1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NAND Flash Controller Device Driver
4 * Copyright �� 2009-2010, Intel Corporation and its suppliers.
5 *
6 * Copyright (c) 2017-2019 Socionext Inc.
7 *   Reworked by Masahiro Yamada <yamada.masahiro@socionext.com>
8 */
9
10#include <linux/bitfield.h>
11#include <linux/completion.h>
12#include <linux/dma-mapping.h>
13#include <linux/interrupt.h>
14#include <linux/io.h>
15#include <linux/module.h>
16#include <linux/mtd/mtd.h>
17#include <linux/mtd/rawnand.h>
18#include <linux/slab.h>
19#include <linux/spinlock.h>
20
21#include "denali.h"
22
23#define DENALI_NAND_NAME    "denali-nand"
24
25/* for Indexed Addressing */
26#define DENALI_INDEXED_CTRL	0x00
27#define DENALI_INDEXED_DATA	0x10
28
29#define DENALI_MAP00		(0 << 26)	/* direct access to buffer */
30#define DENALI_MAP01		(1 << 26)	/* read/write pages in PIO */
31#define DENALI_MAP10		(2 << 26)	/* high-level control plane */
32#define DENALI_MAP11		(3 << 26)	/* direct controller access */
33
34/* MAP11 access cycle type */
35#define DENALI_MAP11_CMD	((DENALI_MAP11) | 0)	/* command cycle */
36#define DENALI_MAP11_ADDR	((DENALI_MAP11) | 1)	/* address cycle */
37#define DENALI_MAP11_DATA	((DENALI_MAP11) | 2)	/* data cycle */
38
39#define DENALI_BANK(denali)	((denali)->active_bank << 24)
40
41#define DENALI_INVALID_BANK	-1
42
43static struct denali_chip *to_denali_chip(struct nand_chip *chip)
44{
45	return container_of(chip, struct denali_chip, chip);
46}
47
48static struct denali_controller *to_denali_controller(struct nand_chip *chip)
49{
50	return container_of(chip->controller, struct denali_controller,
51			    controller);
52}
53
54/*
55 * Direct Addressing - the slave address forms the control information (command
56 * type, bank, block, and page address).  The slave data is the actual data to
57 * be transferred.  This mode requires 28 bits of address region allocated.
58 */
59static u32 denali_direct_read(struct denali_controller *denali, u32 addr)
60{
61	return ioread32(denali->host + addr);
62}
63
64static void denali_direct_write(struct denali_controller *denali, u32 addr,
65				u32 data)
66{
67	iowrite32(data, denali->host + addr);
68}
69
70/*
71 * Indexed Addressing - address translation module intervenes in passing the
72 * control information.  This mode reduces the required address range.  The
73 * control information and transferred data are latched by the registers in
74 * the translation module.
75 */
76static u32 denali_indexed_read(struct denali_controller *denali, u32 addr)
77{
78	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
79	return ioread32(denali->host + DENALI_INDEXED_DATA);
80}
81
82static void denali_indexed_write(struct denali_controller *denali, u32 addr,
83				 u32 data)
84{
85	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
86	iowrite32(data, denali->host + DENALI_INDEXED_DATA);
87}
88
89static void denali_enable_irq(struct denali_controller *denali)
90{
91	int i;
92
93	for (i = 0; i < denali->nbanks; i++)
94		iowrite32(U32_MAX, denali->reg + INTR_EN(i));
95	iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE);
96}
97
98static void denali_disable_irq(struct denali_controller *denali)
99{
100	int i;
101
102	for (i = 0; i < denali->nbanks; i++)
103		iowrite32(0, denali->reg + INTR_EN(i));
104	iowrite32(0, denali->reg + GLOBAL_INT_ENABLE);
105}
106
107static void denali_clear_irq(struct denali_controller *denali,
108			     int bank, u32 irq_status)
109{
110	/* write one to clear bits */
111	iowrite32(irq_status, denali->reg + INTR_STATUS(bank));
112}
113
114static void denali_clear_irq_all(struct denali_controller *denali)
115{
116	int i;
117
118	for (i = 0; i < denali->nbanks; i++)
119		denali_clear_irq(denali, i, U32_MAX);
120}
121
122static irqreturn_t denali_isr(int irq, void *dev_id)
123{
124	struct denali_controller *denali = dev_id;
125	irqreturn_t ret = IRQ_NONE;
126	u32 irq_status;
127	int i;
128
129	spin_lock(&denali->irq_lock);
130
131	for (i = 0; i < denali->nbanks; i++) {
132		irq_status = ioread32(denali->reg + INTR_STATUS(i));
133		if (irq_status)
134			ret = IRQ_HANDLED;
135
136		denali_clear_irq(denali, i, irq_status);
137
138		if (i != denali->active_bank)
139			continue;
140
141		denali->irq_status |= irq_status;
142
143		if (denali->irq_status & denali->irq_mask)
144			complete(&denali->complete);
145	}
146
147	spin_unlock(&denali->irq_lock);
148
149	return ret;
150}
151
152static void denali_reset_irq(struct denali_controller *denali)
153{
154	unsigned long flags;
155
156	spin_lock_irqsave(&denali->irq_lock, flags);
157	denali->irq_status = 0;
158	denali->irq_mask = 0;
159	spin_unlock_irqrestore(&denali->irq_lock, flags);
160}
161
162static u32 denali_wait_for_irq(struct denali_controller *denali, u32 irq_mask)
163{
164	unsigned long time_left, flags;
165	u32 irq_status;
166
167	spin_lock_irqsave(&denali->irq_lock, flags);
168
169	irq_status = denali->irq_status;
170
171	if (irq_mask & irq_status) {
172		/* return immediately if the IRQ has already happened. */
173		spin_unlock_irqrestore(&denali->irq_lock, flags);
174		return irq_status;
175	}
176
177	denali->irq_mask = irq_mask;
178	reinit_completion(&denali->complete);
179	spin_unlock_irqrestore(&denali->irq_lock, flags);
180
181	time_left = wait_for_completion_timeout(&denali->complete,
182						msecs_to_jiffies(1000));
183	if (!time_left) {
184		dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
185			irq_mask);
186		return 0;
187	}
188
189	return denali->irq_status;
190}
191
192static void denali_select_target(struct nand_chip *chip, int cs)
193{
194	struct denali_controller *denali = to_denali_controller(chip);
195	struct denali_chip_sel *sel = &to_denali_chip(chip)->sels[cs];
196	struct mtd_info *mtd = nand_to_mtd(chip);
197
198	denali->active_bank = sel->bank;
199
200	iowrite32(1 << (chip->phys_erase_shift - chip->page_shift),
201		  denali->reg + PAGES_PER_BLOCK);
202	iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
203		  denali->reg + DEVICE_WIDTH);
204	iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
205	iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
206	iowrite32(chip->options & NAND_ROW_ADDR_3 ?
