1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Marvell NAND flash controller driver
4 *
5 * Copyright (C) 2017 Marvell
6 * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
7 *
8 *
9 * This NAND controller driver handles two versions of the hardware,
10 * one is called NFCv1 and is available on PXA SoCs and the other is
11 * called NFCv2 and is available on Armada SoCs.
12 *
13 * The main visible difference is that NFCv1 only has Hamming ECC
14 * capabilities, while NFCv2 also embeds a BCH ECC engine. Also, DMA
15 * is not used with NFCv2.
16 *
17 * The ECC layouts are depicted in details in Marvell AN-379, but here
18 * is a brief description.
19 *
20 * When using Hamming, the data is split in 512B chunks (either 1, 2
21 * or 4) and each chunk will have its own ECC "digest" of 6B at the
22 * beginning of the OOB area and eventually the remaining free OOB
23 * bytes (also called "spare" bytes in the driver). This engine
24 * corrects up to 1 bit per chunk and detects reliably an error if
25 * there are at most 2 bitflips. Here is the page layout used by the
26 * controller when Hamming is chosen:
27 *
28 * +-------------------------------------------------------------+
29 * | Data 1 | ... | Data N | ECC 1 | ... | ECCN | Free OOB bytes |
30 * +-------------------------------------------------------------+
31 *
32 * When using the BCH engine, there are N identical (data + free OOB +
33 * ECC) sections and potentially an extra one to deal with
34 * configurations where the chosen (data + free OOB + ECC) sizes do
35 * not align with the page (data + OOB) size. ECC bytes are always
36 * 30B per ECC chunk. Here is the page layout used by the controller
37 * when BCH is chosen:
38 *
39 * +-----------------------------------------
40 * | Data 1 | Free OOB bytes 1 | ECC 1 | ...
41 * +-----------------------------------------
42 *
43 *      -------------------------------------------
44 *       ... | Data N | Free OOB bytes N | ECC N |
45 *      -------------------------------------------
46 *
47 *           --------------------------------------------+
48 *            Last Data | Last Free OOB bytes | Last ECC |
49 *           --------------------------------------------+
50 *
51 * In both cases, the layout seen by the user is always: all data
52 * first, then all free OOB bytes and finally all ECC bytes. With BCH,
53 * ECC bytes are 30B long and are padded with 0xFF to align on 32
54 * bytes.
55 *
56 * The controller has certain limitations that are handled by the
57 * driver:
58 *   - It can only read 2k at a time. To overcome this limitation, the
59 *     driver issues data cycles on the bus, without issuing new
60 *     CMD + ADDR cycles. The Marvell term is "naked" operations.
61 *   - The ECC strength in BCH mode cannot be tuned. It is fixed 16
62 *     bits. What can be tuned is the ECC block size as long as it
63 *     stays between 512B and 2kiB. It's usually chosen based on the
64 *     chip ECC requirements. For instance, using 2kiB ECC chunks
65 *     provides 4b/512B correctability.
66 *   - The controller will always treat data bytes, free OOB bytes
67 *     and ECC bytes in that order, no matter what the real layout is
68 *     (which is usually all data then all OOB bytes). The
69 *     marvell_nfc_layouts array below contains the currently
70 *     supported layouts.
71 *   - Because of these weird layouts, the Bad Block Markers can be
72 *     located in data section. In this case, the NAND_BBT_NO_OOB_BBM
73 *     option must be set to prevent scanning/writing bad block
74 *     markers.
75 */
76
77#include <linux/module.h>
78#include <linux/clk.h>
79#include <linux/mtd/rawnand.h>
80#include <linux/of.h>
81#include <linux/iopoll.h>
82#include <linux/interrupt.h>
83#include <linux/platform_device.h>
84#include <linux/slab.h>
85#include <linux/mfd/syscon.h>
86#include <linux/regmap.h>
87#include <asm/unaligned.h>
88
89#include <linux/dmaengine.h>
90#include <linux/dma-mapping.h>
91#include <linux/dma/pxa-dma.h>
92#include <linux/platform_data/mtd-nand-pxa3xx.h>
93
94/* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
95#define FIFO_DEPTH		8
96#define FIFO_REP(x)		(x / sizeof(u32))
97#define BCH_SEQ_READS		(32 / FIFO_DEPTH)
98/* NFC does not support transfers of larger chunks at a time */
99#define MAX_CHUNK_SIZE		2112
100/* NFCv1 cannot read more that 7 bytes of ID */
101#define NFCV1_READID_LEN	7
102/* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
103#define POLL_PERIOD		0
104#define POLL_TIMEOUT		100000
105/* Interrupt maximum wait period in ms */
106#define IRQ_TIMEOUT		1000
107/* Latency in clock cycles between SoC pins and NFC logic */
108#define MIN_RD_DEL_CNT		3
109/* Maximum number of contiguous address cycles */
110#define MAX_ADDRESS_CYC_NFCV1	5
111#define MAX_ADDRESS_CYC_NFCV2	7
112/* System control registers/bits to enable the NAND controller on some SoCs */
113#define GENCONF_SOC_DEVICE_MUX	0x208
114#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
115#define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
116#define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
117#define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
118#define GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN BIT(27)
119#define GENCONF_CLK_GATING_CTRL	0x220
120#define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
121#define GENCONF_ND_CLK_CTRL	0x700
122#define GENCONF_ND_CLK_CTRL_EN	BIT(0)
123
124/* NAND controller data flash control register */
125#define NDCR			0x00
126#define NDCR_ALL_INT		GENMASK(11, 0)
127#define NDCR_CS1_CMDDM		BIT(7)
128#define NDCR_CS0_CMDDM		BIT(8)
129#define NDCR_RDYM		BIT(11)
130#define NDCR_ND_ARB_EN		BIT(12)
131#define NDCR_RA_START		BIT(15)
132#define NDCR_RD_ID_CNT(x)	(min_t(unsigned int, x, 0x7) << 16)
133#define NDCR_PAGE_SZ(x)		(x >= 2048 ? BIT(24) : 0)
134#define NDCR_DWIDTH_M		BIT(26)
135#define NDCR_DWIDTH_C		BIT(27)
136#define NDCR_ND_RUN		BIT(28)
137#define NDCR_DMA_EN		BIT(29)
138#define NDCR_ECC_EN		BIT(30)
139#define NDCR_SPARE_EN		BIT(31)
140#define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
141				    NDCR_DWIDTH_M | NDCR_DWIDTH_C))
142
143/* NAND interface timing parameter 0 register */
144#define NDTR0			0x04
145#define NDTR0_TRP(x)		((min_t(unsigned int, x, 0xF) & 0x7) << 0)
146#define NDTR0_TRH(x)		(min_t(unsigned int, x, 0x7) << 3)
147#define NDTR0_ETRP(x)		((min_t(unsigned int, x, 0xF) & 0x8) << 3)
148#define NDTR0_SEL_NRE_EDGE	BIT(7)
149#define NDTR0_TWP(x)		(min_t(unsigned int, x, 0x7) << 8)
150#define NDTR0_TWH(x)		(min_t(unsigned int, x, 0x7) << 11)
151#define NDTR0_TCS(x)		(min_t(unsigned int, x, 0x7) << 16)
152#define NDTR0_TCH(x)		(min_t(unsigned int, x, 0x7) << 19)
153#define NDTR0_RD_CNT_DEL(x)	(min_t(unsigned int, x, 0xF) << 22)
154#define NDTR0_SELCNTR		BIT(26)
155#define NDTR0_TADL(x)		(min_t(unsigned int, x, 0x1F) << 27)
156
157/* NAND interface timing parameter 1 register */
158#define NDTR1			0x0C
159#define NDTR1_TAR(x)		(min_t(unsigned int, x, 0xF) << 0)
160#define NDTR1_TWHR(x)		(min_t(unsigned int, x, 0xF) << 4)
161#define NDTR1_TRHW(x)		(min_t(unsigned int, x / 16, 0x3) << 8)
162#define NDTR1_PRESCALE		BIT(14)
163#define NDTR1_WAIT_MODE		BIT(15)
164#define NDTR1_TR(x)		(min_t(unsigned int, x, 0xFFFF) << 16)
165
166/* NAND controller status register */
167#define NDSR			0x14
168#define NDSR_WRCMDREQ		BIT(0)
169#define NDSR_RDDREQ		BIT(1)
170#define NDSR_WRDREQ		BIT(2)
171#define NDSR_CORERR		BIT(3)
172#define NDSR_UNCERR		BIT(4)
173#define NDSR_CMDD(cs)		BIT(8 - cs)
174#define NDSR_RDY(rb)		BIT(11 + rb)
175#define NDSR_ERRCNT(x)		((x >> 16) & 0x1F)
176
177/* NAND ECC control register */
178#define NDECCCTRL		0x28
179#define NDECCCTRL_BCH_EN	BIT(0)
180
181/* NAND controller data buffer register */
182#define NDDB			0x40
183
184/* NAND controller command buffer 0 register */
185#define NDCB0			0x48
186#define NDCB0_CMD1(x)		((x & 0xFF) << 0)
187#define NDCB0_CMD2(x)		((x & 0xFF) << 8)
188#define NDCB0_ADDR_CYC(x)	((x & 0x7) << 16)
189#define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
190#define NDCB0_DBC		BIT(19)
191#define NDCB0_CMD_TYPE(x)	((x & 0x7) << 21)
192#define NDCB0_CSEL		BIT(24)
193#define NDCB0_RDY_BYP		BIT(27)
194#define NDCB0_LEN_OVRD		BIT(28)
195#define NDCB0_CMD_XTYPE(x)	((x & 0x7) << 29)
196
197/* NAND controller command buffer 1 register */
198#define NDCB1			0x4C
199#define NDCB1_COLS(x)		((x & 0xFFFF) << 0)
200#define NDCB1_ADDRS_PAGE(x)	(x << 16)
201
202/* NAND controller command buffer 2 register */
203#define NDCB2			0x50
204#define NDCB2_ADDR5_PAGE(x)	(((x >> 16) & 0xFF) << 0)
205#define NDCB2_ADDR5_CYC(x)	((x & 0xFF) << 0)
206
207/* NAND controller command buffer 3 register */
208#define NDCB3			0x54
209#define NDCB3_ADDR6_CYC(x)	((x & 0xFF) << 16)
210#define NDCB3_ADDR7_CYC(x)	((x & 0xFF) << 24)
211
212/* NAND controller command buffer 0 register 'type' and 'xtype' fields */
213#define TYPE_READ		0
214#define TYPE_WRITE		1
215#define TYPE_ERASE		2
216#define TYPE_READ_ID		3
217#define TYPE_STATUS		4
218#define TYPE_RESET		5
219#define TYPE_NAKED_CMD		6
220#define TYPE_NAKED_ADDR		7
221#define TYPE_MASK		7
222#define XTYPE_MONOLITHIC_RW	0
223#define XTYPE_LAST_NAKED_RW	1
224#define XTYPE_FINAL_COMMAND	3
225#define XTYPE_READ		4
226#define XTYPE_WRITE_DISPATCH	4
227#define XTYPE_NAKED_RW		5
228#define XTYPE_COMMAND_DISPATCH	6
229#define XTYPE_MASK		7
230
231/**
232 * struct marvell_hw_ecc_layout - layout of Marvell ECC
233 *
234 * Marvell ECC engine works differently than the others, in order to limit the
235 * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
236 * per subpage, and depending on a the desired strength needed by the NAND chip,
237 * a particular layout mixing data/spare/ecc is defined, with a possible last
238 * chunk smaller that the others.
239 *
240 * @writesize:		Full page size on which the layout applies
241 * @chunk:		Desired ECC chunk size on which the layout applies
242 * @strength:		Desired ECC strength (per chunk size bytes) on which the
243 *			layout applies
244 * @nchunks:		Total number of chunks
245 * @full_chunk_cnt:	Number of full-sized chunks, which is the number of
246 *			repetitions of the pattern:
247 *			(data_bytes + spare_bytes + ecc_bytes).
