1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2005, Intec Automation Inc.
4 * Copyright (C) 2014, Freescale Semiconductor, Inc.
5 */
6
7#include <linux/bitfield.h>
8#include <linux/device.h>
9#include <linux/errno.h>
10#include <linux/mtd/spi-nor.h>
11
12#include "core.h"
13
14/* flash_info mfr_flag. Used to clear sticky prorietary SR bits. */
15#define USE_CLSR	BIT(0)
16#define USE_CLPEF	BIT(1)
17
18#define SPINOR_OP_CLSR		0x30	/* Clear status register 1 */
19#define SPINOR_OP_CLPEF		0x82	/* Clear program/erase failure flags */
20#define SPINOR_OP_CYPRESS_DIE_ERASE		0x61	/* Chip (die) erase */
21#define SPINOR_OP_RD_ANY_REG			0x65	/* Read any register */
22#define SPINOR_OP_WR_ANY_REG			0x71	/* Write any register */
23#define SPINOR_REG_CYPRESS_VREG			0x00800000
24#define SPINOR_REG_CYPRESS_STR1			0x0
25#define SPINOR_REG_CYPRESS_STR1V					\
26	(SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_STR1)
27#define SPINOR_REG_CYPRESS_CFR1			0x2
28#define SPINOR_REG_CYPRESS_CFR1_QUAD_EN		BIT(1)	/* Quad Enable */
29#define SPINOR_REG_CYPRESS_CFR2			0x3
30#define SPINOR_REG_CYPRESS_CFR2V					\
31	(SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_CFR2)
32#define SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK	GENMASK(3, 0)
33#define SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24	0xb
34#define SPINOR_REG_CYPRESS_CFR2_ADRBYT		BIT(7)
35#define SPINOR_REG_CYPRESS_CFR3			0x4
36#define SPINOR_REG_CYPRESS_CFR3_PGSZ		BIT(4) /* Page size. */
37#define SPINOR_REG_CYPRESS_CFR5			0x6
38#define SPINOR_REG_CYPRESS_CFR5_BIT6		BIT(6)
39#define SPINOR_REG_CYPRESS_CFR5_DDR		BIT(1)
40#define SPINOR_REG_CYPRESS_CFR5_OPI		BIT(0)
41#define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN				\
42	(SPINOR_REG_CYPRESS_CFR5_BIT6 |	SPINOR_REG_CYPRESS_CFR5_DDR |	\
43	 SPINOR_REG_CYPRESS_CFR5_OPI)
44#define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS	SPINOR_REG_CYPRESS_CFR5_BIT6
45#define SPINOR_OP_CYPRESS_RD_FAST		0xee
46#define SPINOR_REG_CYPRESS_ARCFN		0x00000006
47
48/* Cypress SPI NOR flash operations. */
49#define CYPRESS_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf)		\
50	SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 0),		\
51		   SPI_MEM_OP_ADDR(naddr, addr, 0),			\
52		   SPI_MEM_OP_NO_DUMMY,					\
53		   SPI_MEM_OP_DATA_OUT(ndata, buf, 0))
54
55#define CYPRESS_NOR_RD_ANY_REG_OP(naddr, addr, ndummy, buf)		\
56	SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 0),		\
57		   SPI_MEM_OP_ADDR(naddr, addr, 0),			\
58		   SPI_MEM_OP_DUMMY(ndummy, 0),				\
59		   SPI_MEM_OP_DATA_IN(1, buf, 0))
60
61#define SPANSION_OP(opcode)						\
62	SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 0),				\
63		   SPI_MEM_OP_NO_ADDR,					\
64		   SPI_MEM_OP_NO_DUMMY,					\
65		   SPI_MEM_OP_NO_DATA)
66
67/**
68 * struct spansion_nor_params - Spansion private parameters.
69 * @clsr:	Clear Status Register or Clear Program and Erase Failure Flag
70 *		opcode.
71 */
72struct spansion_nor_params {
73	u8 clsr;
74};
75
76/**
77 * spansion_nor_clear_sr() - Clear the Status Register.
78 * @nor:	pointer to 'struct spi_nor'.