207		  0 : TWO_ROW_ADDR_CYCLES__FLAG,
208		  denali->reg + TWO_ROW_ADDR_CYCLES);
209	iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) |
210		  FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength),
211		  denali->reg + ECC_CORRECTION);
212	iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
213	iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
214	iowrite32(chip->ecc.steps, denali->reg + CFG_NUM_DATA_BLOCKS);
215
216	if (chip->options & NAND_KEEP_TIMINGS)
217		return;
218
219	/* update timing registers unless NAND_KEEP_TIMINGS is set */
220	iowrite32(sel->hwhr2_and_we_2_re, denali->reg + TWHR2_AND_WE_2_RE);
221	iowrite32(sel->tcwaw_and_addr_2_data,
222		  denali->reg + TCWAW_AND_ADDR_2_DATA);
223	iowrite32(sel->re_2_we, denali->reg + RE_2_WE);
224	iowrite32(sel->acc_clks, denali->reg + ACC_CLKS);
225	iowrite32(sel->rdwr_en_lo_cnt, denali->reg + RDWR_EN_LO_CNT);
226	iowrite32(sel->rdwr_en_hi_cnt, denali->reg + RDWR_EN_HI_CNT);
227	iowrite32(sel->cs_setup_cnt, denali->reg + CS_SETUP_CNT);
228	iowrite32(sel->re_2_re, denali->reg + RE_2_RE);
229}
230
231static int denali_change_column(struct nand_chip *chip, unsigned int offset,
232				void *buf, unsigned int len, bool write)
233{
234	if (write)
235		return nand_change_write_column_op(chip, offset, buf, len,
236						   false);
237	else
238		return nand_change_read_column_op(chip, offset, buf, len,
239						  false);
240}
241
242static int denali_payload_xfer(struct nand_chip *chip, void *buf, bool write)
243{
244	struct denali_controller *denali = to_denali_controller(chip);
245	struct mtd_info *mtd = nand_to_mtd(chip);
246	struct nand_ecc_ctrl *ecc = &chip->ecc;
247	int writesize = mtd->writesize;
248	int oob_skip = denali->oob_skip_bytes;
249	int ret, i, pos, len;
250
251	for (i = 0; i < ecc->steps; i++) {
252		pos = i * (ecc->size + ecc->bytes);
253		len = ecc->size;
254
255		if (pos >= writesize) {
256			pos += oob_skip;
257		} else if (pos + len > writesize) {
258			/* This chunk overwraps the BBM area. Must be split */
259			ret = denali_change_column(chip, pos, buf,
260						   writesize - pos, write);
261			if (ret)
262				return ret;
263
264			buf += writesize - pos;
265			len -= writesize - pos;
266			pos = writesize + oob_skip;
267		}
268
269		ret = denali_change_column(chip, pos, buf, len, write);
270		if (ret)
271			return ret;
272
273		buf += len;
274	}
275
276	return 0;
277}
278
279static int denali_oob_xfer(struct nand_chip *chip, void *buf, bool write)
280{
281	struct denali_controller *denali = to_denali_controller(chip);
282	struct mtd_info *mtd = nand_to_mtd(chip);
283	struct nand_ecc_ctrl *ecc = &chip->ecc;
284	int writesize = mtd->writesize;
285	int oobsize = mtd->oobsize;
286	int oob_skip = denali->oob_skip_bytes;
287	int ret, i, pos, len;
288
289	/* BBM at the beginning of the OOB area */
290	ret = denali_change_column(chip, writesize, buf, oob_skip, write);
291	if (ret)
292		return ret;
293
294	buf += oob_skip;
295
296	for (i = 0; i < ecc->steps; i++) {
297		pos = ecc->size + i * (ecc->size + ecc->bytes);
298
299		if (i == ecc->steps - 1)
300			/* The last chunk includes OOB free */
301			len = writesize + oobsize - pos - oob_skip;
302		else
303			len = ecc->bytes;
304
305		if (pos >= writesize) {
306			pos += oob_skip;
307		} else if (pos + len > writesize) {
308			/* This chunk overwraps the BBM area. Must be split */
309			ret = denali_change_column(chip, pos, buf,
310						   writesize - pos, write);
311			if (ret)
312				return ret;
313
314			buf += writesize - pos;
315			len -= writesize - pos;
316			pos = writesize + oob_skip;
317		}
318
319		ret = denali_change_column(chip, pos, buf, len, write);
320		if (ret)
321			return ret;
322
323		buf += len;
324	}
325
326	return 0;
327}
328
329static int denali_read_raw(struct nand_chip *chip, void *buf, void *oob_buf,
330			   int page)
331{
332	int ret;
333
334	if (!buf && !oob_buf)
335		return -EINVAL;
336
337	ret = nand_read_page_op(chip, page, 0, NULL, 0);
338	if (ret)
339		return ret;
340
341	if (buf) {
342		ret = denali_payload_xfer(chip, buf, false);
343		if (ret)
344			return ret;
345	}
346
347	if (oob_buf) {
348		ret = denali_oob_xfer(chip, oob_buf, false);
349		if (ret)
350			return ret;
351	}
352
353	return 0;
354}
355
356static int denali_write_raw(struct nand_chip *chip, const void *buf,
357			    const void *oob_buf, int page)
358{
359	int ret;
360
361	if (!buf && !oob_buf)
362		return -EINVAL;
363
364	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
365	if (ret)
366		return ret;
367
368	if (buf) {
369		ret = denali_payload_xfer(chip, (void *)buf, true);
370		if (ret)
371			return ret;
372	}
373
374	if (oob_buf) {
375		ret = denali_oob_xfer(chip, (void *)oob_buf, true);
376		if (ret)
377			return ret;
378	}
379
380	return nand_prog_page_end_op(chip);
381}
382
383static int denali_read_page_raw(struct nand_chip *chip, u8 *buf,
384				int oob_required, int page)
385{
386	return denali_read_raw(chip, buf, oob_required ? chip->oob_poi : NULL,
387			       page);
