1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2019 Macronix International Co., Ltd.
4 *
5 * Author:
6 *	Mason Yang <masonccyang@mxic.com.tw>
7 */
8
9#include <linux/clk.h>
10#include <linux/io.h>
11#include <linux/iopoll.h>
12#include <linux/interrupt.h>
13#include <linux/module.h>
14#include <linux/mtd/mtd.h>
15#include <linux/mtd/nand-ecc-sw-hamming.h>
16#include <linux/mtd/rawnand.h>
17#include <linux/platform_device.h>
18
19#include "internals.h"
20
21#define HC_CFG			0x0
22#define HC_CFG_IF_CFG(x)	((x) << 27)
23#define HC_CFG_DUAL_SLAVE	BIT(31)
24#define HC_CFG_INDIVIDUAL	BIT(30)
25#define HC_CFG_NIO(x)		(((x) / 4) << 27)
26#define HC_CFG_TYPE(s, t)	((t) << (23 + ((s) * 2)))
27#define HC_CFG_TYPE_SPI_NOR	0
28#define HC_CFG_TYPE_SPI_NAND	1
29#define HC_CFG_TYPE_SPI_RAM	2
30#define HC_CFG_TYPE_RAW_NAND	3
31#define HC_CFG_SLV_ACT(x)	((x) << 21)
32#define HC_CFG_CLK_PH_EN	BIT(20)
33#define HC_CFG_CLK_POL_INV	BIT(19)
34#define HC_CFG_BIG_ENDIAN	BIT(18)
35#define HC_CFG_DATA_PASS	BIT(17)
36#define HC_CFG_IDLE_SIO_LVL(x)	((x) << 16)
37#define HC_CFG_MAN_START_EN	BIT(3)
38#define HC_CFG_MAN_START	BIT(2)
39#define HC_CFG_MAN_CS_EN	BIT(1)
40#define HC_CFG_MAN_CS_ASSERT	BIT(0)
41
42#define INT_STS			0x4
43#define INT_STS_EN		0x8
44#define INT_SIG_EN		0xc
45#define INT_STS_ALL		GENMASK(31, 0)
46#define INT_RDY_PIN		BIT(26)
47#define INT_RDY_SR		BIT(25)
48#define INT_LNR_SUSP		BIT(24)
49#define INT_ECC_ERR		BIT(17)
50#define INT_CRC_ERR		BIT(16)
51#define INT_LWR_DIS		BIT(12)
52#define INT_LRD_DIS		BIT(11)
53#define INT_SDMA_INT		BIT(10)
54#define INT_DMA_FINISH		BIT(9)
55#define INT_RX_NOT_FULL		BIT(3)
56#define INT_RX_NOT_EMPTY	BIT(2)
57#define INT_TX_NOT_FULL		BIT(1)
58#define INT_TX_EMPTY		BIT(0)
59
60#define HC_EN			0x10
61#define HC_EN_BIT		BIT(0)
62
63#define TXD(x)			(0x14 + ((x) * 4))
64#define RXD			0x24
65
66#define SS_CTRL(s)		(0x30 + ((s) * 4))
67#define LRD_CFG			0x44
68#define LWR_CFG			0x80
69#define RWW_CFG			0x70
70#define OP_READ			BIT(23)
71#define OP_DUMMY_CYC(x)		((x) << 17)
72#define OP_ADDR_BYTES(x)	((x) << 14)
73#define OP_CMD_BYTES(x)		(((x) - 1) << 13)
74#define OP_OCTA_CRC_EN		BIT(12)
75#define OP_DQS_EN		BIT(11)
76#define OP_ENHC_EN		BIT(10)
77#define OP_PREAMBLE_EN		BIT(9)
78#define OP_DATA_DDR		BIT(8)
79#define OP_DATA_BUSW(x)		((x) << 6)
80#define OP_ADDR_DDR		BIT(5)
81#define OP_ADDR_BUSW(x)		((x) << 3)
82#define OP_CMD_DDR		BIT(2)
83#define OP_CMD_BUSW(x)		(x)
84#define OP_BUSW_1		0
85#define OP_BUSW_2		1
86#define OP_BUSW_4		2
87#define OP_BUSW_8		3
88
89#define OCTA_CRC		0x38
90#define OCTA_CRC_IN_EN(s)	BIT(3 + ((s) * 16))
91#define OCTA_CRC_CHUNK(s, x)	((fls((x) / 32)) << (1 + ((s) * 16)))
92#define OCTA_CRC_OUT_EN(s)	BIT(0 + ((s) * 16))
93
94#define ONFI_DIN_CNT(s)		(0x3c + (s))
95
96#define LRD_CTRL		0x48
97#define RWW_CTRL		0x74
98#define LWR_CTRL		0x84
99#define LMODE_EN		BIT(31)
100#define LMODE_SLV_ACT(x)	((x) << 21)
101#define LMODE_CMD1(x)		((x) << 8)
102#define LMODE_CMD0(x)		(x)
103
104#define LRD_ADDR		0x4c
105#define LWR_ADDR		0x88
106#define LRD_RANGE		0x50
107#define LWR_RANGE		0x8c
108
109#define AXI_SLV_ADDR		0x54
110
111#define DMAC_RD_CFG		0x58
112#define DMAC_WR_CFG		0x94
