1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  Overview:
4 *   This is the generic MTD driver for NAND flash devices. It should be
5 *   capable of working with almost all NAND chips currently available.
6 *
7 *	Additional technical information is available on
8 *	http://www.linux-mtd.infradead.org/doc/nand.html
9 *
10 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
11 *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
12 *
13 *  Credits:
14 *	David Woodhouse for adding multichip support
15 *
16 *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
17 *	rework for 2K page size chips
18 *
19 *  TODO:
20 *	Enable cached programming for 2k page size chips
21 *	Check, if mtd->ecctype should be set to MTD_ECC_HW
22 *	if we have HW ECC support.
23 *	BBT table is not serialized, has to be fixed
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/module.h>
29#include <linux/delay.h>
30#include <linux/errno.h>
31#include <linux/err.h>
32#include <linux/sched.h>
33#include <linux/slab.h>
34#include <linux/mm.h>
35#include <linux/types.h>
36#include <linux/mtd/mtd.h>
37#include <linux/mtd/nand.h>
38#include <linux/mtd/nand-ecc-sw-hamming.h>
39#include <linux/mtd/nand-ecc-sw-bch.h>
40#include <linux/interrupt.h>
41#include <linux/bitops.h>
42#include <linux/io.h>
43#include <linux/mtd/partitions.h>
44#include <linux/of.h>
45#include <linux/gpio/consumer.h>
46
47#include "internals.h"
48
49static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
50				       struct mtd_pairing_info *info)
51{
52	int lastpage = (mtd->erasesize / mtd->writesize) - 1;
53	int dist = 3;
54
55	if (page == lastpage)
56		dist = 2;
57
58	if (!page || (page & 1)) {
59		info->group = 0;
60		info->pair = (page + 1) / 2;
61	} else {
62		info->group = 1;
63		info->pair = (page + 1 - dist) / 2;
64	}
65
66	return 0;
67}
68
69static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
70					const struct mtd_pairing_info *info)
71{
72	int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
73	int page = info->pair * 2;
74	int dist = 3;
75
76	if (!info->group && !info->pair)
77		return 0;
78
79	if (info->pair == lastpair && info->group)
80		dist = 2;
81
82	if (!info->group)
83		page--;
84	else if (info->pair)
85		page += dist - 1;
86
87	if (page >= mtd->erasesize / mtd->writesize)
88		return -EINVAL;
89
90	return page;
91}
92
93const struct mtd_pairing_scheme dist3_pairing_scheme = {
94	.ngroups = 2,
95	.get_info = nand_pairing_dist3_get_info,
96	.get_wunit = nand_pairing_dist3_get_wunit,
97};
98
99static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
100{
101	int ret = 0;
102
103	/* Start address must align on block boundary */
104	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
105		pr_debug("%s: unaligned address\n", __func__);
106		ret = -EINVAL;
107	}
108
109	/* Length must align on block boundary */
110	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
111		pr_debug("%s: length not block aligned\n", __func__);
112		ret = -EINVAL;
113	}
114
115	return ret;
116}
117
118/**
119 * nand_extract_bits - Copy unaligned bits from one buffer to another one
120 * @dst: destination buffer
121 * @dst_off: bit offset at which the writing starts
122 * @src: source buffer
123 * @src_off: bit offset at which the reading starts
124 * @nbits: number of bits to copy from @src to @dst
125 *
126 * Copy bits from one memory region to another (overlap authorized).
127 */
128void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
129		       unsigned int src_off, unsigned int nbits)
130{
131	unsigned int tmp, n;
132
133	dst += dst_off / 8;
134	dst_off %= 8;
135	src += src_off / 8;
136	src_off %= 8;
137
138	while (nbits) {
139		n = min3(8 - dst_off, 8 - src_off, nbits);
140
141		tmp = (*src >> src_off) & GENMASK(n - 1, 0);
142		*dst &= ~GENMASK(n - 1 + dst_off, dst_off);
143		*dst |= tmp << dst_off;
144
145		dst_off += n;
146		if (dst_off >= 8) {
147			dst++;
148			dst_off -= 8;
149		}
150
151		src_off += n;
152		if (src_off >= 8) {
153			src++;
154			src_off -= 8;
155		}
156
157		nbits -= n;
158	}
159}
160EXPORT_SYMBOL_GPL(nand_extract_bits);
161
162/**
163 * nand_select_target() - Select a NAND target (A.K.A. die)
164 * @chip: NAND chip object
165 * @cs: the CS line to select. Note that this CS id is always from the chip
166 *	PoV, not the controller one
167 *
168 * Select a NAND target so that further operations executed on @chip go to the
169 * selected NAND target.
170 */
171void nand_select_target(struct nand_chip *chip, unsigned int cs)
172{
173	/*
174	 * cs should always lie between 0 and nanddev_ntargets(), when that's
175	 * not the case it's a bug and the caller should be fixed.
176	 */
177	if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
178		return;
179
180	chip->cur_cs = cs;
181
182	if (chip->legacy.select_chip)
183		chip->legacy.select_chip(chip, cs);
184}
185EXPORT_SYMBOL_GPL(nand_select_target);
186
187/**
188 * nand_deselect_target() - Deselect the currently selected target
189 * @chip: NAND chip object
190 *
191 * Deselect the currently selected NAND target. The result of operations
192 * executed on @chip after the target has been deselected is undefined.
193 */
194void nand_deselect_target(struct nand_chip *chip)
195{
196	if (chip->legacy.select_chip)
197		chip->legacy.select_chip(chip, -1);
198
199	chip->cur_cs = -1;
200}
201EXPORT_SYMBOL_GPL(nand_deselect_target);
202
203/**
204 * nand_release_device - [GENERIC] release chip
205 * @chip: NAND chip object
206 *
207 * Release chip lock and wake up anyone waiting on the device.
208 */
209static void nand_release_device(struct nand_chip *chip)
210{
211	/* Release the controller and the chip */
212	mutex_unlock(&chip->controller->lock);
213	mutex_unlock(&chip->lock);
214}
215
216/**
217 * nand_bbm_get_next_page - Get the next page for bad block markers
218 * @chip: NAND chip object
219 * @page: First page to start checking for bad block marker usage
220 *
221 * Returns an integer that corresponds to the page offset within a block, for
222 * a page that is used to store bad block markers. If no more pages are
223 * available, -EINVAL is returned.
224 */
225int nand_bbm_get_next_page(struct nand_chip *chip, int page)
226{
227	struct mtd_info *mtd = nand_to_mtd(chip);
228	int last_page = ((mtd->erasesize - mtd->writesize) >>
229			 chip->page_shift) & chip->pagemask;
230	unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
231		| NAND_BBM_LASTPAGE;
232
233	if (page == 0 && !(chip->options & bbm_flags))
234		return 0;
235	if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
236		return 0;
237	if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
238		return 1;
239	if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
240		return last_page;
241
242	return -EINVAL;
243}
244
245/**
246 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
247 * @chip: NAND chip object
248 * @ofs: offset from device start
249 *
250 * Check, if the block is bad.
251 */
252static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
253{
254	int first_page, page_offset;
255	int res;
256	u8 bad;
257
258	first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
259	page_offset = nand_bbm_get_next_page(chip, 0);
260
261	while (page_offset >= 0) {
262		res = chip->ecc.read_oob(chip, first_page + page_offset);
263		if (res < 0)
264			return res;
265
266		bad = chip->oob_poi[chip->badblockpos];
267
268		if (likely(chip->badblockbits == 8))
269			res = bad != 0xFF;
270		else
271			res = hweight8(bad) < chip->badblockbits;
272		if (res)
273			return res;
274
275		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
276	}
277
278	return 0;
279}
280
281/**
282 * nand_region_is_secured() - Check if the region is secured
283 * @chip: NAND chip object
284 * @offset: Offset of the region to check
285 * @size: Size of the region to check
286 *
287 * Checks if the region is secured by comparing the offset and size with the
288 * list of secure regions obtained from DT. Returns true if the region is
289 * secured else false.
290 */
291static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size)
292{
293	int i;
294
295	/* Skip touching the secure regions if present */
296	for (i = 0; i < chip->nr_secure_regions; i++) {
297		const struct nand_secure_region *region = &chip->secure_regions[i];
298
299		if (offset + size <= region->offset ||
300		    offset >= region->offset + region->size)
301			continue;
302
303		pr_debug("%s: Region 0x%llx - 0x%llx is secured!",
304			 __func__, offset, offset + size);
305
306		return true;
307	}
308
309	return false;
310}
311
312static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
313{
314	struct mtd_info *mtd = nand_to_mtd(chip);
315
316	if (chip->options & NAND_NO_BBM_QUIRK)
317		return 0;
318
319	/* Check if the region is secured */
320	if (nand_region_is_secured(chip, ofs, mtd->erasesize))
321		return -EIO;
322
323	if (mtd_check_expert_analysis_mode())
324		return 0;
325
326	if (chip->legacy.block_bad)
327		return chip->legacy.block_bad(chip, ofs);
328
329	return nand_block_bad(chip, ofs);
330}
331
332/**
333 * nand_get_device - [GENERIC] Get chip for selected access
334 * @chip: NAND chip structure
335 *
336 * Lock the device and its controller for exclusive access
337 */
338static void nand_get_device(struct nand_chip *chip)
339{
340	/* Wait until the device is resumed. */
341	while (1) {
342		mutex_lock(&chip->lock);
343		if (!chip->suspended) {
344			mutex_lock(&chip->controller->lock);
345			return;
346		}
347		mutex_unlock(&chip->lock);
348
349		wait_event(chip->resume_wq, !chip->suspended);
350	}
351}
352
353/**
354 * nand_check_wp - [GENERIC] check if the chip is write protected
355 * @chip: NAND chip object
356 *
357 * Check, if the device is write protected. The function expects, that the
358 * device is already selected.
359 */
360static int nand_check_wp(struct nand_chip *chip)
361{
362	u8 status;
363	int ret;
364
365	/* Broken xD cards report WP despite being writable */
366	if (chip->options & NAND_BROKEN_XD)
367		return 0;
368
369	/* controller responsible for NAND write protect */
370	if (chip->controller->controller_wp)
371		return 0;
372
373	/* Check the WP bit */
374	ret = nand_status_op(chip, &status);
375	if (ret)
376		return ret;
377
378	return status & NAND_STATUS_WP ? 0 : 1;
379}
380
381/**
382 * nand_fill_oob - [INTERN] Transfer client buffer to oob
383 * @chip: NAND chip object
384 * @oob: oob data buffer
385 * @len: oob data write length
386 * @ops: oob ops structure
387 */
388static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
389			      struct mtd_oob_ops *ops)
390{
391	struct mtd_info *mtd = nand_to_mtd(chip);
392	int ret;
393
394	/*
395	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
396	 * data from a previous OOB read.
397	 */
398	memset(chip->oob_poi, 0xff, mtd->oobsize);
399
400	switch (ops->mode) {
401
402	case MTD_OPS_PLACE_OOB:
403	case MTD_OPS_RAW:
404		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
405		return oob + len;
406
407	case MTD_OPS_AUTO_OOB:
408		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
409						  ops->ooboffs, len);
410		BUG_ON(ret);
411		return oob + len;
412
413	default:
414		BUG();
415	}
416	return NULL;
417}
418
419/**
420 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
421 * @chip: NAND chip object
422 * @to: offset to write to
423 * @ops: oob operation description structure
424 *
425 * NAND write out-of-band.
426 */
427static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
428			     struct mtd_oob_ops *ops)
429{
430	struct mtd_info *mtd = nand_to_mtd(chip);
431	int chipnr, page, status, len, ret;
432
433	pr_debug("%s: to = 0x%08x, len = %i\n",
434			 __func__, (unsigned int)to, (int)ops->ooblen);
435
436	len = mtd_oobavail(mtd, ops);
437
438	/* Do not allow write past end of page */
439	if ((ops->ooboffs + ops->ooblen) > len) {
440		pr_debug("%s: attempt to write past end of page\n",
441				__func__);
442		return -EINVAL;
443	}
444
445	/* Check if the region is secured */
446	if (nand_region_is_secured(chip, to, ops->ooblen))
447		return -EIO;
448
449	chipnr = (int)(to >> chip->chip_shift);
450
451	/*
452	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
453	 * of my DiskOnChip 2000 test units) will clear the whole data page too
454	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
455	 * it in the doc2000 driver in August 1999.  dwmw2.
456	 */
457	ret = nand_reset(chip, chipnr);
458	if (ret)
459		return ret;
460
461	nand_select_target(chip, chipnr);
462
463	/* Shift to get page */
464	page = (int)(to >> chip->page_shift);
465
466	/* Check, if it is write protected */
467	if (nand_check_wp(chip)) {
468		nand_deselect_target(chip);
469		return -EROFS;
470	}
471
472	/* Invalidate the page cache, if we write to the cached page */
473	if (page == chip->pagecache.page)
474		chip->pagecache.page = -1;
475
476	nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
477
478	if (ops->mode == MTD_OPS_RAW)
479		status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
480	else
481		status = chip->ecc.write_oob(chip, page & chip->pagemask);
482
483	nand_deselect_target(chip);
484
485	if (status)
486		return status;
487
488	ops->oobretlen = ops->ooblen;
489
490	return 0;
491}
492
493/**
494 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
495 * @chip: NAND chip object
496 * @ofs: offset from device start
497 *
498 * This is the default implementation, which can be overridden by a hardware
499 * specific driver. It provides the details for writing a bad block marker to a
500 * block.
501 */
502static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
503{
504	struct mtd_info *mtd = nand_to_mtd(chip);
505	struct mtd_oob_ops ops;
506	uint8_t buf[2] = { 0, 0 };
507	int ret = 0, res, page_offset;
508
509	memset(&ops, 0, sizeof(ops));
510	ops.oobbuf = buf;
511	ops.ooboffs = chip->badblockpos;
512	if (chip->options & NAND_BUSWIDTH_16) {
513		ops.ooboffs &= ~0x01;
514		ops.len = ops.ooblen = 2;
515	} else {
516		ops.len = ops.ooblen = 1;
517	}
518	ops.mode = MTD_OPS_PLACE_OOB;
519
520	page_offset = nand_bbm_get_next_page(chip, 0);
521
522	while (page_offset >= 0) {
523		res = nand_do_write_oob(chip,
524					ofs + (page_offset * mtd->writesize),
525					&ops);
526
527		if (!ret)
528			ret = res;
529
530		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
531	}
532
533	return ret;
534}
535
536/**
537 * nand_markbad_bbm - mark a block by updating the BBM
538 * @chip: NAND chip object
539 * @ofs: offset of the block to mark bad
540 */
541int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
542{
543	if (chip->legacy.block_markbad)
544		return chip->legacy.block_markbad(chip, ofs);
545
546	return nand_default_block_markbad(chip, ofs);
547}
548
549/**
550 * nand_block_markbad_lowlevel - mark a block bad
551 * @chip: NAND chip object
552 * @ofs: offset from device start
553 *
554 * This function performs the generic NAND bad block marking steps (i.e., bad
555 * block table(s) and/or marker(s)). We only allow the hardware driver to
556 * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
557 *
558 * We try operations in the following order:
559 *
560 *  (1) erase the affected block, to allow OOB marker to be written cleanly
561 *  (2) write bad block marker to OOB area of affected block (unless flag
562 *      NAND_BBT_NO_OOB_BBM is present)
563 *  (3) update the BBT
564 *
565 * Note that we retain the first error encountered in (2) or (3), finish the
566 * procedures, and dump the error in the end.
567*/
568static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
569{
570	struct mtd_info *mtd = nand_to_mtd(chip);
571	int res, ret = 0;
572
573	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
574		struct erase_info einfo;
575
576		/* Attempt erase before marking OOB */
577		memset(&einfo, 0, sizeof(einfo));
578		einfo.addr = ofs;
579		einfo.len = 1ULL << chip->phys_erase_shift;
580		nand_erase_nand(chip, &einfo, 0);
581
582		/* Write bad block marker to OOB */
583		nand_get_device(chip);
584
585		ret = nand_markbad_bbm(chip, ofs);
586		nand_release_device(chip);
587	}
588
589	/* Mark block bad in BBT */
590	if (chip->bbt) {
591		res = nand_markbad_bbt(chip, ofs);
592		if (!ret)
593			ret = res;
594	}
595
596	if (!ret)
597		mtd->ecc_stats.badblocks++;
598
599	return ret;
600}
601
602/**
603 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
604 * @mtd: MTD device structure
605 * @ofs: offset from device start
606 *
607 * Check if the block is marked as reserved.
608 */
609static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
610{
611	struct nand_chip *chip = mtd_to_nand(mtd);
612
613	if (!chip->bbt)
614		return 0;
615	/* Return info from the table */
616	return nand_isreserved_bbt(chip, ofs);
617}
618
619/**
620 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
621 * @chip: NAND chip object
622 * @ofs: offset from device start
623 * @allowbbt: 1, if its allowed to access the bbt area
624 *
625 * Check, if the block is bad. Either by reading the bad block table or
626 * calling of the scan function.
627 */
628static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
629{
630	/* Return info from the table */
631	if (chip->bbt)
632		return nand_isbad_bbt(chip, ofs, allowbbt);
633
634	return nand_isbad_bbm(chip, ofs);
635}
636
637/**
638 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
639 * @chip: NAND chip structure
640 * @timeout_ms: Timeout in ms
641 *
642 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
643 * If that does not happen whitin the specified timeout, -ETIMEDOUT is
644 * returned.
645 *
646 * This helper is intended to be used when the controller does not have access
647 * to the NAND R/B pin.
648 *
649 * Be aware that calling this helper from an ->exec_op() implementation means
650 * ->exec_op() must be re-entrant.
651 *
652 * Return 0 if the NAND chip is ready, a negative error otherwise.
653 */
654int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
655{
656	const struct nand_interface_config *conf;
657	u8 status = 0;
658	int ret;
659
660	if (!nand_has_exec_op(chip))
661		return -ENOTSUPP;
662
663	/* Wait tWB before polling the STATUS reg. */
664	conf = nand_get_interface_config(chip);
665	ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max));
666
667	ret = nand_status_op(chip, NULL);
668	if (ret)
669		return ret;
670
671	/*
672	 * +1 below is necessary because if we are now in the last fraction
673	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
674	 * small jiffy fraction - possibly leading to false timeout
675	 */
676	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
677	do {
678		ret = nand_read_data_op(chip, &status, sizeof(status), true,
679					false);
680		if (ret)
681			break;
682
683		if (status & NAND_STATUS_READY)
684			break;
685
686		/*
687		 * Typical lowest execution time for a tR on most NANDs is 10us,
688		 * use this as polling delay before doing something smarter (ie.
689		 * deriving a delay from the timeout value, timeout_ms/ratio).
690		 */
691		udelay(10);
692	} while	(time_before(jiffies, timeout_ms));
693
694	/*
695	 * We have to exit READ_STATUS mode in order to read real data on the
696	 * bus in case the WAITRDY instruction is preceding a DATA_IN
697	 * instruction.
698	 */
699	nand_exit_status_op(chip);
700
701	if (ret)
702		return ret;
703
704	return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
705};
706EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
707
708/**
709 * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
710 * @chip: NAND chip structure
711 * @gpiod: GPIO descriptor of R/B pin
712 * @timeout_ms: Timeout in ms
713 *
714 * Poll the R/B GPIO pin until it becomes ready. If that does not happen
715 * whitin the specified timeout, -ETIMEDOUT is returned.
716 *
717 * This helper is intended to be used when the controller has access to the
718 * NAND R/B pin over GPIO.
719 *
720 * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
721 */
722int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
723		      unsigned long timeout_ms)
724{
725
726	/*
727	 * Wait until R/B pin indicates chip is ready or timeout occurs.
728	 * +1 below is necessary because if we are now in the last fraction
729	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
730	 * small jiffy fraction - possibly leading to false timeout.
731	 */
732	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
733	do {
734		if (gpiod_get_value_cansleep(gpiod))
735			return 0;
736
737		cond_resched();
738	} while	(time_before(jiffies, timeout_ms));
739
740	return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
741};
742EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
743
744/**
745 * panic_nand_wait - [GENERIC] wait until the command is done
746 * @chip: NAND chip structure
747 * @timeo: timeout
748 *
749 * Wait for command done. This is a helper function for nand_wait used when
750 * we are in interrupt context. May happen when in panic and trying to write
751 * an oops through mtdoops.
752 */
753void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
754{
755	int i;
756	for (i = 0; i < timeo; i++) {
757		if (chip->legacy.dev_ready) {
758			if (chip->legacy.dev_ready(chip))
759				break;
760		} else {
761			int ret;
762			u8 status;
763
764			ret = nand_read_data_op(chip, &status, sizeof(status),
765						true, false);
766			if (ret)
767				return;
768
769			if (status & NAND_STATUS_READY)
770				break;
771		}
772		mdelay(1);
773	}
774}
775
776static bool nand_supports_get_features(struct nand_chip *chip, int addr)
777{
778	return (chip->parameters.supports_set_get_features &&
779		test_bit(addr, chip->parameters.get_feature_list));
780}
781
782static bool nand_supports_set_features(struct nand_chip *chip, int addr)
783{
784	return (chip->parameters.supports_set_get_features &&
785		test_bit(addr, chip->parameters.set_feature_list));
786}
787
788/**
789 * nand_reset_interface - Reset data interface and timings
790 * @chip: The NAND chip
791 * @chipnr: Internal die id
792 *
793 * Reset the Data interface and timings to ONFI mode 0.
794 *
795 * Returns 0 for success or negative error code otherwise.
796 */
797static int nand_reset_interface(struct nand_chip *chip, int chipnr)
798{
799	const struct nand_controller_ops *ops = chip->controller->ops;
800	int ret;
801
802	if (!nand_controller_can_setup_interface(chip))
803		return 0;
804
805	/*
806	 * The ONFI specification says:
807	 * "
808	 * To transition from NV-DDR or NV-DDR2 to the SDR data
809	 * interface, the host shall use the Reset (FFh) command
810	 * using SDR timing mode 0. A device in any timing mode is
811	 * required to recognize Reset (FFh) command issued in SDR
812	 * timing mode 0.
813	 * "
814	 *
815	 * Configure the data interface in SDR mode and set the
816	 * timings to timing mode 0.
817	 */
818
819	chip->current_interface_config = nand_get_reset_interface_config();
820	ret = ops->setup_interface(chip, chipnr,
821				   chip->current_interface_config);
822	if (ret)
823		pr_err("Failed to configure data interface to SDR timing mode 0\n");
824
825	return ret;
826}
827
828/**
829 * nand_setup_interface - Setup the best data interface and timings
830 * @chip: The NAND chip
831 * @chipnr: Internal die id
832 *
833 * Configure what has been reported to be the best data interface and NAND
834 * timings supported by the chip and the driver.
835 *
836 * Returns 0 for success or negative error code otherwise.
837 */
838static int nand_setup_interface(struct nand_chip *chip, int chipnr)
839{
840	const struct nand_controller_ops *ops = chip->controller->ops;
841	u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request;
842	int ret;
843
844	if (!nand_controller_can_setup_interface(chip))
845		return 0;
846
847	/*
848	 * A nand_reset_interface() put both the NAND chip and the NAND
849	 * controller in timings mode 0. If the default mode for this chip is
850	 * also 0, no need to proceed to the change again. Plus, at probe time,
851	 * nand_setup_interface() uses ->set/get_features() which would
852	 * fail anyway as the parameter page is not available yet.
853	 */
854	if (!chip->best_interface_config)
855		return 0;
856
857	request = chip->best_interface_config->timings.mode;
858	if (nand_interface_is_sdr(chip->best_interface_config))
859		request |= ONFI_DATA_INTERFACE_SDR;
860	else
861		request |= ONFI_DATA_INTERFACE_NVDDR;
862	tmode_param[0] = request;
863
864	/* Change the mode on the chip side (if supported by the NAND chip) */
865	if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
866		nand_select_target(chip, chipnr);
867		ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
868					tmode_param);
869		nand_deselect_target(chip);
870		if (ret)
871			return ret;
872	}
873
874	/* Change the mode on the controller side */
875	ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
876	if (ret)
877		return ret;
878
879	/* Check the mode has been accepted by the chip, if supported */
880	if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
881		goto update_interface_config;
882
883	memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
884	nand_select_target(chip, chipnr);
885	ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
886				tmode_param);
887	nand_deselect_target(chip);
888	if (ret)
889		goto err_reset_chip;
890
891	if (request != tmode_param[0]) {
892		pr_warn("%s timing mode %d not acknowledged by the NAND chip\n",
893			nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR",
894			chip->best_interface_config->timings.mode);
895		pr_debug("NAND chip would work in %s timing mode %d\n",
896			 tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR",
897			 (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0]));
898		goto err_reset_chip;
899	}
900
901update_interface_config:
902	chip->current_interface_config = chip->best_interface_config;
903
904	return 0;
905
906err_reset_chip:
907	/*
908	 * Fallback to mode 0 if the chip explicitly did not ack the chosen
909	 * timing mode.
910	 */
911	nand_reset_interface(chip, chipnr);
912	nand_select_target(chip, chipnr);
913	nand_reset_op(chip);
914	nand_deselect_target(chip);
915
916	return ret;
917}
918
919/**
920 * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
921 *                                NAND controller and the NAND chip support
922 * @chip: the NAND chip
923 * @iface: the interface configuration (can eventually be updated)
924 * @spec_timings: specific timings, when not fitting the ONFI specification
925 *
926 * If specific timings are provided, use them. Otherwise, retrieve supported
927 * timing modes from ONFI information.