388}
389
390static int denali_write_page_raw(struct nand_chip *chip, const u8 *buf,
391				 int oob_required, int page)
392{
393	return denali_write_raw(chip, buf, oob_required ? chip->oob_poi : NULL,
394				page);
395}
396
397static int denali_read_oob(struct nand_chip *chip, int page)
398{
399	return denali_read_raw(chip, NULL, chip->oob_poi, page);
400}
401
402static int denali_write_oob(struct nand_chip *chip, int page)
403{
404	return denali_write_raw(chip, NULL, chip->oob_poi, page);
405}
406
407static int denali_check_erased_page(struct nand_chip *chip, u8 *buf,
408				    unsigned long uncor_ecc_flags,
409				    unsigned int max_bitflips)
410{
411	struct denali_controller *denali = to_denali_controller(chip);
412	struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
413	struct nand_ecc_ctrl *ecc = &chip->ecc;
414	u8 *ecc_code = chip->oob_poi + denali->oob_skip_bytes;
415	int i, stat;
416
417	for (i = 0; i < ecc->steps; i++) {
418		if (!(uncor_ecc_flags & BIT(i)))
419			continue;
420
421		stat = nand_check_erased_ecc_chunk(buf, ecc->size, ecc_code,
422						   ecc->bytes, NULL, 0,
423						   ecc->strength);
424		if (stat < 0) {
425			ecc_stats->failed++;
426		} else {
427			ecc_stats->corrected += stat;
428			max_bitflips = max_t(unsigned int, max_bitflips, stat);
429		}
430
431		buf += ecc->size;
432		ecc_code += ecc->bytes;
433	}
434
435	return max_bitflips;
436}
437
438static int denali_hw_ecc_fixup(struct nand_chip *chip,
439			       unsigned long *uncor_ecc_flags)
440{
441	struct denali_controller *denali = to_denali_controller(chip);
442	struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
443	int bank = denali->active_bank;
444	u32 ecc_cor;
445	unsigned int max_bitflips;
446
447	ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank));
448	ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
449
450	if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
451		/*
452		 * This flag is set when uncorrectable error occurs at least in
453		 * one ECC sector.  We can not know "how many sectors", or
454		 * "which sector(s)".  We need erase-page check for all sectors.
455		 */
456		*uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
457		return 0;
458	}
459
460	max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor);
461
462	/*
463	 * The register holds the maximum of per-sector corrected bitflips.
464	 * This is suitable for the return value of the ->read_page() callback.
465	 * Unfortunately, we can not know the total number of corrected bits in
466	 * the page.  Increase the stats by max_bitflips. (compromised solution)
467	 */
468	ecc_stats->corrected += max_bitflips;
469
470	return max_bitflips;
471}
472
473static int denali_sw_ecc_fixup(struct nand_chip *chip,
474			       unsigned long *uncor_ecc_flags, u8 *buf)
475{
476	struct denali_controller *denali = to_denali_controller(chip);
477	struct mtd_ecc_stats *ecc_stats = &nand_to_mtd(chip)->ecc_stats;
478	unsigned int ecc_size = chip->ecc.size;
479	unsigned int bitflips = 0;
480	unsigned int max_bitflips = 0;
481	u32 err_addr, err_cor_info;
482	unsigned int err_byte, err_sector, err_device;
483	u8 err_cor_value;
484	unsigned int prev_sector = 0;
485	u32 irq_status;
486
487	denali_reset_irq(denali);
488
489	do {
490		err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS);
491		err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr);
492		err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr);
493
494		err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO);
495		err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE,
496					  err_cor_info);
497		err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE,
498				       err_cor_info);
499
500		/* reset the bitflip counter when crossing ECC sector */
501		if (err_sector != prev_sector)
502			bitflips = 0;
503
504		if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) {
505			/*
506			 * Check later if this is a real ECC error, or
507			 * an erased sector.
508			 */
509			*uncor_ecc_flags |= BIT(err_sector);
510		} else if (err_byte < ecc_size) {
511			/*
512			 * If err_byte is larger than ecc_size, means error
513			 * happened in OOB, so we ignore it. It's no need for
514			 * us to correct it err_device is represented the NAND
515			 * error bits are happened in if there are more than
516			 * one NAND connected.
517			 */
518			int offset;
519			unsigned int flips_in_byte;
520
521			offset = (err_sector * ecc_size + err_byte) *
522					denali->devs_per_cs + err_device;
523
524			/* correct the ECC error */
525			flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
526			buf[offset] ^= err_cor_value;
527			ecc_stats->corrected += flips_in_byte;
528			bitflips += flips_in_byte;
529
530			max_bitflips = max(max_bitflips, bitflips);
531		}
532
533		prev_sector = err_sector;
534	} while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR));
535
536	/*
537	 * Once handle all ECC errors, controller will trigger an
538	 * ECC_TRANSACTION_DONE interrupt.
