, &ai->corr, u.list)
1225			pr_cont(" %d", aeb->pnum);
1226		pr_cont("\n");
1227
1228		/*
1229		 * If too many PEBs are corrupted, we refuse attaching,
1230		 * otherwise, only print a warning.
1231		 */
1232		if (ai->corr_peb_count >= max_corr) {
1233			ubi_err(ubi, "too many corrupted PEBs, refusing");
1234			return -EINVAL;
1235		}
1236	}
1237
1238	if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1239		/*
1240		 * All PEBs are empty, or almost all - a couple PEBs look like
1241		 * they may be bad PEBs which were not marked as bad yet.
1242		 *
1243		 * This piece of code basically tries to distinguish between
1244		 * the following situations:
1245		 *
1246		 * 1. Flash is empty, but there are few bad PEBs, which are not
1247		 *    marked as bad so far, and which were read with error. We
1248		 *    want to go ahead and format this flash. While formatting,
1249		 *    the faulty PEBs will probably be marked as bad.
1250		 *
1251		 * 2. Flash contains non-UBI data and we do not want to format
1252		 *    it and destroy possibly important information.
1253		 */
1254		if (ai->maybe_bad_peb_count <= 2) {
1255			ai->is_empty = 1;
1256			ubi_msg(ubi, "empty MTD device detected");
1257			get_random_bytes(&ubi->image_seq,
1258					 sizeof(ubi->image_seq));
1259		} else {
1260			ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1261			return -EINVAL;
1262		}
1263
1264	}
1265
1266	return 0;
1267}
1268
1269/**
1270 * destroy_av - free volume attaching information.
1271 * @av: volume attaching information
1272 * @ai: attaching information
1273 * @list: put the aeb elements in there if !NULL, otherwise free them
1274 *
1275 * This function destroys the volume attaching information.
1276 */
1277static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av,
1278		       struct list_head *list)
1279{
1280	struct ubi_ainf_peb *aeb;
1281	struct rb_node *this = av->root.rb_node;
1282
1283	while (this) {
1284		if (this->rb_left)
1285			this = this->rb_left;
1286		else if (this->rb_right)
1287			this = this->rb_right;
1288		else {
1289			aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1290			this = rb_parent(this);
1291			if (this) {
1292				if (this->rb_left == &aeb->u.rb)
1293					this->rb_left = NULL;
1294				else
1295					this->rb_right = NULL;
1296			}
1297
1298			if (list)
1299				list_add_tail(&aeb->u.list, list);
1300			else
1301				ubi_free_aeb(ai, aeb);
1302		}
1303	}
1304	kfree(av);
1305}
1306
1307/**
1308 * destroy_ai - destroy attaching information.
1309 * @ai: attaching information
1310 */
1311static void destroy_ai(struct ubi_attach_info *ai)
1312{
1313	struct ubi_ainf_peb *aeb, *aeb_tmp;
1314	struct ubi_ainf_volume *av;
1315	struct rb_node *rb;
1316
1317	list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1318		list_del(&aeb->u.list);
1319		ubi_free_aeb(ai, aeb);
1320	}
1321	list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1322		list_del(&aeb->u.list);
1323		ubi_free_aeb(ai, aeb);
1324	}
1325	list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1326		list_del(&aeb->u.list);
1327		ubi_free_aeb(ai, aeb);
1328	}
1329	list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1330		list_del(&aeb->u.list);
1331		ubi_free_aeb(ai, aeb);
1332	}
1333	list_for_each_entry_safe(aeb, aeb_tmp, &ai->fastmap, u.list) {
1334		list_del(&aeb->u.list);
1335		ubi_free_aeb(ai, aeb);
1336	}
1337
1338	/* Destroy the volume RB-tree */
1339	rb = ai->volumes.rb_node;
1340	while (rb) {
1341		if (rb->rb_left)
1342			rb = rb->rb_left;
1343		else if (rb->rb_right)
1344			rb = rb->rb_right;
1345		else {
1346			av = rb_entry(rb, struct ubi_ainf_volume, rb);
1347
1348			rb = rb_parent(rb);
1349			if (rb) {
1350				if (rb->rb_left == &av->rb)
1351					rb->rb_left = NULL;
1352				else
1353					rb->rb_right = NULL;
1354			}
1355
1356			destroy_av(ai, av, NULL);
1357		}
1358	}
1359
1360	kmem_cache_destroy(ai->aeb_slab_cache);
1361	kfree(ai);
1362}
1363
1364/**
1365 * scan_all - scan entire MTD device.