928 */
929int nand_choose_best_sdr_timings(struct nand_chip *chip,
930				 struct nand_interface_config *iface,
931				 struct nand_sdr_timings *spec_timings)
932{
933	const struct nand_controller_ops *ops = chip->controller->ops;
934	int best_mode = 0, mode, ret = -EOPNOTSUPP;
935
936	iface->type = NAND_SDR_IFACE;
937
938	if (spec_timings) {
939		iface->timings.sdr = *spec_timings;
940		iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);
941
942		/* Verify the controller supports the requested interface */
943		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
944					   iface);
945		if (!ret) {
946			chip->best_interface_config = iface;
947			return ret;
948		}
949
950		/* Fallback to slower modes */
951		best_mode = iface->timings.mode;
952	} else if (chip->parameters.onfi) {
953		best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1;
954	}
955
956	for (mode = best_mode; mode >= 0; mode--) {
957		onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode);
958
959		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
960					   iface);
961		if (!ret) {
962			chip->best_interface_config = iface;
963			break;
964		}
965	}
966
967	return ret;
968}
969
970/**
971 * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the
972 *                                  NAND controller and the NAND chip support
973 * @chip: the NAND chip
974 * @iface: the interface configuration (can eventually be updated)
975 * @spec_timings: specific timings, when not fitting the ONFI specification
976 *
977 * If specific timings are provided, use them. Otherwise, retrieve supported
978 * timing modes from ONFI information.
979 */
980int nand_choose_best_nvddr_timings(struct nand_chip *chip,
981				   struct nand_interface_config *iface,
982				   struct nand_nvddr_timings *spec_timings)
983{
984	const struct nand_controller_ops *ops = chip->controller->ops;
985	int best_mode = 0, mode, ret = -EOPNOTSUPP;
986
987	iface->type = NAND_NVDDR_IFACE;
988
989	if (spec_timings) {
990		iface->timings.nvddr = *spec_timings;
991		iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings);
992
993		/* Verify the controller supports the requested interface */
994		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
995					   iface);
996		if (!ret) {
997			chip->best_interface_config = iface;
998			return ret;
999		}
1000
1001		/* Fallback to slower modes */
1002		best_mode = iface->timings.mode;
1003	} else if (chip->parameters.onfi) {
1004		best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1;
1005	}
1006
1007	for (mode = best_mode; mode >= 0; mode--) {
1008		onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode);
1009
1010		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
1011					   iface);
1012		if (!ret) {
1013			chip->best_interface_config = iface;
1014			break;
1015		}
1016	}
1017
1018	return ret;
1019}
1020
1021/**
1022 * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both
1023 *                            NAND controller and the NAND chip support
1024 * @chip: the NAND chip
1025 * @iface: the interface configuration (can eventually be updated)
1026 *
1027 * If specific timings are provided, use them. Otherwise, retrieve supported
1028 * timing modes from ONFI information.
1029 */
1030static int nand_choose_best_timings(struct nand_chip *chip,
1031				    struct nand_interface_config *iface)
1032{
1033	int ret;
1034
1035	/* Try the fastest timings: NV-DDR */
1036	ret = nand_choose_best_nvddr_timings(chip, iface, NULL);
1037	if (!ret)
1038		return 0;
1039
1040	/* Fallback to SDR timings otherwise */
1041	return nand_choose_best_sdr_timings(chip, iface, NULL);
1042}
1043
1044/**
1045 * nand_choose_interface_config - find the best data interface and timings
1046 * @chip: The NAND chip
1047 *
1048 * Find the best data interface and NAND timings supported by the chip
1049 * and the driver. Eventually let the NAND manufacturer driver propose his own
1050 * set of timings.
1051 *
1052 * After this function nand_chip->interface_config is initialized with the best
1053 * timing mode available.
1054 *
1055 * Returns 0 for success or negative error code otherwise.
1056 */
1057static int nand_choose_interface_config(struct nand_chip *chip)
1058{
1059	struct nand_interface_config *iface;
1060	int ret;
1061
1062	if (!nand_controller_can_setup_interface(chip))
1063		return 0;
1064
1065	iface = kzalloc(sizeof(*iface), GFP_KERNEL);
1066	if (!iface)
1067		return -ENOMEM;
1068
1069	if (chip->ops.choose_interface_config)
1070		ret = chip->ops.choose_interface_config(chip, iface);
1071	else
1072		ret = nand_choose_best_timings(chip, iface);
1073
1074	if (ret)
1075		kfree(iface);
1076
1077	return ret;
1078}
1079
1080/**
1081 * nand_fill_column_cycles - fill the column cycles of an address
1082 * @chip: The NAND chip
1083 * @addrs: Array of address cycles to fill
1084 * @offset_in_page: The offset in the page
1085 *
1086 * Fills the first or the first two bytes of the @addrs field depending
1087 * on the NAND bus width and the page size.
1088 *
1089 * Returns the number of cycles needed to encode the column, or a negative
1090 * error code in case one of the arguments is invalid.
1091 */
1092static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
1093				   unsigned int offset_in_page)
1094{
1095	struct mtd_info *mtd = nand_to_mtd(chip);
1096
1097	/* Make sure the offset is less than the actual page size. */
1098	if (offset_in_page > mtd->writesize + mtd->oobsize)
1099		return -EINVAL;
1100
1101	/*
1102	 * On small page NANDs, there's a dedicated command to access the OOB
1103	 * area, and the column address is relative to the start of the OOB
1104	 * area, not the start of the page. Asjust the address accordingly.
1105	 */
1106	if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
1107		offset_in_page -= mtd->writesize;
1108
1109	/*
1110	 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
1111	 * wide, then it must be divided by 2.
1112	 */
1113	if (chip->options & NAND_BUSWIDTH_16) {
1114		if (WARN_ON(offset_in_page % 2))
1115			return -EINVAL;
1116
1117		offset_in_page /= 2;
1118	}
1119
1120	addrs[0] = offset_in_page;
1121
1122	/*
1123	 * Small page NANDs use 1 cycle for the columns, while large page NANDs
1124	 * need 2
1125	 */
1126	if (mtd->writesize <= 512)
1127		return 1;
1128
1129	addrs[1] = offset_in_page >> 8;
1130
1131	return 2;
1132}
1133
1134static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1135				     unsigned int offset_in_page, void *buf,
1136				     unsigned int len)
1137{
1138	const struct nand_interface_config *conf =
1139		nand_get_interface_config(chip);
1140	struct mtd_info *mtd = nand_to_mtd(chip);
1141	u8 addrs[4];
1142	struct nand_op_instr instrs[] = {
1143		NAND_OP_CMD(NAND_CMD_READ0, 0),
1144		NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1145		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1146				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1147		NAND_OP_DATA_IN(len, buf, 0),
1148	};
1149	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1150	int ret;
1151
1152	/* Drop the DATA_IN instruction if len is set to 0. */
1153	if (!len)
1154		op.ninstrs--;
1155
1156	if (offset_in_page >= mtd->writesize)
1157		instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1158	else if (offset_in_page >= 256 &&
1159		 !(chip->options & NAND_BUSWIDTH_16))
1160		instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1161
1162	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1163	if (ret < 0)
1164		return ret;
1165
1166	addrs[1] = page;
1167	addrs[2] = page >> 8;
1168
1169	if (chip->options & NAND_ROW_ADDR_3) {
1170		addrs[3] = page >> 16;
1171		instrs[1].ctx.addr.naddrs++;
1172	}
1173
1174	return nand_exec_op(chip, &op);
1175}
1176
1177static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
1178				     unsigned int offset_in_page, void *buf,
1179				     unsigned int len)
1180{
1181	const struct nand_interface_config *conf =
1182		nand_get_interface_config(chip);
1183	u8 addrs[5];
1184	struct nand_op_instr instrs[] = {
1185		NAND_OP_CMD(NAND_CMD_READ0, 0),
1186		NAND_OP_ADDR(4, addrs, 0),
1187		NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1188		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1189				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1190		NAND_OP_DATA_IN(len, buf, 0),
1191	};
1192	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1193	int ret;
1194
1195	/* Drop the DATA_IN instruction if len is set to 0. */
1196	if (!len)
1197		op.ninstrs--;
1198
1199	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1200	if (ret < 0)
1201		return ret;
1202
1203	addrs[2] = page;
1204	addrs[3] = page >> 8;
1205
1206	if (chip->options & NAND_ROW_ADDR_3) {
1207		addrs[4] = page >> 16;
1208		instrs[1].ctx.addr.naddrs++;
1209	}
1210
1211	return nand_exec_op(chip, &op);
1212}
1213
1214static unsigned int rawnand_last_page_of_lun(unsigned int pages_per_lun, unsigned int lun)
1215{
1216	/* lun is expected to be very small */
1217	return (lun * pages_per_lun) + pages_per_lun - 1;
1218}
1219
1220static void rawnand_cap_cont_reads(struct nand_chip *chip)
1221{
1222	struct nand_memory_organization *memorg;
1223	unsigned int ppl, first_lun, last_lun;
1224
1225	memorg = nanddev_get_memorg(&chip->base);
1226	ppl = memorg->pages_per_eraseblock * memorg->eraseblocks_per_lun;
1227	first_lun = chip->cont_read.first_page / ppl;
1228	last_lun = chip->cont_read.last_page / ppl;
1229
1230	/* Prevent sequential cache reads across LUN boundaries */
1231	if (first_lun != last_lun)
1232		chip->cont_read.pause_page = rawnand_last_page_of_lun(ppl, first_lun);
1233	else
1234		chip->cont_read.pause_page = chip->cont_read.last_page;
1235
1236	if (chip->cont_read.first_page == chip->cont_read.pause_page) {
1237		chip->cont_read.first_page++;
1238		chip->cont_read.pause_page = min(chip->cont_read.last_page,
1239						 rawnand_last_page_of_lun(ppl, first_lun + 1));
1240	}
1241
1242	if (chip->cont_read.first_page >= chip->cont_read.last_page)
1243		chip->cont_read.ongoing = false;
1244}
1245
1246static int nand_lp_exec_cont_read_page_op(struct nand_chip *chip, unsigned int page,
1247					  unsigned int offset_in_page, void *buf,
1248					  unsigned int len, bool check_only)
1249{
1250	const struct nand_interface_config *conf =
1251		nand_get_interface_config(chip);
1252	u8 addrs[5];
1253	struct nand_op_instr start_instrs[] = {
1254		NAND_OP_CMD(NAND_CMD_READ0, 0),
1255		NAND_OP_ADDR(4, addrs, 0),
1256		NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1257		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 0),
1258		NAND_OP_CMD(NAND_CMD_READCACHESEQ, NAND_COMMON_TIMING_NS(conf, tWB_max)),
1259		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1260				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1261		NAND_OP_DATA_IN(len, buf, 0),
1262	};
1263	struct nand_op_instr cont_instrs[] = {
1264		NAND_OP_CMD(page == chip->cont_read.pause_page ?
1265			    NAND_CMD_READCACHEEND : NAND_CMD_READCACHESEQ,
1266			    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1267		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1268				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1269		NAND_OP_DATA_IN(len, buf, 0),
1270	};
1271	struct nand_operation start_op = NAND_OPERATION(chip->cur_cs, start_instrs);
1272	struct nand_operation cont_op = NAND_OPERATION(chip->cur_cs, cont_instrs);
1273	int ret;
1274
1275	if (!len) {
1276		start_op.ninstrs--;
1277		cont_op.ninstrs--;
1278	}
1279
1280	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1281	if (ret < 0)
1282		return ret;
1283
1284	addrs[2] = page;
1285	addrs[3] = page >> 8;
1286
1287	if (chip->options & NAND_ROW_ADDR_3) {
1288		addrs[4] = page >> 16;
1289		start_instrs[1].ctx.addr.naddrs++;
1290	}
1291
1292	/* Check if cache reads are supported */
1293	if (check_only) {
1294		if (nand_check_op(chip, &start_op) || nand_check_op(chip, &cont_op))
1295			return -EOPNOTSUPP;
1296
1297		return 0;
1298	}
1299
1300	if (page == chip->cont_read.first_page)
1301		ret = nand_exec_op(chip, &start_op);
1302	else
1303		ret = nand_exec_op(chip, &cont_op);
1304	if (ret)
1305		return ret;
1306
1307	if (!chip->cont_read.ongoing)
1308		return 0;
1309
1310	if (page == chip->cont_read.last_page) {
1311		chip->cont_read.ongoing = false;
1312	} else if (page == chip->cont_read.pause_page) {
1313		chip->cont_read.first_page++;
1314		rawnand_cap_cont_reads(chip);
1315	}
1316
1317	return 0;
1318}
1319
1320static bool rawnand_cont_read_ongoing(struct nand_chip *chip, unsigned int page)
1321{
1322	return chip->cont_read.ongoing && page >= chip->cont_read.first_page;
1323}
1324
1325/**
1326 * nand_read_page_op - Do a READ PAGE operation
1327 * @chip: The NAND chip
1328 * @page: page to read
1329 * @offset_in_page: offset within the page
1330 * @buf: buffer used to store the data
1331 * @len: length of the buffer
1332 *
1333 * This function issues a READ PAGE operation.
1334 * This function does not select/unselect the CS line.
1335 *
1336 * Returns 0 on success, a negative error code otherwise.
1337 */
1338int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1339		      unsigned int offset_in_page, void *buf, unsigned int len)
1340{
1341	struct mtd_info *mtd = nand_to_mtd(chip);
1342
1343	if (len && !buf)
1344		return -EINVAL;
1345
1346	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1347		return -EINVAL;
1348
1349	if (nand_has_exec_op(chip)) {
1350		if (mtd->writesize > 512) {
1351			if (rawnand_cont_read_ongoing(chip, page))
1352				return nand_lp_exec_cont_read_page_op(chip, page,
1353								      offset_in_page,
1354								      buf, len, false);
1355			else
1356				return nand_lp_exec_read_page_op(chip, page,
1357								 offset_in_page, buf,
1358								 len);
1359		}
1360
1361		return nand_sp_exec_read_page_op(chip, page, offset_in_page,
1362						 buf, len);
1363	}
1364
1365	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
1366	if (len)
1367		chip->legacy.read_buf(chip, buf, len);
1368
1369	return 0;
1370}
1371EXPORT_SYMBOL_GPL(nand_read_page_op);
1372
1373/**
1374 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
1375 * @chip: The NAND chip
1376 * @page: parameter page to read
1377 * @buf: buffer used to store the data
1378 * @len: length of the buffer
1379 *
1380 * This function issues a READ PARAMETER PAGE operation.
1381 * This function does not select/unselect the CS line.
1382 *
1383 * Returns 0 on success, a negative error code otherwise.
1384 */
1385int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
1386			    unsigned int len)
1387{
1388	unsigned int i;
1389	u8 *p = buf;
1390
1391	if (len && !buf)
1392		return -EINVAL;
1393
1394	if (nand_has_exec_op(chip)) {
1395		const struct nand_interface_config *conf =
1396			nand_get_interface_config(chip);
1397		struct nand_op_instr instrs[] = {
1398			NAND_OP_CMD(NAND_CMD_PARAM, 0),
1399			NAND_OP_ADDR(1, &page,
1400				     NAND_COMMON_TIMING_NS(conf, tWB_max)),
1401			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
1402					 NAND_COMMON_TIMING_NS(conf, tRR_min)),
1403			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1404		};
1405		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1406
1407		/* Drop the DATA_IN instruction if len is set to 0. */
1408		if (!len)
1409			op.ninstrs--;
1410
1411		return nand_exec_op(chip, &op);
1412	}
1413
1414	chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
1415	for (i = 0; i < len; i++)
1416		p[i] = chip->legacy.read_byte(chip);
1417
1418	return 0;
1419}
1420
1421/**
1422 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
1423 * @chip: The NAND chip
1424 * @offset_in_page: offset within the page
1425 * @buf: buffer used to store the data
1426 * @len: length of the buffer
1427 * @force_8bit: force 8-bit bus access
1428 *
1429 * This function issues a CHANGE READ COLUMN operation.
1430 * This function does not select/unselect the CS line.
1431 *
1432 * Returns 0 on success, a negative error code otherwise.
1433 */
1434int nand_change_read_column_op(struct nand_chip *chip,
1435			       unsigned int offset_in_page, void *buf,
1436			       unsigned int len, bool force_8bit)
1437{
1438	struct mtd_info *mtd = nand_to_mtd(chip);
1439
1440	if (len && !buf)
1441		return -EINVAL;
1442
1443	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1444		return -EINVAL;
1445
1446	/* Small page NANDs do not support column change. */
1447	if (mtd->writesize <= 512)
1448		return -ENOTSUPP;
1449
1450	if (nand_has_exec_op(chip)) {
1451		const struct nand_interface_config *conf =
1452			nand_get_interface_config(chip);
1453		u8 addrs[2] = {};
1454		struct nand_op_instr instrs[] = {
1455			NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
1456			NAND_OP_ADDR(2, addrs, 0),
1457			NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
1458				    NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1459			NAND_OP_DATA_IN(len, buf, 0),
1460		};
1461		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1462		int ret;
1463
1464		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1465		if (ret < 0)
1466			return ret;
1467
1468		/* Drop the DATA_IN instruction if len is set to 0. */
1469		if (!len)
1470			op.ninstrs--;
1471
1472		instrs[3].ctx.data.force_8bit = force_8bit;
1473
1474		return nand_exec_op(chip, &op);
1475	}
1476
1477	chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
1478	if (len)
1479		chip->legacy.read_buf(chip, buf, len);
1480
1481	return 0;
1482}
1483EXPORT_SYMBOL_GPL(nand_change_read_column_op);
1484
1485/**
1486 * nand_read_oob_op - Do a READ OOB operation
1487 * @chip: The NAND chip
1488 * @page: page to read
1489 * @offset_in_oob: offset within the OOB area
1490 * @buf: buffer used to store the data
1491 * @len: length of the buffer
1492 *
1493 * This function issues a READ OOB operation.
1494 * This function does not select/unselect the CS line.
1495 *
1496 * Returns 0 on success, a negative error code otherwise.
1497 */
1498int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1499		     unsigned int offset_in_oob, void *buf, unsigned int len)
1500{
1501	struct mtd_info *mtd = nand_to_mtd(chip);
1502
1503	if (len && !buf)
1504		return -EINVAL;
1505
1506	if (offset_in_oob + len > mtd->oobsize)
1507		return -EINVAL;
1508
1509	if (nand_has_exec_op(chip))
1510		return nand_read_page_op(chip, page,
1511					 mtd->writesize + offset_in_oob,
1512					 buf, len);
1513
1514	chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
1515	if (len)
1516		chip->legacy.read_buf(chip, buf, len);
1517
1518	return 0;
1519}
1520EXPORT_SYMBOL_GPL(nand_read_oob_op);
1521
1522static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
1523				  unsigned int offset_in_page, const void *buf,
1524				  unsigned int len, bool prog)
1525{
1526	const struct nand_interface_config *conf =
1527		nand_get_interface_config(chip);
1528	struct mtd_info *mtd = nand_to_mtd(chip);
1529	u8 addrs[5] = {};
1530	struct nand_op_instr instrs[] = {
1531		/*
1532		 * The first instruction will be dropped if we're dealing
1533		 * with a large page NAND and adjusted if we're dealing
1534		 * with a small page NAND and the page offset is > 255.
1535		 */
1536		NAND_OP_CMD(NAND_CMD_READ0, 0),
1537		NAND_OP_CMD(NAND_CMD_SEQIN, 0),
1538		NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)),
1539		NAND_OP_DATA_OUT(len, buf, 0),
1540		NAND_OP_CMD(NAND_CMD_PAGEPROG,
1541			    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1542		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0),
1543	};
1544	struct nand_operation op = NAND_DESTRUCTIVE_OPERATION(chip->cur_cs,
1545							      instrs);
1546	int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
1547
1548	if (naddrs < 0)
1549		return naddrs;
1550
1551	addrs[naddrs++] = page;
1552	addrs[naddrs++] = page >> 8;
1553	if (chip->options & NAND_ROW_ADDR_3)
1554		addrs[naddrs++] = page >> 16;
1555
1556	instrs[2].ctx.addr.naddrs = naddrs;
1557
1558	/* Drop the last two instructions if we're not programming the page. */
1559	if (!prog) {
1560		op.ninstrs -= 2;
1561		/* Also drop the DATA_OUT instruction if empty. */
1562		if (!len)
1563			op.ninstrs--;
1564	}
1565
1566	if (mtd->writesize <= 512) {
1567		/*
1568		 * Small pages need some more tweaking: we have to adjust the
1569		 * first instruction depending on the page offset we're trying
1570		 * to access.
1571		 */
1572		if (offset_in_page >= mtd->writesize)
1573			instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
1574		else if (offset_in_page >= 256 &&
1575			 !(chip->options & NAND_BUSWIDTH_16))
1576			instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
1577	} else {
1578		/*
1579		 * Drop the first command if we're dealing with a large page
1580		 * NAND.
1581		 */
1582		op.instrs++;
1583		op.ninstrs--;
1584	}
1585
1586	return nand_exec_op(chip, &op);
1587}
1588
1589/**
1590 * nand_prog_page_begin_op - starts a PROG PAGE operation
1591 * @chip: The NAND chip
1592 * @page: page to write
1593 * @offset_in_page: offset within the page
1594 * @buf: buffer containing the data to write to the page
1595 * @len: length of the buffer
1596 *
1597 * This function issues the first half of a PROG PAGE operation.
1598 * This function does not select/unselect the CS line.
1599 *
1600 * Returns 0 on success, a negative error code otherwise.
1601 */
1602int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1603			    unsigned int offset_in_page, const void *buf,
1604			    unsigned int len)
1605{
1606	struct mtd_info *mtd = nand_to_mtd(chip);
1607
1608	if (len && !buf)
1609		return -EINVAL;
1610
1611	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1612		return -EINVAL;
1613
1614	if (nand_has_exec_op(chip))
1615		return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1616					      len, false);
1617
1618	chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
1619
1620	if (buf)
1621		chip->legacy.write_buf(chip, buf, len);
1622
1623	return 0;
1624}
1625EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
1626
1627/**
1628 * nand_prog_page_end_op - ends a PROG PAGE operation
1629 * @chip: The NAND chip
1630 *
1631 * This function issues the second half of a PROG PAGE operation.
1632 * This function does not select/unselect the CS line.
1633 *
1634 * Returns 0 on success, a negative error code otherwise.
1635 */
1636int nand_prog_page_end_op(struct nand_chip *chip)
1637{
1638	int ret;
1639	u8 status;
1640
1641	if (nand_has_exec_op(chip)) {
1642		const struct nand_interface_config *conf =
1643			nand_get_interface_config(chip);
1644		struct nand_op_instr instrs[] = {
1645			NAND_OP_CMD(NAND_CMD_PAGEPROG,
1646				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1647			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max),
1648					 0),
1649		};
1650		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1651
1652		ret = nand_exec_op(chip, &op);
1653		if (ret)
1654			return ret;
1655
1656		ret = nand_status_op(chip, &status);
1657		if (ret)
1658			return ret;
1659	} else {
1660		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1661		ret = chip->legacy.waitfunc(chip);
1662		if (ret < 0)
1663			return ret;
1664
1665		status = ret;
1666	}
1667
1668	if (status & NAND_STATUS_FAIL)
1669		return -EIO;
1670
1671	return 0;
1672}
1673EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
1674
1675/**
1676 * nand_prog_page_op - Do a full PROG PAGE operation
1677 * @chip: The NAND chip
1678 * @page: page to write
1679 * @offset_in_page: offset within the page
1680 * @buf: buffer containing the data to write to the page
1681 * @len: length of the buffer
1682 *
1683 * This function issues a full PROG PAGE operation.
1684 * This function does not select/unselect the CS line.
1685 *
1686 * Returns 0 on success, a negative error code otherwise.
1687 */
1688int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1689		      unsigned int offset_in_page, const void *buf,
1690		      unsigned int len)
1691{
1692	struct mtd_info *mtd = nand_to_mtd(chip);
1693	u8 status;
1694	int ret;
1695
1696	if (!len || !buf)
1697		return -EINVAL;
1698
1699	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1700		return -EINVAL;
1701
1702	if (nand_has_exec_op(chip)) {
1703		ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
1704						len, true);
1705		if (ret)
1706			return ret;
1707
1708		ret = nand_status_op(chip, &status);
1709		if (ret)
1710			return ret;
1711	} else {
1712		chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
1713				     page);
1714		chip->legacy.write_buf(chip, buf, len);
1715		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
1716		ret = chip->legacy.waitfunc(chip);
1717		if (ret < 0)
1718			return ret;
1719
1720		status = ret;
1721	}
1722
1723	if (status & NAND_STATUS_FAIL)
1724		return -EIO;
1725
1726	return 0;
1727}
1728EXPORT_SYMBOL_GPL(nand_prog_page_op);
1729
1730/**
1731 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
1732 * @chip: The NAND chip
1733 * @offset_in_page: offset within the page
1734 * @buf: buffer containing the data to send to the NAND
1735 * @len: length of the buffer
1736 * @force_8bit: force 8-bit bus access
1737 *
1738 * This function issues a CHANGE WRITE COLUMN operation.
1739 * This function does not select/unselect the CS line.
1740 *
1741 * Returns 0 on success, a negative error code otherwise.
1742 */
1743int nand_change_write_column_op(struct nand_chip *chip,
1744				unsigned int offset_in_page,
1745				const void *buf, unsigned int len,
1746				bool force_8bit)
1747{
1748	struct mtd_info *mtd = nand_to_mtd(chip);
1749
1750	if (len && !buf)
1751		return -EINVAL;
1752
1753	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
1754		return -EINVAL;
1755
1756	/* Small page NANDs do not support column change. */
1757	if (mtd->writesize <= 512)
1758		return -ENOTSUPP;
1759
1760	if (nand_has_exec_op(chip)) {
1761		const struct nand_interface_config *conf =
1762			nand_get_interface_config(chip);
1763		u8 addrs[2];
1764		struct nand_op_instr instrs[] = {
1765			NAND_OP_CMD(NAND_CMD_RNDIN, 0),
1766			NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)),
1767			NAND_OP_DATA_OUT(len, buf, 0),
1768		};
1769		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1770		int ret;
1771
1772		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
1773		if (ret < 0)
1774			return ret;
1775
1776		instrs[2].ctx.data.force_8bit = force_8bit;
1777
1778		/* Drop the DATA_OUT instruction if len is set to 0. */
1779		if (!len)
1780			op.ninstrs--;
1781
1782		return nand_exec_op(chip, &op);
1783	}
1784
1785	chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
1786	if (len)
1787		chip->legacy.write_buf(chip, buf, len);
1788
1789	return 0;
1790}
1791EXPORT_SYMBOL_GPL(nand_change_write_column_op);
1792
1793/**
1794 * nand_readid_op - Do a READID operation
1795 * @chip: The NAND chip
1796 * @addr: address cycle to pass after the READID command
1797 * @buf: buffer used to store the ID
1798 * @len: length of the buffer
1799 *
1800 * This function sends a READID command and reads back the ID returned by the
1801 * NAND.