539	 */
540	irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
541	if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
542		return -EIO;
543
544	return max_bitflips;
545}
546
547static void denali_setup_dma64(struct denali_controller *denali,
548			       dma_addr_t dma_addr, int page, bool write)
549{
550	u32 mode;
551	const int page_count = 1;
552
553	mode = DENALI_MAP10 | DENALI_BANK(denali) | page;
554
555	/* DMA is a three step process */
556
557	/*
558	 * 1. setup transfer type, interrupt when complete,
559	 *    burst len = 64 bytes, the number of pages
560	 */
561	denali->host_write(denali, mode,
562			   0x01002000 | (64 << 16) |
563			   (write ? BIT(8) : 0) | page_count);
564
565	/* 2. set memory low address */
566	denali->host_write(denali, mode, lower_32_bits(dma_addr));
567
568	/* 3. set memory high address */
569	denali->host_write(denali, mode, upper_32_bits(dma_addr));
570}
571
572static void denali_setup_dma32(struct denali_controller *denali,
573			       dma_addr_t dma_addr, int page, bool write)
574{
575	u32 mode;
576	const int page_count = 1;
577
578	mode = DENALI_MAP10 | DENALI_BANK(denali);
579
580	/* DMA is a four step process */
581
582	/* 1. setup transfer type and # of pages */
583	denali->host_write(denali, mode | page,
584			   0x2000 | (write ? BIT(8) : 0) | page_count);
585
586	/* 2. set memory high address bits 23:8 */
587	denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
588
589	/* 3. set memory low address bits 23:8 */
590	denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
591
592	/* 4. interrupt when complete, burst len = 64 bytes */
593	denali->host_write(denali, mode | 0x14000, 0x2400);
594}
595
596static int denali_pio_read(struct denali_controller *denali, u32 *buf,
597			   size_t size, int page)
598{
599	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
600	u32 irq_status, ecc_err_mask;
601	int i;
602
603	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
604		ecc_err_mask = INTR__ECC_UNCOR_ERR;
605	else
606		ecc_err_mask = INTR__ECC_ERR;
607
608	denali_reset_irq(denali);
609
610	for (i = 0; i < size / 4; i++)
611		buf[i] = denali->host_read(denali, addr);
612
613	irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
614	if (!(irq_status & INTR__PAGE_XFER_INC))
615		return -EIO;
616
617	if (irq_status & INTR__ERASED_PAGE)
618		memset(buf, 0xff, size);
619
620	return irq_status & ecc_err_mask ? -EBADMSG : 0;
621}
622
623static int denali_pio_write(struct denali_controller *denali, const u32 *buf,
624			    size_t size, int page)
625{
626	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
627	u32 irq_status;
628	int i;
629
630	denali_reset_irq(denali);
631
632	for (i = 0; i < size / 4; i++)
633		denali->host_write(denali, addr, buf[i]);
634
635	irq_status = denali_wait_for_irq(denali,
636					 INTR__PROGRAM_COMP |
637					 INTR__PROGRAM_FAIL);
638	if (!(irq_status & INTR__PROGRAM_COMP))
639		return -EIO;
640
641	return 0;
642}
643
644static int denali_pio_xfer(struct denali_controller *denali, void *buf,
645			   size_t size, int page, bool write)
646{
647	if (write)
648		return denali_pio_write(denali, buf, size, page);
649	else
650		return denali_pio_read(denali, buf, size, page);
651}
652
653static int denali_dma_xfer(struct denali_controller *denali, void *buf,
654			   size_t size, int page, bool write)
655{
656	dma_addr_t dma_addr;
657	u32 irq_mask, irq_status, ecc_err_mask;
658	enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
659	int ret = 0;
660
661	dma_addr = dma_map_single(denali->dev, buf, size, dir);
662	if (dma_mapping_error(denali->dev, dma_addr)) {
663		dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
664		return denali_pio_xfer(denali, buf, size, page, write);
665	}
666
667	if (write) {
668		/*
669		 * INTR__PROGRAM_COMP is never asserted for the DMA transfer.
670		 * We can use INTR__DMA_CMD_COMP instead.  This flag is asserted
671		 * when the page program is completed.
672		 */
673		irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
674		ecc_err_mask = 0;
675	} else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
676		irq_mask = INTR__DMA_CMD_COMP;
677		ecc_err_mask = INTR__ECC_UNCOR_ERR;
678	} else {
679		irq_mask = INTR__DMA_CMD_COMP;
680		ecc_err_mask = INTR__ECC_ERR;
681	}
682
683	iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE);
684	/*
685	 * The ->setup_dma() hook kicks DMA by using the data/command
686	 * interface, which belongs to a different AXI port from the
687	 * register interface.  Read back the register to avoid a race.