248 * @data_bytes:		Number of data bytes per chunk
249 * @spare_bytes:	Number of spare bytes per chunk
250 * @ecc_bytes:		Number of ecc bytes per chunk
251 * @last_data_bytes:	Number of data bytes in the last chunk
252 * @last_spare_bytes:	Number of spare bytes in the last chunk
253 * @last_ecc_bytes:	Number of ecc bytes in the last chunk
254 */
255struct marvell_hw_ecc_layout {
256	/* Constraints */
257	int writesize;
258	int chunk;
259	int strength;
260	/* Corresponding layout */
261	int nchunks;
262	int full_chunk_cnt;
263	int data_bytes;
264	int spare_bytes;
265	int ecc_bytes;
266	int last_data_bytes;
267	int last_spare_bytes;
268	int last_ecc_bytes;
269};
270
271#define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb)	\
272	{								\
273		.writesize = ws,					\
274		.chunk = dc,						\
275		.strength = ds,						\
276		.nchunks = nc,						\
277		.full_chunk_cnt = fcc,					\
278		.data_bytes = db,					\
279		.spare_bytes = sb,					\
280		.ecc_bytes = eb,					\
281		.last_data_bytes = ldb,					\
282		.last_spare_bytes = lsb,				\
283		.last_ecc_bytes = leb,					\
284	}
285
286/* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
287static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
288	MARVELL_LAYOUT(  512,   512,  1,  1,  1,  512,  8,  8,  0,  0,  0),
289	MARVELL_LAYOUT( 2048,   512,  1,  1,  1, 2048, 40, 24,  0,  0,  0),
290	MARVELL_LAYOUT( 2048,   512,  4,  1,  1, 2048, 32, 30,  0,  0,  0),
291	MARVELL_LAYOUT( 2048,   512,  8,  2,  1, 1024,  0, 30,1024,32, 30),
292	MARVELL_LAYOUT( 2048,   512,  8,  2,  1, 1024,  0, 30,1024,64, 30),
293	MARVELL_LAYOUT( 2048,   512,  16, 4,  4, 512,   0, 30,  0, 32, 30),
294	MARVELL_LAYOUT( 4096,   512,  4,  2,  2, 2048, 32, 30,  0,  0,  0),
295	MARVELL_LAYOUT( 4096,   512,  8,  4,  4, 1024,  0, 30,  0, 64, 30),
296	MARVELL_LAYOUT( 4096,   512,  16, 8,  8, 512,   0, 30,  0, 32, 30),
297	MARVELL_LAYOUT( 8192,   512,  4,  4,  4, 2048,  0, 30,  0,  0,  0),
298	MARVELL_LAYOUT( 8192,   512,  8,  8,  8, 1024,  0, 30,  0, 160, 30),
299	MARVELL_LAYOUT( 8192,   512,  16, 16, 16, 512,  0, 30,  0,  32, 30),
300};
301
302/**
303 * struct marvell_nand_chip_sel - CS line description
304 *
305 * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
306 * is made by a field in NDCB0 register, and in another field in NDCB2 register.
307 * The datasheet describes the logic with an error: ADDR5 field is once
308 * declared at the beginning of NDCB2, and another time at its end. Because the
309 * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
310 * to use the last bit of this field instead of the first ones.
311 *
312 * @cs:			Wanted CE lane.
313 * @ndcb0_csel:		Value of the NDCB0 register with or without the flag
314 *			selecting the wanted CE lane. This is set once when
315 *			the Device Tree is probed.
316 * @rb:			Ready/Busy pin for the flash chip
317 */
318struct marvell_nand_chip_sel {
319	unsigned int cs;
320	u32 ndcb0_csel;
321	unsigned int rb;
322};
323
324/**
325 * struct marvell_nand_chip - stores NAND chip device related information
326 *
327 * @chip:		Base NAND chip structure
328 * @node:		Used to store NAND chips into a list
329 * @layout:		NAND layout when using hardware ECC
330 * @ndcr:		Controller register value for this NAND chip
331 * @ndtr0:		Timing registers 0 value for this NAND chip
332 * @ndtr1:		Timing registers 1 value for this NAND chip
333 * @addr_cyc:		Amount of cycles needed to pass column address
334 * @selected_die:	Current active CS
335 * @nsels:		Number of CS lines required by the NAND chip
336 * @sels:		Array of CS lines descriptions
337 */
338struct marvell_nand_chip {
339	struct nand_chip chip;
340	struct list_head node;
341	const struct marvell_hw_ecc_layout *layout;
342	u32 ndcr;
343	u32 ndtr0;
344	u32 ndtr1;
345	int addr_cyc;
346	int selected_die;
347	unsigned int nsels;
348	struct marvell_nand_chip_sel sels[] __counted_by(nsels);
349};
350
351static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
352{
353	return container_of(chip, struct marvell_nand_chip, chip);
354}
355
356static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
357							*nand)
358{
359	return &nand->sels[nand->selected_die];
360}
361
362/**
363 * struct marvell_nfc_caps - NAND controller capabilities for distinction
364 *                           between compatible strings
365 *
366 * @max_cs_nb:		Number of Chip Select lines available
367 * @max_rb_nb:		Number of Ready/Busy lines available
368 * @need_system_controller: Indicates if the SoC needs to have access to the
369 *                      system controller (ie. to enable the NAND controller)
370 * @legacy_of_bindings:	Indicates if DT parsing must be done using the old
371 *			fashion way
372 * @is_nfcv2:		NFCv2 has numerous enhancements compared to NFCv1, ie.
373 *			BCH error detection and correction algorithm,
374 *			NDCB3 register has been added
375 * @use_dma:		Use dma for data transfers
376 * @max_mode_number:	Maximum timing mode supported by the controller
377 */
378struct marvell_nfc_caps {
379	unsigned int max_cs_nb;
380	unsigned int max_rb_nb;
381	bool need_system_controller;
382	bool legacy_of_bindings;
383	bool is_nfcv2;
384	bool use_dma;
385	unsigned int max_mode_number;
386};
387
388/**
389 * struct marvell_nfc - stores Marvell NAND controller information
390 *
391 * @controller:		Base controller structure
392 * @dev:		Parent device (used to print error messages)
393 * @regs:		NAND controller registers
394 * @core_clk:		Core clock
395 * @reg_clk:		Registers clock
396 * @complete:		Completion object to wait for NAND controller events
397 * @assigned_cs:	Bitmask describing already assigned CS lines
398 * @chips:		List containing all the NAND chips attached to
399 *			this NAND controller
400 * @selected_chip:	Currently selected target chip
401 * @caps:		NAND controller capabilities for each compatible string
402 * @use_dma:		Whetner DMA is used
403 * @dma_chan:		DMA channel (NFCv1 only)
404 * @dma_buf:		32-bit aligned buffer for DMA transfers (NFCv1 only)
405 */
406struct marvell_nfc {
407	struct nand_controller controller;
408	struct device *dev;
409	void __iomem *regs;
410	struct clk *core_clk;
411	struct clk *reg_clk;
412	struct completion complete;
413	unsigned long assigned_cs;
414	struct list_head chips;
415	struct nand_chip *selected_chip;
416	const struct marvell_nfc_caps *caps;
417
418	/* DMA (NFCv1 only) */
419	bool use_dma;
420	struct dma_chan *dma_chan;
421	u8 *dma_buf;
422};
423
424static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl)
425{
426	return container_of(ctrl, struct marvell_nfc, controller);
427}
428
429/**
430 * struct marvell_nfc_timings - NAND controller timings expressed in NAND
431 *                              Controller clock cycles
432 *
433 * @tRP:		ND_nRE pulse width
434 * @tRH:		ND_nRE high duration
435 * @tWP:		ND_nWE pulse time
436 * @tWH:		ND_nWE high duration
437 * @tCS:		Enable signal setup time
438 * @tCH:		Enable signal hold time
439 * @tADL:		Address to write data delay
440 * @tAR:		ND_ALE low to ND_nRE low delay
441 * @tWHR:		ND_nWE high to ND_nRE low for status read
442 * @tRHW:		ND_nRE high duration, read to write delay
443 * @tR:			ND_nWE high to ND_nRE low for read
444 */
445struct marvell_nfc_timings {
446	/* NDTR0 fields */
447	unsigned int tRP;
448	unsigned int tRH;
449	unsigned int tWP;
450	unsigned int tWH;
451	unsigned int tCS;
452	unsigned int tCH;
453	unsigned int tADL;
454	/* NDTR1 fields */
455	unsigned int tAR;
456	unsigned int tWHR;
457	unsigned int tRHW;
458	unsigned int tR;
459};
460
461/**
462 * TO_CYCLES() - Derives a duration in numbers of clock cycles.
463 *
464 * @ps: Duration in pico-seconds
465 * @period_ns:  Clock period in nano-seconds
466 *
467 * Convert the duration in nano-seconds, then divide by the period and
468 * return the number of clock periods.
469 */
470#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
471#define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
472						     period_ns))
473
474/**
475 * struct marvell_nfc_op - filled during the parsing of the ->exec_op()
476 *                         subop subset of instructions.
477 *
478 * @ndcb:		Array of values written to NDCBx registers
479 * @cle_ale_delay_ns:	Optional delay after the last CMD or ADDR cycle
480 * @rdy_timeout_ms:	Timeout for waits on Ready/Busy pin
481 * @rdy_delay_ns:	Optional delay after waiting for the RB pin
482 * @data_delay_ns:	Optional delay after the data xfer
483 * @data_instr_idx:	Index of the data instruction in the subop
484 * @data_instr:		Pointer to the data instruction in the subop
485 */
486struct marvell_nfc_op {
487	u32 ndcb[4];
488	unsigned int cle_ale_delay_ns;
489	unsigned int rdy_timeout_ms;
490	unsigned int rdy_delay_ns;
491	unsigned int data_delay_ns;
492	unsigned int data_instr_idx;
493	const struct nand_op_instr *data_instr;
494};
495
496/*
497 * Internal helper to conditionnally apply a delay (from the above structure,
498 * most of the time).
499 */
500static void cond_delay(unsigned int ns)
501{
502	if (!ns)
503		return;
504
505	if (ns < 10000)
506		ndelay(ns);
507	else
508		udelay(DIV_ROUND_UP(ns, 1000));
509}
510
511/*
512 * The controller has many flags that could generate interrupts, most of them
513 * are disabled and polling is used. For the very slow signals, using interrupts
514 * may relax the CPU charge.
515 */
516static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
517{
518	u32 reg;
519
520	/* Writing 1 disables the interrupt */
521	reg = readl_relaxed(nfc->regs + NDCR);
522	writel_relaxed(reg | int_mask, nfc->regs + NDCR);
523}
524
525static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
526{
527	u32 reg;
528
529	/* Writing 0 enables the interrupt */
530	reg = readl_relaxed(nfc->regs + NDCR);
531	writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
532}
533
534static u32 marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
535{
536	u32 reg;
537
538	reg = readl_relaxed(nfc->regs + NDSR);
539	writel_relaxed(int_mask, nfc->regs + NDSR);
540
541	return reg & int_mask;
542}
543
544static void marvell_nfc_force_byte_access(struct nand_chip *chip,
545					  bool force_8bit)
546{
547	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
548	u32 ndcr;
549
550	/*
551	 * Callers of this function do not verify if the NAND is using a 16-bit
552	 * an 8-bit bus for normal operations, so we need to take care of that
553	 * here by leaving the configuration unchanged if the NAND does not have
554	 * the NAND_BUSWIDTH_16 flag set.
555	 */
556	if (!(chip->options & NAND_BUSWIDTH_16))
557		return;
558
559	ndcr = readl_relaxed(nfc->regs + NDCR);
560
561	if (force_8bit)
562		ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
563	else
564		ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
565
566	writel_relaxed(ndcr, nfc->regs + NDCR);
567}
568
569static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
570{
571	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
572	u32 val;
573	int ret;
574
575	/*
576	 * The command is being processed, wait for the ND_RUN bit to be
577	 * cleared by the NFC. If not, we must clear it by hand.
578	 */
579	ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
580					 (val & NDCR_ND_RUN) == 0,
581					 POLL_PERIOD, POLL_TIMEOUT);
582	if (ret) {
583		dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
584		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
585			       nfc->regs + NDCR);
586		return ret;
587	}
588
589	return 0;
590}
591
592/*
593 * Any time a command has to be sent to the controller, the following sequence
594 * has to be followed:
595 * - call marvell_nfc_prepare_cmd()
596 *      -> activate the ND_RUN bit that will kind of 'start a job'
597 *      -> wait the signal indicating the NFC is waiting for a command
598 * - send the command (cmd and address cycles)
599 * - enventually send or receive the data
600 * - call marvell_nfc_end_cmd() with the corresponding flag
601 *      -> wait the flag to be triggered or cancel the job with a timeout
602 *
603 * The following helpers are here to factorize the code a bit so that
604 * specialized functions responsible for executing the actual NAND
605 * operations do not have to replicate the same code blocks.
606 */
607static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
608{
609	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
610	u32 ndcr, val;
611	int ret;
612
613	/* Poll ND_RUN and clear NDSR before issuing any command */
614	ret = marvell_nfc_wait_ndrun(chip);
615	if (ret) {
616		dev_err(nfc->dev, "Last operation did not succeed\n");
617		return ret;
618	}
619
620	ndcr = readl_relaxed(nfc->regs + NDCR);
621	writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
622
623	/* Assert ND_RUN bit and wait the NFC to be ready */
624	writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
625	ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
626					 val & NDSR_WRCMDREQ,
627					 POLL_PERIOD, POLL_TIMEOUT);
628	if (ret) {
629		dev_err(nfc->dev, "Timeout on WRCMDRE\n");
630		return -ETIMEDOUT;
631	}
632
633	/* Command may be written, clear WRCMDREQ status bit */
634	writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
635
636	return 0;
637}
638
639static void marvell_nfc_send_cmd(struct nand_chip *chip,
640				 struct marvell_nfc_op *nfc_op)
641{
642	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
643	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
644
645	dev_dbg(nfc->dev, "\nNDCR:  0x%08x\n"
646		"NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
647		(u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
648		nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
649
650	writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
651		       nfc->regs + NDCB0);
652	writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
653	writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
654
655	/*
656	 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
657	 * fields are used (only available on NFCv2).