1802 * This function does not select/unselect the CS line.
1803 *
1804 * Returns 0 on success, a negative error code otherwise.
1805 */
1806int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1807		   unsigned int len)
1808{
1809	unsigned int i;
1810	u8 *id = buf, *ddrbuf = NULL;
1811
1812	if (len && !buf)
1813		return -EINVAL;
1814
1815	if (nand_has_exec_op(chip)) {
1816		const struct nand_interface_config *conf =
1817			nand_get_interface_config(chip);
1818		struct nand_op_instr instrs[] = {
1819			NAND_OP_CMD(NAND_CMD_READID, 0),
1820			NAND_OP_ADDR(1, &addr,
1821				     NAND_COMMON_TIMING_NS(conf, tADL_min)),
1822			NAND_OP_8BIT_DATA_IN(len, buf, 0),
1823		};
1824		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1825		int ret;
1826
1827		/* READ_ID data bytes are received twice in NV-DDR mode */
1828		if (len && nand_interface_is_nvddr(conf)) {
1829			ddrbuf = kzalloc(len * 2, GFP_KERNEL);
1830			if (!ddrbuf)
1831				return -ENOMEM;
1832
1833			instrs[2].ctx.data.len *= 2;
1834			instrs[2].ctx.data.buf.in = ddrbuf;
1835		}
1836
1837		/* Drop the DATA_IN instruction if len is set to 0. */
1838		if (!len)
1839			op.ninstrs--;
1840
1841		ret = nand_exec_op(chip, &op);
1842		if (!ret && len && nand_interface_is_nvddr(conf)) {
1843			for (i = 0; i < len; i++)
1844				id[i] = ddrbuf[i * 2];
1845		}
1846
1847		kfree(ddrbuf);
1848
1849		return ret;
1850	}
1851
1852	chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
1853
1854	for (i = 0; i < len; i++)
1855		id[i] = chip->legacy.read_byte(chip);
1856
1857	return 0;
1858}
1859EXPORT_SYMBOL_GPL(nand_readid_op);
1860
1861/**
1862 * nand_status_op - Do a STATUS operation
1863 * @chip: The NAND chip
1864 * @status: out variable to store the NAND status
1865 *
1866 * This function sends a STATUS command and reads back the status returned by
1867 * the NAND.
1868 * This function does not select/unselect the CS line.
1869 *
1870 * Returns 0 on success, a negative error code otherwise.
1871 */
1872int nand_status_op(struct nand_chip *chip, u8 *status)
1873{
1874	if (nand_has_exec_op(chip)) {
1875		const struct nand_interface_config *conf =
1876			nand_get_interface_config(chip);
1877		u8 ddrstatus[2];
1878		struct nand_op_instr instrs[] = {
1879			NAND_OP_CMD(NAND_CMD_STATUS,
1880				    NAND_COMMON_TIMING_NS(conf, tADL_min)),
1881			NAND_OP_8BIT_DATA_IN(1, status, 0),
1882		};
1883		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1884		int ret;
1885
1886		/* The status data byte will be received twice in NV-DDR mode */
1887		if (status && nand_interface_is_nvddr(conf)) {
1888			instrs[1].ctx.data.len *= 2;
1889			instrs[1].ctx.data.buf.in = ddrstatus;
1890		}
1891
1892		if (!status)
1893			op.ninstrs--;
1894
1895		ret = nand_exec_op(chip, &op);
1896		if (!ret && status && nand_interface_is_nvddr(conf))
1897			*status = ddrstatus[0];
1898
1899		return ret;
1900	}
1901
1902	chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
1903	if (status)
1904		*status = chip->legacy.read_byte(chip);
1905
1906	return 0;
1907}
1908EXPORT_SYMBOL_GPL(nand_status_op);
1909
1910/**
1911 * nand_exit_status_op - Exit a STATUS operation
1912 * @chip: The NAND chip
1913 *
1914 * This function sends a READ0 command to cancel the effect of the STATUS
1915 * command to avoid reading only the status until a new read command is sent.
1916 *
1917 * This function does not select/unselect the CS line.
1918 *
1919 * Returns 0 on success, a negative error code otherwise.
1920 */
1921int nand_exit_status_op(struct nand_chip *chip)
1922{
1923	if (nand_has_exec_op(chip)) {
1924		struct nand_op_instr instrs[] = {
1925			NAND_OP_CMD(NAND_CMD_READ0, 0),
1926		};
1927		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
1928
1929		return nand_exec_op(chip, &op);
1930	}
1931
1932	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
1933
1934	return 0;
1935}
1936EXPORT_SYMBOL_GPL(nand_exit_status_op);
1937
1938/**
1939 * nand_erase_op - Do an erase operation
1940 * @chip: The NAND chip
1941 * @eraseblock: block to erase
1942 *
1943 * This function sends an ERASE command and waits for the NAND to be ready
1944 * before returning.
1945 * This function does not select/unselect the CS line.
1946 *
1947 * Returns 0 on success, a negative error code otherwise.
1948 */
1949int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
1950{
1951	unsigned int page = eraseblock <<
1952			    (chip->phys_erase_shift - chip->page_shift);
1953	int ret;
1954	u8 status;
1955
1956	if (nand_has_exec_op(chip)) {
1957		const struct nand_interface_config *conf =
1958			nand_get_interface_config(chip);
1959		u8 addrs[3] = {	page, page >> 8, page >> 16 };
1960		struct nand_op_instr instrs[] = {
1961			NAND_OP_CMD(NAND_CMD_ERASE1, 0),
1962			NAND_OP_ADDR(2, addrs, 0),
1963			NAND_OP_CMD(NAND_CMD_ERASE2,
1964				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
1965			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max),
1966					 0),
1967		};
1968		struct nand_operation op = NAND_DESTRUCTIVE_OPERATION(chip->cur_cs,
1969								      instrs);
1970
1971		if (chip->options & NAND_ROW_ADDR_3)
1972			instrs[1].ctx.addr.naddrs++;
1973
1974		ret = nand_exec_op(chip, &op);
1975		if (ret)
1976			return ret;
1977
1978		ret = nand_status_op(chip, &status);
1979		if (ret)
1980			return ret;
1981	} else {
1982		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
1983		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
1984
1985		ret = chip->legacy.waitfunc(chip);
1986		if (ret < 0)
1987			return ret;
1988
1989		status = ret;
1990	}
1991
1992	if (status & NAND_STATUS_FAIL)
1993		return -EIO;
1994
1995	return 0;
1996}
1997EXPORT_SYMBOL_GPL(nand_erase_op);
1998
1999/**
2000 * nand_set_features_op - Do a SET FEATURES operation
2001 * @chip: The NAND chip
2002 * @feature: feature id
2003 * @data: 4 bytes of data
2004 *
2005 * This function sends a SET FEATURES command and waits for the NAND to be
2006 * ready before returning.
2007 * This function does not select/unselect the CS line.
2008 *
2009 * Returns 0 on success, a negative error code otherwise.
2010 */
2011static int nand_set_features_op(struct nand_chip *chip, u8 feature,
2012				const void *data)
2013{
2014	const u8 *params = data;
2015	int i, ret;
2016
2017	if (nand_has_exec_op(chip)) {
2018		const struct nand_interface_config *conf =
2019			nand_get_interface_config(chip);
2020		struct nand_op_instr instrs[] = {
2021			NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
2022			NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf,
2023									tADL_min)),
2024			NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
2025					      NAND_COMMON_TIMING_NS(conf,
2026								    tWB_max)),
2027			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2028					 0),
2029		};
2030		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2031
2032		return nand_exec_op(chip, &op);
2033	}
2034
2035	chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
2036	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2037		chip->legacy.write_byte(chip, params[i]);
2038
2039	ret = chip->legacy.waitfunc(chip);
2040	if (ret < 0)
2041		return ret;
2042
2043	if (ret & NAND_STATUS_FAIL)
2044		return -EIO;
2045
2046	return 0;
2047}
2048
2049/**
2050 * nand_get_features_op - Do a GET FEATURES operation
2051 * @chip: The NAND chip
2052 * @feature: feature id
2053 * @data: 4 bytes of data
2054 *
2055 * This function sends a GET FEATURES command and waits for the NAND to be
2056 * ready before returning.
2057 * This function does not select/unselect the CS line.
2058 *
2059 * Returns 0 on success, a negative error code otherwise.
2060 */
2061static int nand_get_features_op(struct nand_chip *chip, u8 feature,
2062				void *data)
2063{
2064	u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2];
2065	int i;
2066
2067	if (nand_has_exec_op(chip)) {
2068		const struct nand_interface_config *conf =
2069			nand_get_interface_config(chip);
2070		struct nand_op_instr instrs[] = {
2071			NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
2072			NAND_OP_ADDR(1, &feature,
2073				     NAND_COMMON_TIMING_NS(conf, tWB_max)),
2074			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
2075					 NAND_COMMON_TIMING_NS(conf, tRR_min)),
2076			NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
2077					     data, 0),
2078		};
2079		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2080		int ret;
2081
2082		/* GET_FEATURE data bytes are received twice in NV-DDR mode */
2083		if (nand_interface_is_nvddr(conf)) {
2084			instrs[3].ctx.data.len *= 2;
2085			instrs[3].ctx.data.buf.in = ddrbuf;
2086		}
2087
2088		ret = nand_exec_op(chip, &op);
2089		if (nand_interface_is_nvddr(conf)) {
2090			for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++)
2091				params[i] = ddrbuf[i * 2];
2092		}
2093
2094		return ret;
2095	}
2096
2097	chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
2098	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2099		params[i] = chip->legacy.read_byte(chip);
2100
2101	return 0;
2102}
2103
2104static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
2105			    unsigned int delay_ns)
2106{
2107	if (nand_has_exec_op(chip)) {
2108		struct nand_op_instr instrs[] = {
2109			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
2110					 PSEC_TO_NSEC(delay_ns)),
2111		};
2112		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2113
2114		return nand_exec_op(chip, &op);
2115	}
2116
2117	/* Apply delay or wait for ready/busy pin */
2118	if (!chip->legacy.dev_ready)
2119		udelay(chip->legacy.chip_delay);
2120	else
2121		nand_wait_ready(chip);
2122
2123	return 0;
2124}
2125
2126/**
2127 * nand_reset_op - Do a reset operation
2128 * @chip: The NAND chip
2129 *
2130 * This function sends a RESET command and waits for the NAND to be ready
2131 * before returning.
2132 * This function does not select/unselect the CS line.
2133 *
2134 * Returns 0 on success, a negative error code otherwise.
2135 */
2136int nand_reset_op(struct nand_chip *chip)
2137{
2138	if (nand_has_exec_op(chip)) {
2139		const struct nand_interface_config *conf =
2140			nand_get_interface_config(chip);
2141		struct nand_op_instr instrs[] = {
2142			NAND_OP_CMD(NAND_CMD_RESET,
2143				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
2144			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max),
2145					 0),
2146		};
2147		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2148
2149		return nand_exec_op(chip, &op);
2150	}
2151
2152	chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
2153
2154	return 0;
2155}
2156EXPORT_SYMBOL_GPL(nand_reset_op);
2157
2158/**
2159 * nand_read_data_op - Read data from the NAND
2160 * @chip: The NAND chip
2161 * @buf: buffer used to store the data
2162 * @len: length of the buffer
2163 * @force_8bit: force 8-bit bus access
2164 * @check_only: do not actually run the command, only checks if the
2165 *              controller driver supports it
2166 *
2167 * This function does a raw data read on the bus. Usually used after launching
2168 * another NAND operation like nand_read_page_op().
2169 * This function does not select/unselect the CS line.
2170 *
2171 * Returns 0 on success, a negative error code otherwise.
2172 */
2173int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
2174		      bool force_8bit, bool check_only)
2175{
2176	if (!len || !buf)
2177		return -EINVAL;
2178
2179	if (nand_has_exec_op(chip)) {
2180		const struct nand_interface_config *conf =
2181			nand_get_interface_config(chip);
2182		struct nand_op_instr instrs[] = {
2183			NAND_OP_DATA_IN(len, buf, 0),
2184		};
2185		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2186		u8 *ddrbuf = NULL;
2187		int ret, i;
2188
2189		instrs[0].ctx.data.force_8bit = force_8bit;
2190
2191		/*
2192		 * Parameter payloads (ID, status, features, etc) do not go
2193		 * through the same pipeline as regular data, hence the
2194		 * force_8bit flag must be set and this also indicates that in
2195		 * case NV-DDR timings are being used the data will be received
2196		 * twice.
2197		 */
2198		if (force_8bit && nand_interface_is_nvddr(conf)) {
2199			ddrbuf = kzalloc(len * 2, GFP_KERNEL);
2200			if (!ddrbuf)
2201				return -ENOMEM;
2202
2203			instrs[0].ctx.data.len *= 2;
2204			instrs[0].ctx.data.buf.in = ddrbuf;
2205		}
2206
2207		if (check_only) {
2208			ret = nand_check_op(chip, &op);
2209			kfree(ddrbuf);
2210			return ret;
2211		}
2212
2213		ret = nand_exec_op(chip, &op);
2214		if (!ret && force_8bit && nand_interface_is_nvddr(conf)) {
2215			u8 *dst = buf;
2216
2217			for (i = 0; i < len; i++)
2218				dst[i] = ddrbuf[i * 2];
2219		}
2220
2221		kfree(ddrbuf);
2222
2223		return ret;
2224	}
2225
2226	if (check_only)
2227		return 0;
2228
2229	if (force_8bit) {
2230		u8 *p = buf;
2231		unsigned int i;
2232
2233		for (i = 0; i < len; i++)
2234			p[i] = chip->legacy.read_byte(chip);
2235	} else {
2236		chip->legacy.read_buf(chip, buf, len);
2237	}
2238
2239	return 0;
2240}
2241EXPORT_SYMBOL_GPL(nand_read_data_op);
2242
2243/**
2244 * nand_write_data_op - Write data from the NAND
2245 * @chip: The NAND chip
2246 * @buf: buffer containing the data to send on the bus
2247 * @len: length of the buffer
2248 * @force_8bit: force 8-bit bus access
2249 *
2250 * This function does a raw data write on the bus. Usually used after launching
2251 * another NAND operation like nand_write_page_begin_op().
2252 * This function does not select/unselect the CS line.
2253 *
2254 * Returns 0 on success, a negative error code otherwise.
2255 */
2256int nand_write_data_op(struct nand_chip *chip, const void *buf,
2257		       unsigned int len, bool force_8bit)
2258{
2259	if (!len || !buf)
2260		return -EINVAL;
2261
2262	if (nand_has_exec_op(chip)) {
2263		struct nand_op_instr instrs[] = {
2264			NAND_OP_DATA_OUT(len, buf, 0),
2265		};
2266		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
2267
2268		instrs[0].ctx.data.force_8bit = force_8bit;
2269
2270		return nand_exec_op(chip, &op);
2271	}
2272
2273	if (force_8bit) {
2274		const u8 *p = buf;
2275		unsigned int i;
2276
2277		for (i = 0; i < len; i++)
2278			chip->legacy.write_byte(chip, p[i]);
2279	} else {
2280		chip->legacy.write_buf(chip, buf, len);
2281	}
2282
2283	return 0;
2284}
2285EXPORT_SYMBOL_GPL(nand_write_data_op);
2286
2287/**
2288 * struct nand_op_parser_ctx - Context used by the parser
2289 * @instrs: array of all the instructions that must be addressed
2290 * @ninstrs: length of the @instrs array
2291 * @subop: Sub-operation to be passed to the NAND controller
2292 *
2293 * This structure is used by the core to split NAND operations into
2294 * sub-operations that can be handled by the NAND controller.
2295 */
2296struct nand_op_parser_ctx {
2297	const struct nand_op_instr *instrs;
2298	unsigned int ninstrs;
2299	struct nand_subop subop;
2300};
2301
2302/**
2303 * nand_op_parser_must_split_instr - Checks if an instruction must be split
2304 * @pat: the parser pattern element that matches @instr
2305 * @instr: pointer to the instruction to check
2306 * @start_offset: this is an in/out parameter. If @instr has already been
2307 *		  split, then @start_offset is the offset from which to start
2308 *		  (either an address cycle or an offset in the data buffer).
2309 *		  Conversely, if the function returns true (ie. instr must be
2310 *		  split), this parameter is updated to point to the first
2311 *		  data/address cycle that has not been taken care of.
2312 *
2313 * Some NAND controllers are limited and cannot send X address cycles with a
2314 * unique operation, or cannot read/write more than Y bytes at the same time.
2315 * In this case, split the instruction that does not fit in a single
2316 * controller-operation into two or more chunks.
2317 *
2318 * Returns true if the instruction must be split, false otherwise.
2319 * The @start_offset parameter is also updated to the offset at which the next
2320 * bundle of instruction must start (if an address or a data instruction).
2321 */
2322static bool
2323nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
2324				const struct nand_op_instr *instr,
2325				unsigned int *start_offset)
2326{
2327	switch (pat->type) {
2328	case NAND_OP_ADDR_INSTR:
2329		if (!pat->ctx.addr.maxcycles)
2330			break;
2331
2332		if (instr->ctx.addr.naddrs - *start_offset >
2333		    pat->ctx.addr.maxcycles) {
2334			*start_offset += pat->ctx.addr.maxcycles;
2335			return true;
2336		}
2337		break;
2338
2339	case NAND_OP_DATA_IN_INSTR:
2340	case NAND_OP_DATA_OUT_INSTR:
2341		if (!pat->ctx.data.maxlen)
2342			break;
2343
2344		if (instr->ctx.data.len - *start_offset >
2345		    pat->ctx.data.maxlen) {
2346			*start_offset += pat->ctx.data.maxlen;
2347			return true;
2348		}
2349		break;
2350
2351	default:
2352		break;
2353	}
2354
2355	return false;
2356}
2357
2358/**
2359 * nand_op_parser_match_pat - Checks if a pattern matches the instructions
2360 *			      remaining in the parser context
2361 * @pat: the pattern to test
2362 * @ctx: the parser context structure to match with the pattern @pat
2363 *
2364 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
2365 * Returns true if this is the case, false ortherwise. When true is returned,
2366 * @ctx->subop is updated with the set of instructions to be passed to the
2367 * controller driver.
2368 */
2369static bool
2370nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
2371			 struct nand_op_parser_ctx *ctx)
2372{
2373	unsigned int instr_offset = ctx->subop.first_instr_start_off;
2374	const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
2375	const struct nand_op_instr *instr = ctx->subop.instrs;
2376	unsigned int i, ninstrs;
2377
2378	for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
2379		/*
2380		 * The pattern instruction does not match the operation
2381		 * instruction. If the instruction is marked optional in the
2382		 * pattern definition, we skip the pattern element and continue
2383		 * to the next one. If the element is mandatory, there's no
2384		 * match and we can return false directly.
2385		 */
2386		if (instr->type != pat->elems[i].type) {
2387			if (!pat->elems[i].optional)
2388				return false;
2389
2390			continue;
2391		}
2392
2393		/*
2394		 * Now check the pattern element constraints. If the pattern is
2395		 * not able to handle the whole instruction in a single step,
2396		 * we have to split it.
2397		 * The last_instr_end_off value comes back updated to point to
2398		 * the position where we have to split the instruction (the
2399		 * start of the next subop chunk).
2400		 */
2401		if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
2402						    &instr_offset)) {
2403			ninstrs++;
2404			i++;
2405			break;
2406		}
2407
2408		instr++;
2409		ninstrs++;
2410		instr_offset = 0;
2411	}
2412
2413	/*
2414	 * This can happen if all instructions of a pattern are optional.
2415	 * Still, if there's not at least one instruction handled by this
2416	 * pattern, this is not a match, and we should try the next one (if
2417	 * any).
2418	 */
2419	if (!ninstrs)
2420		return false;
2421
2422	/*
2423	 * We had a match on the pattern head, but the pattern may be longer
2424	 * than the instructions we're asked to execute. We need to make sure
2425	 * there's no mandatory elements in the pattern tail.
2426	 */
2427	for (; i < pat->nelems; i++) {
2428		if (!pat->elems[i].optional)
2429			return false;
2430	}
2431
2432	/*
2433	 * We have a match: update the subop structure accordingly and return
2434	 * true.
2435	 */
2436	ctx->subop.ninstrs = ninstrs;
2437	ctx->subop.last_instr_end_off = instr_offset;
2438
2439	return true;
2440}
2441
2442#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
2443static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2444{
2445	const struct nand_op_instr *instr;
2446	char *prefix = "      ";
2447	unsigned int i;
2448
2449	pr_debug("executing subop (CS%d):\n", ctx->subop.cs);
2450
2451	for (i = 0; i < ctx->ninstrs; i++) {
2452		instr = &ctx->instrs[i];
2453
2454		if (instr == &ctx->subop.instrs[0])
2455			prefix = "    ->";
2456
2457		nand_op_trace(prefix, instr);
2458
2459		if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
2460			prefix = "      ";
2461	}
2462}
2463#else
2464static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
2465{
2466	/* NOP */
2467}
2468#endif
2469
2470static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
2471				  const struct nand_op_parser_ctx *b)
2472{
2473	if (a->subop.ninstrs < b->subop.ninstrs)
2474		return -1;
2475	else if (a->subop.ninstrs > b->subop.ninstrs)
2476		return 1;
2477
2478	if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
2479		return -1;
2480	else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
2481		return 1;
2482
2483	return 0;
2484}
2485
2486/**
2487 * nand_op_parser_exec_op - exec_op parser
2488 * @chip: the NAND chip
2489 * @parser: patterns description provided by the controller driver
2490 * @op: the NAND operation to address
2491 * @check_only: when true, the function only checks if @op can be handled but
2492 *		does not execute the operation
2493 *
2494 * Helper function designed to ease integration of NAND controller drivers that
2495 * only support a limited set of instruction sequences. The supported sequences
2496 * are described in @parser, and the framework takes care of splitting @op into
2497 * multiple sub-operations (if required) and pass them back to the ->exec()
2498 * callback of the matching pattern if @check_only is set to false.
2499 *
2500 * NAND controller drivers should call this function from their own ->exec_op()
2501 * implementation.
2502 *
2503 * Returns 0 on success, a negative error code otherwise. A failure can be
2504 * caused by an unsupported operation (none of the supported patterns is able
2505 * to handle the requested operation), or an error returned by one of the
2506 * matching pattern->exec() hook.
2507 */
2508int nand_op_parser_exec_op(struct nand_chip *chip,
2509			   const struct nand_op_parser *parser,
2510			   const struct nand_operation *op, bool check_only)
2511{
2512	struct nand_op_parser_ctx ctx = {
2513		.subop.cs = op->cs,
2514		.subop.instrs = op->instrs,
2515		.instrs = op->instrs,
2516		.ninstrs = op->ninstrs,
2517	};
2518	unsigned int i;
2519
2520	while (ctx.subop.instrs < op->instrs + op->ninstrs) {
2521		const struct nand_op_parser_pattern *pattern;
2522		struct nand_op_parser_ctx best_ctx;
2523		int ret, best_pattern = -1;
2524
2525		for (i = 0; i < parser->npatterns; i++) {
2526			struct nand_op_parser_ctx test_ctx = ctx;
2527
2528			pattern = &parser->patterns[i];
2529			if (!nand_op_parser_match_pat(pattern, &test_ctx))
2530				continue;
2531
2532			if (best_pattern >= 0 &&
2533			    nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
2534				continue;
2535
2536			best_pattern = i;
2537			best_ctx = test_ctx;
2538		}
2539
2540		if (best_pattern < 0) {
2541			pr_debug("->exec_op() parser: pattern not found!\n");
2542			return -ENOTSUPP;
2543		}
2544
2545		ctx = best_ctx;
2546		nand_op_parser_trace(&ctx);
2547
2548		if (!check_only) {
2549			pattern = &parser->patterns[best_pattern];
2550			ret = pattern->exec(chip, &ctx.subop);
2551			if (ret)
2552				return ret;
2553		}
2554
2555		/*
2556		 * Update the context structure by pointing to the start of the
2557		 * next subop.
2558		 */
2559		ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
2560		if (ctx.subop.last_instr_end_off)
2561			ctx.subop.instrs -= 1;
2562
2563		ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
2564	}
2565
2566	return 0;
2567}
2568EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
2569
2570static bool nand_instr_is_data(const struct nand_op_instr *instr)
2571{
2572	return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
2573			 instr->type == NAND_OP_DATA_OUT_INSTR);
2574}
2575
2576static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
2577				      unsigned int instr_idx)
2578{
2579	return subop && instr_idx < subop->ninstrs;
2580}
2581
2582static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
2583					     unsigned int instr_idx)
2584{
2585	if (instr_idx)
2586		return 0;
2587
2588	return subop->first_instr_start_off;
2589}
2590
2591/**
2592 * nand_subop_get_addr_start_off - Get the start offset in an address array
2593 * @subop: The entire sub-operation
2594 * @instr_idx: Index of the instruction inside the sub-operation
2595 *
2596 * During driver development, one could be tempted to directly use the
2597 * ->addr.addrs field of address instructions. This is wrong as address
2598 * instructions might be split.
2599 *
2600 * Given an address instruction, returns the offset of the first cycle to issue.
