1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright 2017 ATMEL
4 * Copyright 2017 Free Electrons
5 *
6 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7 *
8 * Derived from the atmel_nand.c driver which contained the following
9 * copyrights:
10 *
11 *   Copyright 2003 Rick Bronson
12 *
13 *   Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
14 *	Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
15 *
16 *   Derived from drivers/mtd/spia.c (removed in v3.8)
17 *	Copyright 2000 Steven J. Hill (sjhill@cotw.com)
18 *
19 *   Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
20 *	Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
21 *
22 *   Derived from Das U-Boot source code
23 *	(u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
24 *      Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
25 *
26 *   Add Programmable Multibit ECC support for various AT91 SoC
27 *	Copyright 2012 ATMEL, Hong Xu
28 *
29 *   Add Nand Flash Controller support for SAMA5 SoC
30 *	Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
31 *
32 * The PMECC is an hardware assisted BCH engine, which means part of the
33 * ECC algorithm is left to the software. The hardware/software repartition
34 * is explained in the "PMECC Controller Functional Description" chapter in
35 * Atmel datasheets, and some of the functions in this file are directly
36 * implementing the algorithms described in the "Software Implementation"
37 * sub-section.
38 *
39 * TODO: it seems that the software BCH implementation in lib/bch.c is already
40 * providing some of the logic we are implementing here. It would be smart
41 * to expose the needed lib/bch.c helpers/functions and re-use them here.
42 */
43
44#include <linux/genalloc.h>
45#include <linux/iopoll.h>
46#include <linux/module.h>
47#include <linux/mtd/rawnand.h>
48#include <linux/of_irq.h>
49#include <linux/of_platform.h>
50#include <linux/platform_device.h>
51#include <linux/slab.h>
52
53#include "pmecc.h"
54
55/* Galois field dimension */
56#define PMECC_GF_DIMENSION_13			13
57#define PMECC_GF_DIMENSION_14			14
58
59/* Primitive Polynomial used by PMECC */
60#define PMECC_GF_13_PRIMITIVE_POLY		0x201b
61#define PMECC_GF_14_PRIMITIVE_POLY		0x4443
62
63#define PMECC_LOOKUP_TABLE_SIZE_512		0x2000
64#define PMECC_LOOKUP_TABLE_SIZE_1024		0x4000
65
66/* Time out value for reading PMECC status register */
67#define PMECC_MAX_TIMEOUT_MS			100
68
69/* PMECC Register Definitions */
70#define ATMEL_PMECC_CFG				0x0
71#define PMECC_CFG_BCH_STRENGTH(x)		(x)
72#define PMECC_CFG_BCH_STRENGTH_MASK		GENMASK(2, 0)
73#define PMECC_CFG_SECTOR512			(0 << 4)
74#define PMECC_CFG_SECTOR1024			(1 << 4)
75#define PMECC_CFG_NSECTORS(x)			((fls(x) - 1) << 8)
76#define PMECC_CFG_READ_OP			(0 << 12)
77#define PMECC_CFG_WRITE_OP			(1 << 12)
78#define PMECC_CFG_SPARE_ENABLE			BIT(16)
79#define PMECC_CFG_AUTO_ENABLE			BIT(20)
80
81#define ATMEL_PMECC_SAREA			0x4
82#define ATMEL_PMECC_SADDR			0x8
83#define ATMEL_PMECC_EADDR			0xc
84
85#define ATMEL_PMECC_CLK				0x10
86#define PMECC_CLK_133MHZ			(2 << 0)
87
88#define ATMEL_PMECC_CTRL			0x14
89#define PMECC_CTRL_RST				BIT(0)
90#define PMECC_CTRL_DATA				BIT(1)
91#define PMECC_CTRL_USER				BIT(2)
92#define PMECC_CTRL_ENABLE			BIT(4)
93#define PMECC_CTRL_DISABLE			BIT(5)
94
95#define ATMEL_PMECC_SR				0x18
96#define PMECC_SR_BUSY				BIT(0)
97#define PMECC_SR_ENABLE				BIT(4)
98
99#define ATMEL_PMECC_IER				0x1c
100#define ATMEL_PMECC_IDR				0x20
101#define ATMEL_PMECC_IMR				0x24
102#define ATMEL_PMECC_ISR				0x28
103#define PMECC_ERROR_INT				BIT(0)