658	 */
659	if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
660	    NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
661		if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
662			writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
663	}
664}
665
666static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
667			       const char *label)
668{
669	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
670	u32 val;
671	int ret;
672
673	ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
674					 val & flag,
675					 POLL_PERIOD, POLL_TIMEOUT);
676
677	if (ret) {
678		dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
679			label, val);
680		if (nfc->dma_chan)
681			dmaengine_terminate_all(nfc->dma_chan);
682		return ret;
683	}
684
685	/*
686	 * DMA function uses this helper to poll on CMDD bits without wanting
687	 * them to be cleared.
688	 */
689	if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
690		return 0;
691
692	writel_relaxed(flag, nfc->regs + NDSR);
693
694	return 0;
695}
696
697static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
698{
699	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
700	int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
701
702	return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
703}
704
705static int marvell_nfc_poll_status(struct marvell_nfc *nfc, u32 mask,
706				   u32 expected_val, unsigned long timeout_ms)
707{
708	unsigned long limit;
709	u32 st;
710
711	limit = jiffies + msecs_to_jiffies(timeout_ms);
712	do {
713		st = readl_relaxed(nfc->regs + NDSR);
714		if (st & NDSR_RDY(1))
715			st |= NDSR_RDY(0);
716
717		if ((st & mask) == expected_val)
718			return 0;
719
720		cpu_relax();
721	} while (time_after(limit, jiffies));
722
723	return -ETIMEDOUT;
724}
725
726static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
727{
728	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
729	struct mtd_info *mtd = nand_to_mtd(chip);
730	u32 pending;
731	int ret;
732
733	/* Timeout is expressed in ms */
734	if (!timeout_ms)
735		timeout_ms = IRQ_TIMEOUT;
736
737	if (mtd->oops_panic_write) {
738		ret = marvell_nfc_poll_status(nfc, NDSR_RDY(0),
739					      NDSR_RDY(0),
740					      timeout_ms);
741	} else {
742		init_completion(&nfc->complete);
743
744		marvell_nfc_enable_int(nfc, NDCR_RDYM);
745		ret = wait_for_completion_timeout(&nfc->complete,
746						  msecs_to_jiffies(timeout_ms));
747		marvell_nfc_disable_int(nfc, NDCR_RDYM);
748	}
749	pending = marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
750
751	/*
752	 * In case the interrupt was not served in the required time frame,
753	 * check if the ISR was not served or if something went actually wrong.
754	 */
755	if (!ret && !pending) {
756		dev_err(nfc->dev, "Timeout waiting for RB signal\n");
757		return -ETIMEDOUT;
758	}
759
760	return 0;
761}
762
763static void marvell_nfc_select_target(struct nand_chip *chip,
764				      unsigned int die_nr)
765{
766	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
767	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
768	u32 ndcr_generic;
769
770	/*
771	 * Reset the NDCR register to a clean state for this particular chip,
772	 * also clear ND_RUN bit.
773	 */
774	ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
775		       NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
776	writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
777
778	/* Also reset the interrupt status register */
779	marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
780
781	if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
782		return;
783
784	writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
785	writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
786
787	nfc->selected_chip = chip;
788	marvell_nand->selected_die = die_nr;
789}
790
791static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
792{
793	struct marvell_nfc *nfc = dev_id;
794	u32 st = readl_relaxed(nfc->regs + NDSR);
795	u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
796
797	/*
798	 * RDY interrupt mask is one bit in NDCR while there are two status
799	 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
800	 */
801	if (st & NDSR_RDY(1))
802		st |= NDSR_RDY(0);
803
804	if (!(st & ien))
805		return IRQ_NONE;
806
807	marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
808
809	if (st & (NDSR_RDY(0) | NDSR_RDY(1)))
810		complete(&nfc->complete);
811
812	return IRQ_HANDLED;
813}
814
815/* HW ECC related functions */
816static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
817{
818	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
819	u32 ndcr = readl_relaxed(nfc->regs + NDCR);
820
821	if (!(ndcr & NDCR_ECC_EN)) {
822		writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
823
824		/*
825		 * When enabling BCH, set threshold to 0 to always know the
826		 * number of corrected bitflips.
827		 */
828		if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
829			writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
830	}
831}
832
833static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
834{
835	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
836	u32 ndcr = readl_relaxed(nfc->regs + NDCR);
837
838	if (ndcr & NDCR_ECC_EN) {
839		writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
840		if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
841			writel_relaxed(0, nfc->regs + NDECCCTRL);
842	}
843}
844
845/* DMA related helpers */
846static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
847{
848	u32 reg;
849
850	reg = readl_relaxed(nfc->regs + NDCR);
851	writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
852}
853
854static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
855{
856	u32 reg;
857
858	reg = readl_relaxed(nfc->regs + NDCR);
859	writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
860}
861
862/* Read/write PIO/DMA accessors */
863static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
864				     enum dma_data_direction direction,
865				     unsigned int len)
866{
867	unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
868	struct dma_async_tx_descriptor *tx;
869	struct scatterlist sg;
870	dma_cookie_t cookie;
871	int ret;
872
873	marvell_nfc_enable_dma(nfc);
874	/* Prepare the DMA transfer */
875	sg_init_one(&sg, nfc->dma_buf, dma_len);
876	ret = dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
877	if (!ret) {
878		dev_err(nfc->dev, "Could not map DMA S/G list\n");
879		return -ENXIO;
880	}
881
882	tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
883				     direction == DMA_FROM_DEVICE ?
884				     DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
885				     DMA_PREP_INTERRUPT);
886	if (!tx) {
887		dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
888		dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
889		return -ENXIO;
890	}
891
892	/* Do the task and wait for it to finish */
893	cookie = dmaengine_submit(tx);
894	ret = dma_submit_error(cookie);
895	if (ret)
896		return -EIO;
897
898	dma_async_issue_pending(nfc->dma_chan);
899	ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
900	dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
901	marvell_nfc_disable_dma(nfc);
902	if (ret) {
903		dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
904			dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
905		dmaengine_terminate_all(nfc->dma_chan);
906		return -ETIMEDOUT;
907	}
908
909	return 0;
910}
911
912static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
913					unsigned int len)
914{
915	unsigned int last_len = len % FIFO_DEPTH;
916	unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
917	int i;
918
919	for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
920		ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
921
922	if (last_len) {
923		u8 tmp_buf[FIFO_DEPTH];
924
925		ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
926		memcpy(in + last_full_offset, tmp_buf, last_len);
927	}
928
929	return 0;
930}
931
932static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
933					 unsigned int len)
934{
935	unsigned int last_len = len % FIFO_DEPTH;
936	unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
937	int i;
938
939	for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
940		iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
941
942	if (last_len) {
943		u8 tmp_buf[FIFO_DEPTH];
944
945		memcpy(tmp_buf, out + last_full_offset, last_len);
946		iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
947	}
948
949	return 0;
950}
951
952static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
953					  u8 *data, int data_len,
954					  u8 *spare, int spare_len,
955					  u8 *ecc, int ecc_len,
956					  unsigned int *max_bitflips)
957{
958	struct mtd_info *mtd = nand_to_mtd(chip);
959	int bf;
960
961	/*
962	 * Blank pages (all 0xFF) that have not been written may be recognized
963	 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
964	 * check if the entire page (with ECC bytes) is actually blank or not.
965	 */
966	if (!data)
967		data_len = 0;
968	if (!spare)
969		spare_len = 0;
970	if (!ecc)
971		ecc_len = 0;
972
973	bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
974					 spare, spare_len, chip->ecc.strength);
975	if (bf < 0) {
976		mtd->ecc_stats.failed++;
977		return;
978	}
979
980	/* Update the stats and max_bitflips */
981	mtd->ecc_stats.corrected += bf;
982	*max_bitflips = max_t(unsigned int, *max_bitflips, bf);
983}
984
985/*
986 * Check if a chunk is correct or not according to the hardware ECC engine.
987 * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
988 * mtd->ecc_stats.failure is not, the function will instead return a non-zero
989 * value indicating that a check on the emptyness of the subpage must be
990 * performed before actually declaring the subpage as "corrupted".
991 */
992static int marvell_nfc_hw_ecc_check_bitflips(struct nand_chip *chip,
993					     unsigned int *max_bitflips)
994{
995	struct mtd_info *mtd = nand_to_mtd(chip);
996	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
997	int bf = 0;
998	u32 ndsr;
999
1000	ndsr = readl_relaxed(nfc->regs + NDSR);
1001
1002	/* Check uncorrectable error flag */
1003	if (ndsr & NDSR_UNCERR) {
1004		writel_relaxed(ndsr, nfc->regs + NDSR);
1005
1006		/*
1007		 * Do not increment ->ecc_stats.failed now, instead, return a
1008		 * non-zero value to indicate that this chunk was apparently
1009		 * bad, and it should be check to see if it empty or not. If
1010		 * the chunk (with ECC bytes) is not declared empty, the calling
1011		 * function must increment the failure count.
1012		 */
1013		return -EBADMSG;
1014	}
1015
1016	/* Check correctable error flag */
1017	if (ndsr & NDSR_CORERR) {
1018		writel_relaxed(ndsr, nfc->regs + NDSR);
1019
1020		if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
1021			bf = NDSR_ERRCNT(ndsr);
1022		else
1023			bf = 1;
1024	}
1025
1026	/* Update the stats and max_bitflips */
1027	mtd->ecc_stats.corrected += bf;
1028	*max_bitflips = max_t(unsigned int, *max_bitflips, bf);
1029
1030	return 0;
1031}
1032
1033/* Hamming read helpers */
1034static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
1035					       u8 *data_buf, u8 *oob_buf,
1036					       bool raw, int page)
1037{
1038	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1039	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1040	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1041	struct marvell_nfc_op nfc_op = {
1042		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1043			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1044			   NDCB0_DBC |
1045			   NDCB0_CMD1(NAND_CMD_READ0) |
1046			   NDCB0_CMD2(NAND_CMD_READSTART),
1047		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
1048		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
1049	};
1050	unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1051	int ret;
1052
1053	/* NFCv2 needs more information about the operation being executed */
1054	if (nfc->caps->is_nfcv2)
1055		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1056
1057	ret = marvell_nfc_prepare_cmd(chip);
1058	if (ret)
1059		return ret;
1060
1061	marvell_nfc_send_cmd(chip, &nfc_op);
1062	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1063				  "RDDREQ while draining FIFO (data/oob)");
1064	if (ret)
1065		return ret;
1066
1067	/*
1068	 * Read the page then the OOB area. Unlike what is shown in current
1069	 * documentation, spare bytes are protected by the ECC engine, and must
1070	 * be at the beginning of the OOB area or running this driver on legacy
1071	 * systems will prevent the discovery of the BBM/BBT.
1072	 */
1073	if (nfc->use_dma) {
1074		marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
1075					  lt->data_bytes + oob_bytes);
1076		memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
1077		memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
1078	} else {
1079		marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
1080		marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
1081	}
1082
1083	ret = marvell_nfc_wait_cmdd(chip);
1084	return ret;
1085}
1086
1087static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct nand_chip *chip, u8 *buf,
1088						int oob_required, int page)
1089{
1090	marvell_nfc_select_target(chip, chip->cur_cs);
1091	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1092						   true, page);
1093}
1094
1095static int marvell_nfc_hw_ecc_hmg_read_page(struct nand_chip *chip, u8 *buf,
1096					    int oob_required, int page)
1097{
1098	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1099	unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1100	int max_bitflips = 0, ret;
1101	u8 *raw_buf;
1102
1103	marvell_nfc_select_target(chip, chip->cur_cs);
1104	marvell_nfc_enable_hw_ecc(chip);
1105	marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
1106					    page);
1107	ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
1108	marvell_nfc_disable_hw_ecc(chip);
1109
1110	if (!ret)
1111		return max_bitflips;
1112
1113	/*
1114	 * When ECC failures are detected, check if the full page has been
1115	 * written or not. Ignore the failure if it is actually empty.
1116	 */
1117	raw_buf = kmalloc(full_sz, GFP_KERNEL);
1118	if (!raw_buf)
1119		return -ENOMEM;
1120
1121	marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
1122					    lt->data_bytes, true, page);
1123	marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
1124				      &max_bitflips);
1125	kfree(raw_buf);
1126
1127	return max_bitflips;
1128}
1129
1130/*
1131 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1132 * it appears before the ECC bytes when reading), the ->read_oob_raw() function
1133 * also stands for ->read_oob().