2601 */
2602unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
2603					   unsigned int instr_idx)
2604{
2605	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2606		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2607		return 0;
2608
2609	return nand_subop_get_start_off(subop, instr_idx);
2610}
2611EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
2612
2613/**
2614 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
2615 * @subop: The entire sub-operation
2616 * @instr_idx: Index of the instruction inside the sub-operation
2617 *
2618 * During driver development, one could be tempted to directly use the
2619 * ->addr->naddrs field of a data instruction. This is wrong as instructions
2620 * might be split.
2621 *
2622 * Given an address instruction, returns the number of address cycle to issue.
2623 */
2624unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
2625					 unsigned int instr_idx)
2626{
2627	int start_off, end_off;
2628
2629	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2630		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
2631		return 0;
2632
2633	start_off = nand_subop_get_addr_start_off(subop, instr_idx);
2634
2635	if (instr_idx == subop->ninstrs - 1 &&
2636	    subop->last_instr_end_off)
2637		end_off = subop->last_instr_end_off;
2638	else
2639		end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
2640
2641	return end_off - start_off;
2642}
2643EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
2644
2645/**
2646 * nand_subop_get_data_start_off - Get the start offset in a data array
2647 * @subop: The entire sub-operation
2648 * @instr_idx: Index of the instruction inside the sub-operation
2649 *
2650 * During driver development, one could be tempted to directly use the
2651 * ->data->buf.{in,out} field of data instructions. This is wrong as data
2652 * instructions might be split.
2653 *
2654 * Given a data instruction, returns the offset to start from.
2655 */
2656unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
2657					   unsigned int instr_idx)
2658{
2659	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2660		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2661		return 0;
2662
2663	return nand_subop_get_start_off(subop, instr_idx);
2664}
2665EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
2666
2667/**
2668 * nand_subop_get_data_len - Get the number of bytes to retrieve
2669 * @subop: The entire sub-operation
2670 * @instr_idx: Index of the instruction inside the sub-operation
2671 *
2672 * During driver development, one could be tempted to directly use the
2673 * ->data->len field of a data instruction. This is wrong as data instructions
2674 * might be split.
2675 *
2676 * Returns the length of the chunk of data to send/receive.
2677 */
2678unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
2679				     unsigned int instr_idx)
2680{
2681	int start_off = 0, end_off;
2682
2683	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
2684		    !nand_instr_is_data(&subop->instrs[instr_idx])))
2685		return 0;
2686
2687	start_off = nand_subop_get_data_start_off(subop, instr_idx);
2688
2689	if (instr_idx == subop->ninstrs - 1 &&
2690	    subop->last_instr_end_off)
2691		end_off = subop->last_instr_end_off;
2692	else
2693		end_off = subop->instrs[instr_idx].ctx.data.len;
2694
2695	return end_off - start_off;
2696}
2697EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
2698
2699/**
2700 * nand_reset - Reset and initialize a NAND device
2701 * @chip: The NAND chip
2702 * @chipnr: Internal die id
2703 *
2704 * Save the timings data structure, then apply SDR timings mode 0 (see
2705 * nand_reset_interface for details), do the reset operation, and apply
2706 * back the previous timings.
2707 *
2708 * Returns 0 on success, a negative error code otherwise.
2709 */
2710int nand_reset(struct nand_chip *chip, int chipnr)
2711{
2712	int ret;
2713
2714	ret = nand_reset_interface(chip, chipnr);
2715	if (ret)
2716		return ret;
2717
2718	/*
2719	 * The CS line has to be released before we can apply the new NAND
2720	 * interface settings, hence this weird nand_select_target()
2721	 * nand_deselect_target() dance.
2722	 */
2723	nand_select_target(chip, chipnr);
2724	ret = nand_reset_op(chip);
2725	nand_deselect_target(chip);
2726	if (ret)
2727		return ret;
2728
2729	ret = nand_setup_interface(chip, chipnr);
2730	if (ret)
2731		return ret;
2732
2733	return 0;
2734}
2735EXPORT_SYMBOL_GPL(nand_reset);
2736
2737/**
2738 * nand_get_features - wrapper to perform a GET_FEATURE
2739 * @chip: NAND chip info structure
2740 * @addr: feature address
2741 * @subfeature_param: the subfeature parameters, a four bytes array
2742 *
2743 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2744 * operation cannot be handled.
2745 */
2746int nand_get_features(struct nand_chip *chip, int addr,
2747		      u8 *subfeature_param)
2748{
2749	if (!nand_supports_get_features(chip, addr))
2750		return -ENOTSUPP;
2751
2752	if (chip->legacy.get_features)
2753		return chip->legacy.get_features(chip, addr, subfeature_param);
2754
2755	return nand_get_features_op(chip, addr, subfeature_param);
2756}
2757
2758/**
2759 * nand_set_features - wrapper to perform a SET_FEATURE
2760 * @chip: NAND chip info structure
2761 * @addr: feature address
2762 * @subfeature_param: the subfeature parameters, a four bytes array
2763 *
2764 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
2765 * operation cannot be handled.
2766 */
2767int nand_set_features(struct nand_chip *chip, int addr,
2768		      u8 *subfeature_param)
2769{
2770	if (!nand_supports_set_features(chip, addr))
2771		return -ENOTSUPP;
2772
2773	if (chip->legacy.set_features)
2774		return chip->legacy.set_features(chip, addr, subfeature_param);
2775
2776	return nand_set_features_op(chip, addr, subfeature_param);
2777}
2778
2779/**
2780 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
2781 * @buf: buffer to test
2782 * @len: buffer length
2783 * @bitflips_threshold: maximum number of bitflips
2784 *
2785 * Check if a buffer contains only 0xff, which means the underlying region
2786 * has been erased and is ready to be programmed.
2787 * The bitflips_threshold specify the maximum number of bitflips before
2788 * considering the region is not erased.
2789 * Note: The logic of this function has been extracted from the memweight
2790 * implementation, except that nand_check_erased_buf function exit before
2791 * testing the whole buffer if the number of bitflips exceed the
2792 * bitflips_threshold value.
2793 *
2794 * Returns a positive number of bitflips less than or equal to
2795 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2796 * threshold.
2797 */
2798static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
2799{
2800	const unsigned char *bitmap = buf;
2801	int bitflips = 0;
2802	int weight;
2803
2804	for (; len && ((uintptr_t)bitmap) % sizeof(long);
2805	     len--, bitmap++) {
2806		weight = hweight8(*bitmap);
2807		bitflips += BITS_PER_BYTE - weight;
2808		if (unlikely(bitflips > bitflips_threshold))
2809			return -EBADMSG;
2810	}
2811
2812	for (; len >= sizeof(long);
2813	     len -= sizeof(long), bitmap += sizeof(long)) {
2814		unsigned long d = *((unsigned long *)bitmap);
2815		if (d == ~0UL)
2816			continue;
2817		weight = hweight_long(d);
2818		bitflips += BITS_PER_LONG - weight;
2819		if (unlikely(bitflips > bitflips_threshold))
2820			return -EBADMSG;
2821	}
2822
2823	for (; len > 0; len--, bitmap++) {
2824		weight = hweight8(*bitmap);
2825		bitflips += BITS_PER_BYTE - weight;
2826		if (unlikely(bitflips > bitflips_threshold))
2827			return -EBADMSG;
2828	}
2829
2830	return bitflips;
2831}
2832
2833/**
2834 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
2835 *				 0xff data
2836 * @data: data buffer to test
2837 * @datalen: data length
2838 * @ecc: ECC buffer
2839 * @ecclen: ECC length
2840 * @extraoob: extra OOB buffer
2841 * @extraooblen: extra OOB length
2842 * @bitflips_threshold: maximum number of bitflips
2843 *
2844 * Check if a data buffer and its associated ECC and OOB data contains only
2845 * 0xff pattern, which means the underlying region has been erased and is
2846 * ready to be programmed.
2847 * The bitflips_threshold specify the maximum number of bitflips before
2848 * considering the region as not erased.
2849 *
2850 * Note:
2851 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
2852 *    different from the NAND page size. When fixing bitflips, ECC engines will
2853 *    report the number of errors per chunk, and the NAND core infrastructure
2854 *    expect you to return the maximum number of bitflips for the whole page.
2855 *    This is why you should always use this function on a single chunk and
2856 *    not on the whole page. After checking each chunk you should update your
2857 *    max_bitflips value accordingly.
2858 * 2/ When checking for bitflips in erased pages you should not only check
2859 *    the payload data but also their associated ECC data, because a user might
2860 *    have programmed almost all bits to 1 but a few. In this case, we
2861 *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
2862 *    this case.
2863 * 3/ The extraoob argument is optional, and should be used if some of your OOB
2864 *    data are protected by the ECC engine.
2865 *    It could also be used if you support subpages and want to attach some
2866 *    extra OOB data to an ECC chunk.
2867 *
2868 * Returns a positive number of bitflips less than or equal to
2869 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
2870 * threshold. In case of success, the passed buffers are filled with 0xff.
2871 */
2872int nand_check_erased_ecc_chunk(void *data, int datalen,
2873				void *ecc, int ecclen,
2874				void *extraoob, int extraooblen,
2875				int bitflips_threshold)
2876{
2877	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
2878
2879	data_bitflips = nand_check_erased_buf(data, datalen,
2880					      bitflips_threshold);
2881	if (data_bitflips < 0)
2882		return data_bitflips;
2883
2884	bitflips_threshold -= data_bitflips;
2885
2886	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
2887	if (ecc_bitflips < 0)
2888		return ecc_bitflips;
2889
2890	bitflips_threshold -= ecc_bitflips;
2891
2892	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
2893						  bitflips_threshold);
2894	if (extraoob_bitflips < 0)
2895		return extraoob_bitflips;
2896
2897	if (data_bitflips)
2898		memset(data, 0xff, datalen);
2899
2900	if (ecc_bitflips)
2901		memset(ecc, 0xff, ecclen);
2902
2903	if (extraoob_bitflips)
2904		memset(extraoob, 0xff, extraooblen);
2905
2906	return data_bitflips + ecc_bitflips + extraoob_bitflips;
2907}
2908EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
2909
2910/**
2911 * nand_read_page_raw_notsupp - dummy read raw page function
2912 * @chip: nand chip info structure
2913 * @buf: buffer to store read data
2914 * @oob_required: caller requires OOB data read to chip->oob_poi
2915 * @page: page number to read
2916 *
2917 * Returns -ENOTSUPP unconditionally.
2918 */
2919int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
2920			       int oob_required, int page)
2921{
2922	return -ENOTSUPP;
2923}
2924
2925/**
2926 * nand_read_page_raw - [INTERN] read raw page data without ecc
2927 * @chip: nand chip info structure
2928 * @buf: buffer to store read data
2929 * @oob_required: caller requires OOB data read to chip->oob_poi
2930 * @page: page number to read
2931 *
2932 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2933 */
2934int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
2935		       int page)
2936{
2937	struct mtd_info *mtd = nand_to_mtd(chip);
2938	int ret;
2939
2940	ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
2941	if (ret)
2942		return ret;
2943
2944	if (oob_required) {
2945		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
2946					false, false);
2947		if (ret)
2948			return ret;
2949	}
2950
2951	return 0;
2952}
2953EXPORT_SYMBOL(nand_read_page_raw);
2954
2955/**
2956 * nand_monolithic_read_page_raw - Monolithic page read in raw mode
2957 * @chip: NAND chip info structure
2958 * @buf: buffer to store read data
2959 * @oob_required: caller requires OOB data read to chip->oob_poi
2960 * @page: page number to read
2961 *
2962 * This is a raw page read, ie. without any error detection/correction.
2963 * Monolithic means we are requesting all the relevant data (main plus
2964 * eventually OOB) to be loaded in the NAND cache and sent over the
2965 * bus (from the NAND chip to the NAND controller) in a single
2966 * operation. This is an alternative to nand_read_page_raw(), which
2967 * first reads the main data, and if the OOB data is requested too,
2968 * then reads more data on the bus.
2969 */
2970int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
2971				  int oob_required, int page)
2972{
2973	struct mtd_info *mtd = nand_to_mtd(chip);
2974	unsigned int size = mtd->writesize;
2975	u8 *read_buf = buf;
2976	int ret;
2977
2978	if (oob_required) {
2979		size += mtd->oobsize;
2980
2981		if (buf != chip->data_buf)
2982			read_buf = nand_get_data_buf(chip);
2983	}
2984
2985	ret = nand_read_page_op(chip, page, 0, read_buf, size);
2986	if (ret)
2987		return ret;
2988
2989	if (buf != chip->data_buf)
2990		memcpy(buf, read_buf, mtd->writesize);
2991
2992	return 0;
2993}
2994EXPORT_SYMBOL(nand_monolithic_read_page_raw);
2995
2996/**
2997 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
2998 * @chip: nand chip info structure
2999 * @buf: buffer to store read data
3000 * @oob_required: caller requires OOB data read to chip->oob_poi
3001 * @page: page number to read
3002 *
3003 * We need a special oob layout and handling even when OOB isn't used.
3004 */
3005static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
3006				       int oob_required, int page)
3007{
3008	struct mtd_info *mtd = nand_to_mtd(chip);
3009	int eccsize = chip->ecc.size;
3010	int eccbytes = chip->ecc.bytes;
3011	uint8_t *oob = chip->oob_poi;
3012	int steps, size, ret;
3013
3014	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3015	if (ret)
3016		return ret;
3017
3018	for (steps = chip->ecc.steps; steps > 0; steps--) {
3019		ret = nand_read_data_op(chip, buf, eccsize, false, false);
3020		if (ret)
3021			return ret;
3022
3023		buf += eccsize;
3024
3025		if (chip->ecc.prepad) {
3026			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3027						false, false);
3028			if (ret)
3029				return ret;
3030
3031			oob += chip->ecc.prepad;
3032		}
3033
3034		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3035		if (ret)
3036			return ret;
3037
3038		oob += eccbytes;
3039
3040		if (chip->ecc.postpad) {
3041			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3042						false, false);
3043			if (ret)
3044				return ret;
3045
3046			oob += chip->ecc.postpad;
3047		}
3048	}
3049
3050	size = mtd->oobsize - (oob - chip->oob_poi);
3051	if (size) {
3052		ret = nand_read_data_op(chip, oob, size, false, false);
3053		if (ret)
3054			return ret;
3055	}
3056
3057	return 0;
3058}
3059
3060/**
3061 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
3062 * @chip: nand chip info structure
3063 * @buf: buffer to store read data
3064 * @oob_required: caller requires OOB data read to chip->oob_poi
3065 * @page: page number to read
3066 */
3067static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
3068				int oob_required, int page)
3069{
3070	struct mtd_info *mtd = nand_to_mtd(chip);
3071	int i, eccsize = chip->ecc.size, ret;
3072	int eccbytes = chip->ecc.bytes;
3073	int eccsteps = chip->ecc.steps;
3074	uint8_t *p = buf;
3075	uint8_t *ecc_calc = chip->ecc.calc_buf;
3076	uint8_t *ecc_code = chip->ecc.code_buf;
3077	unsigned int max_bitflips = 0;
3078
3079	chip->ecc.read_page_raw(chip, buf, 1, page);
3080
3081	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
3082		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3083
3084	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3085					 chip->ecc.total);
3086	if (ret)
3087		return ret;
3088
3089	eccsteps = chip->ecc.steps;
3090	p = buf;
3091
3092	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3093		int stat;
3094
3095		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3096		if (stat < 0) {
3097			mtd->ecc_stats.failed++;
3098		} else {
3099			mtd->ecc_stats.corrected += stat;
3100			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3101		}
3102	}
3103	return max_bitflips;
3104}
3105
3106/**
3107 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
3108 * @chip: nand chip info structure
3109 * @data_offs: offset of requested data within the page
3110 * @readlen: data length
3111 * @bufpoi: buffer to store read data
3112 * @page: page number to read
3113 */
3114static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
3115			     uint32_t readlen, uint8_t *bufpoi, int page)
3116{
3117	struct mtd_info *mtd = nand_to_mtd(chip);
3118	int start_step, end_step, num_steps, ret;
3119	uint8_t *p;
3120	int data_col_addr, i, gaps = 0;
3121	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
3122	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
3123	int index, section = 0;
3124	unsigned int max_bitflips = 0;
3125	struct mtd_oob_region oobregion = { };
3126
3127	/* Column address within the page aligned to ECC size (256bytes) */
3128	start_step = data_offs / chip->ecc.size;
3129	end_step = (data_offs + readlen - 1) / chip->ecc.size;
3130	num_steps = end_step - start_step + 1;
3131	index = start_step * chip->ecc.bytes;
3132
3133	/* Data size aligned to ECC ecc.size */
3134	datafrag_len = num_steps * chip->ecc.size;
3135	eccfrag_len = num_steps * chip->ecc.bytes;
3136
3137	data_col_addr = start_step * chip->ecc.size;
3138	/* If we read not a page aligned data */
3139	p = bufpoi + data_col_addr;
3140	ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
3141	if (ret)
3142		return ret;
3143
3144	/* Calculate ECC */
3145	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
3146		chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
3147
3148	/*
3149	 * The performance is faster if we position offsets according to
3150	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
3151	 */
3152	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
3153	if (ret)
3154		return ret;
3155
3156	if (oobregion.length < eccfrag_len)
3157		gaps = 1;
3158
3159	if (gaps) {
3160		ret = nand_change_read_column_op(chip, mtd->writesize,
3161						 chip->oob_poi, mtd->oobsize,
3162						 false);
3163		if (ret)
3164			return ret;
3165	} else {
3166		/*
3167		 * Send the command to read the particular ECC bytes take care
3168		 * about buswidth alignment in read_buf.
3169		 */
3170		aligned_pos = oobregion.offset & ~(busw - 1);
3171		aligned_len = eccfrag_len;
3172		if (oobregion.offset & (busw - 1))
3173			aligned_len++;
3174		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
3175		    (busw - 1))
3176			aligned_len++;
3177
3178		ret = nand_change_read_column_op(chip,
3179						 mtd->writesize + aligned_pos,
3180						 &chip->oob_poi[aligned_pos],
3181						 aligned_len, false);
3182		if (ret)
3183			return ret;
3184	}
3185
3186	ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
3187					 chip->oob_poi, index, eccfrag_len);
3188	if (ret)
3189		return ret;
3190
3191	p = bufpoi + data_col_addr;
3192	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
3193		int stat;
3194
3195		stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
3196					 &chip->ecc.calc_buf[i]);
3197		if (stat == -EBADMSG &&
3198		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3199			/* check for empty pages with bitflips */
3200			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3201						&chip->ecc.code_buf[i],
3202						chip->ecc.bytes,
3203						NULL, 0,
3204						chip->ecc.strength);
3205		}
3206
3207		if (stat < 0) {
3208			mtd->ecc_stats.failed++;
3209		} else {
3210			mtd->ecc_stats.corrected += stat;
3211			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3212		}
3213	}
3214	return max_bitflips;
3215}
3216
3217/**
3218 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
3219 * @chip: nand chip info structure
3220 * @buf: buffer to store read data
3221 * @oob_required: caller requires OOB data read to chip->oob_poi
3222 * @page: page number to read
3223 *
3224 * Not for syndrome calculating ECC controllers which need a special oob layout.
3225 */
3226static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
3227				int oob_required, int page)
3228{
3229	struct mtd_info *mtd = nand_to_mtd(chip);
3230	int i, eccsize = chip->ecc.size, ret;
3231	int eccbytes = chip->ecc.bytes;
3232	int eccsteps = chip->ecc.steps;
3233	uint8_t *p = buf;
3234	uint8_t *ecc_calc = chip->ecc.calc_buf;
3235	uint8_t *ecc_code = chip->ecc.code_buf;
3236	unsigned int max_bitflips = 0;
3237
3238	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3239	if (ret)
3240		return ret;
3241
3242	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3243		chip->ecc.hwctl(chip, NAND_ECC_READ);
3244
3245		ret = nand_read_data_op(chip, p, eccsize, false, false);
3246		if (ret)
3247			return ret;
3248
3249		chip->ecc.calculate(chip, p, &ecc_calc[i]);
3250	}
3251
3252	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
3253				false);
3254	if (ret)
3255		return ret;
3256
3257	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3258					 chip->ecc.total);
3259	if (ret)
3260		return ret;
3261
3262	eccsteps = chip->ecc.steps;
3263	p = buf;
3264
3265	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3266		int stat;
3267
3268		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
3269		if (stat == -EBADMSG &&
3270		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3271			/* check for empty pages with bitflips */
3272			stat = nand_check_erased_ecc_chunk(p, eccsize,
3273						&ecc_code[i], eccbytes,
3274						NULL, 0,
3275						chip->ecc.strength);
3276		}
3277
3278		if (stat < 0) {
3279			mtd->ecc_stats.failed++;
3280		} else {
3281			mtd->ecc_stats.corrected += stat;
3282			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3283		}
3284	}
3285	return max_bitflips;
3286}
3287
3288/**
3289 * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC
3290 *                                  data read from OOB area
3291 * @chip: nand chip info structure
3292 * @buf: buffer to store read data
3293 * @oob_required: caller requires OOB data read to chip->oob_poi
3294 * @page: page number to read
3295 *
3296 * Hardware ECC for large page chips, which requires the ECC data to be
3297 * extracted from the OOB before the actual data is read.
3298 */
3299int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
3300				   int oob_required, int page)
3301{
3302	struct mtd_info *mtd = nand_to_mtd(chip);
3303	int i, eccsize = chip->ecc.size, ret;
3304	int eccbytes = chip->ecc.bytes;
3305	int eccsteps = chip->ecc.steps;
3306	uint8_t *p = buf;
3307	uint8_t *ecc_code = chip->ecc.code_buf;
3308	unsigned int max_bitflips = 0;
3309
3310	/* Read the OOB area first */
3311	ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3312	if (ret)
3313		return ret;
3314
3315	/* Move read cursor to start of page */
3316	ret = nand_change_read_column_op(chip, 0, NULL, 0, false);
3317	if (ret)
3318		return ret;
3319
3320	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
3321					 chip->ecc.total);
3322	if (ret)
3323		return ret;
3324
3325	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3326		int stat;
3327
3328		chip->ecc.hwctl(chip, NAND_ECC_READ);
3329
3330		ret = nand_read_data_op(chip, p, eccsize, false, false);
3331		if (ret)
3332			return ret;
3333
3334		stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
3335		if (stat == -EBADMSG &&
3336		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3337			/* check for empty pages with bitflips */
3338			stat = nand_check_erased_ecc_chunk(p, eccsize,
3339							   &ecc_code[i],
3340							   eccbytes, NULL, 0,
3341							   chip->ecc.strength);
3342		}
3343
3344		if (stat < 0) {
3345			mtd->ecc_stats.failed++;
3346		} else {
3347			mtd->ecc_stats.corrected += stat;
3348			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3349		}
3350	}
3351	return max_bitflips;
3352}
3353EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first);
3354
3355/**
3356 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
3357 * @chip: nand chip info structure
3358 * @buf: buffer to store read data
3359 * @oob_required: caller requires OOB data read to chip->oob_poi
3360 * @page: page number to read
3361 *
3362 * The hw generator calculates the error syndrome automatically. Therefore we
3363 * need a special oob layout and handling.
3364 */
3365static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
3366				   int oob_required, int page)
3367{
3368	struct mtd_info *mtd = nand_to_mtd(chip);
3369	int ret, i, eccsize = chip->ecc.size;
3370	int eccbytes = chip->ecc.bytes;
3371	int eccsteps = chip->ecc.steps;
3372	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
3373	uint8_t *p = buf;
3374	uint8_t *oob = chip->oob_poi;
3375	unsigned int max_bitflips = 0;
3376
3377	ret = nand_read_page_op(chip, page, 0, NULL, 0);
3378	if (ret)
3379		return ret;
3380
3381	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
3382		int stat;
3383
3384		chip->ecc.hwctl(chip, NAND_ECC_READ);
3385
3386		ret = nand_read_data_op(chip, p, eccsize, false, false);
3387		if (ret)
3388			return ret;
3389
3390		if (chip->ecc.prepad) {
3391			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
3392						false, false);
3393			if (ret)
3394				return ret;
3395
3396			oob += chip->ecc.prepad;
3397		}
3398
3399		chip->ecc.hwctl(chip, NAND_ECC_READSYN);
3400
3401		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
3402		if (ret)
3403			return ret;
3404
3405		stat = chip->ecc.correct(chip, p, oob, NULL);
3406
3407		oob += eccbytes;
3408
3409		if (chip->ecc.postpad) {
3410			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
3411						false, false);
3412			if (ret)
3413				return ret;
3414
3415			oob += chip->ecc.postpad;
3416		}
3417
3418		if (stat == -EBADMSG &&
3419		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
3420			/* check for empty pages with bitflips */
3421			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
3422							   oob - eccpadbytes,
3423							   eccpadbytes,
3424							   NULL, 0,
3425							   chip->ecc.strength);
3426		}
3427
3428		if (stat < 0) {
3429			mtd->ecc_stats.failed++;
3430		} else {
3431			mtd->ecc_stats.corrected += stat;
3432			max_bitflips = max_t(unsigned int, max_bitflips, stat);
3433		}
3434	}
3435
3436	/* Calculate remaining oob bytes */
3437	i = mtd->oobsize - (oob - chip->oob_poi);
3438	if (i) {
3439		ret = nand_read_data_op(chip, oob, i, false, false);
3440		if (ret)
3441			return ret;
3442	}
3443
3444	return max_bitflips;
3445}
3446
3447/**
3448 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
3449 * @chip: NAND chip object
3450 * @oob: oob destination address
3451 * @ops: oob ops structure
3452 * @len: size of oob to transfer
3453 */
3454static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
3455				  struct mtd_oob_ops *ops, size_t len)
3456{
3457	struct mtd_info *mtd = nand_to_mtd(chip);
3458	int ret;
3459
3460	switch (ops->mode) {
3461
3462	case MTD_OPS_PLACE_OOB:
3463	case MTD_OPS_RAW:
3464		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
3465		return oob + len;
3466
3467	case MTD_OPS_AUTO_OOB:
3468		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
3469						  ops->ooboffs, len);
3470		BUG_ON(ret);
3471		return oob + len;
3472
3473	default:
3474		BUG();
3475	}
3476	return NULL;
3477}
3478
3479static void rawnand_enable_cont_reads(struct nand_chip *chip, unsigned int page,
3480				      u32 readlen, int col)
3481{
3482	struct mtd_info *mtd = nand_to_mtd(chip);
3483	unsigned int first_page, last_page;
3484
3485	chip->cont_read.ongoing = false;
3486
3487	if (!chip->controller->supported_op.cont_read)
3488		return;
3489
3490	/*
3491	 * Don't bother making any calculations if the length is too small.