104
105#define ATMEL_PMECC_ECC(sector, n)		\
106	((((sector) + 1) * 0x40) + (n))
107
108#define ATMEL_PMECC_REM(sector, n)		\
109	((((sector) + 1) * 0x40) + ((n) * 4) + 0x200)
110
111/* PMERRLOC Register Definitions */
112#define ATMEL_PMERRLOC_ELCFG			0x0
113#define PMERRLOC_ELCFG_SECTOR_512		(0 << 0)
114#define PMERRLOC_ELCFG_SECTOR_1024		(1 << 0)
115#define PMERRLOC_ELCFG_NUM_ERRORS(n)		((n) << 16)
116
117#define ATMEL_PMERRLOC_ELPRIM			0x4
118#define ATMEL_PMERRLOC_ELEN			0x8
119#define ATMEL_PMERRLOC_ELDIS			0xc
120#define PMERRLOC_DISABLE			BIT(0)
121
122#define ATMEL_PMERRLOC_ELSR			0x10
123#define PMERRLOC_ELSR_BUSY			BIT(0)
124
125#define ATMEL_PMERRLOC_ELIER			0x14
126#define ATMEL_PMERRLOC_ELIDR			0x18
127#define ATMEL_PMERRLOC_ELIMR			0x1c
128#define ATMEL_PMERRLOC_ELISR			0x20
129#define PMERRLOC_ERR_NUM_MASK			GENMASK(12, 8)
130#define PMERRLOC_CALC_DONE			BIT(0)
131
132#define ATMEL_PMERRLOC_SIGMA(x)			(((x) * 0x4) + 0x28)
133
134#define ATMEL_PMERRLOC_EL(offs, x)		(((x) * 0x4) + (offs))
135
136struct atmel_pmecc_gf_tables {
137	u16 *alpha_to;
138	u16 *index_of;
139};
140
141struct atmel_pmecc_caps {
142	const int *strengths;
143	int nstrengths;
144	int el_offset;
145	bool correct_erased_chunks;
146};
147
148struct atmel_pmecc {
149	struct device *dev;
150	const struct atmel_pmecc_caps *caps;
151
152	struct {
153		void __iomem *base;
154		void __iomem *errloc;
155	} regs;
156
157	struct mutex lock;
158};
159
160struct atmel_pmecc_user_conf_cache {
161	u32 cfg;
162	u32 sarea;
163	u32 saddr;
164	u32 eaddr;
165};
166
167struct atmel_pmecc_user {
168	struct atmel_pmecc_user_conf_cache cache;
169	struct atmel_pmecc *pmecc;
170	const struct atmel_pmecc_gf_tables *gf_tables;
171	int eccbytes;
172	s16 *partial_syn;
173	s16 *si;
174	s16 *lmu;
175	s16 *smu;
176	s32 *mu;
177	s32 *dmu;
178	s32 *delta;
179	u32 isr;
180};
181
182static DEFINE_MUTEX(pmecc_gf_tables_lock);
183static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_512;
184static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_1024;
185
186static inline int deg(unsigned int poly)
187{
188	/* polynomial degree is the most-significant bit index */
189	return fls(poly) - 1;
190}
191
192static int atmel_pmecc_build_gf_tables(int mm, unsigned int poly,
193				       struct atmel_pmecc_gf_tables *gf_tables)
194{
195	unsigned int i, x = 1;
196	const unsigned int k = BIT(deg(poly));
197	unsigned int nn = BIT(mm) - 1;
198
199	/* primitive polynomial must be of degree m */
200	if (k != (1u << mm))
201		return -EINVAL;
202
203	for (i = 0; i < nn; i++) {
204		gf_tables->alpha_to[i] = x;
205		gf_tables->index_of[x] = i;
206		if (i && (x == 1))
207			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
208			return -EINVAL;
209		x <<= 1;
210		if (x & k)
211			x ^= poly;
212	}
213	gf_tables->alpha_to[nn] = 1;
214	gf_tables->index_of[0] = 0;
215
216	return 0;
217}
218
219static const struct atmel_pmecc_gf_tables *
220atmel_pmecc_create_gf_tables(const struct atmel_pmecc_user_req *req)
221{
222	struct atmel_pmecc_gf_tables *gf_tables;
223	unsigned int poly, degree, table_size;
224	int ret;
225
226	if (req->ecc.sectorsize == 512) {
227		degree = PMECC_GF_DIMENSION_13;
228		poly = PMECC_GF_13_PRIMITIVE_POLY;
229		table_size = PMECC_LOOKUP_TABLE_SIZE_512;
230	} else {
231		degree = PMECC_GF_DIMENSION_14;
232		poly = PMECC_GF_14_PRIMITIVE_POLY;
233		table_size = PMECC_LOOKUP_TABLE_SIZE_1024;
234	}
235
236	gf_tables = kzalloc(sizeof(*gf_tables) +
237			    (2 * table_size * sizeof(u16)),
238			    GFP_KERNEL);
239	if (!gf_tables)