1134 */
1135static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct nand_chip *chip, int page)
1136{
1137	u8 *buf = nand_get_data_buf(chip);
1138
1139	marvell_nfc_select_target(chip, chip->cur_cs);
1140	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
1141						   true, page);
1142}
1143
1144/* Hamming write helpers */
1145static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
1146						const u8 *data_buf,
1147						const u8 *oob_buf, bool raw,
1148						int page)
1149{
1150	const struct nand_sdr_timings *sdr =
1151		nand_get_sdr_timings(nand_get_interface_config(chip));
1152	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1153	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1154	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1155	struct marvell_nfc_op nfc_op = {
1156		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
1157			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1158			   NDCB0_CMD1(NAND_CMD_SEQIN) |
1159			   NDCB0_CMD2(NAND_CMD_PAGEPROG) |
1160			   NDCB0_DBC,
1161		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
1162		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
1163	};
1164	unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
1165	u8 status;
1166	int ret;
1167
1168	/* NFCv2 needs more information about the operation being executed */
1169	if (nfc->caps->is_nfcv2)
1170		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1171
1172	ret = marvell_nfc_prepare_cmd(chip);
1173	if (ret)
1174		return ret;
1175
1176	marvell_nfc_send_cmd(chip, &nfc_op);
1177	ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1178				  "WRDREQ while loading FIFO (data)");
1179	if (ret)
1180		return ret;
1181
1182	/* Write the page then the OOB area */
1183	if (nfc->use_dma) {
1184		memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
1185		memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
1186		marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
1187					  lt->ecc_bytes + lt->spare_bytes);
1188	} else {
1189		marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
1190		marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
1191	}
1192
1193	ret = marvell_nfc_wait_cmdd(chip);
1194	if (ret)
1195		return ret;
1196
1197	ret = marvell_nfc_wait_op(chip,
1198				  PSEC_TO_MSEC(sdr->tPROG_max));
1199	if (ret)
1200		return ret;
1201
1202	/* Check write status on the chip side */
1203	ret = nand_status_op(chip, &status);
1204	if (ret)
1205		return ret;
1206
1207	if (status & NAND_STATUS_FAIL)
1208		return -EIO;
1209
1210	return 0;
1211}
1212
1213static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct nand_chip *chip,
1214						 const u8 *buf,
1215						 int oob_required, int page)
1216{
1217	marvell_nfc_select_target(chip, chip->cur_cs);
1218	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1219						    true, page);
1220}
1221
1222static int marvell_nfc_hw_ecc_hmg_write_page(struct nand_chip *chip,
1223					     const u8 *buf,
1224					     int oob_required, int page)
1225{
1226	int ret;
1227
1228	marvell_nfc_select_target(chip, chip->cur_cs);
1229	marvell_nfc_enable_hw_ecc(chip);
1230	ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1231						   false, page);
1232	marvell_nfc_disable_hw_ecc(chip);
1233
1234	return ret;
1235}
1236
1237/*
1238 * Spare area in Hamming layouts is not protected by the ECC engine (even if
1239 * it appears before the ECC bytes when reading), the ->write_oob_raw() function
1240 * also stands for ->write_oob().
1241 */
1242static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct nand_chip *chip,
1243						int page)
1244{
1245	struct mtd_info *mtd = nand_to_mtd(chip);
1246	u8 *buf = nand_get_data_buf(chip);
1247
1248	memset(buf, 0xFF, mtd->writesize);
1249
1250	marvell_nfc_select_target(chip, chip->cur_cs);
1251	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
1252						    true, page);
1253}
1254
1255/* BCH read helpers */
1256static int marvell_nfc_hw_ecc_bch_read_page_raw(struct nand_chip *chip, u8 *buf,
1257						int oob_required, int page)
1258{
1259	struct mtd_info *mtd = nand_to_mtd(chip);
1260	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1261	u8 *oob = chip->oob_poi;
1262	int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1263	int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1264		lt->last_spare_bytes;
1265	int data_len = lt->data_bytes;
1266	int spare_len = lt->spare_bytes;
1267	int ecc_len = lt->ecc_bytes;
1268	int chunk;
1269
1270	marvell_nfc_select_target(chip, chip->cur_cs);
1271
1272	if (oob_required)
1273		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1274
1275	nand_read_page_op(chip, page, 0, NULL, 0);
1276
1277	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1278		/* Update last chunk length */
1279		if (chunk >= lt->full_chunk_cnt) {
1280			data_len = lt->last_data_bytes;
1281			spare_len = lt->last_spare_bytes;
1282			ecc_len = lt->last_ecc_bytes;
1283		}
1284
1285		/* Read data bytes*/
1286		nand_change_read_column_op(chip, chunk * chunk_size,
1287					   buf + (lt->data_bytes * chunk),
1288					   data_len, false);
1289
1290		/* Read spare bytes */
1291		nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
1292				  spare_len, false, false);
1293
1294		/* Read ECC bytes */
1295		nand_read_data_op(chip, oob + ecc_offset +
1296				  (ALIGN(lt->ecc_bytes, 32) * chunk),
1297				  ecc_len, false, false);
1298	}
1299
1300	return 0;
1301}
1302
1303static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
1304					      u8 *data, unsigned int data_len,
1305					      u8 *spare, unsigned int spare_len,
1306					      int page)
1307{
1308	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1309	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1310	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1311	int i, ret;
1312	struct marvell_nfc_op nfc_op = {
1313		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
1314			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1315			   NDCB0_LEN_OVRD,
1316		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
1317		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
1318		.ndcb[3] = data_len + spare_len,
1319	};
1320
1321	ret = marvell_nfc_prepare_cmd(chip);
1322	if (ret)
1323		return;
1324
1325	if (chunk == 0)
1326		nfc_op.ndcb[0] |= NDCB0_DBC |
1327				  NDCB0_CMD1(NAND_CMD_READ0) |
1328				  NDCB0_CMD2(NAND_CMD_READSTART);
1329
1330	/*
1331	 * Trigger the monolithic read on the first chunk, then naked read on
1332	 * intermediate chunks and finally a last naked read on the last chunk.
1333	 */
1334	if (chunk == 0)
1335		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
1336	else if (chunk < lt->nchunks - 1)
1337		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1338	else
1339		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1340
1341	marvell_nfc_send_cmd(chip, &nfc_op);
1342
1343	/*
1344	 * According to the datasheet, when reading from NDDB
1345	 * with BCH enabled, after each 32 bytes reads, we
1346	 * have to make sure that the NDSR.RDDREQ bit is set.
1347	 *
1348	 * Drain the FIFO, 8 32-bit reads at a time, and skip
1349	 * the polling on the last read.
1350	 *
1351	 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
1352	 */
1353	for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1354		marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1355				    "RDDREQ while draining FIFO (data)");
1356		marvell_nfc_xfer_data_in_pio(nfc, data,
1357					     FIFO_DEPTH * BCH_SEQ_READS);
1358		data += FIFO_DEPTH * BCH_SEQ_READS;
1359	}
1360
1361	for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
1362		marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1363				    "RDDREQ while draining FIFO (OOB)");
1364		marvell_nfc_xfer_data_in_pio(nfc, spare,
1365					     FIFO_DEPTH * BCH_SEQ_READS);
1366		spare += FIFO_DEPTH * BCH_SEQ_READS;
1367	}
1368}
1369
1370static int marvell_nfc_hw_ecc_bch_read_page(struct nand_chip *chip,
1371					    u8 *buf, int oob_required,
1372					    int page)
1373{
1374	struct mtd_info *mtd = nand_to_mtd(chip);
1375	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1376	int data_len = lt->data_bytes, spare_len = lt->spare_bytes;
1377	u8 *data = buf, *spare = chip->oob_poi;
1378	int max_bitflips = 0;
1379	u32 failure_mask = 0;
1380	int chunk, ret;
1381
1382	marvell_nfc_select_target(chip, chip->cur_cs);
1383
1384	/*
1385	 * With BCH, OOB is not fully used (and thus not read entirely), not
1386	 * expected bytes could show up at the end of the OOB buffer if not
1387	 * explicitly erased.
1388	 */
1389	if (oob_required)
1390		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1391
1392	marvell_nfc_enable_hw_ecc(chip);
1393
1394	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1395		/* Update length for the last chunk */
1396		if (chunk >= lt->full_chunk_cnt) {
1397			data_len = lt->last_data_bytes;
1398			spare_len = lt->last_spare_bytes;
1399		}
1400
1401		/* Read the chunk and detect number of bitflips */
1402		marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
1403						  spare, spare_len, page);
1404		ret = marvell_nfc_hw_ecc_check_bitflips(chip, &max_bitflips);
1405		if (ret)
1406			failure_mask |= BIT(chunk);
1407
1408		data += data_len;
1409		spare += spare_len;
1410	}
1411
1412	marvell_nfc_disable_hw_ecc(chip);
1413
1414	if (!failure_mask)
1415		return max_bitflips;
1416
1417	/*
1418	 * Please note that dumping the ECC bytes during a normal read with OOB
1419	 * area would add a significant overhead as ECC bytes are "consumed" by
1420	 * the controller in normal mode and must be re-read in raw mode. To
1421	 * avoid dropping the performances, we prefer not to include them. The
1422	 * user should re-read the page in raw mode if ECC bytes are required.
1423	 */
1424
1425	/*
1426	 * In case there is any subpage read error, we usually re-read only ECC
1427	 * bytes in raw mode and check if the whole page is empty. In this case,
1428	 * it is normal that the ECC check failed and we just ignore the error.
1429	 *
1430	 * However, it has been empirically observed that for some layouts (e.g
1431	 * 2k page, 8b strength per 512B chunk), the controller tries to correct
1432	 * bits and may create itself bitflips in the erased area. To overcome
1433	 * this strange behavior, the whole page is re-read in raw mode, not
1434	 * only the ECC bytes.
1435	 */
1436	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1437		int data_off_in_page, spare_off_in_page, ecc_off_in_page;
1438		int data_off, spare_off, ecc_off;
1439		int data_len, spare_len, ecc_len;
1440
1441		/* No failure reported for this chunk, move to the next one */
1442		if (!(failure_mask & BIT(chunk)))
1443			continue;
1444
1445		data_off_in_page = chunk * (lt->data_bytes + lt->spare_bytes +
1446					    lt->ecc_bytes);
1447		spare_off_in_page = data_off_in_page +
1448			(chunk < lt->full_chunk_cnt ? lt->data_bytes :
1449						      lt->last_data_bytes);
1450		ecc_off_in_page = spare_off_in_page +
1451			(chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1452						      lt->last_spare_bytes);
1453
1454		data_off = chunk * lt->data_bytes;
1455		spare_off = chunk * lt->spare_bytes;
1456		ecc_off = (lt->full_chunk_cnt * lt->spare_bytes) +
1457			  lt->last_spare_bytes +
1458			  (chunk * (lt->ecc_bytes + 2));
1459
1460		data_len = chunk < lt->full_chunk_cnt ? lt->data_bytes :
1461							lt->last_data_bytes;
1462		spare_len = chunk < lt->full_chunk_cnt ? lt->spare_bytes :
1463							 lt->last_spare_bytes;
1464		ecc_len = chunk < lt->full_chunk_cnt ? lt->ecc_bytes :
1465						       lt->last_ecc_bytes;
1466
1467		/*
1468		 * Only re-read the ECC bytes, unless we are using the 2k/8b
1469		 * layout which is buggy in the sense that the ECC engine will
1470		 * try to correct data bytes anyway, creating bitflips. In this
1471		 * case, re-read the entire page.
1472		 */
1473		if (lt->writesize == 2048 && lt->strength == 8) {
1474			nand_change_read_column_op(chip, data_off_in_page,
1475						   buf + data_off, data_len,
1476						   false);
1477			nand_change_read_column_op(chip, spare_off_in_page,
1478						   chip->oob_poi + spare_off, spare_len,
1479						   false);
1480		}
1481
1482		nand_change_read_column_op(chip, ecc_off_in_page,
1483					   chip->oob_poi + ecc_off, ecc_len,
1484					   false);
1485
1486		/* Check the entire chunk (data + spare + ecc) for emptyness */
1487		marvell_nfc_check_empty_chunk(chip, buf + data_off, data_len,
1488					      chip->oob_poi + spare_off, spare_len,
1489					      chip->oob_poi + ecc_off, ecc_len,
1490					      &max_bitflips);
1491	}
1492
1493	return max_bitflips;
1494}
1495
1496static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct nand_chip *chip, int page)
1497{
1498	u8 *buf = nand_get_data_buf(chip);
1499
1500	return chip->ecc.read_page_raw(chip, buf, true, page);
1501}
1502
1503static int marvell_nfc_hw_ecc_bch_read_oob(struct nand_chip *chip, int page)
1504{
1505	u8 *buf = nand_get_data_buf(chip);
1506
1507	return chip->ecc.read_page(chip, buf, true, page);
1508}
1509
1510/* BCH write helpers */
1511static int marvell_nfc_hw_ecc_bch_write_page_raw(struct nand_chip *chip,
1512						 const u8 *buf,
1513						 int oob_required, int page)
1514{
1515	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1516	int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
1517	int data_len = lt->data_bytes;
1518	int spare_len = lt->spare_bytes;
1519	int ecc_len = lt->ecc_bytes;
1520	int spare_offset = 0;
1521	int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
1522		lt->last_spare_bytes;
1523	int chunk;
1524
1525	marvell_nfc_select_target(chip, chip->cur_cs);
1526
1527	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1528
1529	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1530		if (chunk >= lt->full_chunk_cnt) {
1531			data_len = lt->last_data_bytes;
1532			spare_len = lt->last_spare_bytes;
1533			ecc_len = lt->last_ecc_bytes;
1534		}
1535
1536		/* Point to the column of the next chunk */
1537		nand_change_write_column_op(chip, chunk * full_chunk_size,
1538					    NULL, 0, false);
1539
1540		/* Write the data */
1541		nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
1542				   data_len, false);
1543
1544		if (!oob_required)
1545			continue;
1546
1547		/* Write the spare bytes */
1548		if (spare_len)
1549			nand_write_data_op(chip, chip->oob_poi + spare_offset,
1550					   spare_len, false);
1551
1552		/* Write the ECC bytes */
1553		if (ecc_len)
1554			nand_write_data_op(chip, chip->oob_poi + ecc_offset,
1555					   ecc_len, false);
1556
1557		spare_offset += spare_len;
1558		ecc_offset += ALIGN(ecc_len, 32);
1559	}
1560
1561	return nand_prog_page_end_op(chip);
1562}
1563
1564static int
1565marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
1566				   const u8 *data, unsigned int data_len,
1567				   const u8 *spare, unsigned int spare_len,
1568				   int page)
1569{
1570	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
1571	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1572	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1573	u32 xtype;
1574	int ret;
1575	struct marvell_nfc_op nfc_op = {
1576		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
1577		.ndcb[3] = data_len + spare_len,
1578	};
1579
1580	/*
1581	 * First operation dispatches the CMD_SEQIN command, issue the address
1582	 * cycles and asks for the first chunk of data.