1366 * @ubi: UBI device description object
1367 * @ai: attach info object
1368 * @start: start scanning at this PEB
1369 *
1370 * This function does full scanning of an MTD device and returns complete
1371 * information about it in form of a "struct ubi_attach_info" object. In case
1372 * of failure, an error code is returned.
1373 */
1374static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1375		    int start)
1376{
1377	int err, pnum;
1378	struct rb_node *rb1, *rb2;
1379	struct ubi_ainf_volume *av;
1380	struct ubi_ainf_peb *aeb;
1381
1382	err = -ENOMEM;
1383
1384	ai->ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1385	if (!ai->ech)
1386		return err;
1387
1388	ai->vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL);
1389	if (!ai->vidb)
1390		goto out_ech;
1391
1392	for (pnum = start; pnum < ubi->peb_count; pnum++) {
1393		cond_resched();
1394
1395		dbg_gen("process PEB %d", pnum);
1396		err = scan_peb(ubi, ai, pnum, false);
1397		if (err < 0)
1398			goto out_vidh;
1399	}
1400
1401	ubi_msg(ubi, "scanning is finished");
1402
1403	/* Calculate mean erase counter */
1404	if (ai->ec_count)
1405		ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1406
1407	err = late_analysis(ubi, ai);
1408	if (err)
1409		goto out_vidh;
1410
1411	/*
1412	 * In case of unknown erase counter we use the mean erase counter
1413	 * value.
1414	 */
1415	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1416		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1417			if (aeb->ec == UBI_UNKNOWN)
1418				aeb->ec = ai->mean_ec;
1419	}
1420
1421	list_for_each_entry(aeb, &ai->free, u.list) {
1422		if (aeb->ec == UBI_UNKNOWN)
1423			aeb->ec = ai->mean_ec;
1424	}
1425
1426	list_for_each_entry(aeb, &ai->corr, u.list)
1427		if (aeb->ec == UBI_UNKNOWN)
1428			aeb->ec = ai->mean_ec;
1429
1430	list_for_each_entry(aeb, &ai->erase, u.list)
1431		if (aeb->ec == UBI_UNKNOWN)
1432			aeb->ec = ai->mean_ec;
1433
1434	err = self_check_ai(ubi, ai);
1435	if (err)
1436		goto out_vidh;
1437
1438	ubi_free_vid_buf(ai->vidb);
1439	kfree(ai->ech);
1440
1441	return 0;
1442
1443out_vidh:
1444	ubi_free_vid_buf(ai->vidb);
1445out_ech:
1446	kfree(ai->ech);
1447	return err;
1448}
1449
1450static struct ubi_attach_info *alloc_ai(void)
1451{
1452	struct ubi_attach_info *ai;
1453
1454	ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1455	if (!ai)
1456		return ai;
1457
1458	INIT_LIST_HEAD(&ai->corr);
1459	INIT_LIST_HEAD(&ai->free);
1460	INIT_LIST_HEAD(&ai->erase);
1461	INIT_LIST_HEAD(&ai->alien);
1462	INIT_LIST_HEAD(&ai->fastmap);
1463	ai->volumes = RB_ROOT;
1464	ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
1465					       sizeof(struct ubi_ainf_peb),
1466					       0, 0, NULL);
1467	if (!ai->aeb_slab_cache) {
1468		kfree(ai);
1469		ai = NULL;
1470	}
1471
1472	return ai;
1473}
1474
1475#ifdef CONFIG_MTD_UBI_FASTMAP
1476
1477/**
1478 * scan_fast - try to find a fastmap and attach from it.
1479 * @ubi: UBI device description object
1480 * @ai: attach info object
1481 *
1482 * Returns 0 on success, negative return values indicate an internal
1483 * error.
1484 * UBI_NO_FASTMAP denotes that no fastmap was found.