79 */
80static void spansion_nor_clear_sr(struct spi_nor *nor)
81{
82	const struct spansion_nor_params *priv_params = nor->params->priv;
83	int ret;
84
85	if (nor->spimem) {
86		struct spi_mem_op op = SPANSION_OP(priv_params->clsr);
87
88		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
89
90		ret = spi_mem_exec_op(nor->spimem, &op);
91	} else {
92		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLSR,
93						       NULL, 0);
94	}
95
96	if (ret)
97		dev_dbg(nor->dev, "error %d clearing SR\n", ret);
98}
99
100static int cypress_nor_sr_ready_and_clear_reg(struct spi_nor *nor, u64 addr)
101{
102	struct spi_nor_flash_parameter *params = nor->params;
103	struct spi_mem_op op =
104		CYPRESS_NOR_RD_ANY_REG_OP(params->addr_mode_nbytes, addr,
105					  0, nor->bouncebuf);
106	int ret;
107
108	if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
109		op.dummy.nbytes = params->rdsr_dummy;
110		op.data.nbytes = 2;
111	}
112
113	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
114	if (ret)
115		return ret;
116
117	if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
118		if (nor->bouncebuf[0] & SR_E_ERR)
119			dev_err(nor->dev, "Erase Error occurred\n");
120		else
121			dev_err(nor->dev, "Programming Error occurred\n");
122
123		spansion_nor_clear_sr(nor);
124
125		ret = spi_nor_write_disable(nor);
126		if (ret)
127			return ret;
128
129		return -EIO;
130	}
131
132	return !(nor->bouncebuf[0] & SR_WIP);
133}
134/**
135 * cypress_nor_sr_ready_and_clear() - Query the Status Register of each die by
136 * using Read Any Register command to see if the whole flash is ready for new
137 * commands and clear it if there are any errors.
138 * @nor:	pointer to 'struct spi_nor'.
139 *
140 * Return: 1 if ready, 0 if not ready, -errno on errors.
141 */
142static int cypress_nor_sr_ready_and_clear(struct spi_nor *nor)
143{
144	struct spi_nor_flash_parameter *params = nor->params;
145	u64 addr;
146	int ret;
147	u8 i;
148
149	for (i = 0; i < params->n_dice; i++) {
150		addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_STR1;
151		ret = cypress_nor_sr_ready_and_clear_reg(nor, addr);
152		if (ret < 0)
153			return ret;
154		else if (ret == 0)
155			return 0;
156	}
157
158	return 1;
159}
160
161static int cypress_nor_set_memlat(struct spi_nor *nor, u64 addr)
162{
163	struct spi_mem_op op;
164	u8 *buf = nor->bouncebuf;
165	int ret;
166	u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
167
168	op = (struct spi_mem_op)
169		CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0, buf);
170
171	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
172	if (ret)
173		return ret;
174
175	/* Use 24 dummy cycles for memory array reads. */
176	*buf &= ~SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK;
177	*buf |= FIELD_PREP(SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK,
178			   SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24);
179	op = (struct spi_mem_op)
180		CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1, buf);
181
182	ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
183	if (ret)
184		return ret;
185
186	nor->read_dummy = 24;
187
188	return 0;
189}
190
191static int cypress_nor_set_octal_dtr_bits(struct spi_nor *nor, u64 addr)
192{
193	struct spi_mem_op op;
194	u8 *buf = nor->bouncebuf;
195
196	/* Set the octal and DTR enable bits. */
197	buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN;
198	op = (struct spi_mem_op)
199		CYPRESS_NOR_WR_ANY_REG_OP(nor->params->addr_mode_nbytes,
200					  addr, 1, buf);
201
202	return spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
203}
204
205static int cypress_nor_octal_dtr_en(struct spi_nor *nor)
206{
207	const struct spi_nor_flash_parameter *params = nor->params;
208	u8 *buf = nor->bouncebuf;
209	u64 addr;
210	int i, ret;
211
212	for (i = 0; i < params->n_dice; i++) {
213		addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR2;
214		ret = cypress_nor_set_memlat(nor, addr);
215		if (ret)
216			return ret;
217
218		addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR5;
219		ret = cypress_nor_set_octal_dtr_bits(nor, addr);
220		if (ret)
221			return ret;
222	}
223
224	/* Read flash ID to make sure the switch was successful. */
225	ret = spi_nor_read_id(nor, nor->addr_nbytes, 3, buf,
226			      SNOR_PROTO_8_8_8_DTR);
227	if (ret) {
228		dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret);
229		return ret;
230	}
231
232	if (memcmp(buf, nor->info->id->bytes, nor->info->id->len))
233		return -EINVAL;
234
235	return 0;
236}
237
238static int cypress_nor_set_single_spi_bits(struct spi_nor *nor, u64 addr)
239{
240	struct spi_mem_op op;
241	u8 *buf = nor->bouncebuf;
242
243	/*
244	 * The register is 1-byte wide, but 1-byte transactions are not allowed
245	 * in 8D-8D-8D mode. Since there is no register at the next location,
246	 * just initialize the value to 0 and let the transaction go on.