113#define DMAC_CFG_PERIPH_EN	BIT(31)
114#define DMAC_CFG_ALLFLUSH_EN	BIT(30)
115#define DMAC_CFG_LASTFLUSH_EN	BIT(29)
116#define DMAC_CFG_QE(x)		(((x) + 1) << 16)
117#define DMAC_CFG_BURST_LEN(x)	(((x) + 1) << 12)
118#define DMAC_CFG_BURST_SZ(x)	((x) << 8)
119#define DMAC_CFG_DIR_READ	BIT(1)
120#define DMAC_CFG_START		BIT(0)
121
122#define DMAC_RD_CNT		0x5c
123#define DMAC_WR_CNT		0x98
124
125#define SDMA_ADDR		0x60
126
127#define DMAM_CFG		0x64
128#define DMAM_CFG_START		BIT(31)
129#define DMAM_CFG_CONT		BIT(30)
130#define DMAM_CFG_SDMA_GAP(x)	(fls((x) / 8192) << 2)
131#define DMAM_CFG_DIR_READ	BIT(1)
132#define DMAM_CFG_EN		BIT(0)
133
134#define DMAM_CNT		0x68
135
136#define LNR_TIMER_TH		0x6c
137
138#define RDM_CFG0		0x78
139#define RDM_CFG0_POLY(x)	(x)
140
141#define RDM_CFG1		0x7c
142#define RDM_CFG1_RDM_EN		BIT(31)
143#define RDM_CFG1_SEED(x)	(x)
144
145#define LWR_SUSP_CTRL		0x90
146#define LWR_SUSP_CTRL_EN	BIT(31)
147
148#define DMAS_CTRL		0x9c
149#define DMAS_CTRL_EN		BIT(31)
150#define DMAS_CTRL_DIR_READ	BIT(30)
151
152#define DATA_STROB		0xa0
153#define DATA_STROB_EDO_EN	BIT(2)
154#define DATA_STROB_INV_POL	BIT(1)
155#define DATA_STROB_DELAY_2CYC	BIT(0)
156
157#define IDLY_CODE(x)		(0xa4 + ((x) * 4))
158#define IDLY_CODE_VAL(x, v)	((v) << (((x) % 4) * 8))
159
160#define GPIO			0xc4
161#define GPIO_PT(x)		BIT(3 + ((x) * 16))
162#define GPIO_RESET(x)		BIT(2 + ((x) * 16))
163#define GPIO_HOLDB(x)		BIT(1 + ((x) * 16))
164#define GPIO_WPB(x)		BIT((x) * 16)
165
166#define HC_VER			0xd0
167
168#define HW_TEST(x)		(0xe0 + ((x) * 4))
169
170#define MXIC_NFC_MAX_CLK_HZ	50000000
171#define IRQ_TIMEOUT		1000
172
173struct mxic_nand_ctlr {
174	struct clk *ps_clk;
175	struct clk *send_clk;
176	struct clk *send_dly_clk;
177	struct completion complete;
178	void __iomem *regs;
179	struct nand_controller controller;
180	struct device *dev;
181	struct nand_chip chip;
182};
183
184static int mxic_nfc_clk_enable(struct mxic_nand_ctlr *nfc)
185{
186	int ret;
187
188	ret = clk_prepare_enable(nfc->ps_clk);
189	if (ret)
190		return ret;
191
192	ret = clk_prepare_enable(nfc->send_clk);
193	if (ret)
194		goto err_ps_clk;
195
196	ret = clk_prepare_enable(nfc->send_dly_clk);
197	if (ret)
198		goto err_send_dly_clk;
199
200	return ret;
201
202err_send_dly_clk:
203	clk_disable_unprepare(nfc->send_clk);
204err_ps_clk:
205	clk_disable_unprepare(nfc->ps_clk);
206
207	return ret;
208}
209
210static void mxic_nfc_clk_disable(struct mxic_nand_ctlr *nfc)
211{
212	clk_disable_unprepare(nfc->send_clk);
213	clk_disable_unprepare(nfc->send_dly_clk);
214	clk_disable_unprepare(nfc->ps_clk);
215}
216
217static void mxic_nfc_set_input_delay(struct mxic_nand_ctlr *nfc, u8 idly_code)
218{
219	writel(IDLY_CODE_VAL(0, idly_code) |
220	       IDLY_CODE_VAL(1, idly_code) |
221	       IDLY_CODE_VAL(2, idly_code) |
222	       IDLY_CODE_VAL(3, idly_code),
223	       nfc->regs + IDLY_CODE(0));
224	writel(IDLY_CODE_VAL(4, idly_code) |
225	       IDLY_CODE_VAL(5, idly_code) |
226	       IDLY_CODE_VAL(6, idly_code) |
227	       IDLY_CODE_VAL(7, idly_code),
228	       nfc->regs + IDLY_CODE(1));
229}
230
231static int mxic_nfc_clk_setup(struct mxic_nand_ctlr *nfc, unsigned long freq)