1583	 * All operations in the middle (if any) will issue a naked write and
1584	 * also ask for data.
1585	 * Last operation (if any) asks for the last chunk of data through a
1586	 * last naked write.
1587	 */
1588	if (chunk == 0) {
1589		if (lt->nchunks == 1)
1590			xtype = XTYPE_MONOLITHIC_RW;
1591		else
1592			xtype = XTYPE_WRITE_DISPATCH;
1593
1594		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
1595				  NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
1596				  NDCB0_CMD1(NAND_CMD_SEQIN);
1597		nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
1598		nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
1599	} else if (chunk < lt->nchunks - 1) {
1600		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
1601	} else {
1602		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1603	}
1604
1605	/* Always dispatch the PAGEPROG command on the last chunk */
1606	if (chunk == lt->nchunks - 1)
1607		nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
1608
1609	ret = marvell_nfc_prepare_cmd(chip);
1610	if (ret)
1611		return ret;
1612
1613	marvell_nfc_send_cmd(chip, &nfc_op);
1614	ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
1615				  "WRDREQ while loading FIFO (data)");
1616	if (ret)
1617		return ret;
1618
1619	/* Transfer the contents */
1620	iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
1621	iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
1622
1623	return 0;
1624}
1625
1626static int marvell_nfc_hw_ecc_bch_write_page(struct nand_chip *chip,
1627					     const u8 *buf,
1628					     int oob_required, int page)
1629{
1630	const struct nand_sdr_timings *sdr =
1631		nand_get_sdr_timings(nand_get_interface_config(chip));
1632	struct mtd_info *mtd = nand_to_mtd(chip);
1633	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
1634	const u8 *data = buf;
1635	const u8 *spare = chip->oob_poi;
1636	int data_len = lt->data_bytes;
1637	int spare_len = lt->spare_bytes;
1638	int chunk, ret;
1639	u8 status;
1640
1641	marvell_nfc_select_target(chip, chip->cur_cs);
1642
1643	/* Spare data will be written anyway, so clear it to avoid garbage */
1644	if (!oob_required)
1645		memset(chip->oob_poi, 0xFF, mtd->oobsize);
1646
1647	marvell_nfc_enable_hw_ecc(chip);
1648
1649	for (chunk = 0; chunk < lt->nchunks; chunk++) {
1650		if (chunk >= lt->full_chunk_cnt) {
1651			data_len = lt->last_data_bytes;
1652			spare_len = lt->last_spare_bytes;
1653		}
1654
1655		marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
1656						   spare, spare_len, page);
1657		data += data_len;
1658		spare += spare_len;
1659
1660		/*
1661		 * Waiting only for CMDD or PAGED is not enough, ECC are
1662		 * partially written. No flag is set once the operation is
1663		 * really finished but the ND_RUN bit is cleared, so wait for it
1664		 * before stepping into the next command.
1665		 */
1666		marvell_nfc_wait_ndrun(chip);
1667	}
1668
1669	ret = marvell_nfc_wait_op(chip, PSEC_TO_MSEC(sdr->tPROG_max));
1670
1671	marvell_nfc_disable_hw_ecc(chip);
1672
1673	if (ret)
1674		return ret;
1675
1676	/* Check write status on the chip side */
1677	ret = nand_status_op(chip, &status);
1678	if (ret)
1679		return ret;
1680
1681	if (status & NAND_STATUS_FAIL)
1682		return -EIO;
1683
1684	return 0;
1685}
1686
1687static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct nand_chip *chip,
1688						int page)
1689{
1690	struct mtd_info *mtd = nand_to_mtd(chip);
1691	u8 *buf = nand_get_data_buf(chip);
1692
1693	memset(buf, 0xFF, mtd->writesize);
1694
1695	return chip->ecc.write_page_raw(chip, buf, true, page);
1696}
1697
1698static int marvell_nfc_hw_ecc_bch_write_oob(struct nand_chip *chip, int page)
1699{
1700	struct mtd_info *mtd = nand_to_mtd(chip);
1701	u8 *buf = nand_get_data_buf(chip);
1702
1703	memset(buf, 0xFF, mtd->writesize);
1704
1705	return chip->ecc.write_page(chip, buf, true, page);
1706}
1707
1708/* NAND framework ->exec_op() hooks and related helpers */
1709static void marvell_nfc_parse_instructions(struct nand_chip *chip,
1710					   const struct nand_subop *subop,
1711					   struct marvell_nfc_op *nfc_op)
1712{
1713	const struct nand_op_instr *instr = NULL;
1714	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1715	bool first_cmd = true;
1716	unsigned int op_id;
1717	int i;
1718
1719	/* Reset the input structure as most of its fields will be OR'ed */
1720	memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
1721
1722	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1723		unsigned int offset, naddrs;
1724		const u8 *addrs;
1725		int len;
1726
1727		instr = &subop->instrs[op_id];
1728
1729		switch (instr->type) {
1730		case NAND_OP_CMD_INSTR:
1731			if (first_cmd)
1732				nfc_op->ndcb[0] |=
1733					NDCB0_CMD1(instr->ctx.cmd.opcode);
1734			else
1735				nfc_op->ndcb[0] |=
1736					NDCB0_CMD2(instr->ctx.cmd.opcode) |
1737					NDCB0_DBC;
1738
1739			nfc_op->cle_ale_delay_ns = instr->delay_ns;
1740			first_cmd = false;
1741			break;
1742
1743		case NAND_OP_ADDR_INSTR:
1744			offset = nand_subop_get_addr_start_off(subop, op_id);
1745			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1746			addrs = &instr->ctx.addr.addrs[offset];
1747
1748			nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
1749
1750			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1751				nfc_op->ndcb[1] |= addrs[i] << (8 * i);
1752
1753			if (naddrs >= 5)
1754				nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
1755			if (naddrs >= 6)
1756				nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
1757			if (naddrs == 7)
1758				nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
1759
1760			nfc_op->cle_ale_delay_ns = instr->delay_ns;
1761			break;
1762
1763		case NAND_OP_DATA_IN_INSTR:
1764			nfc_op->data_instr = instr;
1765			nfc_op->data_instr_idx = op_id;
1766			nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
1767			if (nfc->caps->is_nfcv2) {
1768				nfc_op->ndcb[0] |=
1769					NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1770					NDCB0_LEN_OVRD;
1771				len = nand_subop_get_data_len(subop, op_id);
1772				nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1773			}
1774			nfc_op->data_delay_ns = instr->delay_ns;
1775			break;
1776
1777		case NAND_OP_DATA_OUT_INSTR:
1778			nfc_op->data_instr = instr;
1779			nfc_op->data_instr_idx = op_id;
1780			nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
1781			if (nfc->caps->is_nfcv2) {
1782				nfc_op->ndcb[0] |=
1783					NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
1784					NDCB0_LEN_OVRD;
1785				len = nand_subop_get_data_len(subop, op_id);
1786				nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
1787			}
1788			nfc_op->data_delay_ns = instr->delay_ns;
1789			break;
1790
1791		case NAND_OP_WAITRDY_INSTR:
1792			nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1793			nfc_op->rdy_delay_ns = instr->delay_ns;
1794			break;
1795		}
1796	}
1797}
1798
1799static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
1800				     const struct nand_subop *subop,
1801				     struct marvell_nfc_op *nfc_op)
1802{
1803	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1804	const struct nand_op_instr *instr = nfc_op->data_instr;
1805	unsigned int op_id = nfc_op->data_instr_idx;
1806	unsigned int len = nand_subop_get_data_len(subop, op_id);
1807	unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
1808	bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
1809	int ret;
1810
1811	if (instr->ctx.data.force_8bit)
1812		marvell_nfc_force_byte_access(chip, true);
1813
1814	if (reading) {
1815		u8 *in = instr->ctx.data.buf.in + offset;
1816
1817		ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
1818	} else {
1819		const u8 *out = instr->ctx.data.buf.out + offset;
1820
1821		ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
1822	}
1823
1824	if (instr->ctx.data.force_8bit)
1825		marvell_nfc_force_byte_access(chip, false);
1826
1827	return ret;
1828}
1829
1830static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
1831					      const struct nand_subop *subop)
1832{
1833	struct marvell_nfc_op nfc_op;
1834	bool reading;
1835	int ret;
1836
1837	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1838	reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
1839
1840	ret = marvell_nfc_prepare_cmd(chip);
1841	if (ret)
1842		return ret;
1843
1844	marvell_nfc_send_cmd(chip, &nfc_op);
1845	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1846				  "RDDREQ/WRDREQ while draining raw data");
1847	if (ret)
1848		return ret;
1849
1850	cond_delay(nfc_op.cle_ale_delay_ns);
1851
1852	if (reading) {
1853		if (nfc_op.rdy_timeout_ms) {
1854			ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1855			if (ret)
1856				return ret;
1857		}
1858
1859		cond_delay(nfc_op.rdy_delay_ns);
1860	}
1861
1862	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1863	ret = marvell_nfc_wait_cmdd(chip);
1864	if (ret)
1865		return ret;
1866
1867	cond_delay(nfc_op.data_delay_ns);
1868
1869	if (!reading) {
1870		if (nfc_op.rdy_timeout_ms) {
1871			ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1872			if (ret)
1873				return ret;
1874		}
1875
1876		cond_delay(nfc_op.rdy_delay_ns);
1877	}
1878
1879	/*
1880	 * NDCR ND_RUN bit should be cleared automatically at the end of each
1881	 * operation but experience shows that the behavior is buggy when it
1882	 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1883	 */
1884	if (!reading) {
1885		struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1886
1887		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1888			       nfc->regs + NDCR);
1889	}
1890
1891	return 0;
1892}
1893
1894static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
1895					 const struct nand_subop *subop)
1896{
1897	struct marvell_nfc_op nfc_op;
1898	int ret;
1899
1900	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1901
1902	/*
1903	 * Naked access are different in that they need to be flagged as naked
1904	 * by the controller. Reset the controller registers fields that inform
1905	 * on the type and refill them according to the ongoing operation.