240		return ERR_PTR(-ENOMEM);
241
242	gf_tables->alpha_to = (void *)(gf_tables + 1);
243	gf_tables->index_of = gf_tables->alpha_to + table_size;
244
245	ret = atmel_pmecc_build_gf_tables(degree, poly, gf_tables);
246	if (ret) {
247		kfree(gf_tables);
248		return ERR_PTR(ret);
249	}
250
251	return gf_tables;
252}
253
254static const struct atmel_pmecc_gf_tables *
255atmel_pmecc_get_gf_tables(const struct atmel_pmecc_user_req *req)
256{
257	const struct atmel_pmecc_gf_tables **gf_tables, *ret;
258
259	mutex_lock(&pmecc_gf_tables_lock);
260	if (req->ecc.sectorsize == 512)
261		gf_tables = &pmecc_gf_tables_512;
262	else
263		gf_tables = &pmecc_gf_tables_1024;
264
265	ret = *gf_tables;
266
267	if (!ret) {
268		ret = atmel_pmecc_create_gf_tables(req);
269		if (!IS_ERR(ret))
270			*gf_tables = ret;
271	}
272	mutex_unlock(&pmecc_gf_tables_lock);
273
274	return ret;
275}
276
277static int atmel_pmecc_prepare_user_req(struct atmel_pmecc *pmecc,
278					struct atmel_pmecc_user_req *req)
279{
280	int i, max_eccbytes, eccbytes = 0, eccstrength = 0;
281
282	if (req->pagesize <= 0 || req->oobsize <= 0 || req->ecc.bytes <= 0)
283		return -EINVAL;
284
285	if (req->ecc.ooboffset >= 0 &&
286	    req->ecc.ooboffset + req->ecc.bytes > req->oobsize)
287		return -EINVAL;
288
289	if (req->ecc.sectorsize == ATMEL_PMECC_SECTOR_SIZE_AUTO) {
290		if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH)
291			return -EINVAL;
292
293		if (req->pagesize > 512)
294			req->ecc.sectorsize = 1024;
295		else
296			req->ecc.sectorsize = 512;
297	}
298
299	if (req->ecc.sectorsize != 512 && req->ecc.sectorsize != 1024)
300		return -EINVAL;
301
302	if (req->pagesize % req->ecc.sectorsize)
303		return -EINVAL;
304
305	req->ecc.nsectors = req->pagesize / req->ecc.sectorsize;
306
307	max_eccbytes = req->ecc.bytes;
308
309	for (i = 0; i < pmecc->caps->nstrengths; i++) {
310		int nbytes, strength = pmecc->caps->strengths[i];
311
312		if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH &&
313		    strength < req->ecc.strength)
314			continue;
315
316		nbytes = DIV_ROUND_UP(strength * fls(8 * req->ecc.sectorsize),
317				      8);
318		nbytes *= req->ecc.nsectors;
319
320		if (nbytes > max_eccbytes)
321			break;
322
323		eccstrength = strength;
324		eccbytes = nbytes;
325
326		if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH)
327			break;
328	}
329
330	if (!eccstrength)
331		return -EINVAL;
332
333	req->ecc.bytes = eccbytes;
334	req->ecc.strength = eccstrength;
335
336	if (req->ecc.ooboffset < 0)
337		req->ecc.ooboffset = req->oobsize - eccbytes;
338
339	return 0;
340}
341
342struct atmel_pmecc_user *
343atmel_pmecc_create_user(struct atmel_pmecc *pmecc,
344			struct atmel_pmecc_user_req *req)
345{
346	struct atmel_pmecc_user *user;
347	const struct atmel_pmecc_gf_tables *gf_tables;
348	int strength, size, ret;
349
350	ret = atmel_pmecc_prepare_user_req(pmecc, req);
351	if (ret)
352		return ERR_PTR(ret);
353
354	size = sizeof(*user);
355	size = ALIGN(size, sizeof(u16));
356	/* Reserve space for partial_syn, si and smu */
357	size += ((2 * req->ecc.strength) + 1) * sizeof(u16) *
358		(2 + req->ecc.strength + 2);
359	/* Reserve space for lmu. */
360	size += (req->ecc.strength + 1) * sizeof(u16);
361	/* Reserve space for mu, dmu and delta. */
362	size = ALIGN(size, sizeof(s32));
363	size += (req->ecc.strength + 1) * sizeof(s32) * 3;
364
365	user = kzalloc(size, GFP_KERNEL);
366	if (!user)
367		return ERR_PTR(-ENOMEM);
368
369	user->pmecc = pmecc;
370
371	user->partial_syn = (s16 *)PTR_ALIGN(user + 1, sizeof(u16));