232{
233	int ret;
234
235	ret = clk_set_rate(nfc->send_clk, freq);
236	if (ret)
237		return ret;
238
239	ret = clk_set_rate(nfc->send_dly_clk, freq);
240	if (ret)
241		return ret;
242
243	/*
244	 * A constant delay range from 0x0 ~ 0x1F for input delay,
245	 * the unit is 78 ps, the max input delay is 2.418 ns.
246	 */
247	mxic_nfc_set_input_delay(nfc, 0xf);
248
249	/*
250	 * Phase degree = 360 * freq * output-delay
251	 * where output-delay is a constant value 1 ns in FPGA.
252	 *
253	 * Get Phase degree = 360 * freq * 1 ns
254	 *                  = 360 * freq * 1 sec / 1000000000
255	 *                  = 9 * freq / 25000000
256	 */
257	ret = clk_set_phase(nfc->send_dly_clk, 9 * freq / 25000000);
258	if (ret)
259		return ret;
260
261	return 0;
262}
263
264static int mxic_nfc_set_freq(struct mxic_nand_ctlr *nfc, unsigned long freq)
265{
266	int ret;
267
268	if (freq > MXIC_NFC_MAX_CLK_HZ)
269		freq = MXIC_NFC_MAX_CLK_HZ;
270
271	mxic_nfc_clk_disable(nfc);
272	ret = mxic_nfc_clk_setup(nfc, freq);
273	if (ret)
274		return ret;
275
276	ret = mxic_nfc_clk_enable(nfc);
277	if (ret)
278		return ret;
279
280	return 0;
281}
282
283static irqreturn_t mxic_nfc_isr(int irq, void *dev_id)
284{
285	struct mxic_nand_ctlr *nfc = dev_id;
286	u32 sts;
287
288	sts = readl(nfc->regs + INT_STS);
289	if (sts & INT_RDY_PIN)
290		complete(&nfc->complete);
291	else
292		return IRQ_NONE;
293
294	return IRQ_HANDLED;
295}
296
297static void mxic_nfc_hw_init(struct mxic_nand_ctlr *nfc)
298{
299	writel(HC_CFG_NIO(8) | HC_CFG_TYPE(1, HC_CFG_TYPE_RAW_NAND) |
300	       HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN |
301	       HC_CFG_IDLE_SIO_LVL(1), nfc->regs + HC_CFG);
302	writel(INT_STS_ALL, nfc->regs + INT_STS_EN);
303	writel(INT_RDY_PIN, nfc->regs + INT_SIG_EN);
304	writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
305	writel(0, nfc->regs + LRD_CFG);
306	writel(0, nfc->regs + LRD_CTRL);
307	writel(0x0, nfc->regs + HC_EN);
308}
309
310static void mxic_nfc_cs_enable(struct mxic_nand_ctlr *nfc)
311{
312	writel(readl(nfc->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
313	       nfc->regs + HC_CFG);
314	writel(HC_CFG_MAN_CS_ASSERT | readl(nfc->regs + HC_CFG),
315	       nfc->regs + HC_CFG);
316}
317
318static void mxic_nfc_cs_disable(struct mxic_nand_ctlr *nfc)
319{
320	writel(~HC_CFG_MAN_CS_ASSERT & readl(nfc->regs + HC_CFG),
321	       nfc->regs + HC_CFG);
322}
323
324static int  mxic_nfc_wait_ready(struct nand_chip *chip)
325{
326	struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
327	int ret;
328
329	ret = wait_for_completion_timeout(&nfc->complete,
330					  msecs_to_jiffies(IRQ_TIMEOUT));
331	if (!ret) {
332		dev_err(nfc->dev, "nand device timeout\n");
333		return -ETIMEDOUT;
334	}
335
336	return 0;
337}
338
339static int mxic_nfc_data_xfer(struct mxic_nand_ctlr *nfc, const void *txbuf,
340			      void *rxbuf, unsigned int len)
341{
342	unsigned int pos = 0;
343
344	while (pos < len) {
345		unsigned int nbytes = len - pos;
346		u32 data = 0xffffffff;
347		u32 sts;
348		int ret;
349
350		if (nbytes > 4)
351			nbytes = 4;
352
353		if (txbuf)
354			memcpy(&data, txbuf + pos, nbytes);
355
356		ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
357					 sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
358		if (ret)
359			return ret;
360
361		writel(data, nfc->regs + TXD(nbytes % 4));
362
363		ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
364					 sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
365		if (ret)
366			return ret;
367
368		ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
369					 sts & INT_RX_NOT_EMPTY, 0,
370					 USEC_PER_SEC);
371		if (ret)
372			return ret;
373
374		data = readl(nfc->regs + RXD);
375		if (rxbuf) {
376			data >>= (8 * (4 - nbytes));
377			memcpy(rxbuf + pos, &data, nbytes);
378		}
379		if (readl(nfc->regs + INT_STS) & INT_RX_NOT_EMPTY)
380			dev_warn(nfc->dev, "RX FIFO not empty\n");
381
382		pos += nbytes;
383	}
384
385	return 0;
386}
387
388static int mxic_nfc_exec_op(struct nand_chip *chip,
389			    const struct nand_operation *op, bool check_only)
390{
391	struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
392	const struct nand_op_instr *instr = NULL;
393	int ret = 0;
394	unsigned int op_id;
395
396	if (check_only)
397		return 0;
398
399	mxic_nfc_cs_enable(nfc);
400	init_completion(&nfc->complete);
401	for (op_id = 0; op_id < op->ninstrs; op_id++) {
402		instr = &op->instrs[op_id];
403
404		switch (instr->type) {
405		case NAND_OP_CMD_INSTR:
406			writel(0, nfc->regs + HC_EN);
407			writel(HC_EN_BIT, nfc->regs + HC_EN);
408			writel(OP_CMD_BUSW(OP_BUSW_8) |  OP_DUMMY_CYC(0x3F) |
409			       OP_CMD_BYTES(0), nfc->regs + SS_CTRL(0));
410
411			ret = mxic_nfc_data_xfer(nfc,
412						 &instr->ctx.cmd.opcode,
413						 NULL, 1);
414			break;
415
416		case NAND_OP_ADDR_INSTR:
417			writel(OP_ADDR_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
418			       OP_ADDR_BYTES(instr->ctx.addr.naddrs),
419			       nfc->regs + SS_CTRL(0));
420			ret = mxic_nfc_data_xfer(nfc,
421						 instr->ctx.addr.addrs, NULL,
422						 instr->ctx.addr.naddrs);
423			break;
424
425		case NAND_OP_DATA_IN_INSTR:
426			writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
427			writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
428			       OP_READ, nfc->regs + SS_CTRL(0));
429			ret = mxic_nfc_data_xfer(nfc, NULL,
430						 instr->ctx.data.buf.in,
431						 instr->ctx.data.len);
432			break;
433
434		case NAND_OP_DATA_OUT_INSTR:
435			writel(instr->ctx.data.len,
436			       nfc->regs + ONFI_DIN_CNT(0));
437			writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F),
438			       nfc->regs + SS_CTRL(0));
439			ret = mxic_nfc_data_xfer(nfc,
440						 instr->ctx.data.buf.out, NULL,
441						 instr->ctx.data.len);
442			break;
443
444		case NAND_OP_WAITRDY_INSTR:
445			ret = mxic_nfc_wait_ready(chip);
446			break;
447		}
448	}
449	mxic_nfc_cs_disable(nfc);
450
451	return ret;
452}
453
454static int mxic_nfc_setup_interface(struct nand_chip *chip, int chipnr,
455				    const struct nand_interface_config *conf)
456{
457	struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
458	const struct nand_sdr_timings *sdr;
459	unsigned long freq;
460	int ret;
461
462	sdr = nand_get_sdr_timings(conf);
463	if (IS_ERR(sdr))
464		return PTR_ERR(sdr);
465