1906	 */
1907	nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
1908			    NDCB0_CMD_XTYPE(XTYPE_MASK));
1909	switch (subop->instrs[0].type) {
1910	case NAND_OP_CMD_INSTR:
1911		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
1912		break;
1913	case NAND_OP_ADDR_INSTR:
1914		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
1915		break;
1916	case NAND_OP_DATA_IN_INSTR:
1917		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
1918				  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1919		break;
1920	case NAND_OP_DATA_OUT_INSTR:
1921		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
1922				  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
1923		break;
1924	default:
1925		/* This should never happen */
1926		break;
1927	}
1928
1929	ret = marvell_nfc_prepare_cmd(chip);
1930	if (ret)
1931		return ret;
1932
1933	marvell_nfc_send_cmd(chip, &nfc_op);
1934
1935	if (!nfc_op.data_instr) {
1936		ret = marvell_nfc_wait_cmdd(chip);
1937		cond_delay(nfc_op.cle_ale_delay_ns);
1938		return ret;
1939	}
1940
1941	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
1942				  "RDDREQ/WRDREQ while draining raw data");
1943	if (ret)
1944		return ret;
1945
1946	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
1947	ret = marvell_nfc_wait_cmdd(chip);
1948	if (ret)
1949		return ret;
1950
1951	/*
1952	 * NDCR ND_RUN bit should be cleared automatically at the end of each
1953	 * operation but experience shows that the behavior is buggy when it
1954	 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
1955	 */
1956	if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
1957		struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
1958
1959		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
1960			       nfc->regs + NDCR);
1961	}
1962
1963	return 0;
1964}
1965
1966static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
1967					  const struct nand_subop *subop)
1968{
1969	struct marvell_nfc_op nfc_op;
1970	int ret;
1971
1972	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1973
1974	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
1975	cond_delay(nfc_op.rdy_delay_ns);
1976
1977	return ret;
1978}
1979
1980static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
1981					 const struct nand_subop *subop)
1982{
1983	struct marvell_nfc_op nfc_op;
1984	int ret;
1985
1986	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
1987	nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
1988	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
1989
1990	ret = marvell_nfc_prepare_cmd(chip);
1991	if (ret)
1992		return ret;
1993
1994	marvell_nfc_send_cmd(chip, &nfc_op);
1995	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
1996				  "RDDREQ while reading ID");
1997	if (ret)
1998		return ret;
1999
2000	cond_delay(nfc_op.cle_ale_delay_ns);
2001
2002	if (nfc_op.rdy_timeout_ms) {
2003		ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2004		if (ret)
2005			return ret;
2006	}
2007
2008	cond_delay(nfc_op.rdy_delay_ns);
2009
2010	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
2011	ret = marvell_nfc_wait_cmdd(chip);
2012	if (ret)
2013		return ret;
2014
2015	cond_delay(nfc_op.data_delay_ns);
2016
2017	return 0;
2018}
2019
2020static int marvell_nfc_read_status_exec(struct nand_chip *chip,
2021					const struct nand_subop *subop)
2022{
2023	struct marvell_nfc_op nfc_op;
2024	int ret;
2025
2026	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2027	nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
2028	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
2029
2030	ret = marvell_nfc_prepare_cmd(chip);
2031	if (ret)
2032		return ret;
2033
2034	marvell_nfc_send_cmd(chip, &nfc_op);
2035	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
2036				  "RDDREQ while reading status");
2037	if (ret)
2038		return ret;
2039
2040	cond_delay(nfc_op.cle_ale_delay_ns);
2041
2042	if (nfc_op.rdy_timeout_ms) {
2043		ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2044		if (ret)
2045			return ret;
2046	}
2047
2048	cond_delay(nfc_op.rdy_delay_ns);
2049
2050	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
2051	ret = marvell_nfc_wait_cmdd(chip);
2052	if (ret)
2053		return ret;
2054
2055	cond_delay(nfc_op.data_delay_ns);
2056
2057	return 0;
2058}
2059
2060static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
2061					   const struct nand_subop *subop)
2062{
2063	struct marvell_nfc_op nfc_op;
2064	int ret;
2065
2066	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2067	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
2068
2069	ret = marvell_nfc_prepare_cmd(chip);
2070	if (ret)
2071		return ret;
2072
2073	marvell_nfc_send_cmd(chip, &nfc_op);
2074	ret = marvell_nfc_wait_cmdd(chip);
2075	if (ret)
2076		return ret;
2077
2078	cond_delay(nfc_op.cle_ale_delay_ns);
2079
2080	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2081	if (ret)
2082		return ret;
2083
2084	cond_delay(nfc_op.rdy_delay_ns);
2085
2086	return 0;
2087}
2088
2089static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
2090					   const struct nand_subop *subop)
2091{
2092	struct marvell_nfc_op nfc_op;
2093	int ret;
2094
2095	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
2096	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
2097
2098	ret = marvell_nfc_prepare_cmd(chip);
2099	if (ret)
2100		return ret;
2101
2102	marvell_nfc_send_cmd(chip, &nfc_op);
2103	ret = marvell_nfc_wait_cmdd(chip);
2104	if (ret)
2105		return ret;
2106
2107	cond_delay(nfc_op.cle_ale_delay_ns);
2108
2109	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
2110	if (ret)
2111		return ret;
2112
2113	cond_delay(nfc_op.rdy_delay_ns);
2114
2115	return 0;
2116}
2117
2118static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
2119	/* Monolithic reads/writes */
2120	NAND_OP_PARSER_PATTERN(
2121		marvell_nfc_monolithic_access_exec,
2122		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2123		NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
2124		NAND_OP_PARSER_PAT_CMD_ELEM(true),
2125		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
2126		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2127	NAND_OP_PARSER_PATTERN(
2128		marvell_nfc_monolithic_access_exec,
2129		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2130		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
2131		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
2132		NAND_OP_PARSER_PAT_CMD_ELEM(true),
2133		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
2134	/* Naked commands */
2135	NAND_OP_PARSER_PATTERN(
2136		marvell_nfc_naked_access_exec,
2137		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
2138	NAND_OP_PARSER_PATTERN(
2139		marvell_nfc_naked_access_exec,
2140		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
2141	NAND_OP_PARSER_PATTERN(
2142		marvell_nfc_naked_access_exec,
2143		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
2144	NAND_OP_PARSER_PATTERN(
2145		marvell_nfc_naked_access_exec,
2146		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
2147	NAND_OP_PARSER_PATTERN(
2148		marvell_nfc_naked_waitrdy_exec,
2149		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2150	);
2151
2152static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
2153	/* Naked commands not supported, use a function for each pattern */
2154	NAND_OP_PARSER_PATTERN(
2155		marvell_nfc_read_id_type_exec,
2156		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2157		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2158		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
2159	NAND_OP_PARSER_PATTERN(
2160		marvell_nfc_erase_cmd_type_exec,
2161		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2162		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
2163		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2164		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2165	NAND_OP_PARSER_PATTERN(
2166		marvell_nfc_read_status_exec,
2167		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2168		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
2169	NAND_OP_PARSER_PATTERN(
2170		marvell_nfc_reset_cmd_type_exec,
2171		NAND_OP_PARSER_PAT_CMD_ELEM(false),
2172		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2173	NAND_OP_PARSER_PATTERN(
2174		marvell_nfc_naked_waitrdy_exec,
2175		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
2176	);
2177
2178static int marvell_nfc_exec_op(struct nand_chip *chip,
2179			       const struct nand_operation *op,
2180			       bool check_only)
2181{
2182	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2183
2184	if (!check_only)
2185		marvell_nfc_select_target(chip, op->cs);
2186
2187	if (nfc->caps->is_nfcv2)
2188		return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
2189					      op, check_only);
2190	else
2191		return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
2192					      op, check_only);
2193}
2194
2195/*
2196 * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
2197 * usable.
2198 */
2199static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2200				      struct mtd_oob_region *oobregion)
2201{
2202	struct nand_chip *chip = mtd_to_nand(mtd);
2203	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2204
2205	if (section)
2206		return -ERANGE;
2207
2208	oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
2209			    lt->last_ecc_bytes;
2210	oobregion->offset = mtd->oobsize - oobregion->length;
2211
2212	return 0;
2213}
2214
2215static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
2216				       struct mtd_oob_region *oobregion)
2217{
2218	struct nand_chip *chip = mtd_to_nand(mtd);
2219	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
2220
2221	if (section)
2222		return -ERANGE;
2223
2224	/*
2225	 * Bootrom looks in bytes 0 & 5 for bad blocks for the
2226	 * 4KB page / 4bit BCH combination.
2227	 */
2228	if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
2229		oobregion->offset = 6;
2230	else
2231		oobregion->offset = 2;
2232
2233	oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
2234			    lt->last_spare_bytes - oobregion->offset;
2235
2236	return 0;
2237}
2238
2239static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
2240	.ecc = marvell_nand_ooblayout_ecc,
2241	.free = marvell_nand_ooblayout_free,
2242};
2243
2244static int marvell_nand_hw_ecc_controller_init(struct mtd_info *mtd,
2245					       struct nand_ecc_ctrl *ecc)
2246{
2247	struct nand_chip *chip = mtd_to_nand(mtd);
2248	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2249	const struct marvell_hw_ecc_layout *l;
2250	int i;
2251
2252	if (!nfc->caps->is_nfcv2 &&
2253	    (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
2254		dev_err(nfc->dev,
2255			"NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
2256			mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
2257		return -ENOTSUPP;
2258	}
2259
2260	to_marvell_nand(chip)->layout = NULL;
2261	for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
2262		l = &marvell_nfc_layouts[i];
2263		if (mtd->writesize == l->writesize &&
2264		    ecc->size == l->chunk && ecc->strength == l->strength) {
2265			to_marvell_nand(chip)->layout = l;
2266			break;
2267		}
2268	}
2269
2270	if (!to_marvell_nand(chip)->layout ||
2271	    (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
2272		dev_err(nfc->dev,
2273			"ECC strength %d at page size %d is not supported\n",
2274			ecc->strength, mtd->writesize);
2275		return -ENOTSUPP;
2276	}
2277
2278	/* Special care for the layout 2k/8-bit/512B  */
2279	if (l->writesize == 2048 && l->strength == 8) {
2280		if (mtd->oobsize < 128) {
2281			dev_err(nfc->dev, "Requested layout needs at least 128 OOB bytes\n");
2282			return -ENOTSUPP;
2283		} else {
2284			chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2285		}
2286	}
2287
2288	mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
2289	ecc->steps = l->nchunks;
2290	ecc->size = l->data_bytes;
2291
2292	if (ecc->strength == 1) {
2293		chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2294		ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
2295		ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
2296		ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
2297		ecc->read_oob = ecc->read_oob_raw;
2298		ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
2299		ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
2300		ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
2301		ecc->write_oob = ecc->write_oob_raw;
2302	} else {
2303		chip->ecc.algo = NAND_ECC_ALGO_BCH;
2304		ecc->strength = 16;
2305		ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
2306		ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
2307		ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
2308		ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
2309		ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
2310		ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
2311		ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
2312		ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
2313	}
2314
2315	return 0;
2316}
2317
2318static int marvell_nand_ecc_init(struct mtd_info *mtd,
2319				 struct nand_ecc_ctrl *ecc)
2320{
2321	struct nand_chip *chip = mtd_to_nand(mtd);
2322	const struct nand_ecc_props *requirements =
2323		nanddev_get_ecc_requirements(&chip->base);
2324	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2325	int ret;
2326
2327	if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
2328	    (!ecc->size || !ecc->strength)) {
2329		if (requirements->step_size && requirements->strength) {
2330			ecc->size = requirements->step_size;
2331			ecc->strength = requirements->strength;
2332		} else {
2333			dev_info(nfc->dev,
2334				 "No minimum ECC strength, using 1b/512B\n");
2335			ecc->size = 512;
2336			ecc->strength = 1;
2337		}
2338	}
2339
2340	switch (ecc->engine_type) {
2341	case NAND_ECC_ENGINE_TYPE_ON_HOST:
2342		ret = marvell_nand_hw_ecc_controller_init(mtd, ecc);
2343		if (ret)
2344			return ret;
2345		break;
2346	case NAND_ECC_ENGINE_TYPE_NONE:
2347	case NAND_ECC_ENGINE_TYPE_SOFT:
2348	case NAND_ECC_ENGINE_TYPE_ON_DIE:
2349		if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
2350		    mtd->writesize != SZ_2K) {
2351			dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
2352				mtd->writesize);
2353			return -EINVAL;
2354		}
2355		break;
2356	default:
2357		return -EINVAL;
2358	}
2359
2360	return 0;
2361}
2362
2363static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
2364static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
2365
2366static struct nand_bbt_descr bbt_main_descr = {
2367	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2368		   NAND_BBT_2BIT | NAND_BBT_VERSION,
2369	.offs =	8,
2370	.len = 6,
2371	.veroffs = 14,
2372	.maxblocks = 8,	/* Last 8 blocks in each chip */
2373	.pattern = bbt_pattern
2374};
2375
2376static struct nand_bbt_descr bbt_mirror_descr = {
2377	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
2378		   NAND_BBT_2BIT | NAND_BBT_VERSION,
2379	.offs =	8,
2380	.len = 6,
2381	.veroffs = 14,
2382	.maxblocks = 8,	/* Last 8 blocks in each chip */
2383	.pattern = bbt_mirror_pattern
2384};
2385
2386static int marvell_nfc_setup_interface(struct nand_chip *chip, int chipnr,
2387				       const struct nand_interface_config *conf)
2388{
2389	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2390	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2391	unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
2392	const struct nand_sdr_timings *sdr;
2393	struct marvell_nfc_timings nfc_tmg;
2394	int read_delay;
2395
2396	sdr = nand_get_sdr_timings(conf);
2397	if (IS_ERR(sdr))
2398		return PTR_ERR(sdr);
2399
2400	if (nfc->caps->max_mode_number && nfc->caps->max_mode_number < conf->timings.mode)
2401		return -EOPNOTSUPP;
2402
2403	/*
2404	 * SDR timings are given in pico-seconds while NFC timings must be
2405	 * expressed in NAND controller clock cycles, which is half of the
2406	 * frequency of the accessible ECC clock retrieved by clk_get_rate().
2407	 * This is not written anywhere in the datasheet but was observed
2408	 * with an oscilloscope.
2409	 *
2410	 * NFC datasheet gives equations from which thoses calculations
2411	 * are derived, they tend to be slightly more restrictives than the
2412	 * given core timings and may improve the overall speed.