688	 */
689	ioread32(denali->reg + DMA_ENABLE);
690
691	denali_reset_irq(denali);
692	denali->setup_dma(denali, dma_addr, page, write);
693
694	irq_status = denali_wait_for_irq(denali, irq_mask);
695	if (!(irq_status & INTR__DMA_CMD_COMP))
696		ret = -EIO;
697	else if (irq_status & ecc_err_mask)
698		ret = -EBADMSG;
699
700	iowrite32(0, denali->reg + DMA_ENABLE);
701
702	dma_unmap_single(denali->dev, dma_addr, size, dir);
703
704	if (irq_status & INTR__ERASED_PAGE)
705		memset(buf, 0xff, size);
706
707	return ret;
708}
709
710static int denali_page_xfer(struct nand_chip *chip, void *buf, size_t size,
711			    int page, bool write)
712{
713	struct denali_controller *denali = to_denali_controller(chip);
714
715	denali_select_target(chip, chip->cur_cs);
716
717	if (denali->dma_avail)
718		return denali_dma_xfer(denali, buf, size, page, write);
719	else
720		return denali_pio_xfer(denali, buf, size, page, write);
721}
722
723static int denali_read_page(struct nand_chip *chip, u8 *buf,
724			    int oob_required, int page)
725{
726	struct denali_controller *denali = to_denali_controller(chip);
727	struct mtd_info *mtd = nand_to_mtd(chip);
728	unsigned long uncor_ecc_flags = 0;
729	int stat = 0;
730	int ret;
731
732	ret = denali_page_xfer(chip, buf, mtd->writesize, page, false);
733	if (ret && ret != -EBADMSG)
734		return ret;
735
736	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
737		stat = denali_hw_ecc_fixup(chip, &uncor_ecc_flags);
738	else if (ret == -EBADMSG)
739		stat = denali_sw_ecc_fixup(chip, &uncor_ecc_flags, buf);
740
741	if (stat < 0)
742		return stat;
743
744	if (uncor_ecc_flags) {
745		ret = denali_read_oob(chip, page);
746		if (ret)
747			return ret;
748
749		stat = denali_check_erased_page(chip, buf,
750						uncor_ecc_flags, stat);
751	}
752
753	return stat;
754}
755
756static int denali_write_page(struct nand_chip *chip, const u8 *buf,
757			     int oob_required, int page)
758{
759	struct mtd_info *mtd = nand_to_mtd(chip);
760
761	return denali_page_xfer(chip, (void *)buf, mtd->writesize, page, true);
762}
763
764static int denali_setup_interface(struct nand_chip *chip, int chipnr,
765				  const struct nand_interface_config *conf)
766{
767	static const unsigned int data_setup_on_host = 10000;
768	struct denali_controller *denali = to_denali_controller(chip);
769	struct denali_chip_sel *sel;
770	const struct nand_sdr_timings *timings;
771	unsigned long t_x, mult_x;
772	int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
773	int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
774	int addr_2_data_mask;
775	u32 tmp;
776
777	timings = nand_get_sdr_timings(conf);
778	if (IS_ERR(timings))
779		return PTR_ERR(timings);
780
781	/* clk_x period in picoseconds */
782	t_x = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
783	if (!t_x)
784		return -EINVAL;
785
786	/*
787	 * The bus interface clock, clk_x, is phase aligned with the core clock.
788	 * The clk_x is an integral multiple N of the core clk.  The value N is
789	 * configured at IP delivery time, and its available value is 4, 5, 6.
790	 */
791	mult_x = DIV_ROUND_CLOSEST_ULL(denali->clk_x_rate, denali->clk_rate);
792	if (mult_x < 4 || mult_x > 6)
793		return -EINVAL;
794
795	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
796		return 0;
797
798	sel = &to_denali_chip(chip)->sels[chipnr];
799
800	/* tRWH -> RE_2_WE */
801	re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_x);
802	re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);
803
804	tmp = ioread32(denali->reg + RE_2_WE);
805	tmp &= ~RE_2_WE__VALUE;
806	tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we);
807	sel->re_2_we = tmp;
808
809	/* tRHZ -> RE_2_RE */
810	re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_x);
811	re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);
812
813	tmp = ioread32(denali->reg + RE_2_RE);
814	tmp &= ~RE_2_RE__VALUE;
815	tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re);
816	sel->re_2_re = tmp;
817
818	/*
819	 * tCCS, tWHR -> WE_2_RE
820	 *
821	 * With WE_2_RE properly set, the Denali controller automatically takes
822	 * care of the delay; the driver need not set NAND_WAIT_TCCS.
823	 */
824	we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min), t_x);
825	we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
826
827	tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
828	tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
829	tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re);
830	sel->hwhr2_and_we_2_re = tmp;
831
832	/* tADL -> ADDR_2_DATA */
833
834	/* for older versions, ADDR_2_DATA is only 6 bit wide */
835	addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
836	if (denali->revision < 0x0501)
837		addr_2_data_mask >>= 1;
838
839	addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_x);
840	addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
841
842	tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
843	tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
844	tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data);
845	sel->tcwaw_and_addr_2_data = tmp;
846
847	/* tREH, tWH -> RDWR_EN_HI_CNT */
848	rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
849				  t_x);
850	rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);
851
852	tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
853	tmp &= ~RDWR_EN_HI_CNT__VALUE;
854	tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi);
855	sel->rdwr_en_hi_cnt = tmp;
856
857	/*
858	 * tREA -> ACC_CLKS
859	 * tRP, tWP, tRHOH, tRC, tWC -> RDWR_EN_LO_CNT
860	 */
861
862	/*
863	 * Determine the minimum of acc_clks to meet the setup timing when
864	 * capturing the incoming data.
865	 *
866	 * The delay on the chip side is well-defined as tREA, but we need to
867	 * take additional delay into account. This includes a certain degree
868	 * of unknowledge, such as signal propagation delays on the PCB and
869	 * in the SoC, load capacity of the I/O pins, etc.