247	 */
248	buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS;
249	buf[1] = 0;
250	op = (struct spi_mem_op)
251		CYPRESS_NOR_WR_ANY_REG_OP(nor->addr_nbytes, addr, 2, buf);
252	return spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR);
253}
254
255static int cypress_nor_octal_dtr_dis(struct spi_nor *nor)
256{
257	const struct spi_nor_flash_parameter *params = nor->params;
258	u8 *buf = nor->bouncebuf;
259	u64 addr;
260	int i, ret;
261
262	for (i = 0; i < params->n_dice; i++) {
263		addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR5;
264		ret = cypress_nor_set_single_spi_bits(nor, addr);
265		if (ret)
266			return ret;
267	}
268
269	/* Read flash ID to make sure the switch was successful. */
270	ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1);
271	if (ret) {
272		dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret);
273		return ret;
274	}
275
276	if (memcmp(buf, nor->info->id->bytes, nor->info->id->len))
277		return -EINVAL;
278
279	return 0;
280}
281
282static int cypress_nor_quad_enable_volatile_reg(struct spi_nor *nor, u64 addr)
283{
284	struct spi_mem_op op;
285	u8 addr_mode_nbytes = nor->params->addr_mode_nbytes;
286	u8 cfr1v_written;
287	int ret;
288
289	op = (struct spi_mem_op)
290		CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0,
291					  nor->bouncebuf);
292
293	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
294	if (ret)
295		return ret;
296
297	if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR1_QUAD_EN)
298		return 0;
299
300	/* Update the Quad Enable bit. */
301	nor->bouncebuf[0] |= SPINOR_REG_CYPRESS_CFR1_QUAD_EN;
302	op = (struct spi_mem_op)
303		CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1,
304					  nor->bouncebuf);
305	ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
306	if (ret)
307		return ret;
308
309	cfr1v_written = nor->bouncebuf[0];
310
311	/* Read back and check it. */
312	op = (struct spi_mem_op)
313		CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0,
314					  nor->bouncebuf);
315	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
316	if (ret)
317		return ret;
318
319	if (nor->bouncebuf[0] != cfr1v_written) {
320		dev_err(nor->dev, "CFR1: Read back test failed\n");
321		return -EIO;
322	}
323
324	return 0;
325}
326
327/**
328 * cypress_nor_quad_enable_volatile() - enable Quad I/O mode in volatile
329 *                                      register.
330 * @nor:	pointer to a 'struct spi_nor'
331 *
332 * It is recommended to update volatile registers in the field application due
333 * to a risk of the non-volatile registers corruption by power interrupt. This
334 * function sets Quad Enable bit in CFR1 volatile. If users set the Quad Enable
335 * bit in the CFR1 non-volatile in advance (typically by a Flash programmer
336 * before mounting Flash on PCB), the Quad Enable bit in the CFR1 volatile is
337 * also set during Flash power-up.
338 *
339 * Return: 0 on success, -errno otherwise.
340 */
341static int cypress_nor_quad_enable_volatile(struct spi_nor *nor)
342{
343	struct spi_nor_flash_parameter *params = nor->params;
344	u64 addr;
345	u8 i;
346	int ret;
347
348	for (i = 0; i < params->n_dice; i++) {
349		addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR1;
350		ret = cypress_nor_quad_enable_volatile_reg(nor, addr);
351		if (ret)
352			return ret;
353	}
354
355	return 0;
356}
357
358/**
359 * cypress_nor_determine_addr_mode_by_sr1() - Determine current address mode
360 *                                            (3 or 4-byte) by querying status
361 *                                            register 1 (SR1).
362 * @nor:		pointer to a 'struct spi_nor'
363 * @addr_mode:		ponter to a buffer where we return the determined
364 *			address mode.
365 *
366 * This function tries to determine current address mode by comparing SR1 value
367 * from RDSR1(no address), RDAR(3-byte address), and RDAR(4-byte address).
368 *
369 * Return: 0 on success, -errno otherwise.
370 */
371static int cypress_nor_determine_addr_mode_by_sr1(struct spi_nor *nor,
372						  u8 *addr_mode)
373{
374	struct spi_mem_op op =
375		CYPRESS_NOR_RD_ANY_REG_OP(3, SPINOR_REG_CYPRESS_STR1V, 0,
376					  nor->bouncebuf);
377	bool is3byte, is4byte;
378	int ret;
379
380	ret = spi_nor_read_sr(nor, &nor->bouncebuf[1]);
381	if (ret)
382		return ret;
383
384	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
385	if (ret)
386		return ret;
387
388	is3byte = (nor->bouncebuf[0] == nor->bouncebuf[1]);
389
390	op = (struct spi_mem_op)
391		CYPRESS_NOR_RD_ANY_REG_OP(4, SPINOR_REG_CYPRESS_STR1V, 0,
392					  nor->bouncebuf);
393	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
394	if (ret)
395		return ret;
396
397	is4byte = (nor->bouncebuf[0] == nor->bouncebuf[1]);
398
399	if (is3byte == is4byte)
400		return -EIO;
401	if (is3byte)
402		*addr_mode = 3;
403	else
404		*addr_mode = 4;
405
406	return 0;
407}
408
409/**
410 * cypress_nor_set_addr_mode_nbytes() - Set the number of address bytes mode of
411 *                                      current address mode.
412 * @nor:		pointer to a 'struct spi_nor'
413 *
414 * Determine current address mode by reading SR1 with different methods, then
415 * query CFR2V[7] to confirm. If determination is failed, force enter to 4-byte
416 * address mode.
417 *
418 * Return: 0 on success, -errno otherwise.
419 */
420static int cypress_nor_set_addr_mode_nbytes(struct spi_nor *nor)
421{
422	struct spi_mem_op op;
423	u8 addr_mode;
424	int ret;
425
426	/*
427	 * Read SR1 by RDSR1 and RDAR(3- AND 4-byte addr). Use write enable
428	 * that sets bit-1 in SR1.
429	 */
430	ret = spi_nor_write_enable(nor);
431	if (ret)
432		return ret;
433	ret = cypress_nor_determine_addr_mode_by_sr1(nor, &addr_mode);
434	if (ret) {
435		ret = spi_nor_set_4byte_addr_mode(nor, true);
436		if (ret)
437			return ret;
438		return spi_nor_write_disable(nor);
439	}
440	ret = spi_nor_write_disable(nor);
441	if (ret)
442		return ret;
443
444	/*
445	 * Query CFR2V and make sure no contradiction between determined address
446	 * mode and CFR2V[7].
447	 */
448	op = (struct spi_mem_op)
449		CYPRESS_NOR_RD_ANY_REG_OP(addr_mode, SPINOR_REG_CYPRESS_CFR2V,
450					  0, nor->bouncebuf);
451	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
452	if (ret)
453		return ret;
454
455	if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR2_ADRBYT) {
456		if (addr_mode != 4)
457			return spi_nor_set_4byte_addr_mode(nor, true);
458	} else {
459		if (addr_mode != 3)
460			return spi_nor_set_4byte_addr_mode(nor, true);
461	}
462
463	nor->params->addr_nbytes = addr_mode;
464	nor->params->addr_mode_nbytes = addr_mode;
465
466	return 0;
467}
468
469/**
470 * cypress_nor_get_page_size() - Get flash page size configuration.
471 * @nor:	pointer to a 'struct spi_nor'
472 *
473 * The BFPT table advertises a 512B or 256B page size depending on part but the
474 * page size is actually configurable (with the default being 256B). Read from
475 * CFR3V[4] and set the correct size.
476 *
477 * Return: 0 on success, -errno otherwise.
478 */
479static int cypress_nor_get_page_size(struct spi_nor *nor)
480{
481	struct spi_mem_op op =
482		CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes,
483					  0, 0, nor->bouncebuf);
484	struct spi_nor_flash_parameter *params = nor->params;
485	int ret;
486	u8 i;
487
488	/*
489	 * Use the minimum common page size configuration. Programming 256-byte
490	 * under 512-byte page size configuration is safe.
491	 */
492	params->page_size = 256;
493	for (i = 0; i < params->n_dice; i++) {
494		op.addr.val = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR3;
495
496		ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
497		if (ret)
498			return ret;
499
500		if (!(nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3_PGSZ))
501			return 0;
502	}
503
504	params->page_size = 512;
505
506	return 0;
507}
508
509static void cypress_nor_ecc_init(struct spi_nor *nor)
510{
511	/*
512	 * Programming is supported only in 16-byte ECC data unit granularity.
513	 * Byte-programming, bit-walking, or multiple program operations to the
514	 * same ECC data unit without an erase are not allowed.
515	 */
516	nor->params->writesize = 16;
517	nor->flags |= SNOR_F_ECC;
518}
519
520static int
521s25fs256t_post_bfpt_fixup(struct spi_nor *nor,
522			  const struct sfdp_parameter_header *bfpt_header,
523			  const struct sfdp_bfpt *bfpt)
524{
525	struct spi_mem_op op;
526	int ret;
527
528	ret = cypress_nor_set_addr_mode_nbytes(nor);
529	if (ret)
530		return ret;
531
532	/* Read Architecture Configuration Register (ARCFN) */
533	op = (struct spi_mem_op)
534		CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes,
535					  SPINOR_REG_CYPRESS_ARCFN, 1,
536					  nor->bouncebuf);
537	ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto);
538	if (ret)
539		return ret;
540
541	/* ARCFN value must be 0 if uniform sector is selected  */
542	if (nor->bouncebuf[0])
543		return -ENODEV;
544
545	return 0;
546}
547
548static int s25fs256t_post_sfdp_fixup(struct spi_nor *nor)
549{
550	struct spi_nor_flash_parameter *params = nor->params;
551
552	/*
553	 * S25FS256T does not define the SCCR map, but we would like to use the
554	 * same code base for both single and multi chip package devices, thus
555	 * set the vreg_offset and n_dice to be able to do so.
556	 */
557	params->vreg_offset = devm_kmalloc(nor->dev, sizeof(u32), GFP_KERNEL);
558	if (!params->vreg_offset)
559		return -ENOMEM;
560
561	params->vreg_offset[0] = SPINOR_REG_CYPRESS_VREG;
562	params->n_dice = 1;
563
564	/* PP_1_1_4_4B is supported but missing in 4BAIT. */
565	params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
566	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_1_1_4],
567				SPINOR_OP_PP_1_1_4_4B,
568				SNOR_PROTO_1_1_4);
569
570	return cypress_nor_get_page_size(nor);
571}
572
573static int s25fs256t_late_init(struct spi_nor *nor)
574{
575	cypress_nor_ecc_init(nor);
576
577	return 0;
578}
579
580static struct spi_nor_fixups s25fs256t_fixups = {
581	.post_bfpt = s25fs256t_post_bfpt_fixup,
582	.post_sfdp = s25fs256t_post_sfdp_fixup,
583	.late_init = s25fs256t_late_init,
584};
585
586static int
587s25hx_t_post_bfpt_fixup(struct spi_nor *nor,
588			const struct sfdp_parameter_header *bfpt_header,
589			const struct sfdp_bfpt *bfpt)
590{
591	int ret;
592
593	ret = cypress_nor_set_addr_mode_nbytes(nor);
594	if (ret)
595		return ret;
596
597	/* Replace Quad Enable with volatile version */
598	nor->params->quad_enable = cypress_nor_quad_enable_volatile;
599
600	return 0;
601}
602
603static int s25hx_t_post_sfdp_fixup(struct spi_nor *nor)
604{
605	struct spi_nor_flash_parameter *params = nor->params;
606	struct spi_nor_erase_type *erase_type = params->erase_map.erase_type;
607	unsigned int i;
608
609	if (!params->n_dice || !params->vreg_offset) {
610		dev_err(nor->dev, "%s failed. The volatile register offset could not be retrieved from SFDP.\n",
611			__func__);
612		return -EOPNOTSUPP;
613	}
614
615	/* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */
616	if (params->size == SZ_256M)
617		params->n_dice = 2;
618
619	/*
620	 * In some parts, 3byte erase opcodes are advertised by 4BAIT.
621	 * Convert them to 4byte erase opcodes.
622	 */
623	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
624		switch (erase_type[i].opcode) {
625		case SPINOR_OP_SE:
626			erase_type[i].opcode = SPINOR_OP_SE_4B;
627			break;
628		case SPINOR_OP_BE_4K:
629			erase_type[i].opcode = SPINOR_OP_BE_4K_4B;
630			break;
631		default:
632			break;
633		}
634	}
635
636	return cypress_nor_get_page_size(nor);
637}
638
639static int s25hx_t_late_init(struct spi_nor *nor)
640{
641	struct spi_nor_flash_parameter *params = nor->params;
642
643	/* Fast Read 4B requires mode cycles */
644	params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8;
645	params->ready = cypress_nor_sr_ready_and_clear;
646	cypress_nor_ecc_init(nor);
647
648	params->die_erase_opcode = SPINOR_OP_CYPRESS_DIE_ERASE;
649	return 0;
650}
651
652static struct spi_nor_fixups s25hx_t_fixups = {
653	.post_bfpt = s25hx_t_post_bfpt_fixup,
654	.post_sfdp = s25hx_t_post_sfdp_fixup,
655	.late_init = s25hx_t_late_init,
656};
657
658/**
659 * cypress_nor_set_octal_dtr() - Enable or disable octal DTR on Cypress flashes.
660 * @nor:		pointer to a 'struct spi_nor'
661 * @enable:              whether to enable or disable Octal DTR
662 *
663 * This also sets the memory access latency cycles to 24 to allow the flash to
664 * run at up to 200MHz.
665 *
666 * Return: 0 on success, -errno otherwise.
667 */
668static int cypress_nor_set_octal_dtr(struct spi_nor *nor, bool enable)
669{
670	return enable ? cypress_nor_octal_dtr_en(nor) :
671			cypress_nor_octal_dtr_dis(nor);
672}
673
674static int s28hx_t_post_sfdp_fixup(struct spi_nor *nor)
675{
676	struct spi_nor_flash_parameter *params = nor->params;
677
678	if (!params->n_dice || !params->vreg_offset) {
679		dev_err(nor->dev, "%s failed. The volatile register offset could not be retrieved from SFDP.\n",
680			__func__);
681		return -EOPNOTSUPP;
682	}
683
684	/* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */
685	if (params->size == SZ_256M)
686		params->n_dice = 2;
687
688	/*
689	 * On older versions of the flash the xSPI Profile 1.0 table has the
690	 * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE.
691	 */
692	if (params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0)
693		params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode =
694			SPINOR_OP_CYPRESS_RD_FAST;
695
696	/* This flash is also missing the 4-byte Page Program opcode bit. */
697	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
698				SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
699	/*
700	 * Since xSPI Page Program opcode is backward compatible with
701	 * Legacy SPI, use Legacy SPI opcode there as well.
702	 */
703	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
704				SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
705
706	/*
707	 * The xSPI Profile 1.0 table advertises the number of additional
708	 * address bytes needed for Read Status Register command as 0 but the
709	 * actual value for that is 4.
710	 */
711	params->rdsr_addr_nbytes = 4;
712
713	return cypress_nor_get_page_size(nor);
714}
715
716static int s28hx_t_post_bfpt_fixup(struct spi_nor *nor,
717				   const struct sfdp_parameter_header *bfpt_header,
718				   const struct sfdp_bfpt *bfpt)
719{
720	return cypress_nor_set_addr_mode_nbytes(nor);
721}
722
723static int s28hx_t_late_init(struct spi_nor *nor)
724{
725	struct spi_nor_flash_parameter *params = nor->params;
726
727	params->set_octal_dtr = cypress_nor_set_octal_dtr;
728	params->ready = cypress_nor_sr_ready_and_clear;
729	cypress_nor_ecc_init(nor);
730
731	return 0;
732}
733
734static const struct spi_nor_fixups s28hx_t_fixups = {
735	.post_sfdp = s28hx_t_post_sfdp_fixup,
736	.post_bfpt = s28hx_t_post_bfpt_fixup,
737	.late_init = s28hx_t_late_init,
738};
739
740static int
741s25fs_s_nor_post_bfpt_fixups(struct spi_nor *nor,
742			     const struct sfdp_parameter_header *bfpt_header,
743			     const struct sfdp_bfpt *bfpt)
744{
745	/*
746	 * The S25FS-S chip family reports 512-byte pages in BFPT but
747	 * in reality the write buffer still wraps at the safe default
748	 * of 256 bytes.  Overwrite the page size advertised by BFPT
749	 * to get the writes working.
750	 */
751	nor->params->page_size = 256;
752
753	return 0;
754}
755
756static const struct spi_nor_fixups s25fs_s_nor_fixups = {
757	.post_bfpt = s25fs_s_nor_post_bfpt_fixups,
758};
759
760static const struct flash_info spansion_nor_parts[] = {
761	{
762		.id = SNOR_ID(0x01, 0x02, 0x12),
763		.name = "s25sl004a",
764		.size = SZ_512K,
765	}, {
766		.id = SNOR_ID(0x01, 0x02, 0x13),
767		.name = "s25sl008a",
768		.size = SZ_1M,
769	}, {
770		.id = SNOR_ID(0x01, 0x02, 0x14),
771		.name = "s25sl016a",
772		.size = SZ_2M,
773	}, {
774		.id = SNOR_ID(0x01, 0x02, 0x15, 0x4d, 0x00),
775		.name = "s25sl032p",
776		.size = SZ_4M,
777		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
778	}, {
779		.id = SNOR_ID(0x01, 0x02, 0x15),
780		.name = "s25sl032a",
781		.size = SZ_4M,
782	}, {
783		.id = SNOR_ID(0x01, 0x02, 0x16, 0x4d, 0x00),
784		.name = "s25sl064p",
785		.size = SZ_8M,
786		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
787	}, {
788		.id = SNOR_ID(0x01, 0x02, 0x16),
789		.name = "s25sl064a",
790		.size = SZ_8M,
791	}, {
792		.id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x00, 0x80),
793		.name = "s25fl256s0",
794		.size = SZ_32M,
795		.sector_size = SZ_256K,
796		.no_sfdp_flags = SPI_NOR_SKIP_SFDP | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
797		.mfr_flags = USE_CLSR,
798	}, {
799		.id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x00, 0x81),
800		.name = "s25fs256s0",
801		.size = SZ_32M,
802		.sector_size = SZ_256K,
803		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
804		.mfr_flags = USE_CLSR,
805	}, {
806		.id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x01, 0x80),
807		.name = "s25fl256s1",
808		.size = SZ_32M,
809		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
810		.mfr_flags = USE_CLSR,
811	}, {
812		.id = SNOR_ID(0x01, 0x02, 0x19, 0x4d, 0x01, 0x81),
813		.name = "s25fs256s1",
814		.size = SZ_32M,
815		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
816		.mfr_flags = USE_CLSR,
817	}, {
818		.id = SNOR_ID(0x01, 0x02, 0x20, 0x4d, 0x00, 0x80),
819		.name = "s25fl512s",
820		.size = SZ_64M,
821		.sector_size = SZ_256K,
822		.flags = SPI_NOR_HAS_LOCK,
823		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
824		.mfr_flags = USE_CLSR,
825	}, {
826		.id = SNOR_ID(0x01, 0x02, 0x20, 0x4d, 0x00, 0x81),
827		.name = "s25fs512s",
828		.size = SZ_64M,
829		.sector_size = SZ_256K,
830		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
831		.mfr_flags = USE_CLSR,
832		.fixups = &s25fs_s_nor_fixups,
833	}, {
834		.id = SNOR_ID(0x01, 0x20, 0x18, 0x03, 0x00),
835		.name = "s25sl12800",
836		.size = SZ_16M,
837		.sector_size = SZ_256K,
838	}, {
839		.id = SNOR_ID(0x01, 0x20, 0x18, 0x03, 0x01),
840		.name = "s25sl12801",
841		.size = SZ_16M,
842	}, {
843		.id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x00, 0x80),
844		.name = "s25fl128s0",
845		.size = SZ_16M,
846		.sector_size = SZ_256K,
847		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
848		.mfr_flags = USE_CLSR,
849	}, {
850		.id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x00),
851		.name = "s25fl129p0",
852		.size = SZ_16M,
853		.sector_size = SZ_256K,
854		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
855		.mfr_flags = USE_CLSR,
856	}, {
857		.id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x01, 0x80),
858		.name = "s25fl128s1",
859		.size = SZ_16M,
860		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
861		.mfr_flags = USE_CLSR,
862	}, {
863		.id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x01, 0x81),
864		.name = "s25fs128s1",
865		.size = SZ_16M,
866		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
867		.mfr_flags = USE_CLSR,
868		.fixups = &s25fs_s_nor_fixups,
869	}, {
870		.id = SNOR_ID(0x01, 0x20, 0x18, 0x4d, 0x01),
871		.name = "s25fl129p1",
872		.size = SZ_16M,
873		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
874		.mfr_flags = USE_CLSR,
875	}, {
876		.id = SNOR_ID(0x01, 0x40, 0x13),
877		.name = "s25fl204k",
878		.size = SZ_512K,
879		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ,
880	}, {
881		.id = SNOR_ID(0x01, 0x40, 0x14),
882		.name = "s25fl208k",
883		.size = SZ_1M,
884		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ,
885	}, {
886		.id = SNOR_ID(0x01, 0x40, 0x15),
887		.name = "s25fl116k",
888		.size = SZ_2M,
889		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
890	}, {
891		.id = SNOR_ID(0x01, 0x40, 0x16),
892		.name = "s25fl132k",
893		.size = SZ_4M,
894		.no_sfdp_flags = SECT_4K,
895	}, {
896		.id = SNOR_ID(0x01, 0x40, 0x17),
897		.name = "s25fl164k",
898		.size = SZ_8M,
899		.no_sfdp_flags = SECT_4K,
900	}, {
901		.id = SNOR_ID(0x01, 0x60, 0x17),
902		.name = "s25fl064l",
903		.size = SZ_8M,
904		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
905		.fixup_flags = SPI_NOR_4B_OPCODES,
906	}, {
907		.id = SNOR_ID(0x01, 0x60, 0x18),
908		.name = "s25fl128l",
909		.size = SZ_16M,
910		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
911		.fixup_flags = SPI_NOR_4B_OPCODES,
912	}, {
913		.id = SNOR_ID(0x01, 0x60, 0x19),
914		.name = "s25fl256l",
915		.size = SZ_32M,
916		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
917		.fixup_flags = SPI_NOR_4B_OPCODES,
918	}, {
919		.id = SNOR_ID(0x04, 0x2c, 0xc2, 0x7f, 0x7f, 0x7f),
920		.name = "cy15x104q",
921		.size = SZ_512K,
922		.sector_size = SZ_512K,
923		.flags = SPI_NOR_NO_ERASE,
924	}, {
925		.id = SNOR_ID(0x34, 0x2a, 0x1a, 0x0f, 0x03, 0x90),
926		.name = "s25hl512t",
927		.mfr_flags = USE_CLPEF,
928		.fixups = &s25hx_t_fixups
929	}, {
930		.id = SNOR_ID(0x34, 0x2a, 0x1b, 0x0f, 0x03, 0x90),
931		.name = "s25hl01gt",
932		.mfr_flags = USE_CLPEF,
933		.fixups = &s25hx_t_fixups
934	}, {
935		.id = SNOR_ID(0x34, 0x2a, 0x1c, 0x0f, 0x00, 0x90),
936		.name = "s25hl02gt",
937		.mfr_flags = USE_CLPEF,
938		.fixups = &s25hx_t_fixups
939	}, {
940		.id = SNOR_ID(0x34, 0x2b, 0x19, 0x0f, 0x08, 0x90),
941		.name = "s25fs256t",
942		.mfr_flags = USE_CLPEF,
943		.fixups = &s25fs256t_fixups
944	}, {
945		.id = SNOR_ID(0x34, 0x2b, 0x1a, 0x0f, 0x03, 0x90),
946		.name = "s25hs512t",
947		.mfr_flags = USE_CLPEF,
948		.fixups = &s25hx_t_fixups
949	}, {
950		.id = SNOR_ID(0x34, 0x2b, 0x1b, 0x0f, 0x03, 0x90),
951		.name = "s25hs01gt",
952		.mfr_flags = USE_CLPEF,
953		.fixups = &s25hx_t_fixups
954	}, {
955		.id = SNOR_ID(0x34, 0x2b, 0x1c, 0x0f, 0x00, 0x90),
956		.name = "s25hs02gt",
957		.mfr_flags = USE_CLPEF,
958		.fixups = &s25hx_t_fixups
959	}, {
960		.id = SNOR_ID(0x34, 0x5a, 0x1a),
961		.name = "s28hl512t",
962		.mfr_flags = USE_CLPEF,
963		.fixups = &s28hx_t_fixups,
964	}, {
965		.id = SNOR_ID(0x34, 0x5a, 0x1b),
966		.name = "s28hl01gt",
967		.mfr_flags = USE_CLPEF,
968		.fixups = &s28hx_t_fixups,
969	}, {
970		.id = SNOR_ID(0x34, 0x5b, 0x1a),
971		.name = "s28hs512t",
972		.mfr_flags = USE_CLPEF,
973		.fixups = &s28hx_t_fixups,
974	}, {
975		.id = SNOR_ID(0x34, 0x5b, 0x1b),
976		.name = "s28hs01gt",
977		.mfr_flags = USE_CLPEF,
978		.fixups = &s28hx_t_fixups,
979	}, {
980		.id = SNOR_ID(0x34, 0x5b, 0x1c),
981		.name = "s28hs02gt",
982		.mfr_flags = USE_CLPEF,
983		.fixups = &s28hx_t_fixups,
984	}, {
985		.id = SNOR_ID(0xef, 0x40, 0x13),
986		.name = "s25fl004k",
987		.size = SZ_512K,
988		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
989	}, {
990		.id = SNOR_ID(0xef, 0x40, 0x14),
991		.name = "s25fl008k",
992		.size = SZ_1M,
993		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
994	}, {
995		.id = SNOR_ID(0xef, 0x40, 0x15),
996		.name = "s25fl016k",
997		.size = SZ_2M,
998		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
999	}, {
1000		.id = SNOR_ID(0xef, 0x40, 0x17),
1001		.name = "s25fl064k",
1002		.size = SZ_8M,
1003		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
1004	}
1005};
1006
1007/**
1008 * spansion_nor_sr_ready_and_clear() - Query the Status Register to see if the
1009 * flash is ready for new commands and clear it if there are any errors.
1010 * @nor:	pointer to 'struct spi_nor'.
1011 *
1012 * Return: 1 if ready, 0 if not ready, -errno on errors.
1013 */
1014static int spansion_nor_sr_ready_and_clear(struct spi_nor *nor)
1015{
1016	int ret;
1017
1018	ret = spi_nor_read_sr(nor, nor->bouncebuf);
1019	if (ret)
1020		return ret;
1021
1022	if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
1023		if (nor->bouncebuf[0] & SR_E_ERR)
1024			dev_err(nor->dev, "Erase Error occurred\n");
1025		else
1026			dev_err(nor->dev, "Programming Error occurred\n");
1027
1028		spansion_nor_clear_sr(nor);
1029
1030		/*
1031		 * WEL bit remains set to one when an erase or page program
1032		 * error occurs. Issue a Write Disable command to protect
1033		 * against inadvertent writes that can possibly corrupt the
1034		 * contents of the memory.
1035		 */
1036		ret = spi_nor_write_disable(nor);
1037		if (ret)
1038			return ret;
1039
1040		return -EIO;
1041	}
1042
1043	return !(nor->bouncebuf[0] & SR_WIP);
1044}
1045
1046static int spansion_nor_late_init(struct spi_nor *nor)
1047{
1048	struct spi_nor_flash_parameter *params = nor->params;
1049	struct spansion_nor_params *priv_params;
1050	u8 mfr_flags = nor->info->mfr_flags;
1051
1052	if (params->size > SZ_16M) {
1053		nor->flags |= SNOR_F_4B_OPCODES;
1054		/* No small sector erase for 4-byte command set */
1055		nor->erase_opcode = SPINOR_OP_SE;
1056		nor->mtd.erasesize = nor->info->sector_size ?:
1057			SPI_NOR_DEFAULT_SECTOR_SIZE;
1058	}
1059
1060	if (mfr_flags & (USE_CLSR | USE_CLPEF)) {
1061		priv_params = devm_kmalloc(nor->dev, sizeof(*priv_params),
1062					   GFP_KERNEL);
1063		if (!priv_params)
1064			return -ENOMEM;
1065
1066		if (mfr_flags & USE_CLSR)
1067			priv_params->clsr = SPINOR_OP_CLSR;
1068		else if (mfr_flags & USE_CLPEF)
1069			priv_params->clsr = SPINOR_OP_CLPEF;
1070
1071		params->priv = priv_params;
1072		params->ready = spansion_nor_sr_ready_and_clear;
1073	}
1074
1075	return 0;
1076}
1077
1078static const struct spi_nor_fixups spansion_nor_fixups = {
1079	.late_init = spansion_nor_late_init,
1080};
1081
1082const struct spi_nor_manufacturer spi_nor_spansion = {
1083	.name = "spansion",
1084	.parts = spansion_nor_parts,
1085	.nparts = ARRAY_SIZE(spansion_nor_parts),
1086	.fixups = &spansion_nor_fixups,
1087};
1088