2413	 */
2414	nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
2415	nfc_tmg.tRH = nfc_tmg.tRP;
2416	nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
2417	nfc_tmg.tWH = nfc_tmg.tWP;
2418	nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
2419	nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
2420	nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
2421	/*
2422	 * Read delay is the time of propagation from SoC pins to NFC internal
2423	 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
2424	 * EDO mode, an additional delay of tRH must be taken into account so
2425	 * the data is sampled on the falling edge instead of the rising edge.
2426	 */
2427	read_delay = sdr->tRC_min >= 30000 ?
2428		MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
2429
2430	nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
2431	/*
2432	 * tWHR and tRHW are supposed to be read to write delays (and vice
2433	 * versa) but in some cases, ie. when doing a change column, they must
2434	 * be greater than that to be sure tCCS delay is respected.
2435	 */
2436	nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
2437				 period_ns) - 2;
2438	nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
2439				 period_ns);
2440
2441	/*
2442	 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
2443	 * NFCv1: No WAIT_MODE, tR must be maximal.
2444	 */
2445	if (nfc->caps->is_nfcv2) {
2446		nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
2447	} else {
2448		nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
2449					 period_ns);
2450		if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
2451			nfc_tmg.tR = nfc_tmg.tCH - 3;
2452		else
2453			nfc_tmg.tR = 0;
2454	}
2455
2456	if (chipnr < 0)
2457		return 0;
2458
2459	marvell_nand->ndtr0 =
2460		NDTR0_TRP(nfc_tmg.tRP) |
2461		NDTR0_TRH(nfc_tmg.tRH) |
2462		NDTR0_ETRP(nfc_tmg.tRP) |
2463		NDTR0_TWP(nfc_tmg.tWP) |
2464		NDTR0_TWH(nfc_tmg.tWH) |
2465		NDTR0_TCS(nfc_tmg.tCS) |
2466		NDTR0_TCH(nfc_tmg.tCH);
2467
2468	marvell_nand->ndtr1 =
2469		NDTR1_TAR(nfc_tmg.tAR) |
2470		NDTR1_TWHR(nfc_tmg.tWHR) |
2471		NDTR1_TR(nfc_tmg.tR);
2472
2473	if (nfc->caps->is_nfcv2) {
2474		marvell_nand->ndtr0 |=
2475			NDTR0_RD_CNT_DEL(read_delay) |
2476			NDTR0_SELCNTR |
2477			NDTR0_TADL(nfc_tmg.tADL);
2478
2479		marvell_nand->ndtr1 |=
2480			NDTR1_TRHW(nfc_tmg.tRHW) |
2481			NDTR1_WAIT_MODE;
2482	}
2483
2484	/*
2485	 * Reset nfc->selected_chip so the next command will cause the timing
2486	 * registers to be updated in marvell_nfc_select_target().
2487	 */
2488	nfc->selected_chip = NULL;
2489
2490	return 0;
2491}
2492
2493static int marvell_nand_attach_chip(struct nand_chip *chip)
2494{
2495	struct mtd_info *mtd = nand_to_mtd(chip);
2496	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
2497	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
2498	struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev);
2499	int ret;
2500
2501	if (pdata && pdata->flash_bbt)
2502		chip->bbt_options |= NAND_BBT_USE_FLASH;
2503
2504	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
2505		/*
2506		 * We'll use a bad block table stored in-flash and don't
2507		 * allow writing the bad block marker to the flash.
2508		 */
2509		chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
2510		chip->bbt_td = &bbt_main_descr;
2511		chip->bbt_md = &bbt_mirror_descr;
2512	}
2513
2514	/* Save the chip-specific fields of NDCR */
2515	marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
2516	if (chip->options & NAND_BUSWIDTH_16)
2517		marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
2518
2519	/*
2520	 * On small page NANDs, only one cycle is needed to pass the
2521	 * column address.
2522	 */
2523	if (mtd->writesize <= 512) {
2524		marvell_nand->addr_cyc = 1;
2525	} else {
2526		marvell_nand->addr_cyc = 2;
2527		marvell_nand->ndcr |= NDCR_RA_START;
2528	}
2529
2530	/*
2531	 * Now add the number of cycles needed to pass the row
2532	 * address.
2533	 *
2534	 * Addressing a chip using CS 2 or 3 should also need the third row
2535	 * cycle but due to inconsistance in the documentation and lack of
2536	 * hardware to test this situation, this case is not supported.
2537	 */
2538	if (chip->options & NAND_ROW_ADDR_3)
2539		marvell_nand->addr_cyc += 3;
2540	else
2541		marvell_nand->addr_cyc += 2;
2542
2543	if (pdata) {
2544		chip->ecc.size = pdata->ecc_step_size;
2545		chip->ecc.strength = pdata->ecc_strength;
2546	}
2547
2548	ret = marvell_nand_ecc_init(mtd, &chip->ecc);
2549	if (ret) {
2550		dev_err(nfc->dev, "ECC init failed: %d\n", ret);
2551		return ret;
2552	}
2553
2554	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
2555		/*
2556		 * Subpage write not available with hardware ECC, prohibit also
2557		 * subpage read as in userspace subpage access would still be
2558		 * allowed and subpage write, if used, would lead to numerous
2559		 * uncorrectable ECC errors.
2560		 */
2561		chip->options |= NAND_NO_SUBPAGE_WRITE;
2562	}
2563
2564	if (pdata || nfc->caps->legacy_of_bindings) {
2565		/*
2566		 * We keep the MTD name unchanged to avoid breaking platforms
2567		 * where the MTD cmdline parser is used and the bootloader
2568		 * has not been updated to use the new naming scheme.
2569		 */
2570		mtd->name = "pxa3xx_nand-0";
2571	} else if (!mtd->name) {
2572		/*
2573		 * If the new bindings are used and the bootloader has not been
2574		 * updated to pass a new mtdparts parameter on the cmdline, you
2575		 * should define the following property in your NAND node, ie:
2576		 *
2577		 *	label = "main-storage";
2578		 *
2579		 * This way, mtd->name will be set by the core when
2580		 * nand_set_flash_node() is called.
2581		 */
2582		mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
2583					   "%s:nand.%d", dev_name(nfc->dev),
2584					   marvell_nand->sels[0].cs);
2585		if (!mtd->name) {
2586			dev_err(nfc->dev, "Failed to allocate mtd->name\n");
2587			return -ENOMEM;
2588		}
2589	}
2590
2591	return 0;
2592}
2593
2594static const struct nand_controller_ops marvell_nand_controller_ops = {
2595	.attach_chip = marvell_nand_attach_chip,
2596	.exec_op = marvell_nfc_exec_op,
2597	.setup_interface = marvell_nfc_setup_interface,
2598};
2599
2600static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
2601				  struct device_node *np)
2602{
2603	struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
2604	struct marvell_nand_chip *marvell_nand;
2605	struct mtd_info *mtd;
2606	struct nand_chip *chip;
2607	int nsels, ret, i;
2608	u32 cs, rb;
2609
2610	/*
2611	 * The legacy "num-cs" property indicates the number of CS on the only
2612	 * chip connected to the controller (legacy bindings does not support
2613	 * more than one chip). The CS and RB pins are always the #0.
2614	 *
2615	 * When not using legacy bindings, a couple of "reg" and "nand-rb"
2616	 * properties must be filled. For each chip, expressed as a subnode,
2617	 * "reg" points to the CS lines and "nand-rb" to the RB line.
2618	 */
2619	if (pdata || nfc->caps->legacy_of_bindings) {
2620		nsels = 1;
2621	} else {
2622		nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
2623		if (nsels <= 0) {
2624			dev_err(dev, "missing/invalid reg property\n");
2625			return -EINVAL;
2626		}
2627	}
2628
2629	/* Alloc the nand chip structure */
2630	marvell_nand = devm_kzalloc(dev,
2631				    struct_size(marvell_nand, sels, nsels),
2632				    GFP_KERNEL);
2633	if (!marvell_nand) {
2634		dev_err(dev, "could not allocate chip structure\n");
2635		return -ENOMEM;
2636	}
2637
2638	marvell_nand->nsels = nsels;
2639	marvell_nand->selected_die = -1;
2640
2641	for (i = 0; i < nsels; i++) {
2642		if (pdata || nfc->caps->legacy_of_bindings) {
2643			/*
2644			 * Legacy bindings use the CS lines in natural
2645			 * order (0, 1, ...)
2646			 */
2647			cs = i;
2648		} else {
2649			/* Retrieve CS id */
2650			ret = of_property_read_u32_index(np, "reg", i, &cs);
2651			if (ret) {
2652				dev_err(dev, "could not retrieve reg property: %d\n",
2653					ret);
2654				return ret;
2655			}
2656		}
2657
2658		if (cs >= nfc->caps->max_cs_nb) {
2659			dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
2660				cs, nfc->caps->max_cs_nb);
2661			return -EINVAL;
2662		}
2663
2664		if (test_and_set_bit(cs, &nfc->assigned_cs)) {
2665			dev_err(dev, "CS %d already assigned\n", cs);
2666			return -EINVAL;
2667		}
2668
2669		/*
2670		 * The cs variable represents the chip select id, which must be
2671		 * converted in bit fields for NDCB0 and NDCB2 to select the
2672		 * right chip. Unfortunately, due to a lack of information on
2673		 * the subject and incoherent documentation, the user should not
2674		 * use CS1 and CS3 at all as asserting them is not supported in
2675		 * a reliable way (due to multiplexing inside ADDR5 field).
2676		 */
2677		marvell_nand->sels[i].cs = cs;
2678		switch (cs) {
2679		case 0:
2680		case 2:
2681			marvell_nand->sels[i].ndcb0_csel = 0;
2682			break;
2683		case 1:
2684		case 3:
2685			marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
2686			break;
2687		default:
2688			return -EINVAL;
2689		}
2690
2691		/* Retrieve RB id */
2692		if (pdata || nfc->caps->legacy_of_bindings) {
2693			/* Legacy bindings always use RB #0 */
2694			rb = 0;
2695		} else {
2696			ret = of_property_read_u32_index(np, "nand-rb", i,
2697							 &rb);
2698			if (ret) {
2699				dev_err(dev,
2700					"could not retrieve RB property: %d\n",
2701					ret);
2702				return ret;
2703			}
2704		}
2705
2706		if (rb >= nfc->caps->max_rb_nb) {
2707			dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
2708				rb, nfc->caps->max_rb_nb);
2709			return -EINVAL;
2710		}
2711
2712		marvell_nand->sels[i].rb = rb;
2713	}
2714
2715	chip = &marvell_nand->chip;
2716	chip->controller = &nfc->controller;
2717	nand_set_flash_node(chip, np);
2718
2719	if (of_property_read_bool(np, "marvell,nand-keep-config"))
2720		chip->options |= NAND_KEEP_TIMINGS;
2721
2722	mtd = nand_to_mtd(chip);
2723	mtd->dev.parent = dev;
2724
2725	/*
2726	 * Save a reference value for timing registers before
2727	 * ->setup_interface() is called.
2728	 */
2729	marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
2730	marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
2731
2732	chip->options |= NAND_BUSWIDTH_AUTO;
2733
2734	ret = nand_scan(chip, marvell_nand->nsels);
2735	if (ret) {
2736		dev_err(dev, "could not scan the nand chip\n");
2737		return ret;
2738	}
2739
2740	if (pdata)
2741		/* Legacy bindings support only one chip */
2742		ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
2743	else
2744		ret = mtd_device_register(mtd, NULL, 0);
2745	if (ret) {
2746		dev_err(dev, "failed to register mtd device: %d\n", ret);
2747		nand_cleanup(chip);
2748		return ret;
2749	}
2750
2751	list_add_tail(&marvell_nand->node, &nfc->chips);
2752
2753	return 0;
2754}
2755
2756static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
2757{
2758	struct marvell_nand_chip *entry, *temp;
2759	struct nand_chip *chip;
2760	int ret;
2761
2762	list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
2763		chip = &entry->chip;
2764		ret = mtd_device_unregister(nand_to_mtd(chip));
2765		WARN_ON(ret);
2766		nand_cleanup(chip);
2767		list_del(&entry->node);
2768	}
2769}
2770
2771static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
2772{
2773	struct device_node *np = dev->of_node;
2774	struct device_node *nand_np;
2775	int max_cs = nfc->caps->max_cs_nb;
2776	int nchips;
2777	int ret;
2778
2779	if (!np)
2780		nchips = 1;
2781	else
2782		nchips = of_get_child_count(np);
2783
2784	if (nchips > max_cs) {
2785		dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
2786			max_cs);
2787		return -EINVAL;
2788	}
2789
2790	/*
2791	 * Legacy bindings do not use child nodes to exhibit NAND chip
2792	 * properties and layout. Instead, NAND properties are mixed with the
2793	 * controller ones, and partitions are defined as direct subnodes of the
2794	 * NAND controller node.