372	user->si = user->partial_syn + ((2 * req->ecc.strength) + 1);
373	user->lmu = user->si + ((2 * req->ecc.strength) + 1);
374	user->smu = user->lmu + (req->ecc.strength + 1);
375	user->mu = (s32 *)PTR_ALIGN(user->smu +
376				    (((2 * req->ecc.strength) + 1) *
377				     (req->ecc.strength + 2)),
378				    sizeof(s32));
379	user->dmu = user->mu + req->ecc.strength + 1;
380	user->delta = user->dmu + req->ecc.strength + 1;
381
382	gf_tables = atmel_pmecc_get_gf_tables(req);
383	if (IS_ERR(gf_tables)) {
384		kfree(user);
385		return ERR_CAST(gf_tables);
386	}
387
388	user->gf_tables = gf_tables;
389
390	user->eccbytes = req->ecc.bytes / req->ecc.nsectors;
391
392	for (strength = 0; strength < pmecc->caps->nstrengths; strength++) {
393		if (pmecc->caps->strengths[strength] == req->ecc.strength)
394			break;
395	}
396
397	user->cache.cfg = PMECC_CFG_BCH_STRENGTH(strength) |
398			  PMECC_CFG_NSECTORS(req->ecc.nsectors);
399
400	if (req->ecc.sectorsize == 1024)
401		user->cache.cfg |= PMECC_CFG_SECTOR1024;
402
403	user->cache.sarea = req->oobsize - 1;
404	user->cache.saddr = req->ecc.ooboffset;
405	user->cache.eaddr = req->ecc.ooboffset + req->ecc.bytes - 1;
406
407	return user;
408}
409EXPORT_SYMBOL_GPL(atmel_pmecc_create_user);
410
411void atmel_pmecc_destroy_user(struct atmel_pmecc_user *user)
412{
413	kfree(user);
414}
415EXPORT_SYMBOL_GPL(atmel_pmecc_destroy_user);
416
417static int get_strength(struct atmel_pmecc_user *user)
418{
419	const int *strengths = user->pmecc->caps->strengths;
420
421	return strengths[user->cache.cfg & PMECC_CFG_BCH_STRENGTH_MASK];
422}
423
424static int get_sectorsize(struct atmel_pmecc_user *user)
425{
426	return user->cache.cfg & PMECC_CFG_SECTOR1024 ? 1024 : 512;
427}
428
429static void atmel_pmecc_gen_syndrome(struct atmel_pmecc_user *user, int sector)
430{
431	int strength = get_strength(user);
432	u32 value;
433	int i;
434
435	/* Fill odd syndromes */
436	for (i = 0; i < strength; i++) {
437		value = readl_relaxed(user->pmecc->regs.base +
438				      ATMEL_PMECC_REM(sector, i / 2));
439		if (i & 1)
440			value >>= 16;
441
442		user->partial_syn[(2 * i) + 1] = value;
443	}
444}
445
446static void atmel_pmecc_substitute(struct atmel_pmecc_user *user)
447{
448	int degree = get_sectorsize(user) == 512 ? 13 : 14;
449	int cw_len = BIT(degree) - 1;
450	int strength = get_strength(user);
451	s16 *alpha_to = user->gf_tables->alpha_to;
452	s16 *index_of = user->gf_tables->index_of;
453	s16 *partial_syn = user->partial_syn;
454	s16 *si;
455	int i, j;
456
457	/*
458	 * si[] is a table that holds the current syndrome value,
459	 * an element of that table belongs to the field
460	 */
461	si = user->si;
462
463	memset(&si[1], 0, sizeof(s16) * ((2 * strength) - 1));
464
465	/* Computation 2t syndromes based on S(x) */
466	/* Odd syndromes */
467	for (i = 1; i < 2 * strength; i += 2) {
468		for (j = 0; j < degree; j++) {
469			if (partial_syn[i] & BIT(j))
470				si[i] = alpha_to[i * j] ^ si[i];
471		}
472	}
473	/* Even syndrome = (Odd syndrome) ** 2 */
474	for (i = 2, j = 1; j <= strength; i = ++j << 1) {
475		if (si[j] == 0) {
476			si[i] = 0;
477		} else {
478			s16 tmp;
479
480			tmp = index_of[si[j]];
481			tmp = (tmp * 2) % cw_len;
482			si[i] = alpha_to[tmp];
483		}
484	}
485}
486
487static void atmel_pmecc_get_sigma(struct atmel_pmecc_user *user)
488{
489	s16 *lmu = user->lmu;
490	s16 *si = user->si;
491	s32 *mu = user->mu;
492	s32 *dmu = user->dmu;
493	s32 *delta = user->delta;
494	int degree = get_sectorsize(user) == 512 ? 13 : 14;
495	int cw_len = BIT(degree) - 1;
496	int strength = get_strength(user);
497	int num = 2 * strength + 1;
498	s16 *index_of = user->gf_tables->index_of;
499	s16 *alpha_to = user->gf_tables->alpha_to;
500	int i, j, k;
501	u32 dmu_0_count, tmp;
502	s16 *smu = user->smu;
503
504	/* index of largest delta */
505	int ro;
506	int largest;
507	int diff;
508
509	dmu_0_count = 0;
510
511	/* First Row */
512
513	/* Mu */
514	mu[0] = -1;
515
516	memset(smu, 0, sizeof(s16) * num);
517	smu[0] = 1;
518
519	/* discrepancy set to 1 */
520	dmu[0] = 1;
521	/* polynom order set to 0 */
522	lmu[0] = 0;
523	delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
524
525	/* Second Row */
526
527	/* Mu */
528	mu[1] = 0;
529	/* Sigma(x) set to 1 */
530	memset(&smu[num], 0, sizeof(s16) * num);
531	smu[num] = 1;
532
533	/* discrepancy set to S1 */
534	dmu[1] = si[1];
535
536	/* polynom order set to 0 */
537	lmu[1] = 0;
538
539	delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
540
541	/* Init the Sigma(x) last row */
542	memset(&smu[(strength + 1) * num], 0, sizeof(s16) * num);
543
544	for (i = 1; i <= strength; i++) {
545		mu[i + 1] = i << 1;
546		/* Begin Computing Sigma (Mu+1) and L(mu) */
547		/* check if discrepancy is set to 0 */
548		if (dmu[i] == 0) {
549			dmu_0_count++;
550
551			tmp = ((strength - (lmu[i] >> 1) - 1) / 2);
552			if ((strength - (lmu[i] >> 1) - 1) & 0x1)
553				tmp += 2;
554			else
555				tmp += 1;
556
557			if (dmu_0_count == tmp) {
558				for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
559					smu[(strength + 1) * num + j] =
560							smu[i * num + j];
561
562				lmu[strength + 1] = lmu[i];
563				return;
564			}
565
566			/* copy polynom */
567			for (j = 0; j <= lmu[i] >> 1; j++)
568				smu[(i + 1) * num + j] = smu[i * num + j];
569
570			/* copy previous polynom order to the next */
571			lmu[i + 1] = lmu[i];
572		} else {
573			ro = 0;
574			largest = -1;
575			/* find largest delta with dmu != 0 */
576			for (j = 0; j < i; j++) {
577				if ((dmu[j]) && (delta[j] > largest)) {
578					largest = delta[j];
579					ro = j;
580				}
581			}
582
583			/* compute difference */
584			diff = (mu[i] - mu[ro]);
585
586			/* Compute degree of the new smu polynomial */
587			if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
588				lmu[i + 1] = lmu[i];
589			else
590				lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
591
592			/* Init smu[i+1] with 0 */
593			for (k = 0; k < num; k++)
594				smu[(i + 1) * num + k] = 0;
595
596			/* Compute smu[i+1] */
597			for (k = 0; k <= lmu[ro] >> 1; k++) {
598				s16 a, b, c;
599
600				if (!(smu[ro * num + k] && dmu[i]))
601					continue;
602
603				a = index_of[dmu[i]];
604				b = index_of[dmu[ro]];
605				c = index_of[smu[ro * num + k]];
606				tmp = a + (cw_len - b) + c;
607				a = alpha_to[tmp % cw_len];
608				smu[(i + 1) * num + (k + diff)] = a;
609			}
610
611			for (k = 0; k <= lmu[i] >> 1; k++)
612				smu[(i + 1) * num + k] ^= smu[i * num + k];
613		}
614
615		/* End Computing Sigma (Mu+1) and L(mu) */
616		/* In either case compute delta */
617		delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
618
619		/* Do not compute discrepancy for the last iteration */
620		if (i >= strength)
621			continue;
622
623		for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
624			tmp = 2 * (i - 1);
625			if (k == 0) {
626				dmu[i + 1] = si[tmp + 3];
627			} else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
628				s16 a, b, c;
629
630				a = index_of[smu[(i + 1) * num + k]];
631				b = si[2 * (i - 1) + 3 - k];
632				c = index_of[b];
633				tmp = a + c;
634				tmp %= cw_len;
635				dmu[i + 1] = alpha_to[tmp] ^ dmu[i + 1];
636			}
637		}
638	}
639}
640
641static int atmel_pmecc_err_location(struct atmel_pmecc_user *user)
642{
643	int sector_size = get_sectorsize(user);
644	int degree = sector_size == 512 ? 13 : 14;
645	struct atmel_pmecc *pmecc = user->pmecc;
646	int strength = get_strength(user);
647	int ret, roots_nbr, i, err_nbr = 0;
648	int num = (2 * strength) + 1;
649	s16 *smu = user->smu;
650	u32 val;
651
652	writel(PMERRLOC_DISABLE, pmecc->regs.errloc + ATMEL_PMERRLOC_ELDIS);
653
654	for (i = 0; i <= user->lmu[strength + 1] >> 1; i++) {
655		writel_relaxed(smu[(strength + 1) * num + i],
656			       pmecc->regs.errloc + ATMEL_PMERRLOC_SIGMA(i));
657		err_nbr++;
658	}
659
660	val = (err_nbr - 1) << 16;
661	if (sector_size == 1024)
662		val |= 1;
663
664	writel(val, pmecc->regs.errloc + ATMEL_PMERRLOC_ELCFG);
665	writel((sector_size * 8) + (degree * strength),
666	       pmecc->regs.errloc + ATMEL_PMERRLOC_ELEN);
667
668	ret = readl_relaxed_poll_timeout(pmecc->regs.errloc +
669					 ATMEL_PMERRLOC_ELISR,
670					 val, val & PMERRLOC_CALC_DONE, 0,
671					 PMECC_MAX_TIMEOUT_MS * 1000);
672	if (ret) {
673		dev_err(pmecc->dev,
674			"PMECC: Timeout to calculate error location.\n");
675		return ret;
676	}
677
678	roots_nbr = (val & PMERRLOC_ERR_NUM_MASK) >> 8;
679	/* Number of roots == degree of smu hence <= cap */
680	if (roots_nbr == user->lmu[strength + 1] >> 1)
681		return err_nbr - 1;
682
683	/*
684	 * Number of roots does not match the degree of smu
685	 * unable to correct error.
686	 */
687	return -EBADMSG;
688}
689
690int atmel_pmecc_correct_sector(struct atmel_pmecc_user *user, int sector,
691			       void *data, void *ecc)
692{
693	struct atmel_pmecc *pmecc = user->pmecc;
694	int sectorsize = get_sectorsize(user);
695	int eccbytes = user->eccbytes;
696	int i, nerrors;
697
698	if (!(user->isr & BIT(sector)))
699		return 0;
700
701	atmel_pmecc_gen_syndrome(user, sector);
702	atmel_pmecc_substitute(user);
703	atmel_pmecc_get_sigma(user);
704
705	nerrors = atmel_pmecc_err_location(user);
706	if (nerrors < 0)
707		return nerrors;
708
709	for (i = 0; i < nerrors; i++) {
710		const char *area;
711		int byte, bit;
712		u32 errpos;
713		u8 *ptr;
714
715		errpos = readl_relaxed(pmecc->regs.errloc +
716				ATMEL_PMERRLOC_EL(pmecc->caps->el_offset, i));
717		errpos--;
718
719		byte = errpos / 8;
720		bit = errpos % 8;
721
722		if (byte < sectorsize) {
723			ptr = data + byte;
724			area = "data";
725		} else if (byte < sectorsize + eccbytes) {
726			ptr = ecc + byte - sectorsize;
727			area = "ECC";
728		} else {
729			dev_dbg(pmecc->dev,
730				"Invalid errpos value (%d, max is %d)\n",
731				errpos, (sectorsize + eccbytes) * 8);
732			return -EINVAL;
733		}
734
735		dev_dbg(pmecc->dev,
736			"Bit flip in %s area, byte %d: 0x%02x -> 0x%02x\n",
737			area, byte, *ptr, (unsigned int)(*ptr ^ BIT(bit)));
738
739		*ptr ^= BIT(bit);
740	}
741
742	return nerrors;
743}
744EXPORT_SYMBOL_GPL(atmel_pmecc_correct_sector);
745
746bool atmel_pmecc_correct_erased_chunks(struct atmel_pmecc_user *user)
747{
748	return user->pmecc->caps->correct_erased_chunks;
749}
750EXPORT_SYMBOL_GPL(atmel_pmecc_correct_erased_chunks);
751
752void atmel_pmecc_get_generated_eccbytes(struct atmel_pmecc_user *user,
753					int sector, void *ecc)
754{
755	struct atmel_pmecc *pmecc = user->pmecc;
756	u8 *ptr = ecc;
757	int i;
758
759	for (i = 0; i < user->eccbytes; i++)
760		ptr[i] = readb_relaxed(pmecc->regs.base +
761				       ATMEL_PMECC_ECC(sector, i));
762}
763EXPORT_SYMBOL_GPL(atmel_pmecc_get_generated_eccbytes);
764
765void atmel_pmecc_reset(struct atmel_pmecc *pmecc)
766{
767	writel(PMECC_CTRL_RST, pmecc->regs.base + ATMEL_PMECC_CTRL);
768	writel(PMECC_CTRL_DISABLE, pmecc->regs.base + ATMEL_PMECC_CTRL);
769}
770EXPORT_SYMBOL_GPL(atmel_pmecc_reset);
771
772int atmel_pmecc_enable(struct atmel_pmecc_user *user, int op)
773{
774	struct atmel_pmecc *pmecc = user->pmecc;
775	u32 cfg;
776
777	if (op != NAND_ECC_READ && op != NAND_ECC_WRITE) {
778		dev_err(pmecc->dev, "Bad ECC operation!");
779		return -EINVAL;
780	}
781
782	mutex_lock(&user->pmecc->lock);
783
784	cfg = user->cache.cfg;
785	if (op == NAND_ECC_WRITE)
786		cfg |= PMECC_CFG_WRITE_OP;
787	else
788		cfg |= PMECC_CFG_AUTO_ENABLE;
789
790	writel(cfg, pmecc->regs.base + ATMEL_PMECC_CFG);
791	writel(user->cache.sarea, pmecc->regs.base + ATMEL_PMECC_SAREA);
792	writel(user->cache.saddr, pmecc->regs.base + ATMEL_PMECC_SADDR);
793	writel(user->cache.eaddr, pmecc->regs.base + ATMEL_PMECC_EADDR);
794
795	writel(PMECC_CTRL_ENABLE, pmecc->regs.base + ATMEL_PMECC_CTRL);
796	writel(PMECC_CTRL_DATA, pmecc->regs.base + ATMEL_PMECC_CTRL);
797
798	return 0;
799}
800EXPORT_SYMBOL_GPL(atmel_pmecc_enable);
801
802void atmel_pmecc_disable(struct atmel_pmecc_user *user)
803{
804	atmel_pmecc_reset(user->pmecc);
805	mutex_unlock(&user->pmecc->lock);
806}
807EXPORT_SYMBOL_GPL(atmel_pmecc_disable);
808
809int atmel_pmecc_wait_rdy(struct atmel_pmecc_user *user)
810{
811	struct atmel_pmecc *pmecc = user->pmecc;
812	u32 status;
813	int ret;
814
815	ret = readl_relaxed_poll_timeout(pmecc->regs.base +
816					 ATMEL_PMECC_SR,
817					 status, !(status & PMECC_SR_BUSY), 0,
818					 PMECC_MAX_TIMEOUT_MS * 1000);
819	if (ret) {
820		dev_err(pmecc->dev,
821			"Timeout while waiting for PMECC ready.\n");
822		return ret;
823	}
824
825	user->isr = readl_relaxed(pmecc->regs.base + ATMEL_PMECC_ISR);
826
827	return 0;
828}
829EXPORT_SYMBOL_GPL(atmel_pmecc_wait_rdy);
830
831static struct atmel_pmecc *atmel_pmecc_create(struct platform_device *pdev,
832					const struct atmel_pmecc_caps *caps,
833					int pmecc_res_idx, int errloc_res_idx)
834{
835	struct device *dev = &pdev->dev;
836	struct atmel_pmecc *pmecc;
837
838	pmecc = devm_kzalloc(dev, sizeof(*pmecc), GFP_KERNEL);
839	if (!pmecc)
840		return ERR_PTR(-ENOMEM);
841
842	pmecc->caps = caps;
843	pmecc->dev = dev;
844	mutex_init(&pmecc->lock);
845
846	pmecc->regs.base = devm_platform_ioremap_resource(pdev, pmecc_res_idx);
847	if (IS_ERR(pmecc->regs.base))
848		return ERR_CAST(pmecc->regs.base);
849
850	pmecc->regs.errloc = devm_platform_ioremap_resource(pdev, errloc_res_idx);
851	if (IS_ERR(pmecc->regs.errloc))
852		return ERR_CAST(pmecc->regs.errloc);
853
854	/* Disable all interrupts before registering the PMECC handler. */
855	writel(0xffffffff, pmecc->regs.base + ATMEL_PMECC_IDR);
856	atmel_pmecc_reset(pmecc);
857
858	return pmecc;
859}
860
861static void devm_atmel_pmecc_put(struct device *dev, void *res)
862{
863	struct atmel_pmecc **pmecc = res;
864
865	put_device((*pmecc)->dev);
866}
867
868static struct atmel_pmecc *atmel_pmecc_get_by_node(struct device *userdev,
869						   struct device_node *np)
870{
871	struct platform_device *pdev;
872	struct atmel_pmecc *pmecc, **ptr;
873	int ret;
874
875	pdev = of_find_device_by_node(np);
876	if (!pdev)
877		return ERR_PTR(-EPROBE_DEFER);
878	pmecc = platform_get_drvdata(pdev);
879	if (!pmecc) {
880		ret = -EPROBE_DEFER;
881		goto err_put_device;
882	}
883
884	ptr = devres_alloc(devm_atmel_pmecc_put, sizeof(*ptr), GFP_KERNEL);
885	if (!ptr) {
886		ret = -ENOMEM;
887		goto err_put_device;
888	}
889
890	*ptr = pmecc;
891
892	devres_add(userdev, ptr);
893
894	return pmecc;
895
896err_put_device:
897	put_device(&pdev->dev);
898	return ERR_PTR(ret);
899}
900
901static const int atmel_pmecc_strengths[] = { 2, 4, 8, 12, 24, 32 };
902
903static struct atmel_pmecc_caps at91sam9g45_caps = {
904	.strengths = atmel_pmecc_strengths,
905	.nstrengths = 5,
906	.el_offset = 0x8c,
907};
908
909static struct atmel_pmecc_caps sama5d4_caps = {
910	.strengths = atmel_pmecc_strengths,
911	.nstrengths = 5,
912	.el_offset = 0x8c,
913	.correct_erased_chunks = true,
914};
915
916static struct atmel_pmecc_caps sama5d2_caps = {
917	.strengths = atmel_pmecc_strengths,
918	.nstrengths = 6,
919	.el_offset = 0xac,
920	.correct_erased_chunks = true,
921};
922
923static const struct of_device_id __maybe_unused atmel_pmecc_legacy_match[] = {
924	{ .compatible = "atmel,sama5d4-nand", &sama5d4_caps },
925	{ .compatible = "atmel,sama5d2-nand", &sama5d2_caps },
926	{ /* sentinel */ }
927};
928
929struct atmel_pmecc *devm_atmel_pmecc_get(struct device *userdev)
930{
931	struct atmel_pmecc *pmecc;
932	struct device_node *np;
933
934	if (!userdev)
935		return ERR_PTR(-EINVAL);
936
937	if (!userdev->of_node)
938		return NULL;
939
940	np = of_parse_phandle(userdev->of_node, "ecc-engine", 0);
941	if (np) {
942		pmecc = atmel_pmecc_get_by_node(userdev, np);
943		of_node_put(np);
944	} else {
945		/*
946		 * Support old DT bindings: in this case the PMECC iomem
947		 * resources are directly defined in the user pdev at position
948		 * 1 and 2. Extract all relevant information from there.
949		 */
950		struct platform_device *pdev = to_platform_device(userdev);
951		const struct atmel_pmecc_caps *caps;
952		const struct of_device_id *match;
953
954		/* No PMECC engine available. */
955		if (!of_property_read_bool(userdev->of_node,
956					   "atmel,has-pmecc"))
957			return NULL;
958
959		caps = &at91sam9g45_caps;
960
961		/* Find the caps associated to the NAND dev node. */
962		match = of_match_node(atmel_pmecc_legacy_match,
963				      userdev->of_node);
964		if (match && match->data)
965			caps = match->data;
966
967		pmecc = atmel_pmecc_create(pdev, caps, 1, 2);
968	}
969
970	return pmecc;
971}
972EXPORT_SYMBOL(devm_atmel_pmecc_get);
973
974static const struct of_device_id atmel_pmecc_match[] = {
975	{ .compatible = "atmel,at91sam9g45-pmecc", &at91sam9g45_caps },
976	{ .compatible = "atmel,sama5d4-pmecc", &sama5d4_caps },
977	{ .compatible = "atmel,sama5d2-pmecc", &sama5d2_caps },
978	{ /* sentinel */ }
979};
980MODULE_DEVICE_TABLE(of, atmel_pmecc_match);
981
982static int atmel_pmecc_probe(struct platform_device *pdev)
983{
984	struct device *dev = &pdev->dev;
985	const struct atmel_pmecc_caps *caps;
986	struct atmel_pmecc *pmecc;
987
988	caps = of_device_get_match_data(&pdev->dev);
989	if (!caps) {
990		dev_err(dev, "Invalid caps\n");
991		return -EINVAL;
992	}
993
994	pmecc = atmel_pmecc_create(pdev, caps, 0, 1);
995	if (IS_ERR(pmecc))
996		return PTR_ERR(pmecc);
997
998	platform_set_drvdata(pdev, pmecc);
999
1000	return 0;
1001}
1002
1003static struct platform_driver atmel_pmecc_driver = {
1004	.driver = {
1005		.name = "atmel-pmecc",
1006		.of_match_table = atmel_pmecc_match,
1007	},
1008	.probe = atmel_pmecc_probe,
1009};
1010module_platform_driver(atmel_pmecc_driver);
1011
1012MODULE_LICENSE("GPL");
1013MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
1014MODULE_DESCRIPTION("PMECC engine driver");
1015MODULE_ALIAS("platform:atmel_pmecc");
1016