1485 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1486 */
1487static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai)
1488{
1489	int err, pnum;
1490	struct ubi_attach_info *scan_ai;
1491
1492	err = -ENOMEM;
1493
1494	scan_ai = alloc_ai();
1495	if (!scan_ai)
1496		goto out;
1497
1498	scan_ai->ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1499	if (!scan_ai->ech)
1500		goto out_ai;
1501
1502	scan_ai->vidb = ubi_alloc_vid_buf(ubi, GFP_KERNEL);
1503	if (!scan_ai->vidb)
1504		goto out_ech;
1505
1506	for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1507		cond_resched();
1508
1509		dbg_gen("process PEB %d", pnum);
1510		err = scan_peb(ubi, scan_ai, pnum, true);
1511		if (err < 0)
1512			goto out_vidh;
1513	}
1514
1515	ubi_free_vid_buf(scan_ai->vidb);
1516	kfree(scan_ai->ech);
1517
1518	if (scan_ai->force_full_scan)
1519		err = UBI_NO_FASTMAP;
1520	else
1521		err = ubi_scan_fastmap(ubi, *ai, scan_ai);
1522
1523	if (err) {
1524		/*
1525		 * Didn't attach via fastmap, do a full scan but reuse what
1526		 * we've aready scanned.
1527		 */
1528		destroy_ai(*ai);
1529		*ai = scan_ai;
1530	} else
1531		destroy_ai(scan_ai);
1532
1533	return err;
1534
1535out_vidh:
1536	ubi_free_vid_buf(scan_ai->vidb);
1537out_ech:
1538	kfree(scan_ai->ech);
1539out_ai:
1540	destroy_ai(scan_ai);
1541out:
1542	return err;
1543}
1544
1545#endif
1546
1547/**
1548 * ubi_attach - attach an MTD device.
1549 * @ubi: UBI device descriptor
1550 * @force_scan: if set to non-zero attach by scanning
1551 *
1552 * This function returns zero in case of success and a negative error code in
1553 * case of failure.
1554 */
1555int ubi_attach(struct ubi_device *ubi, int force_scan)
1556{
1557	int err;
1558	struct ubi_attach_info *ai;
1559
1560	ai = alloc_ai();
1561	if (!ai)
1562		return -ENOMEM;
1563
1564#ifdef CONFIG_MTD_UBI_FASTMAP
1565	/* On small flash devices we disable fastmap in any case. */
1566	if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1567		ubi->fm_disabled = 1;
1568		force_scan = 1;
1569	}
1570
1571	if (force_scan)
1572		err = scan_all(ubi, ai, 0);
1573	else {
1574		err = scan_fast(ubi, &ai);
1575		if (err > 0 || mtd_is_eccerr(err)) {
1576			if (err != UBI_NO_FASTMAP) {
1577				destroy_ai(ai);
1578				ai = alloc_ai();
1579				if (!ai)
1580					return -ENOMEM;
1581
1582				err = scan_all(ubi, ai, 0);
1583			} else {
1584				err = scan_all(ubi, ai, UBI_FM_MAX_START);
1585			}
1586		}
1587	}
1588#else
1589	err = scan_all(ubi, ai, 0);
1590#endif
1591	if (err)
1592		goto out_ai;
1593
1594	ubi->bad_peb_count = ai->bad_peb_count;
1595	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1596	ubi->corr_peb_count = ai->corr_peb_count;
1597	ubi->max_ec = ai->max_ec;
1598	ubi->mean_ec = ai->mean_ec;
1599	dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1600
1601	err = ubi_read_volume_table(ubi, ai);
1602	if (err)
1603		goto out_ai;
1604
1605	err = ubi_wl_init(ubi, ai);
1606	if (err)
1607		goto out_vtbl;
1608
1609	err = ubi_eba_init(ubi, ai);
1610	if (err)
1611		goto out_wl;
1612
1613#ifdef CONFIG_MTD_UBI_FASTMAP
1614	if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) {
1615		struct ubi_attach_info *scan_ai;
1616
1617		scan_ai = alloc_ai();
1618		if (!scan_ai) {
1619			err = -ENOMEM;
1620			goto out_wl;
1621		}
1622
1623		err = scan_all(ubi, scan_ai, 0);
1624		if (err) {
1625			destroy_ai(scan_ai);
1626			goto out_wl;
1627		}
1628
1629		err = self_check_eba(ubi, ai, scan_ai);
1630		destroy_ai(scan_ai);
1631
1632		if (err)
1633			goto out_wl;
1634	}
1635#endif
1636
1637	destroy_ai(ai);
1638	return 0;
1639
1640out_wl:
1641	ubi_wl_close(ubi);
1642out_vtbl:
1643	ubi_free_all_volumes(ubi);
1644	vfree(ubi->vtbl);
1645out_ai:
1646	destroy_ai(ai);
1647	return err;
1648}
1649
1650/**
1651 * self_check_ai - check the attaching information.