870	 */
871	acc_clks = DIV_ROUND_UP(timings->tREA_max + data_setup_on_host, t_x);
872
873	/* Determine the minimum of rdwr_en_lo_cnt from RE#/WE# pulse width */
874	rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min), t_x);
875
876	/* Extend rdwr_en_lo to meet the data hold timing */
877	rdwr_en_lo = max_t(int, rdwr_en_lo,
878			   acc_clks - timings->tRHOH_min / t_x);
879
880	/* Extend rdwr_en_lo to meet the requirement for RE#/WE# cycle time */
881	rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
882				     t_x);
883	rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
884	rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);
885
886	/* Center the data latch timing for extra safety */
887	acc_clks = (acc_clks + rdwr_en_lo +
888		    DIV_ROUND_UP(timings->tRHOH_min, t_x)) / 2;
889	acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
890
891	tmp = ioread32(denali->reg + ACC_CLKS);
892	tmp &= ~ACC_CLKS__VALUE;
893	tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks);
894	sel->acc_clks = tmp;
895
896	tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
897	tmp &= ~RDWR_EN_LO_CNT__VALUE;
898	tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo);
899	sel->rdwr_en_lo_cnt = tmp;
900
901	/* tCS, tCEA -> CS_SETUP_CNT */
902	cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_x) - rdwr_en_lo,
903			(int)DIV_ROUND_UP(timings->tCEA_max, t_x) - acc_clks,
904			0);
905	cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);
906
907	tmp = ioread32(denali->reg + CS_SETUP_CNT);
908	tmp &= ~CS_SETUP_CNT__VALUE;
909	tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup);
910	sel->cs_setup_cnt = tmp;
911
912	return 0;
913}
914
915int denali_calc_ecc_bytes(int step_size, int strength)
916{
917	/* BCH code.  Denali requires ecc.bytes to be multiple of 2 */
918	return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
919}
920EXPORT_SYMBOL(denali_calc_ecc_bytes);
921
922static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
923				struct mtd_oob_region *oobregion)
924{
925	struct nand_chip *chip = mtd_to_nand(mtd);
926	struct denali_controller *denali = to_denali_controller(chip);
927
928	if (section > 0)
929		return -ERANGE;
930
931	oobregion->offset = denali->oob_skip_bytes;
932	oobregion->length = chip->ecc.total;
933
934	return 0;
935}
936
937static int denali_ooblayout_free(struct mtd_info *mtd, int section,
938				 struct mtd_oob_region *oobregion)
939{
940	struct nand_chip *chip = mtd_to_nand(mtd);
941	struct denali_controller *denali = to_denali_controller(chip);
942
943	if (section > 0)
944		return -ERANGE;
945
946	oobregion->offset = chip->ecc.total + denali->oob_skip_bytes;
947	oobregion->length = mtd->oobsize - oobregion->offset;
948
949	return 0;
950}
951
952static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
953	.ecc = denali_ooblayout_ecc,
954	.free = denali_ooblayout_free,
955};
956
957static int denali_multidev_fixup(struct nand_chip *chip)
958{
959	struct denali_controller *denali = to_denali_controller(chip);
960	struct mtd_info *mtd = nand_to_mtd(chip);
961	struct nand_memory_organization *memorg;
962
963	memorg = nanddev_get_memorg(&chip->base);
964
965	/*
966	 * Support for multi device:
967	 * When the IP configuration is x16 capable and two x8 chips are
968	 * connected in parallel, DEVICES_CONNECTED should be set to 2.
969	 * In this case, the core framework knows nothing about this fact,
970	 * so we should tell it the _logical_ pagesize and anything necessary.
971	 */
972	denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED);
973
974	/*
975	 * On some SoCs, DEVICES_CONNECTED is not auto-detected.
976	 * For those, DEVICES_CONNECTED is left to 0.  Set 1 if it is the case.
977	 */
978	if (denali->devs_per_cs == 0) {
979		denali->devs_per_cs = 1;
980		iowrite32(1, denali->reg + DEVICES_CONNECTED);
981	}
982
983	if (denali->devs_per_cs == 1)
984		return 0;
985
986	if (denali->devs_per_cs != 2) {
987		dev_err(denali->dev, "unsupported number of devices %d\n",
988			denali->devs_per_cs);
989		return -EINVAL;
990	}
991
992	/* 2 chips in parallel */
993	memorg->pagesize <<= 1;
994	memorg->oobsize <<= 1;
995	mtd->size <<= 1;
996	mtd->erasesize <<= 1;
997	mtd->writesize <<= 1;
998	mtd->oobsize <<= 1;
999	chip->page_shift += 1;
1000	chip->phys_erase_shift += 1;
1001	chip->bbt_erase_shift += 1;
1002	chip->chip_shift += 1;
1003	chip->pagemask <<= 1;
1004	chip->ecc.size <<= 1;
1005	chip->ecc.bytes <<= 1;
1006	chip->ecc.strength <<= 1;
1007	denali->oob_skip_bytes <<= 1;
1008
1009	return 0;
1010}
1011
1012static int denali_attach_chip(struct nand_chip *chip)
1013{
1014	struct denali_controller *denali = to_denali_controller(chip);
1015	struct mtd_info *mtd = nand_to_mtd(chip);
1016	int ret;
1017
1018	ret = nand_ecc_choose_conf(chip, denali->ecc_caps,
1019				   mtd->oobsize - denali->oob_skip_bytes);
1020	if (ret) {
1021		dev_err(denali->dev, "Failed to setup ECC settings.\n");
1022		return ret;
1023	}
1024
1025	dev_dbg(denali->dev,
1026		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
1027		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
1028
1029	ret = denali_multidev_fixup(chip);
1030	if (ret)
1031		return ret;
1032
1033	return 0;
1034}
1035
1036static void denali_exec_in8(struct denali_controller *denali, u32 type,