2795	 */
2796	if (nfc->caps->legacy_of_bindings) {
2797		ret = marvell_nand_chip_init(dev, nfc, np);
2798		return ret;
2799	}
2800
2801	for_each_child_of_node(np, nand_np) {
2802		ret = marvell_nand_chip_init(dev, nfc, nand_np);
2803		if (ret) {
2804			of_node_put(nand_np);
2805			goto cleanup_chips;
2806		}
2807	}
2808
2809	return 0;
2810
2811cleanup_chips:
2812	marvell_nand_chips_cleanup(nfc);
2813
2814	return ret;
2815}
2816
2817static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
2818{
2819	struct platform_device *pdev = container_of(nfc->dev,
2820						    struct platform_device,
2821						    dev);
2822	struct dma_slave_config config = {};
2823	struct resource *r;
2824	int ret;
2825
2826	if (!IS_ENABLED(CONFIG_PXA_DMA)) {
2827		dev_warn(nfc->dev,
2828			 "DMA not enabled in configuration\n");
2829		return -ENOTSUPP;
2830	}
2831
2832	ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
2833	if (ret)
2834		return ret;
2835
2836	nfc->dma_chan =	dma_request_chan(nfc->dev, "data");
2837	if (IS_ERR(nfc->dma_chan)) {
2838		ret = PTR_ERR(nfc->dma_chan);
2839		nfc->dma_chan = NULL;
2840		return dev_err_probe(nfc->dev, ret, "DMA channel request failed\n");
2841	}
2842
2843	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2844	if (!r) {
2845		ret = -ENXIO;
2846		goto release_channel;
2847	}
2848
2849	config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2850	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2851	config.src_addr = r->start + NDDB;
2852	config.dst_addr = r->start + NDDB;
2853	config.src_maxburst = 32;
2854	config.dst_maxburst = 32;
2855	ret = dmaengine_slave_config(nfc->dma_chan, &config);
2856	if (ret < 0) {
2857		dev_err(nfc->dev, "Failed to configure DMA channel\n");
2858		goto release_channel;
2859	}
2860
2861	/*
2862	 * DMA must act on length multiple of 32 and this length may be
2863	 * bigger than the destination buffer. Use this buffer instead
2864	 * for DMA transfers and then copy the desired amount of data to
2865	 * the provided buffer.
2866	 */
2867	nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
2868	if (!nfc->dma_buf) {
2869		ret = -ENOMEM;
2870		goto release_channel;
2871	}
2872
2873	nfc->use_dma = true;
2874
2875	return 0;
2876
2877release_channel:
2878	dma_release_channel(nfc->dma_chan);
2879	nfc->dma_chan = NULL;
2880
2881	return ret;
2882}
2883
2884static void marvell_nfc_reset(struct marvell_nfc *nfc)
2885{
2886	/*
2887	 * ECC operations and interruptions are only enabled when specifically
2888	 * needed. ECC shall not be activated in the early stages (fails probe).
2889	 * Arbiter flag, even if marked as "reserved", must be set (empirical).
2890	 * SPARE_EN bit must always be set or ECC bytes will not be at the same
2891	 * offset in the read page and this will fail the protection.
2892	 */
2893	writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
2894		       NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
2895	writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
2896	writel_relaxed(0, nfc->regs + NDECCCTRL);
2897}
2898
2899static int marvell_nfc_init(struct marvell_nfc *nfc)
2900{
2901	struct device_node *np = nfc->dev->of_node;
2902
2903	/*
2904	 * Some SoCs like A7k/A8k need to enable manually the NAND
2905	 * controller, gated clocks and reset bits to avoid being bootloader
2906	 * dependent. This is done through the use of the System Functions
2907	 * registers.
2908	 */
2909	if (nfc->caps->need_system_controller) {
2910		struct regmap *sysctrl_base =
2911			syscon_regmap_lookup_by_phandle(np,
2912							"marvell,system-controller");
2913
2914		if (IS_ERR(sysctrl_base))
2915			return PTR_ERR(sysctrl_base);
2916
2917		regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX,
2918			     GENCONF_SOC_DEVICE_MUX_NFC_EN |
2919			     GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
2920			     GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
2921			     GENCONF_SOC_DEVICE_MUX_NFC_INT_EN |
2922			     GENCONF_SOC_DEVICE_MUX_NFC_DEVBUS_ARB_EN);
2923
2924		regmap_update_bits(sysctrl_base, GENCONF_CLK_GATING_CTRL,
2925				   GENCONF_CLK_GATING_CTRL_ND_GATE,
2926				   GENCONF_CLK_GATING_CTRL_ND_GATE);
2927	}
2928
2929	/* Configure the DMA if appropriate */
2930	if (!nfc->caps->is_nfcv2)
2931		marvell_nfc_init_dma(nfc);
2932
2933	marvell_nfc_reset(nfc);
2934
2935	return 0;
2936}
2937
2938static int marvell_nfc_probe(struct platform_device *pdev)
2939{
2940	struct device *dev = &pdev->dev;
2941	struct marvell_nfc *nfc;
2942	int ret;
2943	int irq;
2944
2945	nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
2946			   GFP_KERNEL);
2947	if (!nfc)
2948		return -ENOMEM;
2949
2950	nfc->dev = dev;
2951	nand_controller_init(&nfc->controller);
2952	nfc->controller.ops = &marvell_nand_controller_ops;
2953	INIT_LIST_HEAD(&nfc->chips);
2954
2955	nfc->regs = devm_platform_ioremap_resource(pdev, 0);
2956	if (IS_ERR(nfc->regs))
2957		return PTR_ERR(nfc->regs);
2958
2959	irq = platform_get_irq(pdev, 0);
2960	if (irq < 0)
2961		return irq;
2962
2963	nfc->core_clk = devm_clk_get(&pdev->dev, "core");
2964
2965	/* Managed the legacy case (when the first clock was not named) */
2966	if (nfc->core_clk == ERR_PTR(-ENOENT))
2967		nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
2968
2969	if (IS_ERR(nfc->core_clk))
2970		return PTR_ERR(nfc->core_clk);
2971
2972	ret = clk_prepare_enable(nfc->core_clk);
2973	if (ret)
2974		return ret;
2975
2976	nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
2977	if (IS_ERR(nfc->reg_clk)) {
2978		if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
2979			ret = PTR_ERR(nfc->reg_clk);
2980			goto unprepare_core_clk;
2981		}
2982
2983		nfc->reg_clk = NULL;
2984	}
2985
2986	ret = clk_prepare_enable(nfc->reg_clk);
2987	if (ret)
2988		goto unprepare_core_clk;
2989
2990	marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
2991	marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
2992	ret = devm_request_irq(dev, irq, marvell_nfc_isr,
2993			       0, "marvell-nfc", nfc);
2994	if (ret)
2995		goto unprepare_reg_clk;
2996
2997	/* Get NAND controller capabilities */
2998	if (pdev->id_entry)
2999		nfc->caps = (void *)pdev->id_entry->driver_data;
3000	else
3001		nfc->caps = of_device_get_match_data(&pdev->dev);
3002
3003	if (!nfc->caps) {
3004		dev_err(dev, "Could not retrieve NFC caps\n");
3005		ret = -EINVAL;
3006		goto unprepare_reg_clk;
3007	}
3008
3009	/* Init the controller and then probe the chips */
3010	ret = marvell_nfc_init(nfc);
3011	if (ret)
3012		goto unprepare_reg_clk;
3013
3014	platform_set_drvdata(pdev, nfc);
3015
3016	ret = marvell_nand_chips_init(dev, nfc);
3017	if (ret)
3018		goto release_dma;
3019
3020	return 0;
3021
3022release_dma:
3023	if (nfc->use_dma)
3024		dma_release_channel(nfc->dma_chan);
3025unprepare_reg_clk:
3026	clk_disable_unprepare(nfc->reg_clk);
3027unprepare_core_clk:
3028	clk_disable_unprepare(nfc->core_clk);
3029
3030	return ret;
3031}
3032
3033static void marvell_nfc_remove(struct platform_device *pdev)
3034{
3035	struct marvell_nfc *nfc = platform_get_drvdata(pdev);
3036
3037	marvell_nand_chips_cleanup(nfc);
3038
3039	if (nfc->use_dma) {
3040		dmaengine_terminate_all(nfc->dma_chan);
3041		dma_release_channel(nfc->dma_chan);
3042	}
3043
3044	clk_disable_unprepare(nfc->reg_clk);
3045	clk_disable_unprepare(nfc->core_clk);
3046}
3047
3048static int __maybe_unused marvell_nfc_suspend(struct device *dev)
3049{
3050	struct marvell_nfc *nfc = dev_get_drvdata(dev);
3051	struct marvell_nand_chip *chip;
3052
3053	list_for_each_entry(chip, &nfc->chips, node)
3054		marvell_nfc_wait_ndrun(&chip->chip);
3055
3056	clk_disable_unprepare(nfc->reg_clk);
3057	clk_disable_unprepare(nfc->core_clk);
3058
3059	return 0;
3060}
3061
3062static int __maybe_unused marvell_nfc_resume(struct device *dev)
3063{
3064	struct marvell_nfc *nfc = dev_get_drvdata(dev);
3065	int ret;
3066
3067	ret = clk_prepare_enable(nfc->core_clk);
3068	if (ret < 0)
3069		return ret;
3070
3071	ret = clk_prepare_enable(nfc->reg_clk);
3072	if (ret < 0) {
3073		clk_disable_unprepare(nfc->core_clk);
3074		return ret;
3075	}
3076
3077	/*
3078	 * Reset nfc->selected_chip so the next command will cause the timing
3079	 * registers to be restored in marvell_nfc_select_target().
3080	 */
3081	nfc->selected_chip = NULL;
3082
3083	/* Reset registers that have lost their contents */
3084	marvell_nfc_reset(nfc);
3085
3086	return 0;
3087}
3088
3089static const struct dev_pm_ops marvell_nfc_pm_ops = {
3090	SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume)
3091};
3092
3093static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
3094	.max_cs_nb = 4,
3095	.max_rb_nb = 2,
3096	.need_system_controller = true,
3097	.is_nfcv2 = true,
3098};
3099
3100static const struct marvell_nfc_caps marvell_ac5_caps = {
3101	.max_cs_nb = 2,
3102	.max_rb_nb = 1,
3103	.is_nfcv2 = true,
3104	.max_mode_number = 3,
3105};
3106
3107static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
3108	.max_cs_nb = 4,
3109	.max_rb_nb = 2,
3110	.is_nfcv2 = true,
3111};
3112
3113static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
3114	.max_cs_nb = 2,
3115	.max_rb_nb = 1,
3116	.use_dma = true,
3117};
3118
3119static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
3120	.max_cs_nb = 4,
3121	.max_rb_nb = 2,
3122	.need_system_controller = true,
3123	.legacy_of_bindings = true,
3124	.is_nfcv2 = true,
3125};
3126
3127static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
3128	.max_cs_nb = 4,
3129	.max_rb_nb = 2,
3130	.legacy_of_bindings = true,
3131	.is_nfcv2 = true,
3132};
3133
3134static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
3135	.max_cs_nb = 2,
3136	.max_rb_nb = 1,
3137	.legacy_of_bindings = true,
3138	.use_dma = true,
3139};
3140
3141static const struct platform_device_id marvell_nfc_platform_ids[] = {
3142	{
3143		.name = "pxa3xx-nand",
3144		.driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
3145	},
3146	{ /* sentinel */ },
3147};
3148MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
3149
3150static const struct of_device_id marvell_nfc_of_ids[] = {
3151	{
3152		.compatible = "marvell,armada-8k-nand-controller",
3153		.data = &marvell_armada_8k_nfc_caps,
3154	},
3155	{
3156		.compatible = "marvell,ac5-nand-controller",
3157		.data = &marvell_ac5_caps,
3158	},
3159	{
3160		.compatible = "marvell,armada370-nand-controller",
3161		.data = &marvell_armada370_nfc_caps,
3162	},
3163	{
3164		.compatible = "marvell,pxa3xx-nand-controller",
3165		.data = &marvell_pxa3xx_nfc_caps,
3166	},
3167	/* Support for old/deprecated bindings: */
3168	{
3169		.compatible = "marvell,armada-8k-nand",
3170		.data = &marvell_armada_8k_nfc_legacy_caps,
3171	},
3172	{
3173		.compatible = "marvell,armada370-nand",
3174		.data = &marvell_armada370_nfc_legacy_caps,
3175	},
3176	{
3177		.compatible = "marvell,pxa3xx-nand",
3178		.data = &marvell_pxa3xx_nfc_legacy_caps,
3179	},
3180	{ /* sentinel */ },
3181};
3182MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
3183
3184static struct platform_driver marvell_nfc_driver = {
3185	.driver	= {
3186		.name		= "marvell-nfc",
3187		.of_match_table = marvell_nfc_of_ids,
3188		.pm		= &marvell_nfc_pm_ops,
3189	},
3190	.id_table = marvell_nfc_platform_ids,
3191	.probe = marvell_nfc_probe,
3192	.remove_new = marvell_nfc_remove,
3193};
3194module_platform_driver(marvell_nfc_driver);
3195
3196MODULE_LICENSE("GPL");
3197MODULE_DESCRIPTION("Marvell NAND controller driver");
3198