1652 * @ubi: UBI device description object
1653 * @ai: attaching information
1654 *
1655 * This function returns zero if the attaching information is all right, and a
1656 * negative error code if not or if an error occurred.
1657 */
1658static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1659{
1660	struct ubi_vid_io_buf *vidb = ai->vidb;
1661	struct ubi_vid_hdr *vidh = ubi_get_vid_hdr(vidb);
1662	int pnum, err, vols_found = 0;
1663	struct rb_node *rb1, *rb2;
1664	struct ubi_ainf_volume *av;
1665	struct ubi_ainf_peb *aeb, *last_aeb;
1666	uint8_t *buf;
1667
1668	if (!ubi_dbg_chk_gen(ubi))
1669		return 0;
1670
1671	/*
1672	 * At first, check that attaching information is OK.
1673	 */
1674	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1675		int leb_count = 0;
1676
1677		cond_resched();
1678
1679		vols_found += 1;
1680
1681		if (ai->is_empty) {
1682			ubi_err(ubi, "bad is_empty flag");
1683			goto bad_av;
1684		}
1685
1686		if (av->vol_id < 0 || av->highest_lnum < 0 ||
1687		    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1688		    av->data_pad < 0 || av->last_data_size < 0) {
1689			ubi_err(ubi, "negative values");
1690			goto bad_av;
1691		}
1692
1693		if (av->vol_id >= UBI_MAX_VOLUMES &&
1694		    av->vol_id < UBI_INTERNAL_VOL_START) {
1695			ubi_err(ubi, "bad vol_id");
1696			goto bad_av;
1697		}
1698
1699		if (av->vol_id > ai->highest_vol_id) {
1700			ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there",
1701				ai->highest_vol_id, av->vol_id);
1702			goto out;
1703		}
1704
1705		if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1706		    av->vol_type != UBI_STATIC_VOLUME) {
1707			ubi_err(ubi, "bad vol_type");
1708			goto bad_av;
1709		}
1710
1711		if (av->data_pad > ubi->leb_size / 2) {
1712			ubi_err(ubi, "bad data_pad");
1713			goto bad_av;
1714		}
1715
1716		last_aeb = NULL;
1717		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1718			cond_resched();
1719
1720			last_aeb = aeb;
1721			leb_count += 1;
1722
1723			if (aeb->pnum < 0 || aeb->ec < 0) {
1724				ubi_err(ubi, "negative values");
1725				goto bad_aeb;
1726			}
1727
1728			if (aeb->ec < ai->min_ec) {
1729				ubi_err(ubi, "bad ai->min_ec (%d), %d found",
1730					ai->min_ec, aeb->ec);
1731				goto bad_aeb;
1732			}
1733
1734			if (aeb->ec > ai->max_ec) {
1735				ubi_err(ubi, "bad ai->max_ec (%d), %d found",
1736					ai->max_ec, aeb->ec);
1737				goto bad_aeb;
1738			}
1739
1740			if (aeb->pnum >= ubi->peb_count) {
1741				ubi_err(ubi, "too high PEB number %d, total PEBs %d",
1742					aeb->pnum, ubi->peb_count);
1743				goto bad_aeb;
1744			}
1745
1746			if (av->vol_type == UBI_STATIC_VOLUME) {
1747				if (aeb->lnum >= av->used_ebs) {
1748					ubi_err(ubi, "bad lnum or used_ebs");
1749					goto bad_aeb;
1750				}
1751			} else {
1752				if (av->used_ebs != 0) {
1753					ubi_err(ubi, "non-zero used_ebs");
1754					goto bad_aeb;
1755				}
1756			}
1757
1758			if (aeb->lnum > av->highest_lnum) {
1759				ubi_err(ubi, "incorrect highest_lnum or lnum");
1760				goto bad_aeb;
1761			}
1762		}
1763
1764		if (av->leb_count != leb_count) {
1765			ubi_err(ubi, "bad leb_count, %d objects in the tree",
1766				leb_count);
1767			goto bad_av;
1768		}
1769
1770		if (!last_aeb)
1771			continue;
1772
1773		aeb = last_aeb;
1774
1775		if (aeb->lnum != av->highest_lnum) {
1776			ubi_err(ubi, "bad highest_lnum");
1777			goto bad_aeb;
1778		}
1779	}
1780
1781	if (vols_found != ai->vols_found) {
1782		ubi_err(ubi, "bad ai->vols_found %d, should be %d",
1783			ai->vols_found, vols_found);
1784		goto out;
1785	}
1786
1787	/* Check that attaching information is correct */