1037			    u8 *buf, unsigned int len)
1038{
1039	int i;
1040
1041	for (i = 0; i < len; i++)
1042		buf[i] = denali->host_read(denali, type | DENALI_BANK(denali));
1043}
1044
1045static void denali_exec_in16(struct denali_controller *denali, u32 type,
1046			     u8 *buf, unsigned int len)
1047{
1048	u32 data;
1049	int i;
1050
1051	for (i = 0; i < len; i += 2) {
1052		data = denali->host_read(denali, type | DENALI_BANK(denali));
1053		/* bit 31:24 and 15:8 are used for DDR */
1054		buf[i] = data;
1055		buf[i + 1] = data >> 16;
1056	}
1057}
1058
1059static void denali_exec_in(struct denali_controller *denali, u32 type,
1060			   u8 *buf, unsigned int len, bool width16)
1061{
1062	if (width16)
1063		denali_exec_in16(denali, type, buf, len);
1064	else
1065		denali_exec_in8(denali, type, buf, len);
1066}
1067
1068static void denali_exec_out8(struct denali_controller *denali, u32 type,
1069			     const u8 *buf, unsigned int len)
1070{
1071	int i;
1072
1073	for (i = 0; i < len; i++)
1074		denali->host_write(denali, type | DENALI_BANK(denali), buf[i]);
1075}
1076
1077static void denali_exec_out16(struct denali_controller *denali, u32 type,
1078			      const u8 *buf, unsigned int len)
1079{
1080	int i;
1081
1082	for (i = 0; i < len; i += 2)
1083		denali->host_write(denali, type | DENALI_BANK(denali),
1084				   buf[i + 1] << 16 | buf[i]);
1085}
1086
1087static void denali_exec_out(struct denali_controller *denali, u32 type,
1088			    const u8 *buf, unsigned int len, bool width16)
1089{
1090	if (width16)
1091		denali_exec_out16(denali, type, buf, len);
1092	else
1093		denali_exec_out8(denali, type, buf, len);
1094}
1095
1096static int denali_exec_waitrdy(struct denali_controller *denali)
1097{
1098	u32 irq_stat;
1099
1100	/* R/B# pin transitioned from low to high? */
1101	irq_stat = denali_wait_for_irq(denali, INTR__INT_ACT);
1102
1103	/* Just in case nand_operation has multiple NAND_OP_WAITRDY_INSTR. */
1104	denali_reset_irq(denali);
1105
1106	return irq_stat & INTR__INT_ACT ? 0 : -EIO;
1107}
1108
1109static int denali_exec_instr(struct nand_chip *chip,
1110			     const struct nand_op_instr *instr)
1111{
1112	struct denali_controller *denali = to_denali_controller(chip);
1113
1114	switch (instr->type) {
1115	case NAND_OP_CMD_INSTR:
1116		denali_exec_out8(denali, DENALI_MAP11_CMD,
1117				 &instr->ctx.cmd.opcode, 1);
1118		return 0;
1119	case NAND_OP_ADDR_INSTR:
1120		denali_exec_out8(denali, DENALI_MAP11_ADDR,
1121				 instr->ctx.addr.addrs,
1122				 instr->ctx.addr.naddrs);
1123		return 0;
1124	case NAND_OP_DATA_IN_INSTR:
1125		denali_exec_in(denali, DENALI_MAP11_DATA,
1126			       instr->ctx.data.buf.in,
1127			       instr->ctx.data.len,
1128			       !instr->ctx.data.force_8bit &&
1129			       chip->options & NAND_BUSWIDTH_16);
1130		return 0;
1131	case NAND_OP_DATA_OUT_INSTR:
1132		denali_exec_out(denali, DENALI_MAP11_DATA,
1133				instr->ctx.data.buf.out,
1134				instr->ctx.data.len,
1135				!instr->ctx.data.force_8bit &&
1136				chip->options & NAND_BUSWIDTH_16);
1137		return 0;
1138	case NAND_OP_WAITRDY_INSTR:
1139		return denali_exec_waitrdy(denali);
1140	default:
1141		WARN_ONCE(1, "unsupported NAND instruction type: %d\n",
1142			  instr->type);
1143
1144		return -EINVAL;
1145	}
1146}
1147
1148static int denali_exec_op(struct nand_chip *chip,
1149			  const struct nand_operation *op, bool check_only)
1150{
1151	int i, ret;
1152
1153	if (check_only)
1154		return 0;
1155
1156	denali_select_target(chip, op->cs);
1157
1158	/*
1159	 * Some commands contain NAND_OP_WAITRDY_INSTR.
1160	 * irq must be cleared here to catch the R/B# interrupt there.
1161	 */
1162	denali_reset_irq(to_denali_controller(chip));
1163
1164	for (i = 0; i < op->ninstrs; i++) {
1165		ret = denali_exec_instr(chip, &op->instrs[i]);
1166		if (ret)
1167			return ret;
1168	}
1169
1170	return 0;
1171}
1172
1173static const struct nand_controller_ops denali_controller_ops = {
1174	.attach_chip = denali_attach_chip,
1175	.exec_op = denali_exec_op,
1176	.setup_interface = denali_setup_interface,
1177};
1178
1179int denali_chip_init(struct denali_controller *denali,
1180		     struct denali_chip *dchip)
1181{
1182	struct nand_chip *chip = &dchip->chip;
1183	struct mtd_info *mtd = nand_to_mtd(chip);
1184	struct denali_chip *dchip2;
1185	int i, j, ret;
1186
1187	chip->controller = &denali->controller;
1188
1189	/* sanity checks for bank numbers */
1190	for (i = 0; i < dchip->nsels; i++) {
1191		unsigned int bank = dchip->sels[i].bank;
1192
1193		if (bank >= denali->nbanks) {
1194			dev_err(denali->dev, "unsupported bank %d\n", bank);
1195			return -EINVAL;
1196		}
1197
1198		for (j = 0; j < i; j++) {
1199			if (bank == dchip->sels[j].bank) {
1200				dev_err(denali->dev,
1201					"bank %d is assigned twice in the same chip\n",
1202					bank);
1203				return -EINVAL;
1204			}
1205		}
1206
1207		list_for_each_entry(dchip2, &denali->chips, node) {
1208			for (j = 0; j < dchip2->nsels; j++) {
1209				if (bank == dchip2->sels[j].bank) {
1210					dev_err(denali->dev,
1211						"bank %d is already used\n",
1212						bank);
1213					return -EINVAL;
1214				}
1215			}
1216		}
1217	}
1218
1219	mtd->dev.parent = denali->dev;
1220
1221	/*
1222	 * Fallback to the default name if DT did not give "label" property.