3492	 * Side effect: avoids possible integer underflows below.
3493	 */
3494	if (readlen < (2 * mtd->writesize))
3495		return;
3496
3497	/* Derive the page where continuous read should start (the first full page read) */
3498	first_page = page;
3499	if (col)
3500		first_page++;
3501
3502	/* Derive the page where continuous read should stop (the last full page read) */
3503	last_page = page + ((col + readlen) / mtd->writesize) - 1;
3504
3505	/* Configure and enable continuous read when suitable */
3506	if (first_page < last_page) {
3507		chip->cont_read.first_page = first_page;
3508		chip->cont_read.last_page = last_page;
3509		chip->cont_read.ongoing = true;
3510		/* May reset the ongoing flag */
3511		rawnand_cap_cont_reads(chip);
3512	}
3513}
3514
3515static void rawnand_cont_read_skip_first_page(struct nand_chip *chip, unsigned int page)
3516{
3517	if (!chip->cont_read.ongoing || page != chip->cont_read.first_page)
3518		return;
3519
3520	chip->cont_read.first_page++;
3521	rawnand_cap_cont_reads(chip);
3522}
3523
3524/**
3525 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
3526 * @chip: NAND chip object
3527 * @retry_mode: the retry mode to use
3528 *
3529 * Some vendors supply a special command to shift the Vt threshold, to be used
3530 * when there are too many bitflips in a page (i.e., ECC error). After setting
3531 * a new threshold, the host should retry reading the page.
3532 */
3533static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
3534{
3535	pr_debug("setting READ RETRY mode %d\n", retry_mode);
3536
3537	if (retry_mode >= chip->read_retries)
3538		return -EINVAL;
3539
3540	if (!chip->ops.setup_read_retry)
3541		return -EOPNOTSUPP;
3542
3543	return chip->ops.setup_read_retry(chip, retry_mode);
3544}
3545
3546static void nand_wait_readrdy(struct nand_chip *chip)
3547{
3548	const struct nand_interface_config *conf;
3549
3550	if (!(chip->options & NAND_NEED_READRDY))
3551		return;
3552
3553	conf = nand_get_interface_config(chip);
3554	WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0));
3555}
3556
3557/**
3558 * nand_do_read_ops - [INTERN] Read data with ECC
3559 * @chip: NAND chip object
3560 * @from: offset to read from
3561 * @ops: oob ops structure
3562 *
3563 * Internal function. Called with chip held.
3564 */
3565static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
3566			    struct mtd_oob_ops *ops)
3567{
3568	int chipnr, page, realpage, col, bytes, aligned, oob_required;
3569	struct mtd_info *mtd = nand_to_mtd(chip);
3570	int ret = 0;
3571	uint32_t readlen = ops->len;
3572	uint32_t oobreadlen = ops->ooblen;
3573	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
3574
3575	uint8_t *bufpoi, *oob, *buf;
3576	int use_bounce_buf;
3577	unsigned int max_bitflips = 0;
3578	int retry_mode = 0;
3579	bool ecc_fail = false;
3580
3581	/* Check if the region is secured */
3582	if (nand_region_is_secured(chip, from, readlen))
3583		return -EIO;
3584
3585	chipnr = (int)(from >> chip->chip_shift);
3586	nand_select_target(chip, chipnr);
3587
3588	realpage = (int)(from >> chip->page_shift);
3589	page = realpage & chip->pagemask;
3590
3591	col = (int)(from & (mtd->writesize - 1));
3592
3593	buf = ops->datbuf;
3594	oob = ops->oobbuf;
3595	oob_required = oob ? 1 : 0;
3596
3597	if (likely(ops->mode != MTD_OPS_RAW))
3598		rawnand_enable_cont_reads(chip, page, readlen, col);
3599
3600	while (1) {
3601		struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;
3602
3603		bytes = min(mtd->writesize - col, readlen);
3604		aligned = (bytes == mtd->writesize);
3605
3606		if (!aligned)
3607			use_bounce_buf = 1;
3608		else if (chip->options & NAND_USES_DMA)
3609			use_bounce_buf = !virt_addr_valid(buf) ||
3610					 !IS_ALIGNED((unsigned long)buf,
3611						     chip->buf_align);
3612		else
3613			use_bounce_buf = 0;
3614
3615		/* Is the current page in the buffer? */
3616		if (realpage != chip->pagecache.page || oob) {
3617			bufpoi = use_bounce_buf ? chip->data_buf : buf;
3618
3619			if (use_bounce_buf && aligned)
3620				pr_debug("%s: using read bounce buffer for buf@%p\n",
3621						 __func__, buf);
3622
3623read_retry:
3624			/*
3625			 * Now read the page into the buffer.  Absent an error,
3626			 * the read methods return max bitflips per ecc step.
3627			 */
3628			if (unlikely(ops->mode == MTD_OPS_RAW))
3629				ret = chip->ecc.read_page_raw(chip, bufpoi,
3630							      oob_required,
3631							      page);
3632			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
3633				 !oob)
3634				ret = chip->ecc.read_subpage(chip, col, bytes,
3635							     bufpoi, page);
3636			else
3637				ret = chip->ecc.read_page(chip, bufpoi,
3638							  oob_required, page);
3639			if (ret < 0) {
3640				if (use_bounce_buf)
3641					/* Invalidate page cache */
3642					chip->pagecache.page = -1;
3643				break;
3644			}
3645
3646			/*
3647			 * Copy back the data in the initial buffer when reading
3648			 * partial pages or when a bounce buffer is required.
3649			 */
3650			if (use_bounce_buf) {
3651				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
3652				    !(mtd->ecc_stats.failed - ecc_stats.failed) &&
3653				    (ops->mode != MTD_OPS_RAW)) {
3654					chip->pagecache.page = realpage;
3655					chip->pagecache.bitflips = ret;
3656				} else {
3657					/* Invalidate page cache */
3658					chip->pagecache.page = -1;
3659				}
3660				memcpy(buf, bufpoi + col, bytes);
3661			}
3662
3663			if (unlikely(oob)) {
3664				int toread = min(oobreadlen, max_oobsize);
3665
3666				if (toread) {
3667					oob = nand_transfer_oob(chip, oob, ops,
3668								toread);
3669					oobreadlen -= toread;
3670				}
3671			}
3672
3673			nand_wait_readrdy(chip);
3674
3675			if (mtd->ecc_stats.failed - ecc_stats.failed) {
3676				if (retry_mode + 1 < chip->read_retries) {
3677					retry_mode++;
3678					ret = nand_setup_read_retry(chip,
3679							retry_mode);
3680					if (ret < 0)
3681						break;
3682
3683					/* Reset ecc_stats; retry */
3684					mtd->ecc_stats = ecc_stats;
3685					goto read_retry;
3686				} else {
3687					/* No more retry modes; real failure */
3688					ecc_fail = true;
3689				}
3690			}
3691
3692			buf += bytes;
3693			max_bitflips = max_t(unsigned int, max_bitflips, ret);
3694		} else {
3695			memcpy(buf, chip->data_buf + col, bytes);
3696			buf += bytes;
3697			max_bitflips = max_t(unsigned int, max_bitflips,
3698					     chip->pagecache.bitflips);
3699
3700			rawnand_cont_read_skip_first_page(chip, page);
3701		}
3702
3703		readlen -= bytes;
3704
3705		/* Reset to retry mode 0 */
3706		if (retry_mode) {
3707			ret = nand_setup_read_retry(chip, 0);
3708			if (ret < 0)
3709				break;
3710			retry_mode = 0;
3711		}
3712
3713		if (!readlen)
3714			break;
3715
3716		/* For subsequent reads align to page boundary */
3717		col = 0;
3718		/* Increment page address */
3719		realpage++;
3720
3721		page = realpage & chip->pagemask;
3722		/* Check, if we cross a chip boundary */
3723		if (!page) {
3724			chipnr++;
3725			nand_deselect_target(chip);
3726			nand_select_target(chip, chipnr);
3727		}
3728	}
3729	nand_deselect_target(chip);
3730
3731	if (WARN_ON_ONCE(chip->cont_read.ongoing))
3732		chip->cont_read.ongoing = false;
3733
3734	ops->retlen = ops->len - (size_t) readlen;
3735	if (oob)
3736		ops->oobretlen = ops->ooblen - oobreadlen;
3737
3738	if (ret < 0)
3739		return ret;
3740
3741	if (ecc_fail)
3742		return -EBADMSG;
3743
3744	return max_bitflips;
3745}
3746
3747/**
3748 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
3749 * @chip: nand chip info structure
3750 * @page: page number to read
3751 */
3752int nand_read_oob_std(struct nand_chip *chip, int page)
3753{
3754	struct mtd_info *mtd = nand_to_mtd(chip);
3755
3756	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
3757}
3758EXPORT_SYMBOL(nand_read_oob_std);
3759
3760/**
3761 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
3762 *			    with syndromes
3763 * @chip: nand chip info structure
3764 * @page: page number to read
3765 */
3766static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
3767{
3768	struct mtd_info *mtd = nand_to_mtd(chip);
3769	int length = mtd->oobsize;
3770	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3771	int eccsize = chip->ecc.size;
3772	uint8_t *bufpoi = chip->oob_poi;
3773	int i, toread, sndrnd = 0, pos, ret;
3774
3775	ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
3776	if (ret)
3777		return ret;
3778
3779	for (i = 0; i < chip->ecc.steps; i++) {
3780		if (sndrnd) {
3781			int ret;
3782
3783			pos = eccsize + i * (eccsize + chunk);
3784			if (mtd->writesize > 512)
3785				ret = nand_change_read_column_op(chip, pos,
3786								 NULL, 0,
3787								 false);
3788			else
3789				ret = nand_read_page_op(chip, page, pos, NULL,
3790							0);
3791
3792			if (ret)
3793				return ret;
3794		} else
3795			sndrnd = 1;
3796		toread = min_t(int, length, chunk);
3797
3798		ret = nand_read_data_op(chip, bufpoi, toread, false, false);
3799		if (ret)
3800			return ret;
3801
3802		bufpoi += toread;
3803		length -= toread;
3804	}
3805	if (length > 0) {
3806		ret = nand_read_data_op(chip, bufpoi, length, false, false);
3807		if (ret)
3808			return ret;
3809	}
3810
3811	return 0;
3812}
3813
3814/**
3815 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
3816 * @chip: nand chip info structure
3817 * @page: page number to write
3818 */
3819int nand_write_oob_std(struct nand_chip *chip, int page)
3820{
3821	struct mtd_info *mtd = nand_to_mtd(chip);
3822
3823	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
3824				 mtd->oobsize);
3825}
3826EXPORT_SYMBOL(nand_write_oob_std);
3827
3828/**
3829 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
3830 *			     with syndrome - only for large page flash
3831 * @chip: nand chip info structure
3832 * @page: page number to write
3833 */
3834static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
3835{
3836	struct mtd_info *mtd = nand_to_mtd(chip);
3837	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
3838	int eccsize = chip->ecc.size, length = mtd->oobsize;
3839	int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
3840	const uint8_t *bufpoi = chip->oob_poi;
3841
3842	/*
3843	 * data-ecc-data-ecc ... ecc-oob
3844	 * or
3845	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
3846	 */
3847	if (!chip->ecc.prepad && !chip->ecc.postpad) {
3848		pos = steps * (eccsize + chunk);
3849		steps = 0;
3850	} else
3851		pos = eccsize;
3852
3853	ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
3854	if (ret)
3855		return ret;
3856
3857	for (i = 0; i < steps; i++) {
3858		if (sndcmd) {
3859			if (mtd->writesize <= 512) {
3860				uint32_t fill = 0xFFFFFFFF;
3861
3862				len = eccsize;
3863				while (len > 0) {
3864					int num = min_t(int, len, 4);
3865
3866					ret = nand_write_data_op(chip, &fill,
3867								 num, false);
3868					if (ret)
3869						return ret;
3870
3871					len -= num;
3872				}
3873			} else {
3874				pos = eccsize + i * (eccsize + chunk);
3875				ret = nand_change_write_column_op(chip, pos,
3876								  NULL, 0,
3877								  false);
3878				if (ret)
3879					return ret;
3880			}
3881		} else
3882			sndcmd = 1;
3883		len = min_t(int, length, chunk);
3884
3885		ret = nand_write_data_op(chip, bufpoi, len, false);
3886		if (ret)
3887			return ret;
3888
3889		bufpoi += len;
3890		length -= len;
3891	}
3892	if (length > 0) {
3893		ret = nand_write_data_op(chip, bufpoi, length, false);
3894		if (ret)
3895			return ret;
3896	}
3897
3898	return nand_prog_page_end_op(chip);
3899}
3900
3901/**
3902 * nand_do_read_oob - [INTERN] NAND read out-of-band
3903 * @chip: NAND chip object
3904 * @from: offset to read from
3905 * @ops: oob operations description structure
3906 *
3907 * NAND read out-of-band data from the spare area.
3908 */
3909static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
3910			    struct mtd_oob_ops *ops)
3911{
3912	struct mtd_info *mtd = nand_to_mtd(chip);
3913	unsigned int max_bitflips = 0;
3914	int page, realpage, chipnr;
3915	struct mtd_ecc_stats stats;
3916	int readlen = ops->ooblen;
3917	int len;
3918	uint8_t *buf = ops->oobbuf;
3919	int ret = 0;
3920
3921	pr_debug("%s: from = 0x%08Lx, len = %i\n",
3922			__func__, (unsigned long long)from, readlen);
3923
3924	/* Check if the region is secured */
3925	if (nand_region_is_secured(chip, from, readlen))
3926		return -EIO;
3927
3928	stats = mtd->ecc_stats;
3929
3930	len = mtd_oobavail(mtd, ops);
3931
3932	chipnr = (int)(from >> chip->chip_shift);
3933	nand_select_target(chip, chipnr);
3934
3935	/* Shift to get page */
3936	realpage = (int)(from >> chip->page_shift);
3937	page = realpage & chip->pagemask;
3938
3939	while (1) {
3940		if (ops->mode == MTD_OPS_RAW)
3941			ret = chip->ecc.read_oob_raw(chip, page);
3942		else
3943			ret = chip->ecc.read_oob(chip, page);
3944
3945		if (ret < 0)
3946			break;
3947
3948		len = min(len, readlen);
3949		buf = nand_transfer_oob(chip, buf, ops, len);
3950
3951		nand_wait_readrdy(chip);
3952
3953		max_bitflips = max_t(unsigned int, max_bitflips, ret);
3954
3955		readlen -= len;
3956		if (!readlen)
3957			break;
3958
3959		/* Increment page address */
3960		realpage++;
3961
3962		page = realpage & chip->pagemask;
3963		/* Check, if we cross a chip boundary */
3964		if (!page) {
3965			chipnr++;
3966			nand_deselect_target(chip);
3967			nand_select_target(chip, chipnr);
3968		}
3969	}
3970	nand_deselect_target(chip);
3971
3972	ops->oobretlen = ops->ooblen - readlen;
3973
3974	if (ret < 0)
3975		return ret;
3976
3977	if (mtd->ecc_stats.failed - stats.failed)
3978		return -EBADMSG;
3979
3980	return max_bitflips;
3981}
3982
3983/**
3984 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
3985 * @mtd: MTD device structure
3986 * @from: offset to read from
3987 * @ops: oob operation description structure
3988 *
3989 * NAND read data and/or out-of-band data.
3990 */
3991static int nand_read_oob(struct mtd_info *mtd, loff_t from,
3992			 struct mtd_oob_ops *ops)
3993{
3994	struct nand_chip *chip = mtd_to_nand(mtd);
3995	struct mtd_ecc_stats old_stats;
3996	int ret;
3997
3998	ops->retlen = 0;
3999
4000	if (ops->mode != MTD_OPS_PLACE_OOB &&
4001	    ops->mode != MTD_OPS_AUTO_OOB &&
4002	    ops->mode != MTD_OPS_RAW)
4003		return -ENOTSUPP;
4004
4005	nand_get_device(chip);
4006
4007	old_stats = mtd->ecc_stats;
4008
4009	if (!ops->datbuf)
4010		ret = nand_do_read_oob(chip, from, ops);
4011	else
4012		ret = nand_do_read_ops(chip, from, ops);
4013
4014	if (ops->stats) {
4015		ops->stats->uncorrectable_errors +=
4016			mtd->ecc_stats.failed - old_stats.failed;
4017		ops->stats->corrected_bitflips +=
4018			mtd->ecc_stats.corrected - old_stats.corrected;
4019	}
4020
4021	nand_release_device(chip);
4022	return ret;
4023}
4024
4025/**
4026 * nand_write_page_raw_notsupp - dummy raw page write function
4027 * @chip: nand chip info structure
4028 * @buf: data buffer
4029 * @oob_required: must write chip->oob_poi to OOB
4030 * @page: page number to write
4031 *
4032 * Returns -ENOTSUPP unconditionally.
4033 */
4034int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
4035				int oob_required, int page)
4036{
4037	return -ENOTSUPP;
4038}
4039
4040/**
4041 * nand_write_page_raw - [INTERN] raw page write function
4042 * @chip: nand chip info structure
4043 * @buf: data buffer
4044 * @oob_required: must write chip->oob_poi to OOB
4045 * @page: page number to write
4046 *
4047 * Not for syndrome calculating ECC controllers, which use a special oob layout.
4048 */
4049int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
4050			int oob_required, int page)
4051{
4052	struct mtd_info *mtd = nand_to_mtd(chip);
4053	int ret;
4054
4055	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
4056	if (ret)
4057		return ret;
4058
4059	if (oob_required) {
4060		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
4061					 false);
4062		if (ret)
4063			return ret;
4064	}
4065
4066	return nand_prog_page_end_op(chip);
4067}
4068EXPORT_SYMBOL(nand_write_page_raw);
4069
4070/**
4071 * nand_monolithic_write_page_raw - Monolithic page write in raw mode
4072 * @chip: NAND chip info structure
4073 * @buf: data buffer to write
4074 * @oob_required: must write chip->oob_poi to OOB
4075 * @page: page number to write
4076 *
4077 * This is a raw page write, ie. without any error detection/correction.
4078 * Monolithic means we are requesting all the relevant data (main plus
4079 * eventually OOB) to be sent over the bus and effectively programmed
4080 * into the NAND chip arrays in a single operation. This is an
4081 * alternative to nand_write_page_raw(), which first sends the main
4082 * data, then eventually send the OOB data by latching more data
4083 * cycles on the NAND bus, and finally sends the program command to
4084 * synchronyze the NAND chip cache.
4085 */
4086int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
4087				   int oob_required, int page)
4088{
4089	struct mtd_info *mtd = nand_to_mtd(chip);
4090	unsigned int size = mtd->writesize;
4091	u8 *write_buf = (u8 *)buf;
4092
4093	if (oob_required) {
4094		size += mtd->oobsize;
4095
4096		if (buf != chip->data_buf) {
4097			write_buf = nand_get_data_buf(chip);
4098			memcpy(write_buf, buf, mtd->writesize);
4099		}
4100	}
4101
4102	return nand_prog_page_op(chip, page, 0, write_buf, size);
4103}
4104EXPORT_SYMBOL(nand_monolithic_write_page_raw);
4105
4106/**
4107 * nand_write_page_raw_syndrome - [INTERN] raw page write function
4108 * @chip: nand chip info structure
4109 * @buf: data buffer
4110 * @oob_required: must write chip->oob_poi to OOB
4111 * @page: page number to write
4112 *
4113 * We need a special oob layout and handling even when ECC isn't checked.
4114 */
4115static int nand_write_page_raw_syndrome(struct nand_chip *chip,
4116					const uint8_t *buf, int oob_required,
4117					int page)
4118{
4119	struct mtd_info *mtd = nand_to_mtd(chip);
4120	int eccsize = chip->ecc.size;
4121	int eccbytes = chip->ecc.bytes;
4122	uint8_t *oob = chip->oob_poi;
4123	int steps, size, ret;
4124
4125	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4126	if (ret)
4127		return ret;
4128
4129	for (steps = chip->ecc.steps; steps > 0; steps--) {
4130		ret = nand_write_data_op(chip, buf, eccsize, false);
4131		if (ret)
4132			return ret;
4133
4134		buf += eccsize;
4135
4136		if (chip->ecc.prepad) {
4137			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4138						 false);
4139			if (ret)
4140				return ret;
4141
4142			oob += chip->ecc.prepad;
4143		}
4144
4145		ret = nand_write_data_op(chip, oob, eccbytes, false);
4146		if (ret)
4147			return ret;
4148
4149		oob += eccbytes;
4150
4151		if (chip->ecc.postpad) {
4152			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4153						 false);
4154			if (ret)
4155				return ret;
4156
4157			oob += chip->ecc.postpad;
4158		}
4159	}
4160
4161	size = mtd->oobsize - (oob - chip->oob_poi);
4162	if (size) {
4163		ret = nand_write_data_op(chip, oob, size, false);
4164		if (ret)
4165			return ret;
4166	}
4167
4168	return nand_prog_page_end_op(chip);
4169}
4170/**
4171 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
4172 * @chip: nand chip info structure
4173 * @buf: data buffer
4174 * @oob_required: must write chip->oob_poi to OOB
4175 * @page: page number to write
4176 */
4177static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
4178				 int oob_required, int page)
4179{
4180	struct mtd_info *mtd = nand_to_mtd(chip);
4181	int i, eccsize = chip->ecc.size, ret;
4182	int eccbytes = chip->ecc.bytes;
4183	int eccsteps = chip->ecc.steps;
4184	uint8_t *ecc_calc = chip->ecc.calc_buf;
4185	const uint8_t *p = buf;
4186
4187	/* Software ECC calculation */
4188	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
4189		chip->ecc.calculate(chip, p, &ecc_calc[i]);
4190
4191	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4192					 chip->ecc.total);
4193	if (ret)
4194		return ret;
4195
4196	return chip->ecc.write_page_raw(chip, buf, 1, page);
4197}
4198
4199/**
4200 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
4201 * @chip: nand chip info structure
4202 * @buf: data buffer
4203 * @oob_required: must write chip->oob_poi to OOB
4204 * @page: page number to write
4205 */
4206static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
4207				 int oob_required, int page)
4208{
4209	struct mtd_info *mtd = nand_to_mtd(chip);
4210	int i, eccsize = chip->ecc.size, ret;
4211	int eccbytes = chip->ecc.bytes;
4212	int eccsteps = chip->ecc.steps;
4213	uint8_t *ecc_calc = chip->ecc.calc_buf;
4214	const uint8_t *p = buf;
4215
4216	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4217	if (ret)
4218		return ret;
4219
4220	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4221		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4222
4223		ret = nand_write_data_op(chip, p, eccsize, false);
4224		if (ret)
4225			return ret;
4226
4227		chip->ecc.calculate(chip, p, &ecc_calc[i]);
4228	}
4229
4230	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4231					 chip->ecc.total);
4232	if (ret)
4233		return ret;
4234
4235	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4236	if (ret)
4237		return ret;
4238
4239	return nand_prog_page_end_op(chip);
4240}
4241
4242
4243/**
4244 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
4245 * @chip:	nand chip info structure
4246 * @offset:	column address of subpage within the page
4247 * @data_len:	data length
4248 * @buf:	data buffer
4249 * @oob_required: must write chip->oob_poi to OOB
4250 * @page: page number to write
4251 */
4252static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
4253				    uint32_t data_len, const uint8_t *buf,
4254				    int oob_required, int page)
4255{
4256	struct mtd_info *mtd = nand_to_mtd(chip);
4257	uint8_t *oob_buf  = chip->oob_poi;
4258	uint8_t *ecc_calc = chip->ecc.calc_buf;
4259	int ecc_size      = chip->ecc.size;
4260	int ecc_bytes     = chip->ecc.bytes;
4261	int ecc_steps     = chip->ecc.steps;
4262	uint32_t start_step = offset / ecc_size;
4263	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
4264	int oob_bytes       = mtd->oobsize / ecc_steps;
4265	int step, ret;
4266
4267	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4268	if (ret)
4269		return ret;
4270
4271	for (step = 0; step < ecc_steps; step++) {
4272		/* configure controller for WRITE access */
4273		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4274
4275		/* write data (untouched subpages already masked by 0xFF) */
4276		ret = nand_write_data_op(chip, buf, ecc_size, false);
4277		if (ret)
4278			return ret;
4279
4280		/* mask ECC of un-touched subpages by padding 0xFF */
4281		if ((step < start_step) || (step > end_step))
4282			memset(ecc_calc, 0xff, ecc_bytes);
4283		else
4284			chip->ecc.calculate(chip, buf, ecc_calc);
4285
4286		/* mask OOB of un-touched subpages by padding 0xFF */
4287		/* if oob_required, preserve OOB metadata of written subpage */
4288		if (!oob_required || (step < start_step) || (step > end_step))
4289			memset(oob_buf, 0xff, oob_bytes);
4290
4291		buf += ecc_size;
4292		ecc_calc += ecc_bytes;
4293		oob_buf  += oob_bytes;
4294	}
4295
4296	/* copy calculated ECC for whole page to chip->buffer->oob */
4297	/* this include masked-value(0xFF) for unwritten subpages */
4298	ecc_calc = chip->ecc.calc_buf;
4299	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
4300					 chip->ecc.total);
4301	if (ret)
4302		return ret;
4303
4304	/* write OOB buffer to NAND device */
4305	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
4306	if (ret)
4307		return ret;
4308
4309	return nand_prog_page_end_op(chip);
4310}
4311
4312
4313/**
4314 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
4315 * @chip: nand chip info structure
4316 * @buf: data buffer
4317 * @oob_required: must write chip->oob_poi to OOB
4318 * @page: page number to write
4319 *
4320 * The hw generator calculates the error syndrome automatically. Therefore we
4321 * need a special oob layout and handling.
4322 */
4323static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
4324				    int oob_required, int page)
4325{
4326	struct mtd_info *mtd = nand_to_mtd(chip);
4327	int i, eccsize = chip->ecc.size;
4328	int eccbytes = chip->ecc.bytes;
4329	int eccsteps = chip->ecc.steps;
4330	const uint8_t *p = buf;
4331	uint8_t *oob = chip->oob_poi;
4332	int ret;
4333
4334	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
4335	if (ret)
4336		return ret;
4337
4338	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
4339		chip->ecc.hwctl(chip, NAND_ECC_WRITE);
4340
4341		ret = nand_write_data_op(chip, p, eccsize, false);
4342		if (ret)
4343			return ret;
4344
4345		if (chip->ecc.prepad) {
4346			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
4347						 false);
4348			if (ret)
4349				return ret;
4350
4351			oob += chip->ecc.prepad;
4352		}
4353
4354		chip->ecc.calculate(chip, p, oob);
4355
4356		ret = nand_write_data_op(chip, oob, eccbytes, false);
4357		if (ret)
4358			return ret;
4359
4360		oob += eccbytes;
4361
4362		if (chip->ecc.postpad) {
4363			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
4364						 false);
4365			if (ret)
4366				return ret;
4367
4368			oob += chip->ecc.postpad;
4369		}
4370	}
4371
4372	/* Calculate remaining oob bytes */
4373	i = mtd->oobsize - (oob - chip->oob_poi);
4374	if (i) {
4375		ret = nand_write_data_op(chip, oob, i, false);
4376		if (ret)
4377			return ret;
4378	}
4379
4380	return nand_prog_page_end_op(chip);
4381}
4382
4383/**
4384 * nand_write_page - write one page
4385 * @chip: NAND chip descriptor
4386 * @offset: address offset within the page
4387 * @data_len: length of actual data to be written
4388 * @buf: the data to write
4389 * @oob_required: must write chip->oob_poi to OOB
4390 * @page: page number to write
4391 * @raw: use _raw version of write_page
4392 */
4393static int nand_write_page(struct nand_chip *chip, uint32_t offset,
4394			   int data_len, const uint8_t *buf, int oob_required,
4395			   int page, int raw)
4396{
4397	struct mtd_info *mtd = nand_to_mtd(chip);
4398	int status, subpage;
4399
4400	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
4401		chip->ecc.write_subpage)
4402		subpage = offset || (data_len < mtd->writesize);
4403	else
4404		subpage = 0;
4405
4406	if (unlikely(raw))
4407		status = chip->ecc.write_page_raw(chip, buf, oob_required,
4408						  page);
4409	else if (subpage)
4410		status = chip->ecc.write_subpage(chip, offset, data_len, buf,
4411						 oob_required, page);
4412	else
4413		status = chip->ecc.write_page(chip, buf, oob_required, page);
4414
4415	if (status < 0)
4416		return status;
4417
4418	return 0;
4419}
4420
4421#define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
4422
4423/**
4424 * nand_do_write_ops - [INTERN] NAND write with ECC
4425 * @chip: NAND chip object
4426 * @to: offset to write to
4427 * @ops: oob operations description structure
4428 *
4429 * NAND write with ECC.
4430 */
4431static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
4432			     struct mtd_oob_ops *ops)
4433{
4434	struct mtd_info *mtd = nand_to_mtd(chip);
4435	int chipnr, realpage, page, column;
4436	uint32_t writelen = ops->len;
4437
4438	uint32_t oobwritelen = ops->ooblen;
4439	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
4440
4441	uint8_t *oob = ops->oobbuf;
4442	uint8_t *buf = ops->datbuf;
4443	int ret;
4444	int oob_required = oob ? 1 : 0;
4445
4446	ops->retlen = 0;
4447	if (!writelen)
4448		return 0;
4449
4450	/* Reject writes, which are not page aligned */
4451	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
4452		pr_notice("%s: attempt to write non page aligned data\n",
4453			   __func__);
4454		return -EINVAL;
4455	}
4456
4457	/* Check if the region is secured */
4458	if (nand_region_is_secured(chip, to, writelen))
4459		return -EIO;
4460
4461	column = to & (mtd->writesize - 1);
4462
4463	chipnr = (int)(to >> chip->chip_shift);
4464	nand_select_target(chip, chipnr);
4465
4466	/* Check, if it is write protected */
4467	if (nand_check_wp(chip)) {
4468		ret = -EIO;
4469		goto err_out;
4470	}
4471
4472	realpage = (int)(to >> chip->page_shift);
4473	page = realpage & chip->pagemask;
4474
4475	/* Invalidate the page cache, when we write to the cached page */
4476	if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
4477	    ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
4478		chip->pagecache.page = -1;
4479
4480	/* Don't allow multipage oob writes with offset */
4481	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
4482		ret = -EINVAL;
4483		goto err_out;
4484	}
4485
4486	while (1) {
4487		int bytes = mtd->writesize;
4488		uint8_t *wbuf = buf;
4489		int use_bounce_buf;
4490		int part_pagewr = (column || writelen < mtd->writesize);
4491
4492		if (part_pagewr)
4493			use_bounce_buf = 1;
4494		else if (chip->options & NAND_USES_DMA)
4495			use_bounce_buf = !virt_addr_valid(buf) ||
4496					 !IS_ALIGNED((unsigned long)buf,
4497						     chip->buf_align);
4498		else
4499			use_bounce_buf = 0;
4500
4501		/*
4502		 * Copy the data from the initial buffer when doing partial page
4503		 * writes or when a bounce buffer is required.
4504		 */
4505		if (use_bounce_buf) {
4506			pr_debug("%s: using write bounce buffer for buf@%p\n",
4507					 __func__, buf);
4508			if (part_pagewr)
4509				bytes = min_t(int, bytes - column, writelen);
4510			wbuf = nand_get_data_buf(chip);
4511			memset(wbuf, 0xff, mtd->writesize);
4512			memcpy(&wbuf[column], buf, bytes);
4513		}
4514
4515		if (unlikely(oob)) {
4516			size_t len = min(oobwritelen, oobmaxlen);
4517			oob = nand_fill_oob(chip, oob, len, ops);
4518			oobwritelen -= len;
4519		} else {
4520			/* We still need to erase leftover OOB data */
4521			memset(chip->oob_poi, 0xff, mtd->oobsize);
4522		}
4523
4524		ret = nand_write_page(chip, column, bytes, wbuf,
4525				      oob_required, page,
4526				      (ops->mode == MTD_OPS_RAW));
4527		if (ret)
4528			break;
4529
4530		writelen -= bytes;
4531		if (!writelen)
4532			break;
4533
4534		column = 0;
4535		buf += bytes;
4536		realpage++;
4537
4538		page = realpage & chip->pagemask;
4539		/* Check, if we cross a chip boundary */
4540		if (!page) {
4541			chipnr++;
4542			nand_deselect_target(chip);
4543			nand_select_target(chip, chipnr);
4544		}
4545	}
4546
4547	ops->retlen = ops->len - writelen;
4548	if (unlikely(oob))
4549		ops->oobretlen = ops->ooblen;
4550
4551err_out:
4552	nand_deselect_target(chip);
4553	return ret;
4554}
4555
4556/**
4557 * panic_nand_write - [MTD Interface] NAND write with ECC
4558 * @mtd: MTD device structure
4559 * @to: offset to write to
4560 * @len: number of bytes to write
4561 * @retlen: pointer to variable to store the number of written bytes
4562 * @buf: the data to write
4563 *
4564 * NAND write with ECC. Used when performing writes in interrupt context, this
4565 * may for example be called by mtdoops when writing an oops while in panic.
4566 */
4567static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
4568			    size_t *retlen, const uint8_t *buf)
4569{
4570	struct nand_chip *chip = mtd_to_nand(mtd);
4571	int chipnr = (int)(to >> chip->chip_shift);
4572	struct mtd_oob_ops ops;
4573	int ret;
4574
4575	nand_select_target(chip, chipnr);
4576
4577	/* Wait for the device to get ready */
4578	panic_nand_wait(chip, 400);
4579
4580	memset(&ops, 0, sizeof(ops));
4581	ops.len = len;
4582	ops.datbuf = (uint8_t *)buf;
4583	ops.mode = MTD_OPS_PLACE_OOB;
4584
4585	ret = nand_do_write_ops(chip, to, &ops);
4586
4587	*retlen = ops.retlen;
4588	return ret;
4589}
4590
4591/**
4592 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
4593 * @mtd: MTD device structure
4594 * @to: offset to write to
4595 * @ops: oob operation description structure
4596 */
4597static int nand_write_oob(struct mtd_info *mtd, loff_t to,
4598			  struct mtd_oob_ops *ops)
4599{
4600	struct nand_chip *chip = mtd_to_nand(mtd);
4601	int ret = 0;
4602
4603	ops->retlen = 0;
4604
4605	nand_get_device(chip);
4606
4607	switch (ops->mode) {
4608	case MTD_OPS_PLACE_OOB:
4609	case MTD_OPS_AUTO_OOB:
4610	case MTD_OPS_RAW:
4611		break;
4612
4613	default:
4614		goto out;
4615	}
4616
4617	if (!ops->datbuf)
4618		ret = nand_do_write_oob(chip, to, ops);
4619	else
4620		ret = nand_do_write_ops(chip, to, ops);
4621
4622out:
4623	nand_release_device(chip);
4624	return ret;
4625}
4626
4627/**
4628 * nand_erase - [MTD Interface] erase block(s)
4629 * @mtd: MTD device structure
4630 * @instr: erase instruction
4631 *
4632 * Erase one ore more blocks.
4633 */
4634static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
4635{
4636	return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
4637}
4638
4639/**
4640 * nand_erase_nand - [INTERN] erase block(s)
4641 * @chip: NAND chip object
4642 * @instr: erase instruction
4643 * @allowbbt: allow erasing the bbt area
4644 *
4645 * Erase one ore more blocks.
4646 */
4647int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
4648		    int allowbbt)
4649{
4650	int page, pages_per_block, ret, chipnr;
4651	loff_t len;
4652
4653	pr_debug("%s: start = 0x%012llx, len = %llu\n",
4654			__func__, (unsigned long long)instr->addr,
4655			(unsigned long long)instr->len);
4656
4657	if (check_offs_len(chip, instr->addr, instr->len))
4658		return -EINVAL;
4659
4660	/* Check if the region is secured */
4661	if (nand_region_is_secured(chip, instr->addr, instr->len))
4662		return -EIO;
4663
4664	/* Grab the lock and see if the device is available */
4665	nand_get_device(chip);
4666
4667	/* Shift to get first page */
4668	page = (int)(instr->addr >> chip->page_shift);
4669	chipnr = (int)(instr->addr >> chip->chip_shift);
4670
4671	/* Calculate pages in each block */
4672	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
4673
4674	/* Select the NAND device */
4675	nand_select_target(chip, chipnr);
4676
4677	/* Check, if it is write protected */
4678	if (nand_check_wp(chip)) {
4679		pr_debug("%s: device is write protected!\n",
4680				__func__);
4681		ret = -EIO;
4682		goto erase_exit;
4683	}
4684
4685	/* Loop through the pages */
4686	len = instr->len;
4687
4688	while (len) {
4689		loff_t ofs = (loff_t)page << chip->page_shift;
4690
4691		/* Check if we have a bad block, we do not erase bad blocks! */
4692		if (nand_block_checkbad(chip, ((loff_t) page) <<
4693					chip->page_shift, allowbbt)) {
4694			pr_warn("%s: attempt to erase a bad block at 0x%08llx\n",
4695				    __func__, (unsigned long long)ofs);
4696			ret = -EIO;
4697			goto erase_exit;
4698		}
4699
4700		/*
4701		 * Invalidate the page cache, if we erase the block which
4702		 * contains the current cached page.
4703		 */
4704		if (page <= chip->pagecache.page && chip->pagecache.page <
4705		    (page + pages_per_block))
4706			chip->pagecache.page = -1;
4707
4708		ret = nand_erase_op(chip, (page & chip->pagemask) >>
4709				    (chip->phys_erase_shift - chip->page_shift));
4710		if (ret) {
4711			pr_debug("%s: failed erase, page 0x%08x\n",
4712					__func__, page);
4713			instr->fail_addr = ofs;
4714			goto erase_exit;
4715		}
4716
4717		/* Increment page address and decrement length */
4718		len -= (1ULL << chip->phys_erase_shift);
4719		page += pages_per_block;
4720
4721		/* Check, if we cross a chip boundary */
4722		if (len && !(page & chip->pagemask)) {
4723			chipnr++;
4724			nand_deselect_target(chip);
4725			nand_select_target(chip, chipnr);
4726		}
4727	}
4728
4729	ret = 0;
4730erase_exit:
4731
4732	/* Deselect and wake up anyone waiting on the device */
4733	nand_deselect_target(chip);
4734	nand_release_device(chip);
4735
4736	/* Return more or less happy */
4737	return ret;
4738}
4739
4740/**
4741 * nand_sync - [MTD Interface] sync
4742 * @mtd: MTD device structure
4743 *
4744 * Sync is actually a wait for chip ready function.
4745 */
4746static void nand_sync(struct mtd_info *mtd)
4747{
4748	struct nand_chip *chip = mtd_to_nand(mtd);
4749
4750	pr_debug("%s: called\n", __func__);
4751
4752	/* Grab the lock and see if the device is available */
4753	nand_get_device(chip);
4754	/* Release it and go back */
4755	nand_release_device(chip);
4756}
4757
4758/**
4759 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
4760 * @mtd: MTD device structure
4761 * @offs: offset relative to mtd start
4762 */
4763static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
4764{
4765	struct nand_chip *chip = mtd_to_nand(mtd);
4766	int chipnr = (int)(offs >> chip->chip_shift);
4767	int ret;
4768
4769	/* Select the NAND device */
4770	nand_get_device(chip);
4771
4772	nand_select_target(chip, chipnr);
4773
4774	ret = nand_block_checkbad(chip, offs, 0);
4775
4776	nand_deselect_target(chip);
4777	nand_release_device(chip);
4778
4779	return ret;
4780}
4781
4782/**
4783 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
4784 * @mtd: MTD device structure
4785 * @ofs: offset relative to mtd start
4786 */
4787static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
4788{
4789	int ret;
4790
4791	ret = nand_block_isbad(mtd, ofs);
4792	if (ret) {
4793		/* If it was bad already, return success and do nothing */
4794		if (ret > 0)
4795			return 0;
4796		return ret;
4797	}
4798
4799	return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
4800}
4801
4802/**
4803 * nand_suspend - [MTD Interface] Suspend the NAND flash
4804 * @mtd: MTD device structure
4805 *
4806 * Returns 0 for success or negative error code otherwise.
4807 */
4808static int nand_suspend(struct mtd_info *mtd)
4809{
4810	struct nand_chip *chip = mtd_to_nand(mtd);
4811	int ret = 0;
4812
4813	mutex_lock(&chip->lock);
4814	if (chip->ops.suspend)
4815		ret = chip->ops.suspend(chip);
4816	if (!ret)
4817		chip->suspended = 1;
4818	mutex_unlock(&chip->lock);
4819
4820	return ret;
4821}
4822
4823/**
4824 * nand_resume - [MTD Interface] Resume the NAND flash
4825 * @mtd: MTD device structure
4826 */
4827static void nand_resume(struct mtd_info *mtd)
4828{
4829	struct nand_chip *chip = mtd_to_nand(mtd);
4830
4831	mutex_lock(&chip->lock);
4832	if (chip->suspended) {
4833		if (chip->ops.resume)
4834			chip->ops.resume(chip);
4835		chip->suspended = 0;
4836	} else {
4837		pr_err("%s called for a chip which is not in suspended state\n",
4838			__func__);
4839	}
4840	mutex_unlock(&chip->lock);
4841
4842	wake_up_all(&chip->resume_wq);
4843}
4844
4845/**
4846 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
4847 *                 prevent further operations
4848 * @mtd: MTD device structure
4849 */
4850static void nand_shutdown(struct mtd_info *mtd)
4851{
4852	nand_suspend(mtd);
4853}
4854
4855/**
4856 * nand_lock - [MTD Interface] Lock the NAND flash
4857 * @mtd: MTD device structure
4858 * @ofs: offset byte address
4859 * @len: number of bytes to lock (must be a multiple of block/page size)
4860 */
4861static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4862{
4863	struct nand_chip *chip = mtd_to_nand(mtd);
4864
4865	if (!chip->ops.lock_area)
4866		return -ENOTSUPP;
4867
4868	return chip->ops.lock_area(chip, ofs, len);
4869}
4870
4871/**
4872 * nand_unlock - [MTD Interface] Unlock the NAND flash
4873 * @mtd: MTD device structure
4874 * @ofs: offset byte address
4875 * @len: number of bytes to unlock (must be a multiple of block/page size)
4876 */
4877static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
4878{
4879	struct nand_chip *chip = mtd_to_nand(mtd);
4880
4881	if (!chip->ops.unlock_area)
4882		return -ENOTSUPP;
4883
4884	return chip->ops.unlock_area(chip, ofs, len);
4885}
4886
4887/* Set default functions */
4888static void nand_set_defaults(struct nand_chip *chip)
4889{
4890	/* If no controller is provided, use the dummy, legacy one. */
4891	if (!chip->controller) {
4892		chip->controller = &chip->legacy.dummy_controller;
4893		nand_controller_init(chip->controller);
4894	}
4895
4896	nand_legacy_set_defaults(chip);
4897
4898	if (!chip->buf_align)
4899		chip->buf_align = 1;
4900}
4901
4902/* Sanitize ONFI strings so we can safely print them */
4903void sanitize_string(uint8_t *s, size_t len)
4904{
4905	ssize_t i;
4906
4907	/* Null terminate */
4908	s[len - 1] = 0;
4909
4910	/* Remove non printable chars */
4911	for (i = 0; i < len - 1; i++) {
4912		if (s[i] < ' ' || s[i] > 127)
4913			s[i] = '?';
4914	}
4915
4916	/* Remove trailing spaces */
4917	strim(s);
4918}
4919
4920/*
4921 * nand_id_has_period - Check if an ID string has a given wraparound period
4922 * @id_data: the ID string
4923 * @arrlen: the length of the @id_data array
4924 * @period: the period of repitition
4925 *
4926 * Check if an ID string is repeated within a given sequence of bytes at
4927 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
4928 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
4929 * if the repetition has a period of @period; otherwise, returns zero.
4930 */
4931static int nand_id_has_period(u8 *id_data, int arrlen, int period)
4932{
4933	int i, j;
4934	for (i = 0; i < period; i++)
4935		for (j = i + period; j < arrlen; j += period)
4936			if (id_data[i] != id_data[j])
4937				return 0;
4938	return 1;
4939}
4940
4941/*
4942 * nand_id_len - Get the length of an ID string returned by CMD_READID
4943 * @id_data: the ID string
4944 * @arrlen: the length of the @id_data array
4945
4946 * Returns the length of the ID string, according to known wraparound/trailing
4947 * zero patterns. If no pattern exists, returns the length of the array.
4948 */
4949static int nand_id_len(u8 *id_data, int arrlen)
4950{
4951	int last_nonzero, period;
4952
4953	/* Find last non-zero byte */
4954	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
4955		if (id_data[last_nonzero])
4956			break;
4957
4958	/* All zeros */
4959	if (last_nonzero < 0)
4960		return 0;
4961
4962	/* Calculate wraparound period */
4963	for (period = 1; period < arrlen; period++)
4964		if (nand_id_has_period(id_data, arrlen, period))
4965			break;
4966
4967	/* There's a repeated pattern */
4968	if (period < arrlen)
4969		return period;
4970
4971	/* There are trailing zeros */
4972	if (last_nonzero < arrlen - 1)
4973		return last_nonzero + 1;
4974
4975	/* No pattern detected */
4976	return arrlen;
4977}
4978
4979/* Extract the bits of per cell from the 3rd byte of the extended ID */
4980static int nand_get_bits_per_cell(u8 cellinfo)
4981{
4982	int bits;
4983
4984	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
4985	bits >>= NAND_CI_CELLTYPE_SHIFT;
4986	return bits + 1;
4987}
4988
4989/*
4990 * Many new NAND share similar device ID codes, which represent the size of the
4991 * chip. The rest of the parameters must be decoded according to generic or
4992 * manufacturer-specific "extended ID" decoding patterns.
4993 */
4994void nand_decode_ext_id(struct nand_chip *chip)
4995{
4996	struct nand_memory_organization *memorg;
4997	struct mtd_info *mtd = nand_to_mtd(chip);
4998	int extid;
4999	u8 *id_data = chip->id.data;
5000
5001	memorg = nanddev_get_memorg(&chip->base);
5002
5003	/* The 3rd id byte holds MLC / multichip data */
5004	memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
5005	/* The 4th id byte is the important one */
5006	extid = id_data[3];
5007
5008	/* Calc pagesize */
5009	memorg->pagesize = 1024 << (extid & 0x03);
5010	mtd->writesize = memorg->pagesize;
5011	extid >>= 2;
5012	/* Calc oobsize */
5013	memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
5014	mtd->oobsize = memorg->oobsize;
5015	extid >>= 2;
5016	/* Calc blocksize. Blocksize is multiples of 64KiB */
5017	memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
5018				       memorg->pagesize;
5019	mtd->erasesize = (64 * 1024) << (extid & 0x03);
5020	extid >>= 2;
5021	/* Get buswidth information */
5022	if (extid & 0x1)
5023		chip->options |= NAND_BUSWIDTH_16;
5024}
5025EXPORT_SYMBOL_GPL(nand_decode_ext_id);
5026
5027/*
5028 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
5029 * decodes a matching ID table entry and assigns the MTD size parameters for
5030 * the chip.
5031 */
5032static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
5033{
5034	struct mtd_info *mtd = nand_to_mtd(chip);
5035	struct nand_memory_organization *memorg;
5036
5037	memorg = nanddev_get_memorg(&chip->base);
5038
5039	memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
5040	mtd->erasesize = type->erasesize;
5041	memorg->pagesize = type->pagesize;
5042	mtd->writesize = memorg->pagesize;
5043	memorg->oobsize = memorg->pagesize / 32;
5044	mtd->oobsize = memorg->oobsize;
5045
5046	/* All legacy ID NAND are small-page, SLC */
5047	memorg->bits_per_cell = 1;
5048}
5049
5050/*
5051 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
5052 * heuristic patterns using various detected parameters (e.g., manufacturer,
5053 * page size, cell-type information).
5054 */
5055static void nand_decode_bbm_options(struct nand_chip *chip)
5056{
5057	struct mtd_info *mtd = nand_to_mtd(chip);
5058
5059	/* Set the bad block position */
5060	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
5061		chip->badblockpos = NAND_BBM_POS_LARGE;
5062	else
5063		chip->badblockpos = NAND_BBM_POS_SMALL;
5064}
5065
5066static inline bool is_full_id_nand(struct nand_flash_dev *type)
5067{
5068	return type->id_len;
5069}
5070
5071static bool find_full_id_nand(struct nand_chip *chip,
5072			      struct nand_flash_dev *type)
5073{
5074	struct nand_device *base = &chip->base;
5075	struct nand_ecc_props requirements;
5076	struct mtd_info *mtd = nand_to_mtd(chip);
5077	struct nand_memory_organization *memorg;
5078	u8 *id_data = chip->id.data;
5079
5080	memorg = nanddev_get_memorg(&chip->base);
5081
5082	if (!strncmp(type->id, id_data, type->id_len)) {
5083		memorg->pagesize = type->pagesize;
5084		mtd->writesize = memorg->pagesize;
5085		memorg->pages_per_eraseblock = type->erasesize /
5086					       type->pagesize;
5087		mtd->erasesize = type->erasesize;
5088		memorg->oobsize = type->oobsize;
5089		mtd->oobsize = memorg->oobsize;
5090
5091		memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
5092		memorg->eraseblocks_per_lun =
5093			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5094					   memorg->pagesize *
5095					   memorg->pages_per_eraseblock);
5096		chip->options |= type->options;
5097		requirements.strength = NAND_ECC_STRENGTH(type);
5098		requirements.step_size = NAND_ECC_STEP(type);
5099		nanddev_set_ecc_requirements(base, &requirements);
5100
5101		chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5102		if (!chip->parameters.model)
5103			return false;
5104
5105		return true;
5106	}
5107	return false;
5108}
5109
5110/*
5111 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
5112 * compliant and does not have a full-id or legacy-id entry in the nand_ids
5113 * table.
5114 */
5115static void nand_manufacturer_detect(struct nand_chip *chip)
5116{
5117	/*
5118	 * Try manufacturer detection if available and use
5119	 * nand_decode_ext_id() otherwise.
5120	 */
5121	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5122	    chip->manufacturer.desc->ops->detect) {
5123		struct nand_memory_organization *memorg;
5124
5125		memorg = nanddev_get_memorg(&chip->base);
5126
5127		/* The 3rd id byte holds MLC / multichip data */
5128		memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
5129		chip->manufacturer.desc->ops->detect(chip);
5130	} else {
5131		nand_decode_ext_id(chip);
5132	}
5133}
5134
5135/*
5136 * Manufacturer initialization. This function is called for all NANDs including
5137 * ONFI and JEDEC compliant ones.
5138 * Manufacturer drivers should put all their specific initialization code in
5139 * their ->init() hook.
5140 */
5141static int nand_manufacturer_init(struct nand_chip *chip)
5142{
5143	if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
5144	    !chip->manufacturer.desc->ops->init)
5145		return 0;
5146
5147	return chip->manufacturer.desc->ops->init(chip);
5148}
5149
5150/*
5151 * Manufacturer cleanup. This function is called for all NANDs including
5152 * ONFI and JEDEC compliant ones.
5153 * Manufacturer drivers should put all their specific cleanup code in their
5154 * ->cleanup() hook.
5155 */
5156static void nand_manufacturer_cleanup(struct nand_chip *chip)
5157{
5158	/* Release manufacturer private data */
5159	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
5160	    chip->manufacturer.desc->ops->cleanup)
5161		chip->manufacturer.desc->ops->cleanup(chip);
5162}
5163
5164static const char *
5165nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
5166{
5167	return manufacturer_desc ? manufacturer_desc->name : "Unknown";
5168}
5169
5170static void rawnand_check_data_only_read_support(struct nand_chip *chip)
5171{
5172	/* Use an arbitrary size for the check */
5173	if (!nand_read_data_op(chip, NULL, SZ_512, true, true))
5174		chip->controller->supported_op.data_only_read = 1;
5175}
5176
5177static void rawnand_early_check_supported_ops(struct nand_chip *chip)
5178{
5179	/* The supported_op fields should not be set by individual drivers */
5180	WARN_ON_ONCE(chip->controller->supported_op.data_only_read);
5181
5182	if (!nand_has_exec_op(chip))
5183		return;
5184
5185	rawnand_check_data_only_read_support(chip);
5186}
5187
5188static void rawnand_check_cont_read_support(struct nand_chip *chip)
5189{
5190	struct mtd_info *mtd = nand_to_mtd(chip);
5191
5192	if (!chip->parameters.supports_read_cache)
5193		return;
5194
5195	if (chip->read_retries)
5196		return;
5197
5198	if (!nand_lp_exec_cont_read_page_op(chip, 0, 0, NULL,
5199					    mtd->writesize, true))
5200		chip->controller->supported_op.cont_read = 1;
5201}
5202
5203static void rawnand_late_check_supported_ops(struct nand_chip *chip)
5204{
5205	/* The supported_op fields should not be set by individual drivers */
5206	WARN_ON_ONCE(chip->controller->supported_op.cont_read);
5207
5208	/*
5209	 * Too many devices do not support sequential cached reads with on-die
5210	 * ECC correction enabled, so in this case refuse to perform the
5211	 * automation.
5212	 */
5213	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE)
5214		return;
5215
5216	if (!nand_has_exec_op(chip))
5217		return;
5218
5219	/*
5220	 * For now, continuous reads can only be used with the core page helpers.
5221	 * This can be extended later.
5222	 */
5223	if (!(chip->ecc.read_page == nand_read_page_hwecc ||
5224	      chip->ecc.read_page == nand_read_page_syndrome ||
5225	      chip->ecc.read_page == nand_read_page_swecc))
5226		return;
5227
5228	rawnand_check_cont_read_support(chip);
5229}
5230
5231/*
5232 * Get the flash and manufacturer id and lookup if the type is supported.
5233 */
5234static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
5235{
5236	const struct nand_manufacturer_desc *manufacturer_desc;
5237	struct mtd_info *mtd = nand_to_mtd(chip);
5238	struct nand_memory_organization *memorg;
5239	int busw, ret;
5240	u8 *id_data = chip->id.data;
5241	u8 maf_id, dev_id;
5242	u64 targetsize;
5243
5244	/*
5245	 * Let's start by initializing memorg fields that might be left
5246	 * unassigned by the ID-based detection logic.
5247	 */
5248	memorg = nanddev_get_memorg(&chip->base);
5249	memorg->planes_per_lun = 1;
5250	memorg->luns_per_target = 1;
5251
5252	/*
5253	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
5254	 * after power-up.
5255	 */
5256	ret = nand_reset(chip, 0);
5257	if (ret)
5258		return ret;
5259
5260	/* Select the device */
5261	nand_select_target(chip, 0);
5262
5263	rawnand_early_check_supported_ops(chip);
5264
5265	/* Send the command for reading device ID */
5266	ret = nand_readid_op(chip, 0, id_data, 2);
5267	if (ret)
5268		return ret;
5269
5270	/* Read manufacturer and device IDs */
5271	maf_id = id_data[0];
5272	dev_id = id_data[1];
5273
5274	/*
5275	 * Try again to make sure, as some systems the bus-hold or other
5276	 * interface concerns can cause random data which looks like a
5277	 * possibly credible NAND flash to appear. If the two results do
5278	 * not match, ignore the device completely.
5279	 */
5280
5281	/* Read entire ID string */
5282	ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
5283	if (ret)
5284		return ret;
5285
5286	if (id_data[0] != maf_id || id_data[1] != dev_id) {
5287		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
5288			maf_id, dev_id, id_data[0], id_data[1]);
5289		return -ENODEV;
5290	}
5291
5292	chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
5293
5294	/* Try to identify manufacturer */
5295	manufacturer_desc = nand_get_manufacturer_desc(maf_id);
5296	chip->manufacturer.desc = manufacturer_desc;
5297
5298	if (!type)
5299		type = nand_flash_ids;
5300
5301	/*
5302	 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
5303	 * override it.
5304	 * This is required to make sure initial NAND bus width set by the
5305	 * NAND controller driver is coherent with the real NAND bus width
5306	 * (extracted by auto-detection code).
5307	 */
5308	busw = chip->options & NAND_BUSWIDTH_16;
5309
5310	/*
5311	 * The flag is only set (never cleared), reset it to its default value
5312	 * before starting auto-detection.
5313	 */
5314	chip->options &= ~NAND_BUSWIDTH_16;
5315
5316	for (; type->name != NULL; type++) {
5317		if (is_full_id_nand(type)) {
5318			if (find_full_id_nand(chip, type))
5319				goto ident_done;
5320		} else if (dev_id == type->dev_id) {
5321			break;
5322		}
5323	}
5324
5325	if (!type->name || !type->pagesize) {
5326		/* Check if the chip is ONFI compliant */
5327		ret = nand_onfi_detect(chip);
5328		if (ret < 0)
5329			return ret;
5330		else if (ret)
5331			goto ident_done;
5332
5333		/* Check if the chip is JEDEC compliant */
5334		ret = nand_jedec_detect(chip);
5335		if (ret < 0)
5336			return ret;
5337		else if (ret)
5338			goto ident_done;
5339	}
5340
5341	if (!type->name)
5342		return -ENODEV;
5343
5344	chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
5345	if (!chip->parameters.model)
5346		return -ENOMEM;
5347
5348	if (!type->pagesize)
5349		nand_manufacturer_detect(chip);
5350	else
5351		nand_decode_id(chip, type);
5352
5353	/* Get chip options */
5354	chip->options |= type->options;
5355
5356	memorg->eraseblocks_per_lun =
5357			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
5358					   memorg->pagesize *
5359					   memorg->pages_per_eraseblock);
5360
5361ident_done:
5362	if (!mtd->name)
5363		mtd->name = chip->parameters.model;
5364
5365	if (chip->options & NAND_BUSWIDTH_AUTO) {
5366		WARN_ON(busw & NAND_BUSWIDTH_16);
5367		nand_set_defaults(chip);
5368	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
5369		/*
5370		 * Check, if buswidth is correct. Hardware drivers should set
5371		 * chip correct!
5372		 */
5373		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5374			maf_id, dev_id);
5375		pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5376			mtd->name);
5377		pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
5378			(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
5379		ret = -EINVAL;
5380
5381		goto free_detect_allocation;
5382	}
5383
5384	nand_decode_bbm_options(chip);
5385
5386	/* Calculate the address shift from the page size */
5387	chip->page_shift = ffs(mtd->writesize) - 1;
5388	/* Convert chipsize to number of pages per chip -1 */
5389	targetsize = nanddev_target_size(&chip->base);
5390	chip->pagemask = (targetsize >> chip->page_shift) - 1;
5391
5392	chip->bbt_erase_shift = chip->phys_erase_shift =
5393		ffs(mtd->erasesize) - 1;
5394	if (targetsize & 0xffffffff)
5395		chip->chip_shift = ffs((unsigned)targetsize) - 1;
5396	else {
5397		chip->chip_shift = ffs((unsigned)(targetsize >> 32));
5398		chip->chip_shift += 32 - 1;
5399	}
5400
5401	if (chip->chip_shift - chip->page_shift > 16)
5402		chip->options |= NAND_ROW_ADDR_3;
5403
5404	chip->badblockbits = 8;
5405
5406	nand_legacy_adjust_cmdfunc(chip);
5407
5408	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
5409		maf_id, dev_id);
5410	pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
5411		chip->parameters.model);
5412	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
5413		(int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
5414		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
5415	return 0;
5416
5417free_detect_allocation:
5418	kfree(chip->parameters.model);
5419
5420	return ret;
5421}
5422
5423static enum nand_ecc_engine_type
5424of_get_rawnand_ecc_engine_type_legacy(struct device_node *np)
5425{
5426	enum nand_ecc_legacy_mode {
5427		NAND_ECC_INVALID,
5428		NAND_ECC_NONE,
5429		NAND_ECC_SOFT,
5430		NAND_ECC_SOFT_BCH,
5431		NAND_ECC_HW,
5432		NAND_ECC_HW_SYNDROME,
5433		NAND_ECC_ON_DIE,
5434	};
5435	const char * const nand_ecc_legacy_modes[] = {
5436		[NAND_ECC_NONE]		= "none",
5437		[NAND_ECC_SOFT]		= "soft",
5438		[NAND_ECC_SOFT_BCH]	= "soft_bch",
5439		[NAND_ECC_HW]		= "hw",
5440		[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
5441		[NAND_ECC_ON_DIE]	= "on-die",
5442	};
5443	enum nand_ecc_legacy_mode eng_type;
5444	const char *pm;
5445	int err;
5446
5447	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5448	if (err)
5449		return NAND_ECC_ENGINE_TYPE_INVALID;
5450
5451	for (eng_type = NAND_ECC_NONE;
5452	     eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) {
5453		if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) {
5454			switch (eng_type) {
5455			case NAND_ECC_NONE:
5456				return NAND_ECC_ENGINE_TYPE_NONE;
5457			case NAND_ECC_SOFT:
5458			case NAND_ECC_SOFT_BCH:
5459				return NAND_ECC_ENGINE_TYPE_SOFT;
5460			case NAND_ECC_HW:
5461			case NAND_ECC_HW_SYNDROME:
5462				return NAND_ECC_ENGINE_TYPE_ON_HOST;
5463			case NAND_ECC_ON_DIE:
5464				return NAND_ECC_ENGINE_TYPE_ON_DIE;
5465			default:
5466				break;
5467			}
5468		}
5469	}
5470
5471	return NAND_ECC_ENGINE_TYPE_INVALID;
5472}
5473
5474static enum nand_ecc_placement
5475of_get_rawnand_ecc_placement_legacy(struct device_node *np)
5476{
5477	const char *pm;
5478	int err;
5479
5480	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5481	if (!err) {
5482		if (!strcasecmp(pm, "hw_syndrome"))
5483			return NAND_ECC_PLACEMENT_INTERLEAVED;
5484	}
5485
5486	return NAND_ECC_PLACEMENT_UNKNOWN;
5487}
5488
5489static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np)
5490{
5491	const char *pm;
5492	int err;
5493
5494	err = of_property_read_string(np, "nand-ecc-mode", &pm);
5495	if (!err) {
5496		if (!strcasecmp(pm, "soft"))
5497			return NAND_ECC_ALGO_HAMMING;
5498		else if (!strcasecmp(pm, "soft_bch"))
5499			return NAND_ECC_ALGO_BCH;
5500	}
5501
5502	return NAND_ECC_ALGO_UNKNOWN;
5503}
5504
5505static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip)
5506{
5507	struct device_node *dn = nand_get_flash_node(chip);
5508	struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf;
5509
5510	if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5511		user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn);
5512
5513	if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN)
5514		user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn);
5515
5516	if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN)
5517		user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn);
5518}
5519
5520static int of_get_nand_bus_width(struct nand_chip *chip)
5521{
5522	struct device_node *dn = nand_get_flash_node(chip);
5523	u32 val;
5524	int ret;
5525
5526	ret = of_property_read_u32(dn, "nand-bus-width", &val);
5527	if (ret == -EINVAL)
5528		/* Buswidth defaults to 8 if the property does not exist .*/
5529		return 0;
5530	else if (ret)
5531		return ret;
5532
5533	if (val == 16)
5534		chip->options |= NAND_BUSWIDTH_16;
5535	else if (val != 8)
5536		return -EINVAL;
5537	return 0;
5538}
5539
5540static int of_get_nand_secure_regions(struct nand_chip *chip)
5541{
5542	struct device_node *dn = nand_get_flash_node(chip);
5543	struct property *prop;
5544	int nr_elem, i, j;
5545
5546	/* Only proceed if the "secure-regions" property is present in DT */
5547	prop = of_find_property(dn, "secure-regions", NULL);
5548	if (!prop)
5549		return 0;
5550
5551	nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64));
5552	if (nr_elem <= 0)
5553		return nr_elem;
5554
5555	chip->nr_secure_regions = nr_elem / 2;
5556	chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions),
5557				       GFP_KERNEL);
5558	if (!chip->secure_regions)
5559		return -ENOMEM;
5560
5561	for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) {
5562		of_property_read_u64_index(dn, "secure-regions", j,
5563					   &chip->secure_regions[i].offset);
5564		of_property_read_u64_index(dn, "secure-regions", j + 1,
5565					   &chip->secure_regions[i].size);
5566	}
5567
5568	return 0;
5569}
5570
5571/**
5572 * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller
5573 * @dev: Device that will be parsed. Also used for managed allocations.
5574 * @cs_array: Array of GPIO desc pointers allocated on success
5575 * @ncs_array: Number of entries in @cs_array updated on success.
5576 * @return 0 on success, an error otherwise.
5577 */
5578int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
5579			     unsigned int *ncs_array)
5580{
5581	struct gpio_desc **descs;
5582	int ndescs, i;
5583
5584	ndescs = gpiod_count(dev, "cs");
5585	if (ndescs < 0) {
5586		dev_dbg(dev, "No valid cs-gpios property\n");
5587		return 0;
5588	}
5589
5590	descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL);
5591	if (!descs)
5592		return -ENOMEM;
5593
5594	for (i = 0; i < ndescs; i++) {
5595		descs[i] = gpiod_get_index_optional(dev, "cs", i,
5596						    GPIOD_OUT_HIGH);
5597		if (IS_ERR(descs[i]))
5598			return PTR_ERR(descs[i]);
5599	}
5600
5601	*ncs_array = ndescs;
5602	*cs_array = descs;
5603
5604	return 0;
5605}
5606EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs);
5607
5608static int rawnand_dt_init(struct nand_chip *chip)
5609{
5610	struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip));
5611	struct device_node *dn = nand_get_flash_node(chip);
5612	int ret;
5613
5614	if (!dn)
5615		return 0;
5616
5617	ret = of_get_nand_bus_width(chip);
5618	if (ret)
5619		return ret;
5620
5621	if (of_property_read_bool(dn, "nand-is-boot-medium"))
5622		chip->options |= NAND_IS_BOOT_MEDIUM;
5623
5624	if (of_property_read_bool(dn, "nand-on-flash-bbt"))
5625		chip->bbt_options |= NAND_BBT_USE_FLASH;
5626
5627	of_get_nand_ecc_user_config(nand);
5628	of_get_nand_ecc_legacy_user_config(chip);
5629
5630	/*
5631	 * If neither the user nor the NAND controller have requested a specific
5632	 * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST.
5633	 */
5634	nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
5635
5636	/*
5637	 * Use the user requested engine type, unless there is none, in this
5638	 * case default to the NAND controller choice, otherwise fallback to
5639	 * the raw NAND default one.
5640	 */
5641	if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID)
5642		chip->ecc.engine_type = nand->ecc.user_conf.engine_type;
5643	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
5644		chip->ecc.engine_type = nand->ecc.defaults.engine_type;
5645
5646	chip->ecc.placement = nand->ecc.user_conf.placement;
5647	chip->ecc.algo = nand->ecc.user_conf.algo;
5648	chip->ecc.strength = nand->ecc.user_conf.strength;
5649	chip->ecc.size = nand->ecc.user_conf.step_size;
5650
5651	return 0;
5652}
5653
5654/**
5655 * nand_scan_ident - Scan for the NAND device
5656 * @chip: NAND chip object
5657 * @maxchips: number of chips to scan for
5658 * @table: alternative NAND ID table
5659 *
5660 * This is the first phase of the normal nand_scan() function. It reads the
5661 * flash ID and sets up MTD fields accordingly.
5662 *
5663 * This helper used to be called directly from controller drivers that needed
5664 * to tweak some ECC-related parameters before nand_scan_tail(). This separation
5665 * prevented dynamic allocations during this phase which was unconvenient and
5666 * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
5667 */
5668static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
5669			   struct nand_flash_dev *table)
5670{
5671	struct mtd_info *mtd = nand_to_mtd(chip);
5672	struct nand_memory_organization *memorg;
5673	int nand_maf_id, nand_dev_id;
5674	unsigned int i;
5675	int ret;
5676
5677	memorg = nanddev_get_memorg(&chip->base);
5678
5679	/* Assume all dies are deselected when we enter nand_scan_ident(). */
5680	chip->cur_cs = -1;
5681
5682	mutex_init(&chip->lock);
5683	init_waitqueue_head(&chip->resume_wq);
5684
5685	/* Enforce the right timings for reset/detection */
5686	chip->current_interface_config = nand_get_reset_interface_config();
5687
5688	ret = rawnand_dt_init(chip);
5689	if (ret)
5690		return ret;
5691
5692	if (!mtd->name && mtd->dev.parent)
5693		mtd->name = dev_name(mtd->dev.parent);
5694
5695	/* Set the default functions */
5696	nand_set_defaults(chip);
5697
5698	ret = nand_legacy_check_hooks(chip);
5699	if (ret)
5700		return ret;
5701
5702	memorg->ntargets = maxchips;
5703
5704	/* Read the flash type */
5705	ret = nand_detect(chip, table);
5706	if (ret) {
5707		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
5708			pr_warn("No NAND device found\n");
5709		nand_deselect_target(chip);
5710		return ret;
5711	}
5712
5713	nand_maf_id = chip->id.data[0];
5714	nand_dev_id = chip->id.data[1];
5715
5716	nand_deselect_target(chip);
5717
5718	/* Check for a chip array */
5719	for (i = 1; i < maxchips; i++) {
5720		u8 id[2];
5721
5722		/* See comment in nand_get_flash_type for reset */
5723		ret = nand_reset(chip, i);
5724		if (ret)
5725			break;
5726
5727		nand_select_target(chip, i);
5728		/* Send the command for reading device ID */
5729		ret = nand_readid_op(chip, 0, id, sizeof(id));
5730		if (ret)
5731			break;
5732		/* Read manufacturer and device IDs */
5733		if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
5734			nand_deselect_target(chip);
5735			break;
5736		}
5737		nand_deselect_target(chip);
5738	}
5739	if (i > 1)
5740		pr_info("%d chips detected\n", i);
5741
5742	/* Store the number of chips and calc total size for mtd */
5743	memorg->ntargets = i;
5744	mtd->size = i * nanddev_target_size(&chip->base);
5745
5746	return 0;
5747}
5748
5749static void nand_scan_ident_cleanup(struct nand_chip *chip)
5750{
5751	kfree(chip->parameters.model);
5752	kfree(chip->parameters.onfi);
5753}
5754
5755int rawnand_sw_hamming_init(struct nand_chip *chip)
5756{
5757	struct nand_ecc_sw_hamming_conf *engine_conf;
5758	struct nand_device *base = &chip->base;
5759	int ret;
5760
5761	base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5762	base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING;
5763	base->ecc.user_conf.strength = chip->ecc.strength;
5764	base->ecc.user_conf.step_size = chip->ecc.size;
5765
5766	ret = nand_ecc_sw_hamming_init_ctx(base);
5767	if (ret)
5768		return ret;
5769
5770	engine_conf = base->ecc.ctx.priv;
5771
5772	if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER)
5773		engine_conf->sm_order = true;
5774
5775	chip->ecc.size = base->ecc.ctx.conf.step_size;
5776	chip->ecc.strength = base->ecc.ctx.conf.strength;
5777	chip->ecc.total = base->ecc.ctx.total;
5778	chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5779	chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5780
5781	return 0;
5782}
5783EXPORT_SYMBOL(rawnand_sw_hamming_init);
5784
5785int rawnand_sw_hamming_calculate(struct nand_chip *chip,
5786				 const unsigned char *buf,
5787				 unsigned char *code)
5788{
5789	struct nand_device *base = &chip->base;
5790
5791	return nand_ecc_sw_hamming_calculate(base, buf, code);
5792}
5793EXPORT_SYMBOL(rawnand_sw_hamming_calculate);
5794
5795int rawnand_sw_hamming_correct(struct nand_chip *chip,
5796			       unsigned char *buf,
5797			       unsigned char *read_ecc,
5798			       unsigned char *calc_ecc)
5799{
5800	struct nand_device *base = &chip->base;
5801
5802	return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc);
5803}
5804EXPORT_SYMBOL(rawnand_sw_hamming_correct);
5805
5806void rawnand_sw_hamming_cleanup(struct nand_chip *chip)
5807{
5808	struct nand_device *base = &chip->base;
5809
5810	nand_ecc_sw_hamming_cleanup_ctx(base);
5811}
5812EXPORT_SYMBOL(rawnand_sw_hamming_cleanup);
5813
5814int rawnand_sw_bch_init(struct nand_chip *chip)
5815{
5816	struct nand_device *base = &chip->base;
5817	const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base);
5818	int ret;
5819
5820	base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
5821	base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH;
5822	base->ecc.user_conf.step_size = chip->ecc.size;
5823	base->ecc.user_conf.strength = chip->ecc.strength;
5824
5825	ret = nand_ecc_sw_bch_init_ctx(base);
5826	if (ret)
5827		return ret;
5828
5829	chip->ecc.size = ecc_conf->step_size;
5830	chip->ecc.strength = ecc_conf->strength;
5831	chip->ecc.total = base->ecc.ctx.total;
5832	chip->ecc.steps = nanddev_get_ecc_nsteps(base);
5833	chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);
5834
5835	return 0;
5836}
5837EXPORT_SYMBOL(rawnand_sw_bch_init);
5838
5839static int rawnand_sw_bch_calculate(struct nand_chip *chip,
5840				    const unsigned char *buf,
5841				    unsigned char *code)
5842{
5843	struct nand_device *base = &chip->base;
5844
5845	return nand_ecc_sw_bch_calculate(base, buf, code);
5846}
5847
5848int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
5849			   unsigned char *read_ecc, unsigned char *calc_ecc)
5850{
5851	struct nand_device *base = &chip->base;
5852
5853	return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc);
5854}
5855EXPORT_SYMBOL(rawnand_sw_bch_correct);
5856
5857void rawnand_sw_bch_cleanup(struct nand_chip *chip)
5858{
5859	struct nand_device *base = &chip->base;
5860
5861	nand_ecc_sw_bch_cleanup_ctx(base);
5862}
5863EXPORT_SYMBOL(rawnand_sw_bch_cleanup);
5864
5865static int nand_set_ecc_on_host_ops(struct nand_chip *chip)
5866{
5867	struct nand_ecc_ctrl *ecc = &chip->ecc;
5868
5869	switch (ecc->placement) {
5870	case NAND_ECC_PLACEMENT_UNKNOWN:
5871	case NAND_ECC_PLACEMENT_OOB:
5872		/* Use standard hwecc read page function? */
5873		if (!ecc->read_page)
5874			ecc->read_page = nand_read_page_hwecc;
5875		if (!ecc->write_page)
5876			ecc->write_page = nand_write_page_hwecc;
5877		if (!ecc->read_page_raw)
5878			ecc->read_page_raw = nand_read_page_raw;
5879		if (!ecc->write_page_raw)
5880			ecc->write_page_raw = nand_write_page_raw;
5881		if (!ecc->read_oob)
5882			ecc->read_oob = nand_read_oob_std;
5883		if (!ecc->write_oob)
5884			ecc->write_oob = nand_write_oob_std;
5885		if (!ecc->read_subpage)
5886			ecc->read_subpage = nand_read_subpage;
5887		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
5888			ecc->write_subpage = nand_write_subpage_hwecc;
5889		fallthrough;
5890
5891	case NAND_ECC_PLACEMENT_INTERLEAVED:
5892		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
5893		    (!ecc->read_page ||
5894		     ecc->read_page == nand_read_page_hwecc ||
5895		     !ecc->write_page ||
5896		     ecc->write_page == nand_write_page_hwecc)) {
5897			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
5898			return -EINVAL;
5899		}
5900		/* Use standard syndrome read/write page function? */
5901		if (!ecc->read_page)
5902			ecc->read_page = nand_read_page_syndrome;
5903		if (!ecc->write_page)
5904			ecc->write_page = nand_write_page_syndrome;
5905		if (!ecc->read_page_raw)
5906			ecc->read_page_raw = nand_read_page_raw_syndrome;
5907		if (!ecc->write_page_raw)
5908			ecc->write_page_raw = nand_write_page_raw_syndrome;
5909		if (!ecc->read_oob)
5910			ecc->read_oob = nand_read_oob_syndrome;
5911		if (!ecc->write_oob)
5912			ecc->write_oob = nand_write_oob_syndrome;
5913		break;
5914
5915	default:
5916		pr_warn("Invalid NAND_ECC_PLACEMENT %d\n",
5917			ecc->placement);
5918		return -EINVAL;
5919	}
5920
5921	return 0;
5922}
5923
5924static int nand_set_ecc_soft_ops(struct nand_chip *chip)
5925{
5926	struct mtd_info *mtd = nand_to_mtd(chip);
5927	struct nand_device *nanddev = mtd_to_nanddev(mtd);
5928	struct nand_ecc_ctrl *ecc = &chip->ecc;
5929	int ret;
5930
5931	if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT))
5932		return -EINVAL;
5933
5934	switch (ecc->algo) {
5935	case NAND_ECC_ALGO_HAMMING:
5936		ecc->calculate = rawnand_sw_hamming_calculate;
5937		ecc->correct = rawnand_sw_hamming_correct;
5938		ecc->read_page = nand_read_page_swecc;
5939		ecc->read_subpage = nand_read_subpage;
5940		ecc->write_page = nand_write_page_swecc;
5941		if (!ecc->read_page_raw)
5942			ecc->read_page_raw = nand_read_page_raw;
5943		if (!ecc->write_page_raw)
5944			ecc->write_page_raw = nand_write_page_raw;
5945		ecc->read_oob = nand_read_oob_std;
5946		ecc->write_oob = nand_write_oob_std;
5947		if (!ecc->size)
5948			ecc->size = 256;
5949		ecc->bytes = 3;
5950		ecc->strength = 1;
5951
5952		if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
5953			ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
5954
5955		ret = rawnand_sw_hamming_init(chip);
5956		if (ret) {
5957			WARN(1, "Hamming ECC initialization failed!\n");
5958			return ret;
5959		}
5960
5961		return 0;
5962	case NAND_ECC_ALGO_BCH:
5963		if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
5964			WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
5965			return -EINVAL;
5966		}
5967		ecc->calculate = rawnand_sw_bch_calculate;
5968		ecc->correct = rawnand_sw_bch_correct;
5969		ecc->read_page = nand_read_page_swecc;
5970		ecc->read_subpage = nand_read_subpage;
5971		ecc->write_page = nand_write_page_swecc;
5972		if (!ecc->read_page_raw)
5973			ecc->read_page_raw = nand_read_page_raw;
5974		if (!ecc->write_page_raw)
5975			ecc->write_page_raw = nand_write_page_raw;
5976		ecc->read_oob = nand_read_oob_std;
5977		ecc->write_oob = nand_write_oob_std;
5978
5979		/*
5980		 * We can only maximize ECC config when the default layout is
5981		 * used, otherwise we don't know how many bytes can really be
5982		 * used.
5983		 */
5984		if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH &&
5985		    mtd->ooblayout != nand_get_large_page_ooblayout())
5986			nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH;
5987
5988		ret = rawnand_sw_bch_init(chip);
5989		if (ret) {
5990			WARN(1, "BCH ECC initialization failed!\n");
5991			return ret;
5992		}
5993
5994		return 0;
5995	default:
5996		WARN(1, "Unsupported ECC algorithm!\n");
5997		return -EINVAL;
5998	}
5999}
6000
6001/**
6002 * nand_check_ecc_caps - check the sanity of preset ECC settings
6003 * @chip: nand chip info structure
6004 * @caps: ECC caps info structure
6005 * @oobavail: OOB size that the ECC engine can use
6006 *
6007 * When ECC step size and strength are already set, check if they are supported
6008 * by the controller and the calculated ECC bytes fit within the chip's OOB.
6009 * On success, the calculated ECC bytes is set.
6010 */
6011static int
6012nand_check_ecc_caps(struct nand_chip *chip,
6013		    const struct nand_ecc_caps *caps, int oobavail)
6014{
6015	struct mtd_info *mtd = nand_to_mtd(chip);
6016	const struct nand_ecc_step_info *stepinfo;
6017	int preset_step = chip->ecc.size;
6018	int preset_strength = chip->ecc.strength;
6019	int ecc_bytes, nsteps = mtd->writesize / preset_step;
6020	int i, j;
6021
6022	for (i = 0; i < caps->nstepinfos; i++) {
6023		stepinfo = &caps->stepinfos[i];
6024
6025		if (stepinfo->stepsize != preset_step)
6026			continue;
6027
6028		for (j = 0; j < stepinfo->nstrengths; j++) {
6029			if (stepinfo->strengths[j] != preset_strength)
6030				continue;
6031
6032			ecc_bytes = caps->calc_ecc_bytes(preset_step,
6033							 preset_strength);
6034			if (WARN_ON_ONCE(ecc_bytes < 0))
6035				return ecc_bytes;
6036
6037			if (ecc_bytes * nsteps > oobavail) {
6038				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
6039				       preset_step, preset_strength);
6040				return -ENOSPC;
6041			}
6042
6043			chip->ecc.bytes = ecc_bytes;
6044
6045			return 0;
6046		}
6047	}
6048
6049	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
6050	       preset_step, preset_strength);
6051
6052	return -ENOTSUPP;
6053}
6054
6055/**
6056 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
6057 * @chip: nand chip info structure
6058 * @caps: ECC engine caps info structure
6059 * @oobavail: OOB size that the ECC engine can use
6060 *
6061 * If a chip's ECC requirement is provided, try to meet it with the least
6062 * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
6063 * On success, the chosen ECC settings are set.
6064 */
6065static int
6066nand_match_ecc_req(struct nand_chip *chip,
6067		   const struct nand_ecc_caps *caps, int oobavail)
6068{
6069	const struct nand_ecc_props *requirements =
6070		nanddev_get_ecc_requirements(&chip->base);
6071	struct mtd_info *mtd = nand_to_mtd(chip);
6072	const struct nand_ecc_step_info *stepinfo;
6073	int req_step = requirements->step_size;
6074	int req_strength = requirements->strength;
6075	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
6076	int best_step = 0, best_strength = 0, best_ecc_bytes = 0;
6077	int best_ecc_bytes_total = INT_MAX;
6078	int i, j;
6079
6080	/* No information provided by the NAND chip */
6081	if (!req_step || !req_strength)
6082		return -ENOTSUPP;
6083
6084	/* number of correctable bits the chip requires in a page */
6085	req_corr = mtd->writesize / req_step * req_strength;
6086
6087	for (i = 0; i < caps->nstepinfos; i++) {
6088		stepinfo = &caps->stepinfos[i];
6089		step_size = stepinfo->stepsize;
6090
6091		for (j = 0; j < stepinfo->nstrengths; j++) {
6092			strength = stepinfo->strengths[j];
6093
6094			/*
6095			 * If both step size and strength are smaller than the
6096			 * chip's requirement, it is not easy to compare the
6097			 * resulted reliability.
6098			 */
6099			if (step_size < req_step && strength < req_strength)
6100				continue;
6101
6102			if (mtd->writesize % step_size)
6103				continue;
6104
6105			nsteps = mtd->writesize / step_size;
6106
6107			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6108			if (WARN_ON_ONCE(ecc_bytes < 0))
6109				continue;
6110			ecc_bytes_total = ecc_bytes * nsteps;
6111
6112			if (ecc_bytes_total > oobavail ||
6113			    strength * nsteps < req_corr)
6114				continue;
6115
6116			/*
6117			 * We assume the best is to meet the chip's requrement
6118			 * with the least number of ECC bytes.
6119			 */
6120			if (ecc_bytes_total < best_ecc_bytes_total) {
6121				best_ecc_bytes_total = ecc_bytes_total;
6122				best_step = step_size;
6123				best_strength = strength;
6124				best_ecc_bytes = ecc_bytes;
6125			}
6126		}
6127	}
6128
6129	if (best_ecc_bytes_total == INT_MAX)
6130		return -ENOTSUPP;
6131
6132	chip->ecc.size = best_step;
6133	chip->ecc.strength = best_strength;
6134	chip->ecc.bytes = best_ecc_bytes;
6135
6136	return 0;
6137}
6138
6139/**
6140 * nand_maximize_ecc - choose the max ECC strength available
6141 * @chip: nand chip info structure
6142 * @caps: ECC engine caps info structure
6143 * @oobavail: OOB size that the ECC engine can use
6144 *
6145 * Choose the max ECC strength that is supported on the controller, and can fit
6146 * within the chip's OOB.  On success, the chosen ECC settings are set.
6147 */
6148static int
6149nand_maximize_ecc(struct nand_chip *chip,
6150		  const struct nand_ecc_caps *caps, int oobavail)
6151{
6152	struct mtd_info *mtd = nand_to_mtd(chip);
6153	const struct nand_ecc_step_info *stepinfo;
6154	int step_size, strength, nsteps, ecc_bytes, corr;
6155	int best_corr = 0;
6156	int best_step = 0;
6157	int best_strength = 0, best_ecc_bytes = 0;
6158	int i, j;
6159
6160	for (i = 0; i < caps->nstepinfos; i++) {
6161		stepinfo = &caps->stepinfos[i];
6162		step_size = stepinfo->stepsize;
6163
6164		/* If chip->ecc.size is already set, respect it */
6165		if (chip->ecc.size && step_size != chip->ecc.size)
6166			continue;
6167
6168		for (j = 0; j < stepinfo->nstrengths; j++) {
6169			strength = stepinfo->strengths[j];
6170
6171			if (mtd->writesize % step_size)
6172				continue;
6173
6174			nsteps = mtd->writesize / step_size;
6175
6176			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
6177			if (WARN_ON_ONCE(ecc_bytes < 0))
6178				continue;
6179
6180			if (ecc_bytes * nsteps > oobavail)
6181				continue;
6182
6183			corr = strength * nsteps;
6184
6185			/*
6186			 * If the number of correctable bits is the same,
6187			 * bigger step_size has more reliability.
6188			 */
6189			if (corr > best_corr ||
6190			    (corr == best_corr && step_size > best_step)) {
6191				best_corr = corr;
6192				best_step = step_size;
6193				best_strength = strength;
6194				best_ecc_bytes = ecc_bytes;
6195			}
6196		}
6197	}
6198
6199	if (!best_corr)
6200		return -ENOTSUPP;
6201
6202	chip->ecc.size = best_step;
6203	chip->ecc.strength = best_strength;
6204	chip->ecc.bytes = best_ecc_bytes;
6205
6206	return 0;
6207}
6208
6209/**
6210 * nand_ecc_choose_conf - Set the ECC strength and ECC step size
6211 * @chip: nand chip info structure
6212 * @caps: ECC engine caps info structure
6213 * @oobavail: OOB size that the ECC engine can use
6214 *
6215 * Choose the ECC configuration according to following logic.
6216 *
6217 * 1. If both ECC step size and ECC strength are already set (usually by DT)
6218 *    then check if it is supported by this controller.
6219 * 2. If the user provided the nand-ecc-maximize property, then select maximum
6220 *    ECC strength.
6221 * 3. Otherwise, try to match the ECC step size and ECC strength closest
6222 *    to the chip's requirement. If available OOB size can't fit the chip
6223 *    requirement then fallback to the maximum ECC step size and ECC strength.
6224 *
6225 * On success, the chosen ECC settings are set.
6226 */
6227int nand_ecc_choose_conf(struct nand_chip *chip,
6228			 const struct nand_ecc_caps *caps, int oobavail)
6229{
6230	struct mtd_info *mtd = nand_to_mtd(chip);
6231	struct nand_device *nanddev = mtd_to_nanddev(mtd);
6232
6233	if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
6234		return -EINVAL;
6235
6236	if (chip->ecc.size && chip->ecc.strength)
6237		return nand_check_ecc_caps(chip, caps, oobavail);
6238
6239	if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
6240		return nand_maximize_ecc(chip, caps, oobavail);
6241
6242	if (!nand_match_ecc_req(chip, caps, oobavail))
6243		return 0;
6244
6245	return nand_maximize_ecc(chip, caps, oobavail);
6246}
6247EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
6248
6249static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
6250{
6251	struct nand_chip *chip = container_of(nand, struct nand_chip,
6252					      base);
6253	unsigned int eb = nanddev_pos_to_row(nand, pos);
6254	int ret;
6255
6256	eb >>= nand->rowconv.eraseblock_addr_shift;
6257
6258	nand_select_target(chip, pos->target);
6259	ret = nand_erase_op(chip, eb);
6260	nand_deselect_target(chip);
6261
6262	return ret;
6263}
6264
6265static int rawnand_markbad(struct nand_device *nand,
6266			   const struct nand_pos *pos)
6267{
6268	struct nand_chip *chip = container_of(nand, struct nand_chip,
6269					      base);
6270
6271	return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6272}
6273
6274static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
6275{
6276	struct nand_chip *chip = container_of(nand, struct nand_chip,
6277					      base);
6278	int ret;
6279
6280	nand_select_target(chip, pos->target);
6281	ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
6282	nand_deselect_target(chip);
6283
6284	return ret;
6285}
6286
6287static const struct nand_ops rawnand_ops = {
6288	.erase = rawnand_erase,
6289	.markbad = rawnand_markbad,
6290	.isbad = rawnand_isbad,
6291};
6292
6293/**
6294 * nand_scan_tail - Scan for the NAND device
6295 * @chip: NAND chip object
6296 *
6297 * This is the second phase of the normal nand_scan() function. It fills out
6298 * all the uninitialized function pointers with the defaults and scans for a
6299 * bad block table if appropriate.
6300 */
6301static int nand_scan_tail(struct nand_chip *chip)
6302{
6303	struct mtd_info *mtd = nand_to_mtd(chip);
6304	struct nand_ecc_ctrl *ecc = &chip->ecc;
6305	int ret, i;
6306
6307	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
6308	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
6309		   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
6310		return -EINVAL;
6311	}
6312
6313	chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
6314	if (!chip->data_buf)
6315		return -ENOMEM;
6316
6317	/*
6318	 * FIXME: some NAND manufacturer drivers expect the first die to be
6319	 * selected when manufacturer->init() is called. They should be fixed
6320	 * to explictly select the relevant die when interacting with the NAND
6321	 * chip.
6322	 */
6323	nand_select_target(chip, 0);
6324	ret = nand_manufacturer_init(chip);
6325	nand_deselect_target(chip);
6326	if (ret)
6327		goto err_free_buf;
6328
6329	/* Set the internal oob buffer location, just after the page data */
6330	chip->oob_poi = chip->data_buf + mtd->writesize;
6331
6332	/*
6333	 * If no default placement scheme is given, select an appropriate one.
6334	 */
6335	if (!mtd->ooblayout &&
6336	    !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6337	      ecc->algo == NAND_ECC_ALGO_BCH) &&
6338	    !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
6339	      ecc->algo == NAND_ECC_ALGO_HAMMING)) {
6340		switch (mtd->oobsize) {
6341		case 8:
6342		case 16:
6343			mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout());
6344			break;
6345		case 64:
6346		case 128:
6347			mtd_set_ooblayout(mtd,
6348					  nand_get_large_page_hamming_ooblayout());
6349			break;
6350		default:
6351			/*
6352			 * Expose the whole OOB area to users if ECC_NONE
6353			 * is passed. We could do that for all kind of
6354			 * ->oobsize, but we must keep the old large/small
6355			 * page with ECC layout when ->oobsize <= 128 for
6356			 * compatibility reasons.
6357			 */
6358			if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) {
6359				mtd_set_ooblayout(mtd,
6360						  nand_get_large_page_ooblayout());
6361				break;
6362			}
6363
6364			WARN(1, "No oob scheme defined for oobsize %d\n",
6365				mtd->oobsize);
6366			ret = -EINVAL;
6367			goto err_nand_manuf_cleanup;
6368		}
6369	}
6370
6371	/*
6372	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
6373	 * selected and we have 256 byte pagesize fallback to software ECC
6374	 */
6375
6376	switch (ecc->engine_type) {
6377	case NAND_ECC_ENGINE_TYPE_ON_HOST:
6378		ret = nand_set_ecc_on_host_ops(chip);
6379		if (ret)
6380			goto err_nand_manuf_cleanup;
6381
6382		if (mtd->writesize >= ecc->size) {
6383			if (!ecc->strength) {
6384				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
6385				ret = -EINVAL;
6386				goto err_nand_manuf_cleanup;
6387			}
6388			break;
6389		}
6390		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
6391			ecc->size, mtd->writesize);
6392		ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
6393		ecc->algo = NAND_ECC_ALGO_HAMMING;
6394		fallthrough;
6395
6396	case NAND_ECC_ENGINE_TYPE_SOFT:
6397		ret = nand_set_ecc_soft_ops(chip);
6398		if (ret)
6399			goto err_nand_manuf_cleanup;
6400		break;
6401
6402	case NAND_ECC_ENGINE_TYPE_ON_DIE:
6403		if (!ecc->read_page || !ecc->write_page) {
6404			WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
6405			ret = -EINVAL;
6406			goto err_nand_manuf_cleanup;
6407		}
6408		if (!ecc->read_oob)
6409			ecc->read_oob = nand_read_oob_std;
6410		if (!ecc->write_oob)
6411			ecc->write_oob = nand_write_oob_std;
6412		break;
6413
6414	case NAND_ECC_ENGINE_TYPE_NONE:
6415		pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n");
6416		ecc->read_page = nand_read_page_raw;
6417		ecc->write_page = nand_write_page_raw;
6418		ecc->read_oob = nand_read_oob_std;
6419		ecc->read_page_raw = nand_read_page_raw;
6420		ecc->write_page_raw = nand_write_page_raw;
6421		ecc->write_oob = nand_write_oob_std;
6422		ecc->size = mtd->writesize;
6423		ecc->bytes = 0;
6424		ecc->strength = 0;
6425		break;
6426
6427	default:
6428		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type);
6429		ret = -EINVAL;
6430		goto err_nand_manuf_cleanup;
6431	}
6432
6433	if (ecc->correct || ecc->calculate) {
6434		ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6435		ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
6436		if (!ecc->calc_buf || !ecc->code_buf) {
6437			ret = -ENOMEM;
6438			goto err_nand_manuf_cleanup;
6439		}
6440	}
6441
6442	/* For many systems, the standard OOB write also works for raw */
6443	if (!ecc->read_oob_raw)
6444		ecc->read_oob_raw = ecc->read_oob;
6445	if (!ecc->write_oob_raw)
6446		ecc->write_oob_raw = ecc->write_oob;
6447
6448	/* propagate ecc info to mtd_info */
6449	mtd->ecc_strength = ecc->strength;
6450	mtd->ecc_step_size = ecc->size;
6451
6452	/*
6453	 * Set the number of read / write steps for one page depending on ECC
6454	 * mode.
6455	 */
6456	if (!ecc->steps)
6457		ecc->steps = mtd->writesize / ecc->size;
6458	if (ecc->steps * ecc->size != mtd->writesize) {
6459		WARN(1, "Invalid ECC parameters\n");
6460		ret = -EINVAL;
6461		goto err_nand_manuf_cleanup;
6462	}
6463
6464	if (!ecc->total) {
6465		ecc->total = ecc->steps * ecc->bytes;
6466		chip->base.ecc.ctx.total = ecc->total;
6467	}
6468
6469	if (ecc->total > mtd->oobsize) {
6470		WARN(1, "Total number of ECC bytes exceeded oobsize\n");
6471		ret = -EINVAL;
6472		goto err_nand_manuf_cleanup;
6473	}
6474
6475	/*
6476	 * The number of bytes available for a client to place data into
6477	 * the out of band area.
6478	 */
6479	ret = mtd_ooblayout_count_freebytes(mtd);
6480	if (ret < 0)
6481		ret = 0;
6482
6483	mtd->oobavail = ret;
6484
6485	/* ECC sanity check: warn if it's too weak */
6486	if (!nand_ecc_is_strong_enough(&chip->base))
6487		pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
6488			mtd->name, chip->ecc.strength, chip->ecc.size,
6489			nanddev_get_ecc_requirements(&chip->base)->strength,
6490			nanddev_get_ecc_requirements(&chip->base)->step_size);
6491
6492	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
6493	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
6494		switch (ecc->steps) {
6495		case 2:
6496			mtd->subpage_sft = 1;
6497			break;
6498		case 4:
6499		case 8:
6500		case 16:
6501			mtd->subpage_sft = 2;
6502			break;
6503		}
6504	}
6505	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
6506
6507	/* Invalidate the pagebuffer reference */
6508	chip->pagecache.page = -1;
6509
6510	/* Large page NAND with SOFT_ECC should support subpage reads */
6511	switch (ecc->engine_type) {
6512	case NAND_ECC_ENGINE_TYPE_SOFT:
6513		if (chip->page_shift > 9)
6514			chip->options |= NAND_SUBPAGE_READ;
6515		break;
6516
6517	default:
6518		break;
6519	}
6520
6521	ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
6522	if (ret)
6523		goto err_nand_manuf_cleanup;
6524
6525	/* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
6526	if (chip->options & NAND_ROM)
6527		mtd->flags = MTD_CAP_ROM;
6528
6529	/* Fill in remaining MTD driver data */
6530	mtd->_erase = nand_erase;
6531	mtd->_point = NULL;
6532	mtd->_unpoint = NULL;
6533	mtd->_panic_write = panic_nand_write;
6534	mtd->_read_oob = nand_read_oob;
6535	mtd->_write_oob = nand_write_oob;
6536	mtd->_sync = nand_sync;
6537	mtd->_lock = nand_lock;
6538	mtd->_unlock = nand_unlock;
6539	mtd->_suspend = nand_suspend;
6540	mtd->_resume = nand_resume;
6541	mtd->_reboot = nand_shutdown;
6542	mtd->_block_isreserved = nand_block_isreserved;
6543	mtd->_block_isbad = nand_block_isbad;
6544	mtd->_block_markbad = nand_block_markbad;
6545	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
6546
6547	/*
6548	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
6549	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
6550	 * properly set.
6551	 */
6552	if (!mtd->bitflip_threshold)
6553		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
6554
6555	/* Find the fastest data interface for this chip */
6556	ret = nand_choose_interface_config(chip);
6557	if (ret)
6558		goto err_nanddev_cleanup;
6559
6560	/* Enter fastest possible mode on all dies. */
6561	for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
6562		ret = nand_setup_interface(chip, i);
6563		if (ret)
6564			goto err_free_interface_config;
6565	}
6566
6567	rawnand_late_check_supported_ops(chip);
6568
6569	/*
6570	 * Look for secure regions in the NAND chip. These regions are supposed
6571	 * to be protected by a secure element like Trustzone. So the read/write
6572	 * accesses to these regions will be blocked in the runtime by this
6573	 * driver.
6574	 */
6575	ret = of_get_nand_secure_regions(chip);
6576	if (ret)
6577		goto err_free_interface_config;
6578
6579	/* Check, if we should skip the bad block table scan */
6580	if (chip->options & NAND_SKIP_BBTSCAN)
6581		return 0;
6582
6583	/* Build bad block table */
6584	ret = nand_create_bbt(chip);
6585	if (ret)
6586		goto err_free_secure_regions;
6587
6588	return 0;
6589
6590err_free_secure_regions:
6591	kfree(chip->secure_regions);
6592
6593err_free_interface_config:
6594	kfree(chip->best_interface_config);
6595
6596err_nanddev_cleanup:
6597	nanddev_cleanup(&chip->base);
6598
6599err_nand_manuf_cleanup:
6600	nand_manufacturer_cleanup(chip);
6601
6602err_free_buf:
6603	kfree(chip->data_buf);
6604	kfree(ecc->code_buf);
6605	kfree(ecc->calc_buf);
6606
6607	return ret;
6608}
6609
6610static int nand_attach(struct nand_chip *chip)
6611{
6612	if (chip->controller->ops && chip->controller->ops->attach_chip)
6613		return chip->controller->ops->attach_chip(chip);
6614
6615	return 0;
6616}
6617
6618static void nand_detach(struct nand_chip *chip)
6619{
6620	if (chip->controller->ops && chip->controller->ops->detach_chip)
6621		chip->controller->ops->detach_chip(chip);
6622}
6623
6624/**
6625 * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
6626 * @chip: NAND chip object
6627 * @maxchips: number of chips to scan for.
6628 * @ids: optional flash IDs table
6629 *
6630 * This fills out all the uninitialized function pointers with the defaults.
6631 * The flash ID is read and the mtd/chip structures are filled with the
6632 * appropriate values.
6633 */
6634int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
6635		       struct nand_flash_dev *ids)
6636{
6637	int ret;
6638
6639	if (!maxchips)
6640		return -EINVAL;
6641
6642	ret = nand_scan_ident(chip, maxchips, ids);
6643	if (ret)
6644		return ret;
6645
6646	ret = nand_attach(chip);
6647	if (ret)
6648		goto cleanup_ident;
6649
6650	ret = nand_scan_tail(chip);
6651	if (ret)
6652		goto detach_chip;
6653
6654	return 0;
6655
6656detach_chip:
6657	nand_detach(chip);
6658cleanup_ident:
6659	nand_scan_ident_cleanup(chip);
6660
6661	return ret;
6662}
6663EXPORT_SYMBOL(nand_scan_with_ids);
6664
6665/**
6666 * nand_cleanup - [NAND Interface] Free resources held by the NAND device
6667 * @chip: NAND chip object
6668 */
6669void nand_cleanup(struct nand_chip *chip)
6670{
6671	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) {
6672		if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
6673			rawnand_sw_hamming_cleanup(chip);
6674		else if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
6675			rawnand_sw_bch_cleanup(chip);
6676	}
6677
6678	nanddev_cleanup(&chip->base);
6679
6680	/* Free secure regions data */
6681	kfree(chip->secure_regions);
6682
6683	/* Free bad block table memory */
6684	kfree(chip->bbt);
6685	kfree(chip->data_buf);
6686	kfree(chip->ecc.code_buf);
6687	kfree(chip->ecc.calc_buf);
6688
6689	/* Free bad block descriptor memory */
6690	if (chip->badblock_pattern && chip->badblock_pattern->options
6691			& NAND_BBT_DYNAMICSTRUCT)
6692		kfree(chip->badblock_pattern);
6693
6694	/* Free the data interface */
6695	kfree(chip->best_interface_config);
6696
6697	/* Free manufacturer priv data. */
6698	nand_manufacturer_cleanup(chip);
6699
6700	/* Free controller specific allocations after chip identification */
6701	nand_detach(chip);
6702
6703	/* Free identification phase allocations */
6704	nand_scan_ident_cleanup(chip);
6705}
6706
6707EXPORT_SYMBOL_GPL(nand_cleanup);
6708
6709MODULE_LICENSE("GPL");
6710MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
6711MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
6712MODULE_DESCRIPTION("Generic NAND flash driver code");
6713