1788	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1789		last_aeb = NULL;
1790		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1791			int vol_type;
1792
1793			cond_resched();
1794
1795			last_aeb = aeb;
1796
1797			err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidb, 1);
1798			if (err && err != UBI_IO_BITFLIPS) {
1799				ubi_err(ubi, "VID header is not OK (%d)",
1800					err);
1801				if (err > 0)
1802					err = -EIO;
1803				return err;
1804			}
1805
1806			vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1807				   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1808			if (av->vol_type != vol_type) {
1809				ubi_err(ubi, "bad vol_type");
1810				goto bad_vid_hdr;
1811			}
1812
1813			if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1814				ubi_err(ubi, "bad sqnum %llu", aeb->sqnum);
1815				goto bad_vid_hdr;
1816			}
1817
1818			if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1819				ubi_err(ubi, "bad vol_id %d", av->vol_id);
1820				goto bad_vid_hdr;
1821			}
1822
1823			if (av->compat != vidh->compat) {
1824				ubi_err(ubi, "bad compat %d", vidh->compat);
1825				goto bad_vid_hdr;
1826			}
1827
1828			if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1829				ubi_err(ubi, "bad lnum %d", aeb->lnum);
1830				goto bad_vid_hdr;
1831			}
1832
1833			if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1834				ubi_err(ubi, "bad used_ebs %d", av->used_ebs);
1835				goto bad_vid_hdr;
1836			}
1837
1838			if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1839				ubi_err(ubi, "bad data_pad %d", av->data_pad);
1840				goto bad_vid_hdr;
1841			}
1842		}
1843
1844		if (!last_aeb)
1845			continue;
1846
1847		if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1848			ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum);
1849			goto bad_vid_hdr;
1850		}
1851
1852		if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1853			ubi_err(ubi, "bad last_data_size %d",
1854				av->last_data_size);
1855			goto bad_vid_hdr;
1856		}
1857	}
1858
1859	/*
1860	 * Make sure that all the physical eraseblocks are in one of the lists
1861	 * or trees.
1862	 */
1863	buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1864	if (!buf)
1865		return -ENOMEM;
1866
1867	for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1868		err = ubi_io_is_bad(ubi, pnum);
1869		if (err < 0) {
1870			kfree(buf);
1871			return err;
1872		} else if (err)
1873			buf[pnum] = 1;
1874	}
1875
1876	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1877		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1878			buf[aeb->pnum] = 1;
1879
1880	list_for_each_entry(aeb, &ai->free, u.list)
1881		buf[aeb->pnum] = 1;
1882
1883	list_for_each_entry(aeb, &ai->corr, u.list)
1884		buf[aeb->pnum] = 1;
1885
1886	list_for_each_entry(aeb, &ai->erase, u.list)
1887		buf[aeb->pnum] = 1;
1888
1889	list_for_each_entry(aeb, &ai->alien, u.list)
1890		buf[aeb->pnum] = 1;
1891
1892	err = 0;
1893	for (pnum = 0; pnum < ubi->peb_count; pnum++)
1894		if (!buf[pnum]) {
1895			ubi_err(ubi, "PEB %d is not referred", pnum);
1896			err = 1;
1897		}
1898
1899	kfree(buf);
1900	if (err)
1901		goto out;
1902	return 0;
1903
1904bad_aeb:
1905	ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum);
1906	ubi_dump_aeb(aeb, 0);
1907	ubi_dump_av(av);
1908	goto out;
1909
1910bad_av:
1911	ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1912	ubi_dump_av(av);
1913	goto out;
1914
1915bad_vid_hdr:
1916	ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1917	ubi_dump_av(av);
1918	ubi_dump_vid_hdr(vidh);
1919
1920out:
1921	dump_stack();
1922	return -EINVAL;
1923}
1924