1223	 * Use "label" property if multiple chips are connected.
1224	 */
1225	if (!mtd->name && list_empty(&denali->chips))
1226		mtd->name = "denali-nand";
1227
1228	if (denali->dma_avail) {
1229		chip->options |= NAND_USES_DMA;
1230		chip->buf_align = 16;
1231	}
1232
1233	/* clk rate info is needed for setup_interface */
1234	if (!denali->clk_rate || !denali->clk_x_rate)
1235		chip->options |= NAND_KEEP_TIMINGS;
1236
1237	chip->bbt_options |= NAND_BBT_USE_FLASH;
1238	chip->bbt_options |= NAND_BBT_NO_OOB;
1239	chip->options |= NAND_NO_SUBPAGE_WRITE;
1240	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1241	chip->ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED;
1242	chip->ecc.read_page = denali_read_page;
1243	chip->ecc.write_page = denali_write_page;
1244	chip->ecc.read_page_raw = denali_read_page_raw;
1245	chip->ecc.write_page_raw = denali_write_page_raw;
1246	chip->ecc.read_oob = denali_read_oob;
1247	chip->ecc.write_oob = denali_write_oob;
1248
1249	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
1250
1251	ret = nand_scan(chip, dchip->nsels);
1252	if (ret)
1253		return ret;
1254
1255	ret = mtd_device_register(mtd, NULL, 0);
1256	if (ret) {
1257		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
1258		goto cleanup_nand;
1259	}
1260
1261	list_add_tail(&dchip->node, &denali->chips);
1262
1263	return 0;
1264
1265cleanup_nand:
1266	nand_cleanup(chip);
1267
1268	return ret;
1269}
1270EXPORT_SYMBOL_GPL(denali_chip_init);
1271
1272int denali_init(struct denali_controller *denali)
1273{
1274	u32 features = ioread32(denali->reg + FEATURES);
1275	int ret;
1276
1277	nand_controller_init(&denali->controller);
1278	denali->controller.ops = &denali_controller_ops;
1279	init_completion(&denali->complete);
1280	spin_lock_init(&denali->irq_lock);
1281	INIT_LIST_HEAD(&denali->chips);
1282	denali->active_bank = DENALI_INVALID_BANK;
1283
1284	/*
1285	 * The REVISION register may not be reliable. Platforms are allowed to
1286	 * override it.
1287	 */
1288	if (!denali->revision)
1289		denali->revision = swab16(ioread32(denali->reg + REVISION));
1290
1291	denali->nbanks = 1 << FIELD_GET(FEATURES__N_BANKS, features);
1292
1293	/* the encoding changed from rev 5.0 to 5.1 */
1294	if (denali->revision < 0x0501)
1295		denali->nbanks <<= 1;
1296
1297	if (features & FEATURES__DMA)
1298		denali->dma_avail = true;
1299
1300	if (denali->dma_avail) {
1301		int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32;
1302
1303		ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit));
1304		if (ret) {
1305			dev_info(denali->dev,
1306				 "Failed to set DMA mask. Disabling DMA.\n");
1307			denali->dma_avail = false;
1308		}
1309	}
1310
1311	if (denali->dma_avail) {
1312		if (denali->caps & DENALI_CAP_DMA_64BIT)
1313			denali->setup_dma = denali_setup_dma64;
1314		else
1315			denali->setup_dma = denali_setup_dma32;
1316	}
1317
1318	if (features & FEATURES__INDEX_ADDR) {
1319		denali->host_read = denali_indexed_read;
1320		denali->host_write = denali_indexed_write;
1321	} else {
1322		denali->host_read = denali_direct_read;
1323		denali->host_write = denali_direct_write;
1324	}
1325
1326	/*
1327	 * Set how many bytes should be skipped before writing data in OOB.
1328	 * If a platform requests a non-zero value, set it to the register.
1329	 * Otherwise, read the value out, expecting it has already been set up
1330	 * by firmware.
1331	 */
1332	if (denali->oob_skip_bytes)
1333		iowrite32(denali->oob_skip_bytes,
1334			  denali->reg + SPARE_AREA_SKIP_BYTES);
1335	else
1336		denali->oob_skip_bytes = ioread32(denali->reg +
1337						  SPARE_AREA_SKIP_BYTES);
1338
1339	iowrite32(0, denali->reg + TRANSFER_SPARE_REG);
1340	iowrite32(GENMASK(denali->nbanks - 1, 0), denali->reg + RB_PIN_ENABLED);
1341	iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
1342	iowrite32(ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE);
1343	iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
1344	iowrite32(WRITE_PROTECT__FLAG, denali->reg + WRITE_PROTECT);
1345
1346	denali_clear_irq_all(denali);
1347
1348	ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
1349			       IRQF_SHARED, DENALI_NAND_NAME, denali);
1350	if (ret) {
1351		dev_err(denali->dev, "Unable to request IRQ\n");
1352		return ret;
1353	}
1354
1355	denali_enable_irq(denali);
1356
1357	return 0;
1358}
1359EXPORT_SYMBOL(denali_init);
1360
1361void denali_remove(struct denali_controller *denali)
1362{
1363	struct denali_chip *dchip, *tmp;
1364	struct nand_chip *chip;
1365	int ret;
1366
1367	list_for_each_entry_safe(dchip, tmp, &denali->chips, node) {
1368		chip = &dchip->chip;
1369		ret = mtd_device_unregister(nand_to_mtd(chip));
1370		WARN_ON(ret);
1371		nand_cleanup(chip);
1372		list_del(&dchip->node);
1373	}
1374
1375	denali_disable_irq(denali);
1376}
1377EXPORT_SYMBOL(denali_remove);
1378
1379MODULE_DESCRIPTION("Driver core for Denali NAND controller");
1380MODULE_AUTHOR("Intel Corporation and its suppliers");
1381MODULE_LICENSE("GPL v2");
1382