1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  Copyright �� 2005-2009 Samsung Electronics
4 *  Copyright �� 2007 Nokia Corporation
5 *
6 *  Kyungmin Park <kyungmin.park@samsung.com>
7 *
8 *  Credits:
9 *	Adrian Hunter <ext-adrian.hunter@nokia.com>:
10 *	auto-placement support, read-while load support, various fixes
11 *
12 *	Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
13 *	Flex-OneNAND support
14 *	Amul Kumar Saha <amul.saha at samsung.com>
15 *	OTP support
16 */
17
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/moduleparam.h>
21#include <linux/slab.h>
22#include <linux/sched.h>
23#include <linux/delay.h>
24#include <linux/interrupt.h>
25#include <linux/jiffies.h>
26#include <linux/mtd/mtd.h>
27#include <linux/mtd/onenand.h>
28#include <linux/mtd/partitions.h>
29
30#include <asm/io.h>
31
32/*
33 * Multiblock erase if number of blocks to erase is 2 or more.
34 * Maximum number of blocks for simultaneous erase is 64.
35 */
36#define MB_ERASE_MIN_BLK_COUNT 2
37#define MB_ERASE_MAX_BLK_COUNT 64
38
39/* Default Flex-OneNAND boundary and lock respectively */
40static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
41
42module_param_array(flex_bdry, int, NULL, 0400);
43MODULE_PARM_DESC(flex_bdry,	"SLC Boundary information for Flex-OneNAND"
44				"Syntax:flex_bdry=DIE_BDRY,LOCK,..."
45				"DIE_BDRY: SLC boundary of the die"
46				"LOCK: Locking information for SLC boundary"
47				"    : 0->Set boundary in unlocked status"
48				"    : 1->Set boundary in locked status");
49
50/* Default OneNAND/Flex-OneNAND OTP options*/
51static int otp;
52
53module_param(otp, int, 0400);
54MODULE_PARM_DESC(otp,	"Corresponding behaviour of OneNAND in OTP"
55			"Syntax : otp=LOCK_TYPE"
56			"LOCK_TYPE : Keys issued, for specific OTP Lock type"
57			"	   : 0 -> Default (No Blocks Locked)"
58			"	   : 1 -> OTP Block lock"
59			"	   : 2 -> 1st Block lock"
60			"	   : 3 -> BOTH OTP Block and 1st Block lock");
61
62/*
63 * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
64 * For now, we expose only 64 out of 80 ecc bytes
65 */
66static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section,
67				     struct mtd_oob_region *oobregion)
68{
69	if (section > 7)
70		return -ERANGE;
71
72	oobregion->offset = (section * 16) + 6;
73	oobregion->length = 10;
74
75	return 0;
76}
77
78static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section,
79				      struct mtd_oob_region *oobregion)
80{
81	if (section > 7)
82		return -ERANGE;
83
84	oobregion->offset = (section * 16) + 2;
85	oobregion->length = 4;
86
87	return 0;
88}
89
90static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = {
91	.ecc = flexonenand_ooblayout_ecc,
92	.free = flexonenand_ooblayout_free,
93};
94
95/*
96 * onenand_oob_128 - oob info for OneNAND with 4KB page
97 *
98 * Based on specification:
99 * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
100 *
101 */
102static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section,
103				     struct mtd_oob_region *oobregion)
104{
105	if (section > 7)
106		return -ERANGE;
107
108	oobregion->offset = (section * 16) + 7;
109	oobregion->length = 9;
110
111	return 0;
112}
113
114static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section,
115				      struct mtd_oob_region *oobregion)
116{
117	if (section >= 8)
118		return -ERANGE;
119
120	/*
121	 * free bytes are using the spare area fields marked as
122	 * "Managed by internal ECC logic for Logical Sector Number area"
123	 */
124	oobregion->offset = (section * 16) + 2;
125	oobregion->length = 3;
126
127	return 0;
128}
129
130static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = {
131	.ecc = onenand_ooblayout_128_ecc,
132	.free = onenand_ooblayout_128_free,
133};
134
135/*
136 * onenand_oob_32_64 - oob info for large (2KB) page
137 */
138static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section,
139				       struct mtd_oob_region *oobregion)
140{
141	if (section > 3)
142		return -ERANGE;
143
144	oobregion->offset = (section * 16) + 8;
145	oobregion->length = 5;
146
147	return 0;
148}
149
150static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section,
151					struct mtd_oob_region *oobregion)
152{
153	int sections = (mtd->oobsize / 32) * 2;
154
155	if (section >= sections)
156		return -ERANGE;
157
158	if (section & 1) {
159		oobregion->offset = ((section - 1) * 16) + 14;
160		oobregion->length = 2;
161	} else  {
162		oobregion->offset = (section * 16) + 2;
163		oobregion->length = 3;
164	}
165
166	return 0;
167}
168
169static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = {
170	.ecc = onenand_ooblayout_32_64_ecc,
171	.free = onenand_ooblayout_32_64_free,
172};
173
174static const unsigned char ffchars[] = {
175	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
176	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
177	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
178	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
179	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
180	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
181	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
182	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
183	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
184	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 80 */
185	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
186	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 96 */
187	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
188	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 112 */
189	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
190	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 128 */
191};
192
193/**
194 * onenand_readw - [OneNAND Interface] Read OneNAND register
195 * @addr:		address to read
196 *
197 * Read OneNAND register
198 */
199static unsigned short onenand_readw(void __iomem *addr)
200{
201	return readw(addr);
202}
203
204/**
205 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
206 * @value:		value to write
207 * @addr:		address to write
208 *
209 * Write OneNAND register with value
210 */
211static void onenand_writew(unsigned short value, void __iomem *addr)
212{
213	writew(value, addr);
214}
215
216/**
217 * onenand_block_address - [DEFAULT] Get block address
218 * @this:		onenand chip data structure
219 * @block:		the block
220 * @return		translated block address if DDP, otherwise same
221 *
222 * Setup Start Address 1 Register (F100h)
223 */
224static int onenand_block_address(struct onenand_chip *this, int block)
225{
226	/* Device Flash Core select, NAND Flash Block Address */
227	if (block & this->density_mask)
228		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
229
230	return block;
231}
232
233/**
234 * onenand_bufferram_address - [DEFAULT] Get bufferram address
235 * @this:		onenand chip data structure
236 * @block:		the block
237 * @return		set DBS value if DDP, otherwise 0
238 *
239 * Setup Start Address 2 Register (F101h) for DDP
240 */
241static int onenand_bufferram_address(struct onenand_chip *this, int block)
242{
243	/* Device BufferRAM Select */
244	if (block & this->density_mask)
245		return ONENAND_DDP_CHIP1;
246
247	return ONENAND_DDP_CHIP0;
248}
249
250/**
251 * onenand_page_address - [DEFAULT] Get page address
252 * @page:		the page address
253 * @sector:	the sector address
254 * @return		combined page and sector address
255 *
256 * Setup Start Address 8 Register (F107h)
257 */
258static int onenand_page_address(int page, int sector)
259{
260	/* Flash Page Address, Flash Sector Address */
261	int fpa, fsa;
262
263	fpa = page & ONENAND_FPA_MASK;
264	fsa = sector & ONENAND_FSA_MASK;
265
266	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
267}
268
269/**
270 * onenand_buffer_address - [DEFAULT] Get buffer address
271 * @dataram1:	DataRAM index
272 * @sectors:	the sector address
273 * @count:		the number of sectors
274 * Return:		the start buffer value
275 *
276 * Setup Start Buffer Register (F200h)
277 */
278static int onenand_buffer_address(int dataram1, int sectors, int count)
279{
280	int bsa, bsc;
281
282	/* BufferRAM Sector Address */
283	bsa = sectors & ONENAND_BSA_MASK;
284
285	if (dataram1)
286		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
287	else
288		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
289
290	/* BufferRAM Sector Count */
291	bsc = count & ONENAND_BSC_MASK;
292
293	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
294}
295
296/**
297 * flexonenand_block- For given address return block number
298 * @this:         - OneNAND device structure
299 * @addr:		- Address for which block number is needed
300 */
301static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
302{
303	unsigned boundary, blk, die = 0;
304
305	if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
306		die = 1;
307		addr -= this->diesize[0];
308	}
309
310	boundary = this->boundary[die];
311
312	blk = addr >> (this->erase_shift - 1);
313	if (blk > boundary)
314		blk = (blk + boundary + 1) >> 1;
315
316	blk += die ? this->density_mask : 0;
317	return blk;
318}
319
320inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
321{
322	if (!FLEXONENAND(this))
323		return addr >> this->erase_shift;
324	return flexonenand_block(this, addr);
325}
326
327/**
328 * flexonenand_addr - Return address of the block
329 * @this:		OneNAND device structure
330 * @block:		Block number on Flex-OneNAND
331 *
332 * Return address of the block
333 */
334static loff_t flexonenand_addr(struct onenand_chip *this, int block)
335{
336	loff_t ofs = 0;
337	int die = 0, boundary;
338
339	if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
340		block -= this->density_mask;
341		die = 1;
342		ofs = this->diesize[0];
343	}
344
345	boundary = this->boundary[die];
346	ofs += (loff_t)block << (this->erase_shift - 1);
347	if (block > (boundary + 1))
348		ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
349	return ofs;
350}
351
352loff_t onenand_addr(struct onenand_chip *this, int block)
353{
354	if (!FLEXONENAND(this))
355		return (loff_t)block << this->erase_shift;
356	return flexonenand_addr(this, block);
357}
358EXPORT_SYMBOL(onenand_addr);
359
360/**
361 * onenand_get_density - [DEFAULT] Get OneNAND density
362 * @dev_id:	OneNAND device ID
363 *
364 * Get OneNAND density from device ID
365 */
366static inline int onenand_get_density(int dev_id)
367{
368	int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
369	return (density & ONENAND_DEVICE_DENSITY_MASK);
370}
371
372/**
373 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
374 * @mtd:		MTD device structure
375 * @addr:		address whose erase region needs to be identified
376 */
377int flexonenand_region(struct mtd_info *mtd, loff_t addr)
378{
379	int i;
380
381	for (i = 0; i < mtd->numeraseregions; i++)
382		if (addr < mtd->eraseregions[i].offset)
383			break;
384	return i - 1;
385}
386EXPORT_SYMBOL(flexonenand_region);
387
388/**
389 * onenand_command - [DEFAULT] Send command to OneNAND device
390 * @mtd:		MTD device structure
391 * @cmd:		the command to be sent
392 * @addr:		offset to read from or write to
393 * @len:		number of bytes to read or write
394 *
395 * Send command to OneNAND device. This function is used for middle/large page
396 * devices (1KB/2KB Bytes per page)
397 */
398static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
399{
400	struct onenand_chip *this = mtd->priv;
401	int value, block, page;
402
403	/* Address translation */
404	switch (cmd) {
405	case ONENAND_CMD_UNLOCK:
406	case ONENAND_CMD_LOCK:
407	case ONENAND_CMD_LOCK_TIGHT:
408	case ONENAND_CMD_UNLOCK_ALL:
409		block = -1;
410		page = -1;
411		break;
412
413	case FLEXONENAND_CMD_PI_ACCESS:
414		/* addr contains die index */
415		block = addr * this->density_mask;
416		page = -1;
417		break;
418
419	case ONENAND_CMD_ERASE:
420	case ONENAND_CMD_MULTIBLOCK_ERASE:
421	case ONENAND_CMD_ERASE_VERIFY:
422	case ONENAND_CMD_BUFFERRAM:
423	case ONENAND_CMD_OTP_ACCESS:
424		block = onenand_block(this, addr);
425		page = -1;
426		break;
427
428	case FLEXONENAND_CMD_READ_PI:
429		cmd = ONENAND_CMD_READ;
430		block = addr * this->density_mask;
431		page = 0;
432		break;
433
434	default:
435		block = onenand_block(this, addr);
436		if (FLEXONENAND(this))
437			page = (int) (addr - onenand_addr(this, block))>>\
438				this->page_shift;
439		else
440			page = (int) (addr >> this->page_shift);
441		if (ONENAND_IS_2PLANE(this)) {
442			/* Make the even block number */
443			block &= ~1;
444			/* Is it the odd plane? */
445			if (addr & this->writesize)
446				block++;
447			page >>= 1;
448		}
449		page &= this->page_mask;
450		break;
451	}
452
453	/* NOTE: The setting order of the registers is very important! */
454	if (cmd == ONENAND_CMD_BUFFERRAM) {
455		/* Select DataRAM for DDP */
456		value = onenand_bufferram_address(this, block);
457		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
458
459		if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
460			/* It is always BufferRAM0 */
461			ONENAND_SET_BUFFERRAM0(this);
462		else
463			/* Switch to the next data buffer */
464			ONENAND_SET_NEXT_BUFFERRAM(this);
465
466		return 0;
467	}
468
469	if (block != -1) {
470		/* Write 'DFS, FBA' of Flash */
471		value = onenand_block_address(this, block);
472		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
473
474		/* Select DataRAM for DDP */
475		value = onenand_bufferram_address(this, block);
476		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
477	}
478
479	if (page != -1) {
480		/* Now we use page size operation */
481		int sectors = 0, count = 0;
482		int dataram;
483
484		switch (cmd) {
485		case FLEXONENAND_CMD_RECOVER_LSB:
486		case ONENAND_CMD_READ:
487		case ONENAND_CMD_READOOB:
488			if (ONENAND_IS_4KB_PAGE(this))
489				/* It is always BufferRAM0 */
490				dataram = ONENAND_SET_BUFFERRAM0(this);
491			else
492				dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
493			break;
494
495		default:
496			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
497				cmd = ONENAND_CMD_2X_PROG;
498			dataram = ONENAND_CURRENT_BUFFERRAM(this);
499			break;
500		}
501
502		/* Write 'FPA, FSA' of Flash */
503		value = onenand_page_address(page, sectors);
504		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
505
506		/* Write 'BSA, BSC' of DataRAM */
507		value = onenand_buffer_address(dataram, sectors, count);
508		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
509	}
510
511	/* Interrupt clear */
512	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
513
514	/* Write command */
515	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
516
517	return 0;
518}
519
520/**
521 * onenand_read_ecc - return ecc status
522 * @this:		onenand chip structure
523 */
524static inline int onenand_read_ecc(struct onenand_chip *this)
525{
526	int ecc, i, result = 0;
527
528	if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
529		return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
530
531	for (i = 0; i < 4; i++) {
532		ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
533		if (likely(!ecc))
534			continue;
535		if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
536			return ONENAND_ECC_2BIT_ALL;
537		else
538			result = ONENAND_ECC_1BIT_ALL;
539	}
540
541	return result;
542}
543
544/**
545 * onenand_wait - [DEFAULT] wait until the command is done
546 * @mtd:		MTD device structure
547 * @state:		state to select the max. timeout value
548 *
549 * Wait for command done. This applies to all OneNAND command
550 * Read can take up to 30us, erase up to 2ms and program up to 350us
551 * according to general OneNAND specs
552 */
553static int onenand_wait(struct mtd_info *mtd, int state)
554{
555	struct onenand_chip * this = mtd->priv;
556	unsigned long timeout;
557	unsigned int flags = ONENAND_INT_MASTER;
558	unsigned int interrupt = 0;
559	unsigned int ctrl;
560
561	/* The 20 msec is enough */
562	timeout = jiffies + msecs_to_jiffies(20);
563	while (time_before(jiffies, timeout)) {
564		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
565
566		if (interrupt & flags)
567			break;
568
569		if (state != FL_READING && state != FL_PREPARING_ERASE)
570			cond_resched();
571	}
572	/* To get correct interrupt status in timeout case */
573	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
574
575	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
576
577	/*
578	 * In the Spec. it checks the controller status first
579	 * However if you get the correct information in case of
580	 * power off recovery (POR) test, it should read ECC status first
581	 */
582	if (interrupt & ONENAND_INT_READ) {
583		int ecc = onenand_read_ecc(this);
584		if (ecc) {
585			if (ecc & ONENAND_ECC_2BIT_ALL) {
586				printk(KERN_ERR "%s: ECC error = 0x%04x\n",
587					__func__, ecc);
588				mtd->ecc_stats.failed++;
589				return -EBADMSG;
590			} else if (ecc & ONENAND_ECC_1BIT_ALL) {
591				printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
592					__func__, ecc);
593				mtd->ecc_stats.corrected++;
594			}
595		}
596	} else if (state == FL_READING) {
597		printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
598			__func__, ctrl, interrupt);
599		return -EIO;
600	}
601
602	if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
603		printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
604		       __func__, ctrl, interrupt);
605		return -EIO;
606	}
607
608	if (!(interrupt & ONENAND_INT_MASTER)) {
609		printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
610		       __func__, ctrl, interrupt);
611		return -EIO;
612	}
613
614	/* If there's controller error, it's a real error */
615	if (ctrl & ONENAND_CTRL_ERROR) {
616		printk(KERN_ERR "%s: controller error = 0x%04x\n",
617			__func__, ctrl);
618		if (ctrl & ONENAND_CTRL_LOCK)
619			printk(KERN_ERR "%s: it's locked error.\n", __func__);
620		return -EIO;
621	}
622
623	return 0;
624}
625
626/*
627 * onenand_interrupt - [DEFAULT] onenand interrupt handler
628 * @irq:		onenand interrupt number
629 * @dev_id:	interrupt data
630 *
631 * complete the work
632 */
633static irqreturn_t onenand_interrupt(int irq, void *data)
634{
635	struct onenand_chip *this = data;
636
637	/* To handle shared interrupt */
638	if (!this->complete.done)
639		complete(&this->complete);
640
641	return IRQ_HANDLED;
642}
643
644/*
645 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
646 * @mtd:		MTD device structure
647 * @state:		state to select the max. timeout value
648 *
649 * Wait for command done.
650 */
651static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
652{
653	struct onenand_chip *this = mtd->priv;
654
655	wait_for_completion(&this->complete);
656
657	return onenand_wait(mtd, state);
658}
659
660/*
661 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
662 * @mtd:		MTD device structure
663 * @state:		state to select the max. timeout value
664 *
665 * Try interrupt based wait (It is used one-time)
666 */
667static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
668{
669	struct onenand_chip *this = mtd->priv;
670	unsigned long remain, timeout;
671
672	/* We use interrupt wait first */
673	this->wait = onenand_interrupt_wait;
674
675	timeout = msecs_to_jiffies(100);
676	remain = wait_for_completion_timeout(&this->complete, timeout);
677	if (!remain) {
678		printk(KERN_INFO "OneNAND: There's no interrupt. "
679				"We use the normal wait\n");
680
681		/* Release the irq */
682		free_irq(this->irq, this);
683
684		this->wait = onenand_wait;
685	}
686
687	return onenand_wait(mtd, state);
688}
689
690/*
691 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
692 * @mtd:		MTD device structure
693 *
694 * There's two method to wait onenand work
695 * 1. polling - read interrupt status register
696 * 2. interrupt - use the kernel interrupt method
697 */
698static void onenand_setup_wait(struct mtd_info *mtd)
699{
700	struct onenand_chip *this = mtd->priv;
701	int syscfg;
702
703	init_completion(&this->complete);
704
705	if (this->irq <= 0) {
706		this->wait = onenand_wait;
707		return;
708	}
709
710	if (request_irq(this->irq, &onenand_interrupt,
711				IRQF_SHARED, "onenand", this)) {
712		/* If we can't get irq, use the normal wait */
713		this->wait = onenand_wait;
714		return;
715	}
716
717	/* Enable interrupt */
718	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
719	syscfg |= ONENAND_SYS_CFG1_IOBE;
720	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
721
722	this->wait = onenand_try_interrupt_wait;
723}
724
725/**
726 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
727 * @mtd:		MTD data structure
728 * @area:		BufferRAM area
729 * @return		offset given area
730 *
731 * Return BufferRAM offset given area
732 */
733static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
734{
735	struct onenand_chip *this = mtd->priv;
736
737	if (ONENAND_CURRENT_BUFFERRAM(this)) {
738		/* Note: the 'this->writesize' is a real page size */
739		if (area == ONENAND_DATARAM)
740			return this->writesize;
741		if (area == ONENAND_SPARERAM)
742			return mtd->oobsize;
743	}
744
745	return 0;
746}
747
748/**
749 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
750 * @mtd:		MTD data structure
751 * @area:		BufferRAM area
752 * @buffer:	the databuffer to put/get data
753 * @offset:	offset to read from or write to
754 * @count:		number of bytes to read/write
755 *
756 * Read the BufferRAM area
757 */
758static int onenand_read_bufferram(struct mtd_info *mtd, int area,
759		unsigned char *buffer, int offset, size_t count)
760{
761	struct onenand_chip *this = mtd->priv;
762	void __iomem *bufferram;
763
764	bufferram = this->base + area;
765
766	bufferram += onenand_bufferram_offset(mtd, area);
767
768	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
769		unsigned short word;
770
771		/* Align with word(16-bit) size */
772		count--;
773
774		/* Read word and save byte */
775		word = this->read_word(bufferram + offset + count);
776		buffer[count] = (word & 0xff);
777	}
778
779	memcpy(buffer, bufferram + offset, count);
780
781	return 0;
782}
783
784/**
785 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
786 * @mtd:		MTD data structure
787 * @area:		BufferRAM area
788 * @buffer:	the databuffer to put/get data
789 * @offset:	offset to read from or write to
790 * @count:		number of bytes to read/write
791 *
792 * Read the BufferRAM area with Sync. Burst Mode
793 */
794static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
795		unsigned char *buffer, int offset, size_t count)
796{
797	struct onenand_chip *this = mtd->priv;
798	void __iomem *bufferram;
799
800	bufferram = this->base + area;
801
802	bufferram += onenand_bufferram_offset(mtd, area);
803
804	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
805
806	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
807		unsigned short word;
808
809		/* Align with word(16-bit) size */
810		count--;
811
812		/* Read word and save byte */
813		word = this->read_word(bufferram + offset + count);
814		buffer[count] = (word & 0xff);
815	}
816
817	memcpy(buffer, bufferram + offset, count);
818
819	this->mmcontrol(mtd, 0);
820
821	return 0;
822}
823
824/**
825 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
826 * @mtd:		MTD data structure
827 * @area:		BufferRAM area
828 * @buffer:	the databuffer to put/get data
829 * @offset:	offset to read from or write to
830 * @count:		number of bytes to read/write
831 *
832 * Write the BufferRAM area
833 */
834static int onenand_write_bufferram(struct mtd_info *mtd, int area,
835		const unsigned char *buffer, int offset, size_t count)
836{
837	struct onenand_chip *this = mtd->priv;
838	void __iomem *bufferram;
839
840	bufferram = this->base + area;
841
842	bufferram += onenand_bufferram_offset(mtd, area);
843
844	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
845		unsigned short word;
846		int byte_offset;
847
848		/* Align with word(16-bit) size */
849		count--;
850
851		/* Calculate byte access offset */
852		byte_offset = offset + count;
853
854		/* Read word and save byte */
855		word = this->read_word(bufferram + byte_offset);
856		word = (word & ~0xff) | buffer[count];
857		this->write_word(word, bufferram + byte_offset);
858	}
859
860	memcpy(bufferram + offset, buffer, count);
861
862	return 0;
863}
864
865/**
866 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
867 * @mtd:		MTD data structure
868 * @addr:		address to check
869 * @return		blockpage address
870 *
871 * Get blockpage address at 2x program mode
872 */
873static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
874{
875	struct onenand_chip *this = mtd->priv;
876	int blockpage, block, page;
877
878	/* Calculate the even block number */
879	block = (int) (addr >> this->erase_shift) & ~1;
880	/* Is it the odd plane? */
881	if (addr & this->writesize)
882		block++;
883	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
884	blockpage = (block << 7) | page;
885
886	return blockpage;
887}
888
889/**
890 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
891 * @mtd:		MTD data structure
892 * @addr:		address to check
893 * @return		1 if there are valid data, otherwise 0
894 *
895 * Check bufferram if there is data we required
896 */
897static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
898{
899	struct onenand_chip *this = mtd->priv;
900	int blockpage, found = 0;
901	unsigned int i;
902
903	if (ONENAND_IS_2PLANE(this))
904		blockpage = onenand_get_2x_blockpage(mtd, addr);
905	else
906		blockpage = (int) (addr >> this->page_shift);
907
908	/* Is there valid data? */
909	i = ONENAND_CURRENT_BUFFERRAM(this);
910	if (this->bufferram[i].blockpage == blockpage)
911		found = 1;
912	else {
913		/* Check another BufferRAM */
914		i = ONENAND_NEXT_BUFFERRAM(this);
915		if (this->bufferram[i].blockpage == blockpage) {
916			ONENAND_SET_NEXT_BUFFERRAM(this);
917			found = 1;
918		}
919	}
920
921	if (found && ONENAND_IS_DDP(this)) {
922		/* Select DataRAM for DDP */
923		int block = onenand_block(this, addr);
924		int value = onenand_bufferram_address(this, block);
925		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
926	}
927
928	return found;
929}
930
931/**
932 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
933 * @mtd:		MTD data structure
934 * @addr:		address to update
935 * @valid:		valid flag
936 *
937 * Update BufferRAM information
938 */
939static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
940		int valid)
941{
942	struct onenand_chip *this = mtd->priv;
943	int blockpage;
944	unsigned int i;
945
946	if (ONENAND_IS_2PLANE(this))
947		blockpage = onenand_get_2x_blockpage(mtd, addr);
948	else
949		blockpage = (int) (addr >> this->page_shift);
950
951	/* Invalidate another BufferRAM */
952	i = ONENAND_NEXT_BUFFERRAM(this);
953	if (this->bufferram[i].blockpage == blockpage)
954		this->bufferram[i].blockpage = -1;
955
956	/* Update BufferRAM */
957	i = ONENAND_CURRENT_BUFFERRAM(this);
958	if (valid)
959		this->bufferram[i].blockpage = blockpage;
960	else
961		this->bufferram[i].blockpage = -1;
962}
963
964/**
965 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
966 * @mtd:		MTD data structure
967 * @addr:		start address to invalidate
968 * @len:		length to invalidate
969 *
970 * Invalidate BufferRAM information
971 */
972static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
973		unsigned int len)
974{
975	struct onenand_chip *this = mtd->priv;
976	int i;
977	loff_t end_addr = addr + len;
978
979	/* Invalidate BufferRAM */
980	for (i = 0; i < MAX_BUFFERRAM; i++) {
981		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
982		if (buf_addr >= addr && buf_addr < end_addr)
983			this->bufferram[i].blockpage = -1;
984	}
985}
986
987/**
988 * onenand_get_device - [GENERIC] Get chip for selected access
989 * @mtd:		MTD device structure
990 * @new_state:	the state which is requested
991 *
992 * Get the device and lock it for exclusive access
993 */
994static int onenand_get_device(struct mtd_info *mtd, int new_state)
995{
996	struct onenand_chip *this = mtd->priv;
997	DECLARE_WAITQUEUE(wait, current);
998
999	/*
1000	 * Grab the lock and see if the device is available
1001	 */
1002	while (1) {
1003		spin_lock(&this->chip_lock);
1004		if (this->state == FL_READY) {
1005			this->state = new_state;
1006			spin_unlock(&this->chip_lock);
1007			if (new_state != FL_PM_SUSPENDED && this->enable)
1008				this->enable(mtd);
1009			break;
1010		}
1011		if (new_state == FL_PM_SUSPENDED) {
1012			spin_unlock(&this->chip_lock);
1013			return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
1014		}
1015		set_current_state(TASK_UNINTERRUPTIBLE);
1016		add_wait_queue(&this->wq, &wait);
1017		spin_unlock(&this->chip_lock);
1018		schedule();
1019		remove_wait_queue(&this->wq, &wait);
1020	}
1021
1022	return 0;
1023}
1024
1025/**
1026 * onenand_release_device - [GENERIC] release chip
1027 * @mtd:		MTD device structure
1028 *
1029 * Deselect, release chip lock and wake up anyone waiting on the device
1030 */
1031static void onenand_release_device(struct mtd_info *mtd)
1032{
1033	struct onenand_chip *this = mtd->priv;
1034
1035	if (this->state != FL_PM_SUSPENDED && this->disable)
1036		this->disable(mtd);
1037	/* Release the chip */
1038	spin_lock(&this->chip_lock);
1039	this->state = FL_READY;
1040	wake_up(&this->wq);
1041	spin_unlock(&this->chip_lock);
1042}
1043
1044/**
1045 * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1046 * @mtd:		MTD device structure
1047 * @buf:		destination address
1048 * @column:	oob offset to read from
1049 * @thislen:	oob length to read
1050 */
1051static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
1052				int thislen)
1053{
1054	struct onenand_chip *this = mtd->priv;
1055
1056	this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0,
1057			     mtd->oobsize);
1058	return mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf,
1059					   column, thislen);
1060}
1061
1062/**
1063 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1064 * @mtd:		MTD device structure
1065 * @addr:		address to recover
1066 * @status:	return value from onenand_wait / onenand_bbt_wait
1067 *
1068 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1069 * lower page address and MSB page has higher page address in paired pages.
1070 * If power off occurs during MSB page program, the paired LSB page data can
1071 * become corrupt. LSB page recovery read is a way to read LSB page though page
1072 * data are corrupted. When uncorrectable error occurs as a result of LSB page
1073 * read after power up, issue LSB page recovery read.
1074 */
1075static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1076{
1077	struct onenand_chip *this = mtd->priv;
1078	int i;
1079
1080	/* Recovery is only for Flex-OneNAND */
1081	if (!FLEXONENAND(this))
1082		return status;
1083
1084	/* check if we failed due to uncorrectable error */
1085	if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
1086		return status;
1087
1088	/* check if address lies in MLC region */
1089	i = flexonenand_region(mtd, addr);
1090	if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1091		return status;
1092
1093	/* We are attempting to reread, so decrement stats.failed
1094	 * which was incremented by onenand_wait due to read failure
1095	 */
1096	printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1097		__func__);
1098	mtd->ecc_stats.failed--;
1099
1100	/* Issue the LSB page recovery command */
1101	this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1102	return this->wait(mtd, FL_READING);
1103}
1104
1105/**
1106 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1107 * @mtd:		MTD device structure
1108 * @from:		offset to read from
1109 * @ops:		oob operation description structure
1110 *
1111 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1112 * So, read-while-load is not present.
1113 */
1114static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1115				struct mtd_oob_ops *ops)
1116{
1117	struct onenand_chip *this = mtd->priv;
1118	struct mtd_ecc_stats stats;
1119	size_t len = ops->len;
1120	size_t ooblen = ops->ooblen;
1121	u_char *buf = ops->datbuf;
1122	u_char *oobbuf = ops->oobbuf;
1123	int read = 0, column, thislen;
1124	int oobread = 0, oobcolumn, thisooblen, oobsize;
1125	int ret = 0;
1126	int writesize = this->writesize;
1127
1128	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1129			(int)len);
1130
1131	oobsize = mtd_oobavail(mtd, ops);
1132	oobcolumn = from & (mtd->oobsize - 1);
1133
1134	/* Do not allow reads past end of device */
1135	if (from + len > mtd->size) {
1136		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1137			__func__);
1138		ops->retlen = 0;
1139		ops->oobretlen = 0;
1140		return -EINVAL;
1141	}
1142
1143	stats = mtd->ecc_stats;
1144
1145	while (read < len) {
1146		cond_resched();
1147
1148		thislen = min_t(int, writesize, len - read);
1149
1150		column = from & (writesize - 1);
1151		if (column + thislen > writesize)
1152			thislen = writesize - column;
1153
1154		if (!onenand_check_bufferram(mtd, from)) {
1155			this->command(mtd, ONENAND_CMD_READ, from, writesize);
1156
1157			ret = this->wait(mtd, FL_READING);
1158			if (unlikely(ret))
1159				ret = onenand_recover_lsb(mtd, from, ret);
1160			onenand_update_bufferram(mtd, from, !ret);
1161			if (mtd_is_eccerr(ret))
1162				ret = 0;
1163			if (ret)
1164				break;
1165		}
1166
1167		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1168		if (oobbuf) {
1169			thisooblen = oobsize - oobcolumn;
1170			thisooblen = min_t(int, thisooblen, ooblen - oobread);
1171
1172			if (ops->mode == MTD_OPS_AUTO_OOB)
1173				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1174			else
1175				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1176			oobread += thisooblen;
1177			oobbuf += thisooblen;
1178			oobcolumn = 0;
1179		}
1180
1181		read += thislen;
1182		if (read == len)
1183			break;
1184
1185		from += thislen;
1186		buf += thislen;
1187	}
1188
1189	/*
1190	 * Return success, if no ECC failures, else -EBADMSG
1191	 * fs driver will take care of that, because
1192	 * retlen == desired len and result == -EBADMSG
1193	 */
1194	ops->retlen = read;
1195	ops->oobretlen = oobread;
1196
1197	if (ret)
1198		return ret;
1199
1200	if (mtd->ecc_stats.failed - stats.failed)
1201		return -EBADMSG;
1202
1203	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1204	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1205}
1206
1207/**
1208 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1209 * @mtd:		MTD device structure
1210 * @from:		offset to read from
1211 * @ops:		oob operation description structure
1212 *
1213 * OneNAND read main and/or out-of-band data
1214 */
1215static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1216				struct mtd_oob_ops *ops)
1217{
1218	struct onenand_chip *this = mtd->priv;
1219	struct mtd_ecc_stats stats;
1220	size_t len = ops->len;
1221	size_t ooblen = ops->ooblen;
1222	u_char *buf = ops->datbuf;
1223	u_char *oobbuf = ops->oobbuf;
1224	int read = 0, column, thislen;
1225	int oobread = 0, oobcolumn, thisooblen, oobsize;
1226	int ret = 0, boundary = 0;
1227	int writesize = this->writesize;
1228
1229	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1230			(int)len);
1231
1232	oobsize = mtd_oobavail(mtd, ops);
1233	oobcolumn = from & (mtd->oobsize - 1);
1234
1235	/* Do not allow reads past end of device */
1236	if ((from + len) > mtd->size) {
1237		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1238			__func__);
1239		ops->retlen = 0;
1240		ops->oobretlen = 0;
1241		return -EINVAL;
1242	}
1243
1244	stats = mtd->ecc_stats;
1245
1246	/* Read-while-load method */
1247
1248	/* Do first load to bufferRAM */
1249	if (read < len) {
1250		if (!onenand_check_bufferram(mtd, from)) {
1251			this->command(mtd, ONENAND_CMD_READ, from, writesize);
1252			ret = this->wait(mtd, FL_READING);
1253			onenand_update_bufferram(mtd, from, !ret);
1254			if (mtd_is_eccerr(ret))
1255				ret = 0;
1256		}
1257	}
1258
1259	thislen = min_t(int, writesize, len - read);
1260	column = from & (writesize - 1);
1261	if (column + thislen > writesize)
1262		thislen = writesize - column;
1263
1264	while (!ret) {
1265		/* If there is more to load then start next load */
1266		from += thislen;
1267		if (read + thislen < len) {
1268			this->command(mtd, ONENAND_CMD_READ, from, writesize);
1269			/*
1270			 * Chip boundary handling in DDP
1271			 * Now we issued chip 1 read and pointed chip 1
1272			 * bufferram so we have to point chip 0 bufferram.
1273			 */
1274			if (ONENAND_IS_DDP(this) &&
1275			    unlikely(from == (this->chipsize >> 1))) {
1276				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1277				boundary = 1;
1278			} else
1279				boundary = 0;
1280			ONENAND_SET_PREV_BUFFERRAM(this);
1281		}
1282		/* While load is going, read from last bufferRAM */
1283		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1284
1285		/* Read oob area if needed */
1286		if (oobbuf) {
1287			thisooblen = oobsize - oobcolumn;
1288			thisooblen = min_t(int, thisooblen, ooblen - oobread);
1289
1290			if (ops->mode == MTD_OPS_AUTO_OOB)
1291				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
1292			else
1293				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1294			oobread += thisooblen;
1295			oobbuf += thisooblen;
1296			oobcolumn = 0;
1297		}
1298
1299		/* See if we are done */
1300		read += thislen;
1301		if (read == len)
1302			break;
1303		/* Set up for next read from bufferRAM */
1304		if (unlikely(boundary))
1305			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1306		ONENAND_SET_NEXT_BUFFERRAM(this);
1307		buf += thislen;
1308		thislen = min_t(int, writesize, len - read);
1309		column = 0;
1310		cond_resched();
1311		/* Now wait for load */
1312		ret = this->wait(mtd, FL_READING);
1313		onenand_update_bufferram(mtd, from, !ret);
1314		if (mtd_is_eccerr(ret))
1315			ret = 0;
1316	}
1317
1318	/*
1319	 * Return success, if no ECC failures, else -EBADMSG
1320	 * fs driver will take care of that, because
1321	 * retlen == desired len and result == -EBADMSG
1322	 */
1323	ops->retlen = read;
1324	ops->oobretlen = oobread;
1325
1326	if (ret)
1327		return ret;
1328
1329	if (mtd->ecc_stats.failed - stats.failed)
1330		return -EBADMSG;
1331
1332	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1333	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1334}
1335
1336/**
1337 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1338 * @mtd:		MTD device structure
1339 * @from:		offset to read from
1340 * @ops:		oob operation description structure
1341 *
1342 * OneNAND read out-of-band data from the spare area
1343 */
1344static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1345			struct mtd_oob_ops *ops)
1346{
1347	struct onenand_chip *this = mtd->priv;
1348	struct mtd_ecc_stats stats;
1349	int read = 0, thislen, column, oobsize;
1350	size_t len = ops->ooblen;
1351	unsigned int mode = ops->mode;
1352	u_char *buf = ops->oobbuf;
1353	int ret = 0, readcmd;
1354
1355	from += ops->ooboffs;
1356
1357	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1358			(int)len);
1359
1360	/* Initialize return length value */
1361	ops->oobretlen = 0;
1362
1363	if (mode == MTD_OPS_AUTO_OOB)
1364		oobsize = mtd->oobavail;
1365	else
1366		oobsize = mtd->oobsize;
1367
1368	column = from & (mtd->oobsize - 1);
1369
1370	if (unlikely(column >= oobsize)) {
1371		printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1372			__func__);
1373		return -EINVAL;
1374	}
1375
1376	stats = mtd->ecc_stats;
1377
1378	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1379
1380	while (read < len) {
1381		cond_resched();
1382
1383		thislen = oobsize - column;
1384		thislen = min_t(int, thislen, len);
1385
1386		this->command(mtd, readcmd, from, mtd->oobsize);
1387
1388		onenand_update_bufferram(mtd, from, 0);
1389
1390		ret = this->wait(mtd, FL_READING);
1391		if (unlikely(ret))
1392			ret = onenand_recover_lsb(mtd, from, ret);
1393
1394		if (ret && !mtd_is_eccerr(ret)) {
1395			printk(KERN_ERR "%s: read failed = 0x%x\n",
1396				__func__, ret);
1397			break;
1398		}
1399
1400		if (mode == MTD_OPS_AUTO_OOB)
1401			onenand_transfer_auto_oob(mtd, buf, column, thislen);
1402		else
1403			this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1404
1405		read += thislen;
1406
1407		if (read == len)
1408			break;
1409
1410		buf += thislen;
1411
1412		/* Read more? */
1413		if (read < len) {
1414			/* Page size */
1415			from += mtd->writesize;
1416			column = 0;
1417		}
1418	}
1419
1420	ops->oobretlen = read;
1421
1422	if (ret)
1423		return ret;
1424
1425	if (mtd->ecc_stats.failed - stats.failed)
1426		return -EBADMSG;
1427
1428	return 0;
1429}
1430
1431/**
1432 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1433 * @mtd:		MTD device structure
1434 * @from:		offset to read from
1435 * @ops:		oob operation description structure
1436 *
1437 * Read main and/or out-of-band
1438 */
1439static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1440			    struct mtd_oob_ops *ops)
1441{
1442	struct onenand_chip *this = mtd->priv;
1443	struct mtd_ecc_stats old_stats;
1444	int ret;
1445
1446	switch (ops->mode) {
1447	case MTD_OPS_PLACE_OOB:
1448	case MTD_OPS_AUTO_OOB:
1449		break;
1450	case MTD_OPS_RAW:
1451		/* Not implemented yet */
1452	default:
1453		return -EINVAL;
1454	}
1455
1456	onenand_get_device(mtd, FL_READING);
1457
1458	old_stats = mtd->ecc_stats;
1459
1460	if (ops->datbuf)
1461		ret = ONENAND_IS_4KB_PAGE(this) ?
1462			onenand_mlc_read_ops_nolock(mtd, from, ops) :
1463			onenand_read_ops_nolock(mtd, from, ops);
1464	else
1465		ret = onenand_read_oob_nolock(mtd, from, ops);
1466
1467	if (ops->stats) {
1468		ops->stats->uncorrectable_errors +=
1469			mtd->ecc_stats.failed - old_stats.failed;
1470		ops->stats->corrected_bitflips +=
1471			mtd->ecc_stats.corrected - old_stats.corrected;
1472	}
1473
1474	onenand_release_device(mtd);
1475
1476	return ret;
1477}
1478
1479/**
1480 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1481 * @mtd:		MTD device structure
1482 * @state:		state to select the max. timeout value
1483 *
1484 * Wait for command done.
1485 */
1486static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1487{
1488	struct onenand_chip *this = mtd->priv;
1489	unsigned long timeout;
1490	unsigned int interrupt, ctrl, ecc, addr1, addr8;
1491
1492	/* The 20 msec is enough */
1493	timeout = jiffies + msecs_to_jiffies(20);
1494	while (time_before(jiffies, timeout)) {
1495		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1496		if (interrupt & ONENAND_INT_MASTER)
1497			break;
1498	}
1499	/* To get correct interrupt status in timeout case */
1500	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1501	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1502	addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1503	addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1504
1505	if (interrupt & ONENAND_INT_READ) {
1506		ecc = onenand_read_ecc(this);
1507		if (ecc & ONENAND_ECC_2BIT_ALL) {
1508			printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1509			       "intr 0x%04x addr1 %#x addr8 %#x\n",
1510			       __func__, ecc, ctrl, interrupt, addr1, addr8);
1511			return ONENAND_BBT_READ_ECC_ERROR;
1512		}
1513	} else {
1514		printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1515		       "intr 0x%04x addr1 %#x addr8 %#x\n",
1516		       __func__, ctrl, interrupt, addr1, addr8);
1517		return ONENAND_BBT_READ_FATAL_ERROR;
1518	}
1519
1520	/* Initial bad block case: 0x2400 or 0x0400 */
1521	if (ctrl & ONENAND_CTRL_ERROR) {
1522		printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1523		       "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1524		return ONENAND_BBT_READ_ERROR;
1525	}
1526
1527	return 0;
1528}
1529
1530/**
1531 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1532 * @mtd:		MTD device structure
1533 * @from:		offset to read from
1534 * @ops:		oob operation description structure
1535 *
1536 * OneNAND read out-of-band data from the spare area for bbt scan
1537 */
1538int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1539			    struct mtd_oob_ops *ops)
1540{
1541	struct onenand_chip *this = mtd->priv;
1542	int read = 0, thislen, column;
1543	int ret = 0, readcmd;
1544	size_t len = ops->ooblen;
1545	u_char *buf = ops->oobbuf;
1546
1547	pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
1548			len);
1549
1550	/* Initialize return value */
1551	ops->oobretlen = 0;
1552
1553	/* Do not allow reads past end of device */
1554	if (unlikely((from + len) > mtd->size)) {
1555		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1556			__func__);
1557		return ONENAND_BBT_READ_FATAL_ERROR;
1558	}
1559
1560	/* Grab the lock and see if the device is available */
1561	onenand_get_device(mtd, FL_READING);
1562
1563	column = from & (mtd->oobsize - 1);
1564
1565	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1566
1567	while (read < len) {
1568		cond_resched();
1569
1570		thislen = mtd->oobsize - column;
1571		thislen = min_t(int, thislen, len);
1572
1573		this->command(mtd, readcmd, from, mtd->oobsize);
1574
1575		onenand_update_bufferram(mtd, from, 0);
1576
1577		ret = this->bbt_wait(mtd, FL_READING);
1578		if (unlikely(ret))
1579			ret = onenand_recover_lsb(mtd, from, ret);
1580
1581		if (ret)
1582			break;
1583
1584		this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1585		read += thislen;
1586		if (read == len)
1587			break;
1588
1589		buf += thislen;
1590
1591		/* Read more? */
1592		if (read < len) {
1593			/* Update Page size */
1594			from += this->writesize;
1595			column = 0;
1596		}
1597	}
1598
1599	/* Deselect and wake up anyone waiting on the device */
1600	onenand_release_device(mtd);
1601
1602	ops->oobretlen = read;
1603	return ret;
1604}
1605
1606#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1607/**
1608 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1609 * @mtd:		MTD device structure
1610 * @buf:		the databuffer to verify
1611 * @to:		offset to read from
1612 */
1613static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1614{
1615	struct onenand_chip *this = mtd->priv;
1616	u_char *oob_buf = this->oob_buf;
1617	int status, i, readcmd;
1618
1619	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1620
1621	this->command(mtd, readcmd, to, mtd->oobsize);
1622	onenand_update_bufferram(mtd, to, 0);
1623	status = this->wait(mtd, FL_READING);
1624	if (status)
1625		return status;
1626
1627	this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1628	for (i = 0; i < mtd->oobsize; i++)
1629		if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1630			return -EBADMSG;
1631
1632	return 0;
1633}
1634
1635/**
1636 * onenand_verify - [GENERIC] verify the chip contents after a write
1637 * @mtd:          MTD device structure
1638 * @buf:          the databuffer to verify
1639 * @addr:         offset to read from
1640 * @len:          number of bytes to read and compare
1641 */
1642static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1643{
1644	struct onenand_chip *this = mtd->priv;
1645	int ret = 0;
1646	int thislen, column;
1647
1648	column = addr & (this->writesize - 1);
1649
1650	while (len != 0) {
1651		thislen = min_t(int, this->writesize - column, len);
1652
1653		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1654
1655		onenand_update_bufferram(mtd, addr, 0);
1656
1657		ret = this->wait(mtd, FL_READING);
1658		if (ret)
1659			return ret;
1660
1661		onenand_update_bufferram(mtd, addr, 1);
1662
1663		this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1664
1665		if (memcmp(buf, this->verify_buf + column, thislen))
1666			return -EBADMSG;
1667
1668		len -= thislen;
1669		buf += thislen;
1670		addr += thislen;
1671		column = 0;
1672	}
1673
1674	return 0;
1675}
1676#else
1677#define onenand_verify(...)		(0)
1678#define onenand_verify_oob(...)		(0)
1679#endif
1680
1681#define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
1682
1683static void onenand_panic_wait(struct mtd_info *mtd)
1684{
1685	struct onenand_chip *this = mtd->priv;
1686	unsigned int interrupt;
1687	int i;
1688
1689	for (i = 0; i < 2000; i++) {
1690		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1691		if (interrupt & ONENAND_INT_MASTER)
1692			break;
1693		udelay(10);
1694	}
1695}
1696
1697/**
1698 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1699 * @mtd:		MTD device structure
1700 * @to:		offset to write to
1701 * @len:		number of bytes to write
1702 * @retlen:	pointer to variable to store the number of written bytes
1703 * @buf:		the data to write
1704 *
1705 * Write with ECC
1706 */
1707static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1708			 size_t *retlen, const u_char *buf)
1709{
1710	struct onenand_chip *this = mtd->priv;
1711	int column, subpage;
1712	int written = 0;
1713
1714	if (this->state == FL_PM_SUSPENDED)
1715		return -EBUSY;
1716
1717	/* Wait for any existing operation to clear */
1718	onenand_panic_wait(mtd);
1719
1720	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1721			(int)len);
1722
1723	/* Reject writes, which are not page aligned */
1724        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1725		printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1726			__func__);
1727                return -EINVAL;
1728        }
1729
1730	column = to & (mtd->writesize - 1);
1731
1732	/* Loop until all data write */
1733	while (written < len) {
1734		int thislen = min_t(int, mtd->writesize - column, len - written);
1735		u_char *wbuf = (u_char *) buf;
1736
1737		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1738
1739		/* Partial page write */
1740		subpage = thislen < mtd->writesize;
1741		if (subpage) {
1742			memset(this->page_buf, 0xff, mtd->writesize);
1743			memcpy(this->page_buf + column, buf, thislen);
1744			wbuf = this->page_buf;
1745		}
1746
1747		this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1748		this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1749
1750		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1751
1752		onenand_panic_wait(mtd);
1753
1754		/* In partial page write we don't update bufferram */
1755		onenand_update_bufferram(mtd, to, !subpage);
1756		if (ONENAND_IS_2PLANE(this)) {
1757			ONENAND_SET_BUFFERRAM1(this);
1758			onenand_update_bufferram(mtd, to + this->writesize, !subpage);
1759		}
1760
1761		written += thislen;
1762
1763		if (written == len)
1764			break;
1765
1766		column = 0;
1767		to += thislen;
1768		buf += thislen;
1769	}
1770
1771	*retlen = written;
1772	return 0;
1773}
1774
1775/**
1776 * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1777 * @mtd:		MTD device structure
1778 * @oob_buf:	oob buffer
1779 * @buf:		source address
1780 * @column:	oob offset to write to
1781 * @thislen:	oob length to write
1782 */
1783static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1784				  const u_char *buf, int column, int thislen)
1785{
1786	return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen);
1787}
1788
1789/**
1790 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1791 * @mtd:		MTD device structure
1792 * @to:		offset to write to
1793 * @ops:		oob operation description structure
1794 *
1795 * Write main and/or oob with ECC
1796 */
1797static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1798				struct mtd_oob_ops *ops)
1799{
1800	struct onenand_chip *this = mtd->priv;
1801	int written = 0, column, thislen = 0, subpage = 0;
1802	int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1803	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1804	size_t len = ops->len;
1805	size_t ooblen = ops->ooblen;
1806	const u_char *buf = ops->datbuf;
1807	const u_char *oob = ops->oobbuf;
1808	u_char *oobbuf;
1809	int ret = 0, cmd;
1810
1811	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1812			(int)len);
1813
1814	/* Initialize retlen, in case of early exit */
1815	ops->retlen = 0;
1816	ops->oobretlen = 0;
1817
1818	/* Reject writes, which are not page aligned */
1819        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1820		printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1821			__func__);
1822                return -EINVAL;
1823        }
1824
1825	/* Check zero length */
1826	if (!len)
1827		return 0;
1828	oobsize = mtd_oobavail(mtd, ops);
1829	oobcolumn = to & (mtd->oobsize - 1);
1830
1831	column = to & (mtd->writesize - 1);
1832
1833	/* Loop until all data write */
1834	while (1) {
1835		if (written < len) {
1836			u_char *wbuf = (u_char *) buf;
1837
1838			thislen = min_t(int, mtd->writesize - column, len - written);
1839			thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1840
1841			cond_resched();
1842
1843			this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1844
1845			/* Partial page write */
1846			subpage = thislen < mtd->writesize;
1847			if (subpage) {
1848				memset(this->page_buf, 0xff, mtd->writesize);
1849				memcpy(this->page_buf + column, buf, thislen);
1850				wbuf = this->page_buf;
1851			}
1852
1853			this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1854
1855			if (oob) {
1856				oobbuf = this->oob_buf;
1857
1858				/* We send data to spare ram with oobsize
1859				 * to prevent byte access */
1860				memset(oobbuf, 0xff, mtd->oobsize);
1861				if (ops->mode == MTD_OPS_AUTO_OOB)
1862					onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1863				else
1864					memcpy(oobbuf + oobcolumn, oob, thisooblen);
1865
1866				oobwritten += thisooblen;
1867				oob += thisooblen;
1868				oobcolumn = 0;
1869			} else
1870				oobbuf = (u_char *) ffchars;
1871
1872			this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1873		} else
1874			ONENAND_SET_NEXT_BUFFERRAM(this);
1875
1876		/*
1877		 * 2 PLANE, MLC, and Flex-OneNAND do not support
1878		 * write-while-program feature.
1879		 */
1880		if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1881			ONENAND_SET_PREV_BUFFERRAM(this);
1882
1883			ret = this->wait(mtd, FL_WRITING);
1884
1885			/* In partial page write we don't update bufferram */
1886			onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
1887			if (ret) {
1888				written -= prevlen;
1889				printk(KERN_ERR "%s: write failed %d\n",
1890					__func__, ret);
1891				break;
1892			}
1893
1894			if (written == len) {
1895				/* Only check verify write turn on */
1896				ret = onenand_verify(mtd, buf - len, to - len, len);
1897				if (ret)
1898					printk(KERN_ERR "%s: verify failed %d\n",
1899						__func__, ret);
1900				break;
1901			}
1902
1903			ONENAND_SET_NEXT_BUFFERRAM(this);
1904		}
1905
1906		this->ongoing = 0;
1907		cmd = ONENAND_CMD_PROG;
1908
1909		/* Exclude 1st OTP and OTP blocks for cache program feature */
1910		if (ONENAND_IS_CACHE_PROGRAM(this) &&
1911		    likely(onenand_block(this, to) != 0) &&
1912		    ONENAND_IS_4KB_PAGE(this) &&
1913		    ((written + thislen) < len)) {
1914			cmd = ONENAND_CMD_2X_CACHE_PROG;
1915			this->ongoing = 1;
1916		}
1917
1918		this->command(mtd, cmd, to, mtd->writesize);
1919
1920		/*
1921		 * 2 PLANE, MLC, and Flex-OneNAND wait here
1922		 */
1923		if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1924			ret = this->wait(mtd, FL_WRITING);
1925
1926			/* In partial page write we don't update bufferram */
1927			onenand_update_bufferram(mtd, to, !ret && !subpage);
1928			if (ret) {
1929				printk(KERN_ERR "%s: write failed %d\n",
1930					__func__, ret);
1931				break;
1932			}
1933
1934			/* Only check verify write turn on */
1935			ret = onenand_verify(mtd, buf, to, thislen);
1936			if (ret) {
1937				printk(KERN_ERR "%s: verify failed %d\n",
1938					__func__, ret);
1939				break;
1940			}
1941
1942			written += thislen;
1943
1944			if (written == len)
1945				break;
1946
1947		} else
1948			written += thislen;
1949
1950		column = 0;
1951		prev_subpage = subpage;
1952		prev = to;
1953		prevlen = thislen;
1954		to += thislen;
1955		buf += thislen;
1956		first = 0;
1957	}
1958
1959	/* In error case, clear all bufferrams */
1960	if (written != len)
1961		onenand_invalidate_bufferram(mtd, 0, -1);
1962
1963	ops->retlen = written;
1964	ops->oobretlen = oobwritten;
1965
1966	return ret;
1967}
1968
1969
1970/**
1971 * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1972 * @mtd:		MTD device structure
1973 * @to:			offset to write to
1974 * @ops:                oob operation description structure
1975 *
1976 * OneNAND write out-of-band
1977 */
1978static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1979				    struct mtd_oob_ops *ops)
1980{
1981	struct onenand_chip *this = mtd->priv;
1982	int column, ret = 0, oobsize;
1983	int written = 0, oobcmd;
1984	u_char *oobbuf;
1985	size_t len = ops->ooblen;
1986	const u_char *buf = ops->oobbuf;
1987	unsigned int mode = ops->mode;
1988
1989	to += ops->ooboffs;
1990
1991	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1992			(int)len);
1993
1994	/* Initialize retlen, in case of early exit */
1995	ops->oobretlen = 0;
1996
1997	if (mode == MTD_OPS_AUTO_OOB)
1998		oobsize = mtd->oobavail;
1999	else
2000		oobsize = mtd->oobsize;
2001
2002	column = to & (mtd->oobsize - 1);
2003
2004	if (unlikely(column >= oobsize)) {
2005		printk(KERN_ERR "%s: Attempted to start write outside oob\n",
2006			__func__);
2007		return -EINVAL;
2008	}
2009
2010	/* For compatibility with NAND: Do not allow write past end of page */
2011	if (unlikely(column + len > oobsize)) {
2012		printk(KERN_ERR "%s: Attempt to write past end of page\n",
2013			__func__);
2014		return -EINVAL;
2015	}
2016
2017	oobbuf = this->oob_buf;
2018
2019	oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2020
2021	/* Loop until all data write */
2022	while (written < len) {
2023		int thislen = min_t(int, oobsize, len - written);
2024
2025		cond_resched();
2026
2027		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2028
2029		/* We send data to spare ram with oobsize
2030		 * to prevent byte access */
2031		memset(oobbuf, 0xff, mtd->oobsize);
2032		if (mode == MTD_OPS_AUTO_OOB)
2033			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
2034		else
2035			memcpy(oobbuf + column, buf, thislen);
2036		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2037
2038		if (ONENAND_IS_4KB_PAGE(this)) {
2039			/* Set main area of DataRAM to 0xff*/
2040			memset(this->page_buf, 0xff, mtd->writesize);
2041			this->write_bufferram(mtd, ONENAND_DATARAM,
2042					 this->page_buf, 0, mtd->writesize);
2043		}
2044
2045		this->command(mtd, oobcmd, to, mtd->oobsize);
2046
2047		onenand_update_bufferram(mtd, to, 0);
2048		if (ONENAND_IS_2PLANE(this)) {
2049			ONENAND_SET_BUFFERRAM1(this);
2050			onenand_update_bufferram(mtd, to + this->writesize, 0);
2051		}
2052
2053		ret = this->wait(mtd, FL_WRITING);
2054		if (ret) {
2055			printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2056			break;
2057		}
2058
2059		ret = onenand_verify_oob(mtd, oobbuf, to);
2060		if (ret) {
2061			printk(KERN_ERR "%s: verify failed %d\n",
2062				__func__, ret);
2063			break;
2064		}
2065
2066		written += thislen;
2067		if (written == len)
2068			break;
2069
2070		to += mtd->writesize;
2071		buf += thislen;
2072		column = 0;
2073	}
2074
2075	ops->oobretlen = written;
2076
2077	return ret;
2078}
2079
2080/**
2081 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2082 * @mtd:		MTD device structure
2083 * @to:			offset to write
2084 * @ops:		oob operation description structure
2085 */
2086static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2087			     struct mtd_oob_ops *ops)
2088{
2089	int ret;
2090
2091	switch (ops->mode) {
2092	case MTD_OPS_PLACE_OOB:
2093	case MTD_OPS_AUTO_OOB:
2094		break;
2095	case MTD_OPS_RAW:
2096		/* Not implemented yet */
2097	default:
2098		return -EINVAL;
2099	}
2100
2101	onenand_get_device(mtd, FL_WRITING);
2102	if (ops->datbuf)
2103		ret = onenand_write_ops_nolock(mtd, to, ops);
2104	else
2105		ret = onenand_write_oob_nolock(mtd, to, ops);
2106	onenand_release_device(mtd);
2107
2108	return ret;
2109}
2110
2111/**
2112 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2113 * @mtd:		MTD device structure
2114 * @ofs:		offset from device start
2115 * @allowbbt:	1, if its allowed to access the bbt area
2116 *
2117 * Check, if the block is bad. Either by reading the bad block table or
2118 * calling of the scan function.
2119 */
2120static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2121{
2122	struct onenand_chip *this = mtd->priv;
2123	struct bbm_info *bbm = this->bbm;
2124
2125	/* Return info from the table */
2126	return bbm->isbad_bbt(mtd, ofs, allowbbt);
2127}
2128
2129
2130static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2131					   struct erase_info *instr)
2132{
2133	struct onenand_chip *this = mtd->priv;
2134	loff_t addr = instr->addr;
2135	int len = instr->len;
2136	unsigned int block_size = (1 << this->erase_shift);
2137	int ret = 0;
2138
2139	while (len) {
2140		this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2141		ret = this->wait(mtd, FL_VERIFYING_ERASE);
2142		if (ret) {
2143			printk(KERN_ERR "%s: Failed verify, block %d\n",
2144			       __func__, onenand_block(this, addr));
2145			instr->fail_addr = addr;
2146			return -1;
2147		}
2148		len -= block_size;
2149		addr += block_size;
2150	}
2151	return 0;
2152}
2153
2154/**
2155 * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2156 * @mtd:		MTD device structure
2157 * @instr:		erase instruction
2158 * @block_size:		block size
2159 *
2160 * Erase one or more blocks up to 64 block at a time
2161 */
2162static int onenand_multiblock_erase(struct mtd_info *mtd,
2163				    struct erase_info *instr,
2164				    unsigned int block_size)
2165{
2166	struct onenand_chip *this = mtd->priv;
2167	loff_t addr = instr->addr;
2168	int len = instr->len;
2169	int eb_count = 0;
2170	int ret = 0;
2171	int bdry_block = 0;
2172
2173	if (ONENAND_IS_DDP(this)) {
2174		loff_t bdry_addr = this->chipsize >> 1;
2175		if (addr < bdry_addr && (addr + len) > bdry_addr)
2176			bdry_block = bdry_addr >> this->erase_shift;
2177	}
2178
2179	/* Pre-check bbs */
2180	while (len) {
2181		/* Check if we have a bad block, we do not erase bad blocks */
2182		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2183			printk(KERN_WARNING "%s: attempt to erase a bad block "
2184			       "at addr 0x%012llx\n",
2185			       __func__, (unsigned long long) addr);
2186			return -EIO;
2187		}
2188		len -= block_size;
2189		addr += block_size;
2190	}
2191
2192	len = instr->len;
2193	addr = instr->addr;
2194
2195	/* loop over 64 eb batches */
2196	while (len) {
2197		struct erase_info verify_instr = *instr;
2198		int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2199
2200		verify_instr.addr = addr;
2201		verify_instr.len = 0;
2202
2203		/* do not cross chip boundary */
2204		if (bdry_block) {
2205			int this_block = (addr >> this->erase_shift);
2206
2207			if (this_block < bdry_block) {
2208				max_eb_count = min(max_eb_count,
2209						   (bdry_block - this_block));
2210			}
2211		}
2212
2213		eb_count = 0;
2214
2215		while (len > block_size && eb_count < (max_eb_count - 1)) {
2216			this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2217				      addr, block_size);
2218			onenand_invalidate_bufferram(mtd, addr, block_size);
2219
2220			ret = this->wait(mtd, FL_PREPARING_ERASE);
2221			if (ret) {
2222				printk(KERN_ERR "%s: Failed multiblock erase, "
2223				       "block %d\n", __func__,
2224				       onenand_block(this, addr));
2225				instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2226				return -EIO;
2227			}
2228
2229			len -= block_size;
2230			addr += block_size;
2231			eb_count++;
2232		}
2233
2234		/* last block of 64-eb series */
2235		cond_resched();
2236		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2237		onenand_invalidate_bufferram(mtd, addr, block_size);
2238
2239		ret = this->wait(mtd, FL_ERASING);
2240		/* Check if it is write protected */
2241		if (ret) {
2242			printk(KERN_ERR "%s: Failed erase, block %d\n",
2243			       __func__, onenand_block(this, addr));
2244			instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2245			return -EIO;
2246		}
2247
2248		len -= block_size;
2249		addr += block_size;
2250		eb_count++;
2251
2252		/* verify */
2253		verify_instr.len = eb_count * block_size;
2254		if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
2255			instr->fail_addr = verify_instr.fail_addr;
2256			return -EIO;
2257		}
2258
2259	}
2260	return 0;
2261}
2262
2263
2264/**
2265 * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2266 * @mtd:		MTD device structure
2267 * @instr:		erase instruction
2268 * @region:	erase region
2269 * @block_size:	erase block size
2270 *
2271 * Erase one or more blocks one block at a time
2272 */
2273static int onenand_block_by_block_erase(struct mtd_info *mtd,
2274					struct erase_info *instr,
2275					struct mtd_erase_region_info *region,
2276					unsigned int block_size)
2277{
2278	struct onenand_chip *this = mtd->priv;
2279	loff_t addr = instr->addr;
2280	int len = instr->len;
2281	loff_t region_end = 0;
2282	int ret = 0;
2283
2284	if (region) {
2285		/* region is set for Flex-OneNAND */
2286		region_end = region->offset + region->erasesize * region->numblocks;
2287	}
2288
2289	/* Loop through the blocks */
2290	while (len) {
2291		cond_resched();
2292
2293		/* Check if we have a bad block, we do not erase bad blocks */
2294		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
2295			printk(KERN_WARNING "%s: attempt to erase a bad block "
2296					"at addr 0x%012llx\n",
2297					__func__, (unsigned long long) addr);
2298			return -EIO;
2299		}
2300
2301		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2302
2303		onenand_invalidate_bufferram(mtd, addr, block_size);
2304
2305		ret = this->wait(mtd, FL_ERASING);
2306		/* Check, if it is write protected */
2307		if (ret) {
2308			printk(KERN_ERR "%s: Failed erase, block %d\n",
2309				__func__, onenand_block(this, addr));
2310			instr->fail_addr = addr;
2311			return -EIO;
2312		}
2313
2314		len -= block_size;
2315		addr += block_size;
2316
2317		if (region && addr == region_end) {
2318			if (!len)
2319				break;
2320			region++;
2321
2322			block_size = region->erasesize;
2323			region_end = region->offset + region->erasesize * region->numblocks;
2324
2325			if (len & (block_size - 1)) {
2326				/* FIXME: This should be handled at MTD partitioning level. */
2327				printk(KERN_ERR "%s: Unaligned address\n",
2328					__func__);
2329				return -EIO;
2330			}
2331		}
2332	}
2333	return 0;
2334}
2335
2336/**
2337 * onenand_erase - [MTD Interface] erase block(s)
2338 * @mtd:		MTD device structure
2339 * @instr:		erase instruction
2340 *
2341 * Erase one or more blocks
2342 */
2343static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2344{
2345	struct onenand_chip *this = mtd->priv;
2346	unsigned int block_size;
2347	loff_t addr = instr->addr;
2348	loff_t len = instr->len;
2349	int ret = 0;
2350	struct mtd_erase_region_info *region = NULL;
2351	loff_t region_offset = 0;
2352
2353	pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
2354			(unsigned long long)instr->addr,
2355			(unsigned long long)instr->len);
2356
2357	if (FLEXONENAND(this)) {
2358		/* Find the eraseregion of this address */
2359		int i = flexonenand_region(mtd, addr);
2360
2361		region = &mtd->eraseregions[i];
2362		block_size = region->erasesize;
2363
2364		/* Start address within region must align on block boundary.
2365		 * Erase region's start offset is always block start address.
2366		 */
2367		region_offset = region->offset;
2368	} else
2369		block_size = 1 << this->erase_shift;
2370
2371	/* Start address must align on block boundary */
2372	if (unlikely((addr - region_offset) & (block_size - 1))) {
2373		printk(KERN_ERR "%s: Unaligned address\n", __func__);
2374		return -EINVAL;
2375	}
2376
2377	/* Length must align on block boundary */
2378	if (unlikely(len & (block_size - 1))) {
2379		printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2380		return -EINVAL;
2381	}
2382
2383	/* Grab the lock and see if the device is available */
2384	onenand_get_device(mtd, FL_ERASING);
2385
2386	if (ONENAND_IS_4KB_PAGE(this) || region ||
2387	    instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2388		/* region is set for Flex-OneNAND (no mb erase) */
2389		ret = onenand_block_by_block_erase(mtd, instr,
2390						   region, block_size);
2391	} else {
2392		ret = onenand_multiblock_erase(mtd, instr, block_size);
2393	}
2394
2395	/* Deselect and wake up anyone waiting on the device */
2396	onenand_release_device(mtd);
2397
2398	return ret;
2399}
2400
2401/**
2402 * onenand_sync - [MTD Interface] sync
2403 * @mtd:		MTD device structure
2404 *
2405 * Sync is actually a wait for chip ready function
2406 */
2407static void onenand_sync(struct mtd_info *mtd)
2408{
2409	pr_debug("%s: called\n", __func__);
2410
2411	/* Grab the lock and see if the device is available */
2412	onenand_get_device(mtd, FL_SYNCING);
2413
2414	/* Release it and go back */
2415	onenand_release_device(mtd);
2416}
2417
2418/**
2419 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2420 * @mtd:		MTD device structure
2421 * @ofs:		offset relative to mtd start
2422 *
2423 * Check whether the block is bad
2424 */
2425static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2426{
2427	int ret;
2428
2429	onenand_get_device(mtd, FL_READING);
2430	ret = onenand_block_isbad_nolock(mtd, ofs, 0);
2431	onenand_release_device(mtd);
2432	return ret;
2433}
2434
2435/**
2436 * onenand_default_block_markbad - [DEFAULT] mark a block bad
2437 * @mtd:		MTD device structure
2438 * @ofs:		offset from device start
2439 *
2440 * This is the default implementation, which can be overridden by
2441 * a hardware specific driver.
2442 */
2443static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2444{
2445	struct onenand_chip *this = mtd->priv;
2446	struct bbm_info *bbm = this->bbm;
2447	u_char buf[2] = {0, 0};
2448	struct mtd_oob_ops ops = {
2449		.mode = MTD_OPS_PLACE_OOB,
2450		.ooblen = 2,
2451		.oobbuf = buf,
2452		.ooboffs = 0,
2453	};
2454	int block;
2455
2456	/* Get block number */
2457	block = onenand_block(this, ofs);
2458        if (bbm->bbt)
2459                bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2460
2461        /* We write two bytes, so we don't have to mess with 16-bit access */
2462        ofs += mtd->oobsize + (this->badblockpos & ~0x01);
2463	/* FIXME : What to do when marking SLC block in partition
2464	 * 	   with MLC erasesize? For now, it is not advisable to
2465	 *	   create partitions containing both SLC and MLC regions.
2466	 */
2467	return onenand_write_oob_nolock(mtd, ofs, &ops);
2468}
2469
2470/**
2471 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2472 * @mtd:		MTD device structure
2473 * @ofs:		offset relative to mtd start
2474 *
2475 * Mark the block as bad
2476 */
2477static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2478{
2479	struct onenand_chip *this = mtd->priv;
2480	int ret;
2481
2482	ret = onenand_block_isbad(mtd, ofs);
2483	if (ret) {
2484		/* If it was bad already, return success and do nothing */
2485		if (ret > 0)
2486			return 0;
2487		return ret;
2488	}
2489
2490	onenand_get_device(mtd, FL_WRITING);
2491	ret = this->block_markbad(mtd, ofs);
2492	onenand_release_device(mtd);
2493	return ret;
2494}
2495
2496/**
2497 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2498 * @mtd:		MTD device structure
2499 * @ofs:		offset relative to mtd start
2500 * @len:		number of bytes to lock or unlock
2501 * @cmd:		lock or unlock command
2502 *
2503 * Lock or unlock one or more blocks
2504 */
2505static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2506{
2507	struct onenand_chip *this = mtd->priv;
2508	int start, end, block, value, status;
2509	int wp_status_mask;
2510
2511	start = onenand_block(this, ofs);
2512	end = onenand_block(this, ofs + len) - 1;
2513
2514	if (cmd == ONENAND_CMD_LOCK)
2515		wp_status_mask = ONENAND_WP_LS;
2516	else
2517		wp_status_mask = ONENAND_WP_US;
2518
2519	/* Continuous lock scheme */
2520	if (this->options & ONENAND_HAS_CONT_LOCK) {
2521		/* Set start block address */
2522		this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2523		/* Set end block address */
2524		this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
2525		/* Write lock command */
2526		this->command(mtd, cmd, 0, 0);
2527
2528		/* There's no return value */
2529		this->wait(mtd, FL_LOCKING);
2530
2531		/* Sanity check */
2532		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2533		    & ONENAND_CTRL_ONGO)
2534			continue;
2535
2536		/* Check lock status */
2537		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2538		if (!(status & wp_status_mask))
2539			printk(KERN_ERR "%s: wp status = 0x%x\n",
2540				__func__, status);
2541
2542		return 0;
2543	}
2544
2545	/* Block lock scheme */
2546	for (block = start; block < end + 1; block++) {
2547		/* Set block address */
2548		value = onenand_block_address(this, block);
2549		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2550		/* Select DataRAM for DDP */
2551		value = onenand_bufferram_address(this, block);
2552		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2553		/* Set start block address */
2554		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2555		/* Write lock command */
2556		this->command(mtd, cmd, 0, 0);
2557
2558		/* There's no return value */
2559		this->wait(mtd, FL_LOCKING);
2560
2561		/* Sanity check */
2562		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2563		    & ONENAND_CTRL_ONGO)
2564			continue;
2565
2566		/* Check lock status */
2567		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2568		if (!(status & wp_status_mask))
2569			printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2570				__func__, block, status);
2571	}
2572
2573	return 0;
2574}
2575
2576/**
2577 * onenand_lock - [MTD Interface] Lock block(s)
2578 * @mtd:		MTD device structure
2579 * @ofs:		offset relative to mtd start
2580 * @len:		number of bytes to unlock
2581 *
2582 * Lock one or more blocks
2583 */
2584static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2585{
2586	int ret;
2587
2588	onenand_get_device(mtd, FL_LOCKING);
2589	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2590	onenand_release_device(mtd);
2591	return ret;
2592}
2593
2594/**
2595 * onenand_unlock - [MTD Interface] Unlock block(s)
2596 * @mtd:		MTD device structure
2597 * @ofs:		offset relative to mtd start
2598 * @len:		number of bytes to unlock
2599 *
2600 * Unlock one or more blocks
2601 */
2602static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2603{
2604	int ret;
2605
2606	onenand_get_device(mtd, FL_LOCKING);
2607	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2608	onenand_release_device(mtd);
2609	return ret;
2610}
2611
2612/**
2613 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2614 * @this:		onenand chip data structure
2615 *
2616 * Check lock status
2617 */
2618static int onenand_check_lock_status(struct onenand_chip *this)
2619{
2620	unsigned int value, block, status;
2621	unsigned int end;
2622
2623	end = this->chipsize >> this->erase_shift;
2624	for (block = 0; block < end; block++) {
2625		/* Set block address */
2626		value = onenand_block_address(this, block);
2627		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2628		/* Select DataRAM for DDP */
2629		value = onenand_bufferram_address(this, block);
2630		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2631		/* Set start block address */
2632		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2633
2634		/* Check lock status */
2635		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2636		if (!(status & ONENAND_WP_US)) {
2637			printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2638				__func__, block, status);
2639			return 0;
2640		}
2641	}
2642
2643	return 1;
2644}
2645
2646/**
2647 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2648 * @mtd:		MTD device structure
2649 *
2650 * Unlock all blocks
2651 */
2652static void onenand_unlock_all(struct mtd_info *mtd)
2653{
2654	struct onenand_chip *this = mtd->priv;
2655	loff_t ofs = 0;
2656	loff_t len = mtd->size;
2657
2658	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2659		/* Set start block address */
2660		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2661		/* Write unlock command */
2662		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2663
2664		/* There's no return value */
2665		this->wait(mtd, FL_LOCKING);
2666
2667		/* Sanity check */
2668		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2669		    & ONENAND_CTRL_ONGO)
2670			continue;
2671
2672		/* Don't check lock status */
2673		if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2674			return;
2675
2676		/* Check lock status */
2677		if (onenand_check_lock_status(this))
2678			return;
2679
2680		/* Workaround for all block unlock in DDP */
2681		if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2682			/* All blocks on another chip */
2683			ofs = this->chipsize >> 1;
2684			len = this->chipsize >> 1;
2685		}
2686	}
2687
2688	onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2689}
2690
2691#ifdef CONFIG_MTD_ONENAND_OTP
2692
2693/**
2694 * onenand_otp_command - Send OTP specific command to OneNAND device
2695 * @mtd:	 MTD device structure
2696 * @cmd:	 the command to be sent
2697 * @addr:	 offset to read from or write to
2698 * @len:	 number of bytes to read or write
2699 */
2700static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2701				size_t len)
2702{
2703	struct onenand_chip *this = mtd->priv;
2704	int value, block, page;
2705
2706	/* Address translation */
2707	switch (cmd) {
2708	case ONENAND_CMD_OTP_ACCESS:
2709		block = (int) (addr >> this->erase_shift);
2710		page = -1;
2711		break;
2712
2713	default:
2714		block = (int) (addr >> this->erase_shift);
2715		page = (int) (addr >> this->page_shift);
2716
2717		if (ONENAND_IS_2PLANE(this)) {
2718			/* Make the even block number */
2719			block &= ~1;
2720			/* Is it the odd plane? */
2721			if (addr & this->writesize)
2722				block++;
2723			page >>= 1;
2724		}
2725		page &= this->page_mask;
2726		break;
2727	}
2728
2729	if (block != -1) {
2730		/* Write 'DFS, FBA' of Flash */
2731		value = onenand_block_address(this, block);
2732		this->write_word(value, this->base +
2733				ONENAND_REG_START_ADDRESS1);
2734	}
2735
2736	if (page != -1) {
2737		/* Now we use page size operation */
2738		int sectors = 4, count = 4;
2739		int dataram;
2740
2741		switch (cmd) {
2742		default:
2743			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2744				cmd = ONENAND_CMD_2X_PROG;
2745			dataram = ONENAND_CURRENT_BUFFERRAM(this);
2746			break;
2747		}
2748
2749		/* Write 'FPA, FSA' of Flash */
2750		value = onenand_page_address(page, sectors);
2751		this->write_word(value, this->base +
2752				ONENAND_REG_START_ADDRESS8);
2753
2754		/* Write 'BSA, BSC' of DataRAM */
2755		value = onenand_buffer_address(dataram, sectors, count);
2756		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2757	}
2758
2759	/* Interrupt clear */
2760	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2761
2762	/* Write command */
2763	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2764
2765	return 0;
2766}
2767
2768/**
2769 * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2770 * @mtd:		MTD device structure
2771 * @to:			offset to write to
2772 * @ops:                oob operation description structure
2773 *
2774 * OneNAND write out-of-band only for OTP
2775 */
2776static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2777				    struct mtd_oob_ops *ops)
2778{
2779	struct onenand_chip *this = mtd->priv;
2780	int column, ret = 0, oobsize;
2781	int written = 0;
2782	u_char *oobbuf;
2783	size_t len = ops->ooblen;
2784	const u_char *buf = ops->oobbuf;
2785	int block, value, status;
2786
2787	to += ops->ooboffs;
2788
2789	/* Initialize retlen, in case of early exit */
2790	ops->oobretlen = 0;
2791
2792	oobsize = mtd->oobsize;
2793
2794	column = to & (mtd->oobsize - 1);
2795
2796	oobbuf = this->oob_buf;
2797
2798	/* Loop until all data write */
2799	while (written < len) {
2800		int thislen = min_t(int, oobsize, len - written);
2801
2802		cond_resched();
2803
2804		block = (int) (to >> this->erase_shift);
2805		/*
2806		 * Write 'DFS, FBA' of Flash
2807		 * Add: F100h DQ=DFS, FBA
2808		 */
2809
2810		value = onenand_block_address(this, block);
2811		this->write_word(value, this->base +
2812				ONENAND_REG_START_ADDRESS1);
2813
2814		/*
2815		 * Select DataRAM for DDP
2816		 * Add: F101h DQ=DBS
2817		 */
2818
2819		value = onenand_bufferram_address(this, block);
2820		this->write_word(value, this->base +
2821				ONENAND_REG_START_ADDRESS2);
2822		ONENAND_SET_NEXT_BUFFERRAM(this);
2823
2824		/*
2825		 * Enter OTP access mode
2826		 */
2827		this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2828		this->wait(mtd, FL_OTPING);
2829
2830		/* We send data to spare ram with oobsize
2831		 * to prevent byte access */
2832		memcpy(oobbuf + column, buf, thislen);
2833
2834		/*
2835		 * Write Data into DataRAM
2836		 * Add: 8th Word
2837		 * in sector0/spare/page0
2838		 * DQ=XXFCh
2839		 */
2840		this->write_bufferram(mtd, ONENAND_SPARERAM,
2841					oobbuf, 0, mtd->oobsize);
2842
2843		onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
2844		onenand_update_bufferram(mtd, to, 0);
2845		if (ONENAND_IS_2PLANE(this)) {
2846			ONENAND_SET_BUFFERRAM1(this);
2847			onenand_update_bufferram(mtd, to + this->writesize, 0);
2848		}
2849
2850		ret = this->wait(mtd, FL_WRITING);
2851		if (ret) {
2852			printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2853			break;
2854		}
2855
2856		/* Exit OTP access mode */
2857		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2858		this->wait(mtd, FL_RESETTING);
2859
2860		status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2861		status &= 0x60;
2862
2863		if (status == 0x60) {
2864			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2865			printk(KERN_DEBUG "1st Block\tLOCKED\n");
2866			printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2867		} else if (status == 0x20) {
2868			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2869			printk(KERN_DEBUG "1st Block\tLOCKED\n");
2870			printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2871		} else if (status == 0x40) {
2872			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2873			printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
2874			printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2875		} else {
2876			printk(KERN_DEBUG "Reboot to check\n");
2877		}
2878
2879		written += thislen;
2880		if (written == len)
2881			break;
2882
2883		to += mtd->writesize;
2884		buf += thislen;
2885		column = 0;
2886	}
2887
2888	ops->oobretlen = written;
2889
2890	return ret;
2891}
2892
2893/* Internal OTP operation */
2894typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2895		size_t *retlen, u_char *buf);
2896
2897/**
2898 * do_otp_read - [DEFAULT] Read OTP block area
2899 * @mtd:		MTD device structure
2900 * @from:		The offset to read
2901 * @len:		number of bytes to read
2902 * @retlen:	pointer to variable to store the number of readbytes
2903 * @buf:		the databuffer to put/get data
2904 *
2905 * Read OTP block area.
2906 */
2907static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
2908		size_t *retlen, u_char *buf)
2909{
2910	struct onenand_chip *this = mtd->priv;
2911	struct mtd_oob_ops ops = {
2912		.len	= len,
2913		.ooblen	= 0,
2914		.datbuf	= buf,
2915		.oobbuf	= NULL,
2916	};
2917	int ret;
2918
2919	/* Enter OTP access mode */
2920	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2921	this->wait(mtd, FL_OTPING);
2922
2923	ret = ONENAND_IS_4KB_PAGE(this) ?
2924		onenand_mlc_read_ops_nolock(mtd, from, &ops) :
2925		onenand_read_ops_nolock(mtd, from, &ops);
2926
2927	/* Exit OTP access mode */
2928	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2929	this->wait(mtd, FL_RESETTING);
2930
2931	return ret;
2932}
2933
2934/**
2935 * do_otp_write - [DEFAULT] Write OTP block area
2936 * @mtd:		MTD device structure
2937 * @to:		The offset to write
2938 * @len:		number of bytes to write
2939 * @retlen:	pointer to variable to store the number of write bytes
2940 * @buf:		the databuffer to put/get data
2941 *
2942 * Write OTP block area.
2943 */
2944static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2945		size_t *retlen, u_char *buf)
2946{
2947	struct onenand_chip *this = mtd->priv;
2948	unsigned char *pbuf = buf;
2949	int ret;
2950	struct mtd_oob_ops ops = { };
2951
2952	/* Force buffer page aligned */
2953	if (len < mtd->writesize) {
2954		memcpy(this->page_buf, buf, len);
2955		memset(this->page_buf + len, 0xff, mtd->writesize - len);
2956		pbuf = this->page_buf;
2957		len = mtd->writesize;
2958	}
2959
2960	/* Enter OTP access mode */
2961	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2962	this->wait(mtd, FL_OTPING);
2963
2964	ops.len = len;
2965	ops.ooblen = 0;
2966	ops.datbuf = pbuf;
2967	ops.oobbuf = NULL;
2968	ret = onenand_write_ops_nolock(mtd, to, &ops);
2969	*retlen = ops.retlen;
2970
2971	/* Exit OTP access mode */
2972	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2973	this->wait(mtd, FL_RESETTING);
2974
2975	return ret;
2976}
2977
2978/**
2979 * do_otp_lock - [DEFAULT] Lock OTP block area
2980 * @mtd:		MTD device structure
2981 * @from:		The offset to lock
2982 * @len:		number of bytes to lock
2983 * @retlen:	pointer to variable to store the number of lock bytes
2984 * @buf:		the databuffer to put/get data
2985 *
2986 * Lock OTP block area.
2987 */
2988static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
2989		size_t *retlen, u_char *buf)
2990{
2991	struct onenand_chip *this = mtd->priv;
2992	struct mtd_oob_ops ops = { };
2993	int ret;
2994
2995	if (FLEXONENAND(this)) {
2996
2997		/* Enter OTP access mode */
2998		this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2999		this->wait(mtd, FL_OTPING);
3000		/*
3001		 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3002		 * main area of page 49.
3003		 */
3004		ops.len = mtd->writesize;
3005		ops.ooblen = 0;
3006		ops.datbuf = buf;
3007		ops.oobbuf = NULL;
3008		ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
3009		*retlen = ops.retlen;
3010
3011		/* Exit OTP access mode */
3012		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3013		this->wait(mtd, FL_RESETTING);
3014	} else {
3015		ops.mode = MTD_OPS_PLACE_OOB;
3016		ops.ooblen = len;
3017		ops.oobbuf = buf;
3018		ops.ooboffs = 0;
3019		ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
3020		*retlen = ops.oobretlen;
3021	}
3022
3023	return ret;
3024}
3025
3026/**
3027 * onenand_otp_walk - [DEFAULT] Handle OTP operation
3028 * @mtd:		MTD device structure
3029 * @from:		The offset to read/write
3030 * @len:		number of bytes to read/write
3031 * @retlen:	pointer to variable to store the number of read bytes
3032 * @buf:		the databuffer to put/get data
3033 * @action:	do given action
3034 * @mode:		specify user and factory
3035 *
3036 * Handle OTP operation.
3037 */
3038static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3039			size_t *retlen, u_char *buf,
3040			otp_op_t action, int mode)
3041{
3042	struct onenand_chip *this = mtd->priv;
3043	int otp_pages;
3044	int density;
3045	int ret = 0;
3046
3047	*retlen = 0;
3048
3049	density = onenand_get_density(this->device_id);
3050	if (density < ONENAND_DEVICE_DENSITY_512Mb)
3051		otp_pages = 20;
3052	else
3053		otp_pages = 50;
3054
3055	if (mode == MTD_OTP_FACTORY) {
3056		from += mtd->writesize * otp_pages;
3057		otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3058	}
3059
3060	/* Check User/Factory boundary */
3061	if (mode == MTD_OTP_USER) {
3062		if (mtd->writesize * otp_pages < from + len)
3063			return 0;
3064	} else {
3065		if (mtd->writesize * otp_pages <  len)
3066			return 0;
3067	}
3068
3069	onenand_get_device(mtd, FL_OTPING);
3070	while (len > 0 && otp_pages > 0) {
3071		if (!action) {	/* OTP Info functions */
3072			struct otp_info *otpinfo;
3073
3074			len -= sizeof(struct otp_info);
3075			if (len <= 0) {
3076				ret = -ENOSPC;
3077				break;
3078			}
3079
3080			otpinfo = (struct otp_info *) buf;
3081			otpinfo->start = from;
3082			otpinfo->length = mtd->writesize;
3083			otpinfo->locked = 0;
3084
3085			from += mtd->writesize;
3086			buf += sizeof(struct otp_info);
3087			*retlen += sizeof(struct otp_info);
3088		} else {
3089			size_t tmp_retlen;
3090
3091			ret = action(mtd, from, len, &tmp_retlen, buf);
3092			if (ret)
3093				break;
3094
3095			buf += tmp_retlen;
3096			len -= tmp_retlen;
3097			*retlen += tmp_retlen;
3098
3099		}
3100		otp_pages--;
3101	}
3102	onenand_release_device(mtd);
3103
3104	return ret;
3105}
3106
3107/**
3108 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3109 * @mtd:		MTD device structure
3110 * @len:		number of bytes to read
3111 * @retlen:	pointer to variable to store the number of read bytes
3112 * @buf:		the databuffer to put/get data
3113 *
3114 * Read factory OTP info.
3115 */
3116static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len,
3117				      size_t *retlen, struct otp_info *buf)
3118{
3119	return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3120				MTD_OTP_FACTORY);
3121}
3122
3123/**
3124 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3125 * @mtd:		MTD device structure
3126 * @from:		The offset to read
3127 * @len:		number of bytes to read
3128 * @retlen:	pointer to variable to store the number of read bytes
3129 * @buf:		the databuffer to put/get data
3130 *
3131 * Read factory OTP area.
3132 */
3133static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3134			size_t len, size_t *retlen, u_char *buf)
3135{
3136	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
3137}
3138
3139/**
3140 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3141 * @mtd:		MTD device structure
3142 * @retlen:	pointer to variable to store the number of read bytes
3143 * @len:		number of bytes to read
3144 * @buf:		the databuffer to put/get data
3145 *
3146 * Read user OTP info.
3147 */
3148static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len,
3149				      size_t *retlen, struct otp_info *buf)
3150{
3151	return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
3152				MTD_OTP_USER);
3153}
3154
3155/**
3156 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3157 * @mtd:		MTD device structure
3158 * @from:		The offset to read
3159 * @len:		number of bytes to read
3160 * @retlen:	pointer to variable to store the number of read bytes
3161 * @buf:		the databuffer to put/get data
3162 *
3163 * Read user OTP area.
3164 */
3165static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3166			size_t len, size_t *retlen, u_char *buf)
3167{
3168	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
3169}
3170
3171/**
3172 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3173 * @mtd:		MTD device structure
3174 * @from:		The offset to write
3175 * @len:		number of bytes to write
3176 * @retlen:	pointer to variable to store the number of write bytes
3177 * @buf:		the databuffer to put/get data
3178 *
3179 * Write user OTP area.
3180 */
3181static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3182			size_t len, size_t *retlen, const u_char *buf)
3183{
3184	return onenand_otp_walk(mtd, from, len, retlen, (u_char *)buf,
3185				do_otp_write, MTD_OTP_USER);
3186}
3187
3188/**
3189 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3190 * @mtd:		MTD device structure
3191 * @from:		The offset to lock
3192 * @len:		number of bytes to unlock
3193 *
3194 * Write lock mark on spare area in page 0 in OTP block
3195 */
3196static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3197			size_t len)
3198{
3199	struct onenand_chip *this = mtd->priv;
3200	u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3201	size_t retlen;
3202	int ret;
3203	unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3204
3205	memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3206						 : mtd->oobsize);
3207	/*
3208	 * Write lock mark to 8th word of sector0 of page0 of the spare0.
3209	 * We write 16 bytes spare area instead of 2 bytes.
3210	 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3211	 * main area of page 49.
3212	 */
3213
3214	from = 0;
3215	len = FLEXONENAND(this) ? mtd->writesize : 16;
3216
3217	/*
3218	 * Note: OTP lock operation
3219	 *       OTP block : 0xXXFC			XX 1111 1100
3220	 *       1st block : 0xXXF3 (If chip support)	XX 1111 0011
3221	 *       Both      : 0xXXF0 (If chip support)	XX 1111 0000
3222	 */
3223	if (FLEXONENAND(this))
3224		otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3225
3226	/* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3227	if (otp == 1)
3228		buf[otp_lock_offset] = 0xFC;
3229	else if (otp == 2)
3230		buf[otp_lock_offset] = 0xF3;
3231	else if (otp == 3)
3232		buf[otp_lock_offset] = 0xF0;
3233	else if (otp != 0)
3234		printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3235
3236	ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
3237
3238	return ret ? : retlen;
3239}
3240
3241#endif	/* CONFIG_MTD_ONENAND_OTP */
3242
3243/**
3244 * onenand_check_features - Check and set OneNAND features
3245 * @mtd:		MTD data structure
3246 *
3247 * Check and set OneNAND features
3248 * - lock scheme
3249 * - two plane
3250 */
3251static void onenand_check_features(struct mtd_info *mtd)
3252{
3253	struct onenand_chip *this = mtd->priv;
3254	unsigned int density, process, numbufs;
3255
3256	/* Lock scheme depends on density and process */
3257	density = onenand_get_density(this->device_id);
3258	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3259	numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3260
3261	/* Lock scheme */
3262	switch (density) {
3263	case ONENAND_DEVICE_DENSITY_8Gb:
3264		this->options |= ONENAND_HAS_NOP_1;
3265		fallthrough;
3266	case ONENAND_DEVICE_DENSITY_4Gb:
3267		if (ONENAND_IS_DDP(this))
3268			this->options |= ONENAND_HAS_2PLANE;
3269		else if (numbufs == 1) {
3270			this->options |= ONENAND_HAS_4KB_PAGE;
3271			this->options |= ONENAND_HAS_CACHE_PROGRAM;
3272			/*
3273			 * There are two different 4KiB pagesize chips
3274			 * and no way to detect it by H/W config values.
3275			 *
3276			 * To detect the correct NOP for each chips,
3277			 * It should check the version ID as workaround.
3278			 *
3279			 * Now it has as following
3280			 * KFM4G16Q4M has NOP 4 with version ID 0x0131
3281			 * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3282			 */
3283			if ((this->version_id & 0xf) == 0xe)
3284				this->options |= ONENAND_HAS_NOP_1;
3285		}
3286		this->options |= ONENAND_HAS_UNLOCK_ALL;
3287		break;
3288
3289	case ONENAND_DEVICE_DENSITY_2Gb:
3290		/* 2Gb DDP does not have 2 plane */
3291		if (!ONENAND_IS_DDP(this))
3292			this->options |= ONENAND_HAS_2PLANE;
3293		this->options |= ONENAND_HAS_UNLOCK_ALL;
3294		break;
3295
3296	case ONENAND_DEVICE_DENSITY_1Gb:
3297		/* A-Die has all block unlock */
3298		if (process)
3299			this->options |= ONENAND_HAS_UNLOCK_ALL;
3300		break;
3301
3302	default:
3303		/* Some OneNAND has continuous lock scheme */
3304		if (!process)
3305			this->options |= ONENAND_HAS_CONT_LOCK;
3306		break;
3307	}
3308
3309	/* The MLC has 4KiB pagesize. */
3310	if (ONENAND_IS_MLC(this))
3311		this->options |= ONENAND_HAS_4KB_PAGE;
3312
3313	if (ONENAND_IS_4KB_PAGE(this))
3314		this->options &= ~ONENAND_HAS_2PLANE;
3315
3316	if (FLEXONENAND(this)) {
3317		this->options &= ~ONENAND_HAS_CONT_LOCK;
3318		this->options |= ONENAND_HAS_UNLOCK_ALL;
3319	}
3320
3321	if (this->options & ONENAND_HAS_CONT_LOCK)
3322		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3323	if (this->options & ONENAND_HAS_UNLOCK_ALL)
3324		printk(KERN_DEBUG "Chip support all block unlock\n");
3325	if (this->options & ONENAND_HAS_2PLANE)
3326		printk(KERN_DEBUG "Chip has 2 plane\n");
3327	if (this->options & ONENAND_HAS_4KB_PAGE)
3328		printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3329	if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3330		printk(KERN_DEBUG "Chip has cache program feature\n");
3331}
3332
3333/**
3334 * onenand_print_device_info - Print device & version ID
3335 * @device:        device ID
3336 * @version:	version ID
3337 *
3338 * Print device & version ID
3339 */
3340static void onenand_print_device_info(int device, int version)
3341{
3342	int vcc, demuxed, ddp, density, flexonenand;
3343
3344        vcc = device & ONENAND_DEVICE_VCC_MASK;
3345        demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3346        ddp = device & ONENAND_DEVICE_IS_DDP;
3347        density = onenand_get_density(device);
3348	flexonenand = device & DEVICE_IS_FLEXONENAND;
3349	printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3350		demuxed ? "" : "Muxed ",
3351		flexonenand ? "Flex-" : "",
3352                ddp ? "(DDP)" : "",
3353                (16 << density),
3354                vcc ? "2.65/3.3" : "1.8",
3355                device);
3356	printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3357}
3358
3359static const struct onenand_manufacturers onenand_manuf_ids[] = {
3360        {ONENAND_MFR_SAMSUNG, "Samsung"},
3361	{ONENAND_MFR_NUMONYX, "Numonyx"},
3362};
3363
3364/**
3365 * onenand_check_maf - Check manufacturer ID
3366 * @manuf:         manufacturer ID
3367 *
3368 * Check manufacturer ID
3369 */
3370static int onenand_check_maf(int manuf)
3371{
3372	int size = ARRAY_SIZE(onenand_manuf_ids);
3373	char *name;
3374        int i;
3375
3376	for (i = 0; i < size; i++)
3377                if (manuf == onenand_manuf_ids[i].id)
3378                        break;
3379
3380	if (i < size)
3381		name = onenand_manuf_ids[i].name;
3382	else
3383		name = "Unknown";
3384
3385	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3386
3387	return (i == size);
3388}
3389
3390/**
3391 * flexonenand_get_boundary	- Reads the SLC boundary
3392 * @mtd:		MTD data structure
3393 */
3394static int flexonenand_get_boundary(struct mtd_info *mtd)
3395{
3396	struct onenand_chip *this = mtd->priv;
3397	unsigned die, bdry;
3398	int syscfg, locked;
3399
3400	/* Disable ECC */
3401	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3402	this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3403
3404	for (die = 0; die < this->dies; die++) {
3405		this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3406		this->wait(mtd, FL_SYNCING);
3407
3408		this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3409		this->wait(mtd, FL_READING);
3410
3411		bdry = this->read_word(this->base + ONENAND_DATARAM);
3412		if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3413			locked = 0;
3414		else
3415			locked = 1;
3416		this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3417
3418		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3419		this->wait(mtd, FL_RESETTING);
3420
3421		printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3422		       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3423	}
3424
3425	/* Enable ECC */
3426	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3427	return 0;
3428}
3429
3430/**
3431 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3432 * 			  boundary[], diesize[], mtd->size, mtd->erasesize
3433 * @mtd:		- MTD device structure
3434 */
3435static void flexonenand_get_size(struct mtd_info *mtd)
3436{
3437	struct onenand_chip *this = mtd->priv;
3438	int die, i, eraseshift, density;
3439	int blksperdie, maxbdry;
3440	loff_t ofs;
3441
3442	density = onenand_get_density(this->device_id);
3443	blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3444	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3445	maxbdry = blksperdie - 1;
3446	eraseshift = this->erase_shift - 1;
3447
3448	mtd->numeraseregions = this->dies << 1;
3449
3450	/* This fills up the device boundary */
3451	flexonenand_get_boundary(mtd);
3452	die = ofs = 0;
3453	i = -1;
3454	for (; die < this->dies; die++) {
3455		if (!die || this->boundary[die-1] != maxbdry) {
3456			i++;
3457			mtd->eraseregions[i].offset = ofs;
3458			mtd->eraseregions[i].erasesize = 1 << eraseshift;
3459			mtd->eraseregions[i].numblocks =
3460							this->boundary[die] + 1;
3461			ofs += mtd->eraseregions[i].numblocks << eraseshift;
3462			eraseshift++;
3463		} else {
3464			mtd->numeraseregions -= 1;
3465			mtd->eraseregions[i].numblocks +=
3466							this->boundary[die] + 1;
3467			ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3468		}
3469		if (this->boundary[die] != maxbdry) {
3470			i++;
3471			mtd->eraseregions[i].offset = ofs;
3472			mtd->eraseregions[i].erasesize = 1 << eraseshift;
3473			mtd->eraseregions[i].numblocks = maxbdry ^
3474							 this->boundary[die];
3475			ofs += mtd->eraseregions[i].numblocks << eraseshift;
3476			eraseshift--;
3477		} else
3478			mtd->numeraseregions -= 1;
3479	}
3480
3481	/* Expose MLC erase size except when all blocks are SLC */
3482	mtd->erasesize = 1 << this->erase_shift;
3483	if (mtd->numeraseregions == 1)
3484		mtd->erasesize >>= 1;
3485
3486	printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3487	for (i = 0; i < mtd->numeraseregions; i++)
3488		printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3489			" numblocks: %04u]\n",
3490			(unsigned int) mtd->eraseregions[i].offset,
3491			mtd->eraseregions[i].erasesize,
3492			mtd->eraseregions[i].numblocks);
3493
3494	for (die = 0, mtd->size = 0; die < this->dies; die++) {
3495		this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3496		this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3497						 << (this->erase_shift - 1);
3498		mtd->size += this->diesize[die];
3499	}
3500}
3501
3502/**
3503 * flexonenand_check_blocks_erased - Check if blocks are erased
3504 * @mtd:	mtd info structure
3505 * @start:	first erase block to check
3506 * @end:	last erase block to check
3507 *
3508 * Converting an unerased block from MLC to SLC
3509 * causes byte values to change. Since both data and its ECC
3510 * have changed, reads on the block give uncorrectable error.
3511 * This might lead to the block being detected as bad.
3512 *
3513 * Avoid this by ensuring that the block to be converted is
3514 * erased.
3515 */
3516static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3517{
3518	struct onenand_chip *this = mtd->priv;
3519	int i, ret;
3520	int block;
3521	struct mtd_oob_ops ops = {
3522		.mode = MTD_OPS_PLACE_OOB,
3523		.ooboffs = 0,
3524		.ooblen	= mtd->oobsize,
3525		.datbuf	= NULL,
3526		.oobbuf	= this->oob_buf,
3527	};
3528	loff_t addr;
3529
3530	printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3531
3532	for (block = start; block <= end; block++) {
3533		addr = flexonenand_addr(this, block);
3534		if (onenand_block_isbad_nolock(mtd, addr, 0))
3535			continue;
3536
3537		/*
3538		 * Since main area write results in ECC write to spare,
3539		 * it is sufficient to check only ECC bytes for change.
3540		 */
3541		ret = onenand_read_oob_nolock(mtd, addr, &ops);
3542		if (ret)
3543			return ret;
3544
3545		for (i = 0; i < mtd->oobsize; i++)
3546			if (this->oob_buf[i] != 0xff)
3547				break;
3548
3549		if (i != mtd->oobsize) {
3550			printk(KERN_WARNING "%s: Block %d not erased.\n",
3551				__func__, block);
3552			return 1;
3553		}
3554	}
3555
3556	return 0;
3557}
3558
3559/*
3560 * flexonenand_set_boundary	- Writes the SLC boundary
3561 */
3562static int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3563				    int boundary, int lock)
3564{
3565	struct onenand_chip *this = mtd->priv;
3566	int ret, density, blksperdie, old, new, thisboundary;
3567	loff_t addr;
3568
3569	/* Change only once for SDP Flex-OneNAND */
3570	if (die && (!ONENAND_IS_DDP(this)))
3571		return 0;
3572
3573	/* boundary value of -1 indicates no required change */
3574	if (boundary < 0 || boundary == this->boundary[die])
3575		return 0;
3576
3577	density = onenand_get_density(this->device_id);
3578	blksperdie = ((16 << density) << 20) >> this->erase_shift;
3579	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3580
3581	if (boundary >= blksperdie) {
3582		printk(KERN_ERR "%s: Invalid boundary value. "
3583				"Boundary not changed.\n", __func__);
3584		return -EINVAL;
3585	}
3586
3587	/* Check if converting blocks are erased */
3588	old = this->boundary[die] + (die * this->density_mask);
3589	new = boundary + (die * this->density_mask);
3590	ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3591	if (ret) {
3592		printk(KERN_ERR "%s: Please erase blocks "
3593				"before boundary change\n", __func__);
3594		return ret;
3595	}
3596
3597	this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3598	this->wait(mtd, FL_SYNCING);
3599
3600	/* Check is boundary is locked */
3601	this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3602	this->wait(mtd, FL_READING);
3603
3604	thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3605	if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3606		printk(KERN_ERR "%s: boundary locked\n", __func__);
3607		ret = 1;
3608		goto out;
3609	}
3610
3611	printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3612			die, boundary, lock ? "(Locked)" : "(Unlocked)");
3613
3614	addr = die ? this->diesize[0] : 0;
3615
3616	boundary &= FLEXONENAND_PI_MASK;
3617	boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3618
3619	this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3620	ret = this->wait(mtd, FL_ERASING);
3621	if (ret) {
3622		printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3623		       __func__, die);
3624		goto out;
3625	}
3626
3627	this->write_word(boundary, this->base + ONENAND_DATARAM);
3628	this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3629	ret = this->wait(mtd, FL_WRITING);
3630	if (ret) {
3631		printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3632			__func__, die);
3633		goto out;
3634	}
3635
3636	this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3637	ret = this->wait(mtd, FL_WRITING);
3638out:
3639	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3640	this->wait(mtd, FL_RESETTING);
3641	if (!ret)
3642		/* Recalculate device size on boundary change*/
3643		flexonenand_get_size(mtd);
3644
3645	return ret;
3646}
3647
3648/**
3649 * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3650 * @mtd:		MTD device structure
3651 *
3652 * OneNAND detection method:
3653 *   Compare the values from command with ones from register
3654 */
3655static int onenand_chip_probe(struct mtd_info *mtd)
3656{
3657	struct onenand_chip *this = mtd->priv;
3658	int bram_maf_id, bram_dev_id, maf_id, dev_id;
3659	int syscfg;
3660
3661	/* Save system configuration 1 */
3662	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3663	/* Clear Sync. Burst Read mode to read BootRAM */
3664	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3665
3666	/* Send the command for reading device ID from BootRAM */
3667	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3668
3669	/* Read manufacturer and device IDs from BootRAM */
3670	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3671	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3672
3673	/* Reset OneNAND to read default register values */
3674	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3675	/* Wait reset */
3676	this->wait(mtd, FL_RESETTING);
3677
3678	/* Restore system configuration 1 */
3679	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3680
3681	/* Check manufacturer ID */
3682	if (onenand_check_maf(bram_maf_id))
3683		return -ENXIO;
3684
3685	/* Read manufacturer and device IDs from Register */
3686	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3687	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3688
3689	/* Check OneNAND device */
3690	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3691		return -ENXIO;
3692
3693	return 0;
3694}
3695
3696/**
3697 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3698 * @mtd:		MTD device structure
3699 */
3700static int onenand_probe(struct mtd_info *mtd)
3701{
3702	struct onenand_chip *this = mtd->priv;
3703	int dev_id, ver_id;
3704	int density;
3705	int ret;
3706
3707	ret = this->chip_probe(mtd);
3708	if (ret)
3709		return ret;
3710
3711	/* Device and version IDs from Register */
3712	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3713	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3714	this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3715
3716	/* Flash device information */
3717	onenand_print_device_info(dev_id, ver_id);
3718	this->device_id = dev_id;
3719	this->version_id = ver_id;
3720
3721	/* Check OneNAND features */
3722	onenand_check_features(mtd);
3723
3724	density = onenand_get_density(dev_id);
3725	if (FLEXONENAND(this)) {
3726		this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3727		/* Maximum possible erase regions */
3728		mtd->numeraseregions = this->dies << 1;
3729		mtd->eraseregions =
3730			kcalloc(this->dies << 1,
3731				sizeof(struct mtd_erase_region_info),
3732				GFP_KERNEL);
3733		if (!mtd->eraseregions)
3734			return -ENOMEM;
3735	}
3736
3737	/*
3738	 * For Flex-OneNAND, chipsize represents maximum possible device size.
3739	 * mtd->size represents the actual device size.
3740	 */
3741	this->chipsize = (16 << density) << 20;
3742
3743	/* OneNAND page size & block size */
3744	/* The data buffer size is equal to page size */
3745	mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3746	/* We use the full BufferRAM */
3747	if (ONENAND_IS_4KB_PAGE(this))
3748		mtd->writesize <<= 1;
3749
3750	mtd->oobsize = mtd->writesize >> 5;
3751	/* