1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SuperH FLCTL nand controller
4 *
5 * Copyright (c) 2008 Renesas Solutions Corp.
6 * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
7 *
8 * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
9 */
10
11#include <linux/module.h>
12#include <linux/kernel.h>
13#include <linux/completion.h>
14#include <linux/delay.h>
15#include <linux/dmaengine.h>
16#include <linux/dma-mapping.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/of.h>
20#include <linux/platform_device.h>
21#include <linux/pm_runtime.h>
22#include <linux/sh_dma.h>
23#include <linux/slab.h>
24#include <linux/string.h>
25
26#include <linux/mtd/mtd.h>
27#include <linux/mtd/rawnand.h>
28#include <linux/mtd/partitions.h>
29#include <linux/mtd/sh_flctl.h>
30
31static int flctl_4secc_ooblayout_sp_ecc(struct mtd_info *mtd, int section,
32					struct mtd_oob_region *oobregion)
33{
34	struct nand_chip *chip = mtd_to_nand(mtd);
35
36	if (section)
37		return -ERANGE;
38
39	oobregion->offset = 0;
40	oobregion->length = chip->ecc.bytes;
41
42	return 0;
43}
44
45static int flctl_4secc_ooblayout_sp_free(struct mtd_info *mtd, int section,
46					 struct mtd_oob_region *oobregion)
47{
48	if (section)
49		return -ERANGE;
50
51	oobregion->offset = 12;
52	oobregion->length = 4;
53
54	return 0;
55}
56
57static const struct mtd_ooblayout_ops flctl_4secc_oob_smallpage_ops = {
58	.ecc = flctl_4secc_ooblayout_sp_ecc,
59	.free = flctl_4secc_ooblayout_sp_free,
60};
61
62static int flctl_4secc_ooblayout_lp_ecc(struct mtd_info *mtd, int section,
63					struct mtd_oob_region *oobregion)
64{
65	struct nand_chip *chip = mtd_to_nand(mtd);
66
67	if (section >= chip->ecc.steps)
68		return -ERANGE;
69
70	oobregion->offset = (section * 16) + 6;
71	oobregion->length = chip->ecc.bytes;
72
73	return 0;
74}
75
76static int flctl_4secc_ooblayout_lp_free(struct mtd_info *mtd, int section,
77					 struct mtd_oob_region *oobregion)
78{
79	struct nand_chip *chip = mtd_to_nand(mtd);
80
81	if (section >= chip->ecc.steps)
82		return -ERANGE;
83
84	oobregion->offset = section * 16;
85	oobregion->length = 6;
86
87	if (!section) {
88		oobregion->offset += 2;
89		oobregion->length -= 2;
90	}
91
92	return 0;
93}
94
95static const struct mtd_ooblayout_ops flctl_4secc_oob_largepage_ops = {
96	.ecc = flctl_4secc_ooblayout_lp_ecc,
97	.free = flctl_4secc_ooblayout_lp_free,
98};
99
100static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
101
102static struct nand_bbt_descr flctl_4secc_smallpage = {
103	.offs = 11,
104	.len = 1,
105	.pattern = scan_ff_pattern,
106};
107
108static struct nand_bbt_descr flctl_4secc_largepage = {
109	.offs = 0,
110	.len = 2,
111	.pattern = scan_ff_pattern,
112};
113
114static void empty_fifo(struct sh_flctl *flctl)
115{
116	writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
117	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
118}
119
120static void start_translation(struct sh_flctl *flctl)
121{
122	writeb(TRSTRT, FLTRCR(flctl));
123}
124
125static void timeout_error(struct sh_flctl *flctl, const char *str)
126{
127	dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
128}
129
130static void wait_completion(struct sh_flctl *flctl)
131{
132	uint32_t timeout = LOOP_TIMEOUT_MAX;
133
134	while (timeout--) {
135		if (readb(FLTRCR(flctl)) & TREND) {
136			writeb(0x0, FLTRCR(flctl));
137			return;
138		}
139		udelay(1);
140	}
141
142	timeout_error(flctl, __func__);
143	writeb(0x0, FLTRCR(flctl));
144}
145
146static void flctl_dma_complete(void *param)
147{
148	struct sh_flctl *flctl = param;
149
150	complete(&flctl->dma_complete);
151}
152
153static void flctl_release_dma(struct sh_flctl *flctl)
154{
155	if (flctl->chan_fifo0_rx) {
156		dma_release_channel(flctl->chan_fifo0_rx);
157		flctl->chan_fifo0_rx = NULL;
158	}
159	if (flctl->chan_fifo0_tx) {
160		dma_release_channel(flctl->chan_fifo0_tx);
161		flctl->chan_fifo0_tx = NULL;
162	}
163}
164
165static void flctl_setup_dma(struct sh_flctl *flctl)
166{
167	dma_cap_mask_t mask;
168	struct dma_slave_config cfg;
169	struct platform_device *pdev = flctl->pdev;
170	struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev);
171	int ret;
172
173	if (!pdata)
174		return;
175
176	if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0)
177		return;
178
179	/* We can only either use DMA for both Tx and Rx or not use it at all */
180	dma_cap_zero(mask);
181	dma_cap_set(DMA_SLAVE, mask);
182
183	flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter,
184				(void *)(uintptr_t)pdata->slave_id_fifo0_tx);
185	dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__,
186		flctl->chan_fifo0_tx);
187
188	if (!flctl->chan_fifo0_tx)
189		return;
190
191	memset(&cfg, 0, sizeof(cfg));
192	cfg.direction = DMA_MEM_TO_DEV;
193	cfg.dst_addr = flctl->fifo;
194	cfg.src_addr = 0;
195	ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg);
196	if (ret < 0)
197		goto err;
198
199	flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter,
200				(void *)(uintptr_t)pdata->slave_id_fifo0_rx);
201	dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__,
202		flctl->chan_fifo0_rx);
203
204	if (!flctl->chan_fifo0_rx)
205		goto err;
206
207	cfg.direction = DMA_DEV_TO_MEM;
208	cfg.dst_addr = 0;
209	cfg.src_addr = flctl->fifo;
210	ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg);
211	if (ret < 0)
212		goto err;
213
214	init_completion(&flctl->dma_complete);
215
216	return;
217
218err:
219	flctl_release_dma(flctl);
220}
221
222static void set_addr(struct mtd_info *mtd, int column, int page_addr)
223{
224	struct sh_flctl *flctl = mtd_to_flctl(mtd);
225	uint32_t addr = 0;
226
227	if (column == -1) {
228		addr = page_addr;	/* ERASE1 */
229	} else if (page_addr != -1) {
230		/* SEQIN, READ0, etc.. */
231		if (flctl->chip.options & NAND_BUSWIDTH_16)
232			column >>= 1;
233		if (flctl->page_size) {
234			addr = column & 0x0FFF;
235			addr |= (page_addr & 0xff) << 16;
236			addr |= ((page_addr >> 8) & 0xff) << 24;
237			/* big than 128MB */
238			if (flctl->rw_ADRCNT == ADRCNT2_E) {
239				uint32_t 	addr2;
240				addr2 = (page_addr >> 16) & 0xff;
241				writel(addr2, FLADR2(flctl));
242			}
243		} else {
244			addr = column;
245			addr |= (page_addr & 0xff) << 8;
246			addr |= ((page_addr >> 8) & 0xff) << 16;
247			addr |= ((page_addr >> 16) & 0xff) << 24;
248		}
249	}
250	writel(addr, FLADR(flctl));
251}
252
253static void wait_rfifo_ready(struct sh_flctl *flctl)
254{
255	uint32_t timeout = LOOP_TIMEOUT_MAX;
256
257	while (timeout--) {
258		uint32_t val;
259		/* check FIFO */
260		val = readl(FLDTCNTR(flctl)) >> 16;
261		if (val & 0xFF)
262			return;
263		udelay(1);
264	}
265	timeout_error(flctl, __func__);
266}
267
268static void wait_wfifo_ready(struct sh_flctl *flctl)
269{
270	uint32_t len, timeout = LOOP_TIMEOUT_MAX;
271
272	while (timeout--) {
273		/* check FIFO */
274		len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
275		if (len >= 4)
276			return;
277		udelay(1);
278	}
279	timeout_error(flctl, __func__);
280}
281
282static enum flctl_ecc_res_t wait_recfifo_ready
283		(struct sh_flctl *flctl, int sector_number)
284{
285	uint32_t timeout = LOOP_TIMEOUT_MAX;
286	void __iomem *ecc_reg[4];
287	int i;
288	int state = FL_SUCCESS;
289	uint32_t data, size;
290
291	/*
292	 * First this loops checks in FLDTCNTR if we are ready to read out the
293	 * oob data. This is the case if either all went fine without errors or
294	 * if the bottom part of the loop corrected the errors or marked them as
295	 * uncorrectable and the controller is given time to push the data into
296	 * the FIFO.
297	 */
298	while (timeout--) {
299		/* check if all is ok and we can read out the OOB */
300		size = readl(FLDTCNTR(flctl)) >> 24;
301		if ((size & 0xFF) == 4)
302			return state;
303
304		/* check if a correction code has been calculated */
305		if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
306			/*
307			 * either we wait for the fifo to be filled or a
308			 * correction pattern is being generated
309			 */
310			udelay(1);
311			continue;
312		}
313
314		/* check for an uncorrectable error */
315		if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
316			/* check if we face a non-empty page */
317			for (i = 0; i < 512; i++) {
318				if (flctl->done_buff[i] != 0xff) {
319					state = FL_ERROR; /* can't correct */
320					break;
321				}
322			}
323
324			if (state == FL_SUCCESS)
325				dev_dbg(&flctl->pdev->dev,
326				"reading empty sector %d, ecc error ignored\n",
327				sector_number);
328
329			writel(0, FL4ECCCR(flctl));
330			continue;
331		}
332
333		/* start error correction */
334		ecc_reg[0] = FL4ECCRESULT0(flctl);
335		ecc_reg[1] = FL4ECCRESULT1(flctl);
336		ecc_reg[2] = FL4ECCRESULT2(flctl);
337		ecc_reg[3] = FL4ECCRESULT3(flctl);
338
339		for (i = 0; i < 3; i++) {
340			uint8_t org;
341			unsigned int index;
342
343			data = readl(ecc_reg[i]);
344
345			if (flctl->page_size)
346				index = (512 * sector_number) +
347					(data >> 16);
348			else
349				index = data >> 16;
350
351			org = flctl->done_buff[index];
352			flctl->done_buff[index] = org ^ (data & 0xFF);
353		}
354		state = FL_REPAIRABLE;
355		writel(0, FL4ECCCR(flctl));
356	}
357
358	timeout_error(flctl, __func__);
359	return FL_TIMEOUT;	/* timeout */
360}
361
362static void wait_wecfifo_ready(struct sh_flctl *flctl)
363{
364	uint32_t timeout = LOOP_TIMEOUT_MAX;
365	uint32_t len;
366
367	while (timeout--) {
368		/* check FLECFIFO */
369		len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
370		if (len >= 4)
371			return;
372		udelay(1);
373	}
374	timeout_error(flctl, __func__);
375}
376
377static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf,
378					int len, enum dma_data_direction dir)
379{
380	struct dma_async_tx_descriptor *desc = NULL;
381	struct dma_chan *chan;
382	enum dma_transfer_direction tr_dir;
383	dma_addr_t dma_addr;
384	dma_cookie_t cookie;
385	uint32_t reg;
386	int ret = 0;
387	unsigned long time_left;
388
389	if (dir == DMA_FROM_DEVICE) {
390		chan = flctl->chan_fifo0_rx;
391		tr_dir = DMA_DEV_TO_MEM;
392	} else {
393		chan = flctl->chan_fifo0_tx;
394		tr_dir = DMA_MEM_TO_DEV;
395	}
396
397	dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
398
399	if (!dma_mapping_error(chan->device->dev, dma_addr))
400		desc = dmaengine_prep_slave_single(chan, dma_addr, len,
401			tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
402
403	if (desc) {
404		reg = readl(FLINTDMACR(flctl));
405		reg |= DREQ0EN;
406		writel(reg, FLINTDMACR(flctl));
407
408		desc->callback = flctl_dma_complete;
409		desc->callback_param = flctl;
410		cookie = dmaengine_submit(desc);
411		if (dma_submit_error(cookie)) {
412			ret = dma_submit_error(cookie);
413			dev_warn(&flctl->pdev->dev,
414				 "DMA submit failed, falling back to PIO\n");
415			goto out;
416		}
417
418		dma_async_issue_pending(chan);
419	} else {
420		/* DMA failed, fall back to PIO */
421		flctl_release_dma(flctl);
422		dev_warn(&flctl->pdev->dev,
423			 "DMA failed, falling back to PIO\n");
424		ret = -EIO;
425		goto out;
426	}
427
428	time_left =
429	wait_for_completion_timeout(&flctl->dma_complete,
430				msecs_to_jiffies(3000));
431
432	if (time_left == 0) {
433		dmaengine_terminate_all(chan);
434		dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n");
435		ret = -ETIMEDOUT;
436	}
437
438out:
439	reg = readl(FLINTDMACR(flctl));
440	reg &= ~DREQ0EN;
441	writel(reg, FLINTDMACR(flctl));
442
443	dma_unmap_single(chan->device->dev, dma_addr, len, dir);
444
445	/* ret == 0 is success */
446	return ret;
447}
448
449static void read_datareg(struct sh_flctl *flctl, int offset)
450{
451	unsigned long data;
452	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
453
454	wait_completion(flctl);
455
456	data = readl(FLDATAR(flctl));
457	*buf = le32_to_cpu(data);
458}
459
460static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
461{
462	int i, len_4align;
463	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
464
465	len_4align = (rlen + 3) / 4;
466
467	/* initiate DMA transfer */
468	if (flctl->chan_fifo0_rx && rlen >= 32 &&
469		!flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_FROM_DEVICE))
470			goto convert;	/* DMA success */
471
472	/* do polling transfer */
473	for (i = 0; i < len_4align; i++) {
474		wait_rfifo_ready(flctl);
475		buf[i] = readl(FLDTFIFO(flctl));
476	}
477
478convert:
479	for (i = 0; i < len_4align; i++)
480		buf[i] = be32_to_cpu(buf[i]);
481}
482
483static enum flctl_ecc_res_t read_ecfiforeg
484		(struct sh_flctl *flctl, uint8_t *buff, int sector)
485{
486	int i;
487	enum flctl_ecc_res_t res;
488	unsigned long *ecc_buf = (unsigned long *)buff;
489
490	res = wait_recfifo_ready(flctl , sector);
491
492	if (res != FL_ERROR) {
493		for (i = 0; i < 4; i++) {
494			ecc_buf[i] = readl(FLECFIFO(flctl));
495			ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
496		}
497	}
498
499	return res;
500}
501
502static void write_fiforeg(struct sh_flctl *flctl, int rlen,
503						unsigned int offset)
504{
505	int i, len_4align;
506	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
507
508	len_4align = (rlen + 3) / 4;
509	for (i = 0; i < len_4align; i++) {
510		wait_wfifo_ready(flctl);
511		writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl));
512	}
513}
514
515static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen,
516						unsigned int offset)
517{
518	int i, len_4align;
519	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
520
521	len_4align = (rlen + 3) / 4;
522
523	for (i = 0; i < len_4align; i++)
524		buf[i] = cpu_to_be32(buf[i]);
525
526	/* initiate DMA transfer */
527	if (flctl->chan_fifo0_tx && rlen >= 32 &&
528		!flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_TO_DEVICE))
529			return;	/* DMA success */
530
531	/* do polling transfer */
532	for (i = 0; i < len_4align; i++) {
533		wait_wecfifo_ready(flctl);
534		writel(buf[i], FLECFIFO(flctl));
535	}
536}
537
538static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
539{
540	struct sh_flctl *flctl = mtd_to_flctl(mtd);
541	uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
542	uint32_t flcmdcr_val, addr_len_bytes = 0;
543
544	/* Set SNAND bit if page size is 2048byte */
545	if (flctl->page_size)
546		flcmncr_val |= SNAND_E;
547	else
548		flcmncr_val &= ~SNAND_E;
549
550	/* default FLCMDCR val */
551	flcmdcr_val = DOCMD1_E | DOADR_E;
552
553	/* Set for FLCMDCR */
554	switch (cmd) {
555	case NAND_CMD_ERASE1:
556		addr_len_bytes = flctl->erase_ADRCNT;
557		flcmdcr_val |= DOCMD2_E;
558		break;
559	case NAND_CMD_READ0:
560	case NAND_CMD_READOOB:
561	case NAND_CMD_RNDOUT:
562		addr_len_bytes = flctl->rw_ADRCNT;
563		flcmdcr_val |= CDSRC_E;
564		if (flctl->chip.options & NAND_BUSWIDTH_16)
565			flcmncr_val |= SEL_16BIT;
566		break;
567	case NAND_CMD_SEQIN:
568		/* This case is that cmd is READ0 or READ1 or READ00 */
569		flcmdcr_val &= ~DOADR_E;	/* ONLY execute 1st cmd */
570		break;
571	case NAND_CMD_PAGEPROG:
572		addr_len_bytes = flctl->rw_ADRCNT;
573		flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
574		if (flctl->chip.options & NAND_BUSWIDTH_16)
575			flcmncr_val |= SEL_16BIT;
576		break;
577	case NAND_CMD_READID:
578		flcmncr_val &= ~SNAND_E;
579		flcmdcr_val |= CDSRC_E;
580		addr_len_bytes = ADRCNT_1;
581		break;
582	case NAND_CMD_STATUS:
583	case NAND_CMD_RESET:
584		flcmncr_val &= ~SNAND_E;
585		flcmdcr_val &= ~(DOADR_E | DOSR_E);
586		break;
587	default:
588		break;
589	}
590
591	/* Set address bytes parameter */
592	flcmdcr_val |= addr_len_bytes;
593
594	/* Now actually write */
595	writel(flcmncr_val, FLCMNCR(flctl));
596	writel(flcmdcr_val, FLCMDCR(flctl));
597	writel(flcmcdr_val, FLCMCDR(flctl));
598}
599
600static int flctl_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
601				 int oob_required, int page)
602{
603	struct mtd_info *mtd = nand_to_mtd(chip);
604
605	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
606	if (oob_required)
607		chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
608	return 0;
609}
610
611static int flctl_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
612				  int oob_required, int page)
613{
614	struct mtd_info *mtd = nand_to_mtd(chip);
615
616	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
617	chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize);
618	return nand_prog_page_end_op(chip);
619}
620
621static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
622{
623	struct sh_flctl *flctl = mtd_to_flctl(mtd);
624	int sector, page_sectors;
625	enum flctl_ecc_res_t ecc_result;
626
627	page_sectors = flctl->page_size ? 4 : 1;
628
629	set_cmd_regs(mtd, NAND_CMD_READ0,
630		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
631
632	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
633		 FLCMNCR(flctl));
634	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
635	writel(page_addr << 2, FLADR(flctl));
636
637	empty_fifo(flctl);
638	start_translation(flctl);
639
640	for (sector = 0; sector < page_sectors; sector++) {
641		read_fiforeg(flctl, 512, 512 * sector);
642
643		ecc_result = read_ecfiforeg(flctl,
644			&flctl->done_buff[mtd->writesize + 16 * sector],
645			sector);
646
647		switch (ecc_result) {
648		case FL_REPAIRABLE:
649			dev_info(&flctl->pdev->dev,
650				"applied ecc on page 0x%x", page_addr);
651			mtd->ecc_stats.corrected++;
652			break;
653		case FL_ERROR:
654			dev_warn(&flctl->pdev->dev,
655				"page 0x%x contains corrupted data\n",
656				page_addr);
657			mtd->ecc_stats.failed++;
658			break;
659		default:
660			;
661		}
662	}
663
664	wait_completion(flctl);
665
666	writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
667			FLCMNCR(flctl));
668}
669
670static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
671{
672	struct sh_flctl *flctl = mtd_to_flctl(mtd);
673	int page_sectors = flctl->page_size ? 4 : 1;
674	int i;
675
676	set_cmd_regs(mtd, NAND_CMD_READ0,
677		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
678
679	empty_fifo(flctl);
680
681	for (i = 0; i < page_sectors; i++) {
682		set_addr(mtd, (512 + 16) * i + 512 , page_addr);
683		writel(16, FLDTCNTR(flctl));
684
685		start_translation(flctl);
686		read_fiforeg(flctl, 16, 16 * i);
687		wait_completion(flctl);
688	}
689}
690
691static void execmd_write_page_sector(struct mtd_info *mtd)
692{
693	struct sh_flctl *flctl = mtd_to_flctl(mtd);
694	int page_addr = flctl->seqin_page_addr;
695	int sector, page_sectors;
696
697	page_sectors = flctl->page_size ? 4 : 1;
698
699	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
700			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
701
702	empty_fifo(flctl);
703	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
704	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
705	writel(page_addr << 2, FLADR(flctl));
706	start_translation(flctl);
707
708	for (sector = 0; sector < page_sectors; sector++) {
709		write_fiforeg(flctl, 512, 512 * sector);
710		write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
711	}
712
713	wait_completion(flctl);
714	writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
715}
716
717static void execmd_write_oob(struct mtd_info *mtd)
718{
719	struct sh_flctl *flctl = mtd_to_flctl(mtd);
720	int page_addr = flctl->seqin_page_addr;
721	int sector, page_sectors;
722
723	page_sectors = flctl->page_size ? 4 : 1;
724
725	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
726			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
727
728	for (sector = 0; sector < page_sectors; sector++) {
729		empty_fifo(flctl);
730		set_addr(mtd, sector * 528 + 512, page_addr);
731		writel(16, FLDTCNTR(flctl));	/* set read size */
732
733		start_translation(flctl);
734		write_fiforeg(flctl, 16, 16 * sector);
735		wait_completion(flctl);
736	}
737}
738
739static void flctl_cmdfunc(struct nand_chip *chip, unsigned int command,
740			int column, int page_addr)
741{
742	struct mtd_info *mtd = nand_to_mtd(chip);
743	struct sh_flctl *flctl = mtd_to_flctl(mtd);
744	uint32_t read_cmd = 0;
745
746	pm_runtime_get_sync(&flctl->pdev->dev);
747
748	flctl->read_bytes = 0;
749	if (command != NAND_CMD_PAGEPROG)
750		flctl->index = 0;
751
752	switch (command) {
753	case NAND_CMD_READ1:
754	case NAND_CMD_READ0:
755		if (flctl->hwecc) {
756			/* read page with hwecc */
757			execmd_read_page_sector(mtd, page_addr);
758			break;
759		}
760		if (flctl->page_size)
761			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
762				| command);
763		else
764			set_cmd_regs(mtd, command, command);
765
766		set_addr(mtd, 0, page_addr);
767
768		flctl->read_bytes = mtd->writesize + mtd->oobsize;
769		if (flctl->chip.options & NAND_BUSWIDTH_16)
770			column >>= 1;
771		flctl->index += column;
772		goto read_normal_exit;
773
774	case NAND_CMD_READOOB:
775		if (flctl->hwecc) {
776			/* read page with hwecc */
777			execmd_read_oob(mtd, page_addr);
778			break;
779		}
780
781		if (flctl->page_size) {
782			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
783				| NAND_CMD_READ0);
784			set_addr(mtd, mtd->writesize, page_addr);
785		} else {
786			set_cmd_regs(mtd, command, command);
787			set_addr(mtd, 0, page_addr);
788		}
789		flctl->read_bytes = mtd->oobsize;
790		goto read_normal_exit;
791
792	case NAND_CMD_RNDOUT:
793		if (flctl->hwecc)
794			break;
795
796		if (flctl->page_size)
797			set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
798				| command);
799		else
800			set_cmd_regs(mtd, command, command);
801
802		set_addr(mtd, column, 0);
803
804		flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
805		goto read_normal_exit;
806
807	case NAND_CMD_READID:
808		set_cmd_regs(mtd, command, command);
809
810		/* READID is always performed using an 8-bit bus */
811		if (flctl->chip.options & NAND_BUSWIDTH_16)
812			column <<= 1;
813		set_addr(mtd, column, 0);
814
815		flctl->read_bytes = 8;
816		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
817		empty_fifo(flctl);
818		start_translation(flctl);
819		read_fiforeg(flctl, flctl->read_bytes, 0);
820		wait_completion(flctl);
821		break;
822
823	case NAND_CMD_ERASE1:
824		flctl->erase1_page_addr = page_addr;
825		break;
826
827	case NAND_CMD_ERASE2:
828		set_cmd_regs(mtd, NAND_CMD_ERASE1,
829			(command << 8) | NAND_CMD_ERASE1);
830		set_addr(mtd, -1, flctl->erase1_page_addr);
831		start_translation(flctl);
832		wait_completion(flctl);
833		break;
834
835	case NAND_CMD_SEQIN:
836		if (!flctl->page_size) {
837			/* output read command */
838			if (column >= mtd->writesize) {
839				column -= mtd->writesize;
840				read_cmd = NAND_CMD_READOOB;
841			} else if (column < 256) {
842				read_cmd = NAND_CMD_READ0;
843			} else {
844				column -= 256;
845				read_cmd = NAND_CMD_READ1;
846			}
847		}
848		flctl->seqin_column = column;
849		flctl->seqin_page_addr = page_addr;
850		flctl->seqin_read_cmd = read_cmd;
851		break;
852
853	case NAND_CMD_PAGEPROG:
854		empty_fifo(flctl);
855		if (!flctl->page_size) {
856			set_cmd_regs(mtd, NAND_CMD_SEQIN,
857					flctl->seqin_read_cmd);
858			set_addr(mtd, -1, -1);
859			writel(0, FLDTCNTR(flctl));	/* set 0 size */
860			start_translation(flctl);
861			wait_completion(flctl);
862		}
863		if (flctl->hwecc) {
864			/* write page with hwecc */
865			if (flctl->seqin_column == mtd->writesize)
866				execmd_write_oob(mtd);
867			else if (!flctl->seqin_column)
868				execmd_write_page_sector(mtd);
869			else
870				pr_err("Invalid address !?\n");
871			break;
872		}
873		set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
874		set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
875		writel(flctl->index, FLDTCNTR(flctl));	/* set write size */
876		start_translation(flctl);
877		write_fiforeg(flctl, flctl->index, 0);
878		wait_completion(flctl);
879		break;
880
881	case NAND_CMD_STATUS:
882		set_cmd_regs(mtd, command, command);
883		set_addr(mtd, -1, -1);
884
885		flctl->read_bytes = 1;
886		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
887		start_translation(flctl);
888		read_datareg(flctl, 0); /* read and end */
889		break;
890
891	case NAND_CMD_RESET:
892		set_cmd_regs(mtd, command, command);
893		set_addr(mtd, -1, -1);
894
895		writel(0, FLDTCNTR(flctl));	/* set 0 size */
896		start_translation(flctl);
897		wait_completion(flctl);
898		break;
899
900	default:
901		break;
902	}
903	goto runtime_exit;
904
905read_normal_exit:
906	writel(flctl->read_bytes, FLDTCNTR(flctl));	/* set read size */
907	empty_fifo(flctl);
908	start_translation(flctl);
909	read_fiforeg(flctl, flctl->read_bytes, 0);
910	wait_completion(flctl);
911runtime_exit:
912	pm_runtime_put_sync(&flctl->pdev->dev);
913	return;
914}
915
916static void flctl_select_chip(struct nand_chip *chip, int chipnr)
917{
918	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
919	int ret;
920
921	switch (chipnr) {
922	case -1:
923		flctl->flcmncr_base &= ~CE0_ENABLE;
924
925		pm_runtime_get_sync(&flctl->pdev->dev);
926		writel(flctl->flcmncr_base, FLCMNCR(flctl));
927
928		if (flctl->qos_request) {
929			dev_pm_qos_remove_request(&flctl->pm_qos);
930			flctl->qos_request = 0;
931		}
932
933		pm_runtime_put_sync(&flctl->pdev->dev);
934		break;
935	case 0:
936		flctl->flcmncr_base |= CE0_ENABLE;
937
938		if (!flctl->qos_request) {
939			ret = dev_pm_qos_add_request(&flctl->pdev->dev,
940							&flctl->pm_qos,
941							DEV_PM_QOS_RESUME_LATENCY,
942							100);
943			if (ret < 0)
944				dev_err(&flctl->pdev->dev,
945					"PM QoS request failed: %d\n", ret);
946			flctl->qos_request = 1;
947		}
948
949		if (flctl->holden) {
950			pm_runtime_get_sync(&flctl->pdev->dev);
951			writel(HOLDEN, FLHOLDCR(flctl));
952			pm_runtime_put_sync(&flctl->pdev->dev);
953		}
954		break;
955	default:
956		BUG();
957	}
958}
959
960static void flctl_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
961{
962	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
963
964	memcpy(&flctl->done_buff[flctl->index], buf, len);
965	flctl->index += len;
966}
967
968static uint8_t flctl_read_byte(struct nand_chip *chip)
969{
970	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
971	uint8_t data;
972
973	data = flctl->done_buff[flctl->index];
974	flctl->index++;
975	return data;
976}
977
978static void flctl_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
979{
980	struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip));
981
982	memcpy(buf, &flctl->done_buff[flctl->index], len);
983	flctl->index += len;
984}
985
986static int flctl_chip_attach_chip(struct nand_chip *chip)
987{
988	u64 targetsize = nanddev_target_size(&chip->base);
989	struct mtd_info *mtd = nand_to_mtd(chip);
990	struct sh_flctl *flctl = mtd_to_flctl(mtd);
991
992	/*
993	 * NAND_BUSWIDTH_16 may have been set by nand_scan_ident().
994	 * Add the SEL_16BIT flag in flctl->flcmncr_base.
995	 */
996	if (chip->options & NAND_BUSWIDTH_16)
997		flctl->flcmncr_base |= SEL_16BIT;
998
999	if (mtd->writesize == 512) {
1000		flctl->page_size = 0;
1001		if (targetsize > (32 << 20)) {
1002			/* big than 32MB */
1003			flctl->rw_ADRCNT = ADRCNT_4;
1004			flctl->erase_ADRCNT = ADRCNT_3;
1005		} else if (targetsize > (2 << 16)) {
1006			/* big than 128KB */
1007			flctl->rw_ADRCNT = ADRCNT_3;
1008			flctl->erase_ADRCNT = ADRCNT_2;
1009		} else {
1010			flctl->rw_ADRCNT = ADRCNT_2;
1011			flctl->erase_ADRCNT = ADRCNT_1;
1012		}
1013	} else {
1014		flctl->page_size = 1;
1015		if (targetsize > (128 << 20)) {
1016			/* big than 128MB */
1017			flctl->rw_ADRCNT = ADRCNT2_E;
1018			flctl->erase_ADRCNT = ADRCNT_3;
1019		} else if (targetsize > (8 << 16)) {
1020			/* big than 512KB */
1021			flctl->rw_ADRCNT = ADRCNT_4;
1022			flctl->erase_ADRCNT = ADRCNT_2;
1023		} else {
1024			flctl->rw_ADRCNT = ADRCNT_3;
1025			flctl->erase_ADRCNT = ADRCNT_1;
1026		}
1027	}
1028
1029	if (flctl->hwecc) {
1030		if (mtd->writesize == 512) {
1031			mtd_set_ooblayout(mtd, &flctl_4secc_oob_smallpage_ops);
1032			chip->badblock_pattern = &flctl_4secc_smallpage;
1033		} else {
1034			mtd_set_ooblayout(mtd, &flctl_4secc_oob_largepage_ops);
1035			chip->badblock_pattern = &flctl_4secc_largepage;
1036		}
1037
1038		chip->ecc.size = 512;
1039		chip->ecc.bytes = 10;
1040		chip->ecc.strength = 4;
1041		chip->ecc.read_page = flctl_read_page_hwecc;
1042		chip->ecc.write_page = flctl_write_page_hwecc;
1043		chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1044
1045		/* 4 symbols ECC enabled */
1046		flctl->flcmncr_base |= _4ECCEN;
1047	} else {
1048		chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
1049		chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
1050	}
1051
1052	return 0;
1053}
1054
1055static const struct nand_controller_ops flctl_nand_controller_ops = {
1056	.attach_chip = flctl_chip_attach_chip,
1057};
1058
1059static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
1060{
1061	struct sh_flctl *flctl = dev_id;
1062
1063	dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
1064	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
1065
1066	return IRQ_HANDLED;
1067}
1068
1069struct flctl_soc_config {
1070	unsigned long flcmncr_val;
1071	unsigned has_hwecc:1;
1072	unsigned use_holden:1;
1073};
1074
1075static struct flctl_soc_config flctl_sh7372_config = {
1076	.flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL,
1077	.has_hwecc = 1,
1078	.use_holden = 1,
1079};
1080
1081static const struct of_device_id of_flctl_match[] = {
1082	{ .compatible = "renesas,shmobile-flctl-sh7372",
1083				.data = &flctl_sh7372_config },
1084	{},
1085};
1086MODULE_DEVICE_TABLE(of, of_flctl_match);
1087
1088static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
1089{
1090	const struct flctl_soc_config *config;
1091	struct sh_flctl_platform_data *pdata;
1092
1093	config = of_device_get_match_data(dev);
1094	if (!config) {
1095		dev_err(dev, "%s: no OF configuration attached\n", __func__);
1096		return NULL;
1097	}
1098
1099	pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data),
1100								GFP_KERNEL);
1101	if (!pdata)
1102		return NULL;
1103
1104	/* set SoC specific options */
1105	pdata->flcmncr_val = config->flcmncr_val;
1106	pdata->has_hwecc = config->has_hwecc;
1107	pdata->use_holden = config->use_holden;
1108
1109	return pdata;
1110}
1111
1112static int flctl_probe(struct platform_device *pdev)
1113{
1114	struct resource *res;
1115	struct sh_flctl *flctl;
1116	struct mtd_info *flctl_mtd;
1117	struct nand_chip *nand;
1118	struct sh_flctl_platform_data *pdata;
1119	int ret;
1120	int irq;
1121
1122	flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL);
1123	if (!flctl)
1124		return -ENOMEM;
1125
1126	flctl->reg = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1127	if (IS_ERR(flctl->reg))
1128		return PTR_ERR(flctl->reg);
1129	flctl->fifo = res->start + 0x24; /* FLDTFIFO */
1130
1131	irq = platform_get_irq(pdev, 0);
1132	if (irq < 0)
1133		return irq;
1134
1135	ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED,
1136			       "flste", flctl);
1137	if (ret) {
1138		dev_err(&pdev->dev, "request interrupt failed.\n");
1139		return ret;
1140	}
1141
1142	if (pdev->dev.of_node)
1143		pdata = flctl_parse_dt(&pdev->dev);
1144	else
1145		pdata = dev_get_platdata(&pdev->dev);
1146
1147	if (!pdata) {
1148		dev_err(&pdev->dev, "no setup data defined\n");
1149		return -EINVAL;
1150	}
1151
1152	platform_set_drvdata(pdev, flctl);
1153	nand = &flctl->chip;
1154	flctl_mtd = nand_to_mtd(nand);
1155	nand_set_flash_node(nand, pdev->dev.of_node);
1156	flctl_mtd->dev.parent = &pdev->dev;
1157	flctl->pdev = pdev;
1158	flctl->hwecc = pdata->has_hwecc;
1159	flctl->holden = pdata->use_holden;
1160	flctl->flcmncr_base = pdata->flcmncr_val;
1161	flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
1162
1163	/* Set address of hardware control function */
1164	/* 20 us command delay time */
1165	nand->legacy.chip_delay = 20;
1166
1167	nand->legacy.read_byte = flctl_read_byte;
1168	nand->legacy.write_buf = flctl_write_buf;
1169	nand->legacy.read_buf = flctl_read_buf;
1170	nand->legacy.select_chip = flctl_select_chip;
1171	nand->legacy.cmdfunc = flctl_cmdfunc;
1172	nand->legacy.set_features = nand_get_set_features_notsupp;
1173	nand->legacy.get_features = nand_get_set_features_notsupp;
1174
1175	if (pdata->flcmncr_val & SEL_16BIT)
1176		nand->options |= NAND_BUSWIDTH_16;
1177
1178	nand->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
1179
1180	pm_runtime_enable(&pdev->dev);
1181	pm_runtime_resume(&pdev->dev);
1182
1183	flctl_setup_dma(flctl);
1184
1185	nand->legacy.dummy_controller.ops = &flctl_nand_controller_ops;
1186	ret = nand_scan(nand, 1);
1187	if (ret)
1188		goto err_chip;
1189
1190	ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
1191	if (ret)
1192		goto cleanup_nand;
1193
1194	return 0;
1195
1196cleanup_nand:
1197	nand_cleanup(nand);
1198err_chip:
1199	flctl_release_dma(flctl);
1200	pm_runtime_disable(&pdev->dev);
1201	return ret;
1202}
1203
1204static void flctl_remove(struct platform_device *pdev)
1205{
1206	struct sh_flctl *flctl = platform_get_drvdata(pdev);
1207	struct nand_chip *chip = &flctl->chip;
1208	int ret;
1209
1210	flctl_release_dma(flctl);
1211	ret = mtd_device_unregister(nand_to_mtd(chip));
1212	WARN_ON(ret);
1213	nand_cleanup(chip);
1214	pm_runtime_disable(&pdev->dev);
1215}
1216
1217static struct platform_driver flctl_driver = {
1218	.probe		= flctl_probe,
1219	.remove_new	= flctl_remove,
1220	.driver = {
1221		.name	= "sh_flctl",
1222		.of_match_table = of_flctl_match,
1223	},
1224};
1225
1226module_platform_driver(flctl_driver);
1227
1228MODULE_LICENSE("GPL v2");
1229MODULE_AUTHOR("Yoshihiro Shimoda");
1230MODULE_DESCRIPTION("SuperH FLCTL driver");
1231MODULE_ALIAS("platform:sh_flctl");
1232