466	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
467		return 0;
468
469	freq = NSEC_PER_SEC / (sdr->tRC_min / 1000);
470
471	ret =  mxic_nfc_set_freq(nfc, freq);
472	if (ret)
473		dev_err(nfc->dev, "set freq:%ld failed\n", freq);
474
475	if (sdr->tRC_min < 30000)
476		writel(DATA_STROB_EDO_EN, nfc->regs + DATA_STROB);
477
478	return 0;
479}
480
481static const struct nand_controller_ops mxic_nand_controller_ops = {
482	.exec_op = mxic_nfc_exec_op,
483	.setup_interface = mxic_nfc_setup_interface,
484};
485
486static int mxic_nfc_probe(struct platform_device *pdev)
487{
488	struct device_node *nand_np, *np = pdev->dev.of_node;
489	struct mtd_info *mtd;
490	struct mxic_nand_ctlr *nfc;
491	struct nand_chip *nand_chip;
492	int err;
493	int irq;
494
495	nfc = devm_kzalloc(&pdev->dev, sizeof(struct mxic_nand_ctlr),
496			   GFP_KERNEL);
497	if (!nfc)
498		return -ENOMEM;
499
500	nfc->ps_clk = devm_clk_get(&pdev->dev, "ps");
501	if (IS_ERR(nfc->ps_clk))
502		return PTR_ERR(nfc->ps_clk);
503
504	nfc->send_clk = devm_clk_get(&pdev->dev, "send");
505	if (IS_ERR(nfc->send_clk))
506		return PTR_ERR(nfc->send_clk);
507
508	nfc->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly");
509	if (IS_ERR(nfc->send_dly_clk))
510		return PTR_ERR(nfc->send_dly_clk);
511
512	nfc->regs = devm_platform_ioremap_resource(pdev, 0);
513	if (IS_ERR(nfc->regs))
514		return PTR_ERR(nfc->regs);
515
516	nand_chip = &nfc->chip;
517	mtd = nand_to_mtd(nand_chip);
518	mtd->dev.parent = &pdev->dev;
519
520	for_each_child_of_node(np, nand_np)
521		nand_set_flash_node(nand_chip, nand_np);
522
523	nand_chip->priv = nfc;
524	nfc->dev = &pdev->dev;
525	nfc->controller.ops = &mxic_nand_controller_ops;
526	nand_controller_init(&nfc->controller);
527	nand_chip->controller = &nfc->controller;
528
529	irq = platform_get_irq(pdev, 0);
530	if (irq < 0)
531		return irq;
532
533	mxic_nfc_hw_init(nfc);
534
535	err = devm_request_irq(&pdev->dev, irq, mxic_nfc_isr,
536			       0, "mxic-nfc", nfc);
537	if (err)
538		goto fail;
539
540	err = nand_scan(nand_chip, 1);
541	if (err)
542		goto fail;
543
544	err = mtd_device_register(mtd, NULL, 0);
545	if (err)
546		goto fail;
547
548	platform_set_drvdata(pdev, nfc);
549	return 0;
550
551fail:
552	mxic_nfc_clk_disable(nfc);
553	return err;
554}
555
556static void mxic_nfc_remove(struct platform_device *pdev)
557{
558	struct mxic_nand_ctlr *nfc = platform_get_drvdata(pdev);
559	struct nand_chip *chip = &nfc->chip;
560	int ret;
561
562	ret = mtd_device_unregister(nand_to_mtd(chip));
563	WARN_ON(ret);
564	nand_cleanup(chip);
565
566	mxic_nfc_clk_disable(nfc);
567}
568
569static const struct of_device_id mxic_nfc_of_ids[] = {
570	{ .compatible = "mxic,multi-itfc-v009-nand-controller", },
571	{},
572};
573MODULE_DEVICE_TABLE(of, mxic_nfc_of_ids);
574
575static struct platform_driver mxic_nfc_driver = {
576	.probe = mxic_nfc_probe,
577	.remove_new = mxic_nfc_remove,
578	.driver = {
579		.name = "mxic-nfc",
580		.of_match_table = mxic_nfc_of_ids,
581	},
582};
583module_platform_driver(mxic_nfc_driver);
584
585MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>");
586MODULE_DESCRIPTION("Macronix raw NAND controller driver");
587MODULE_LICENSE("GPL v2");
588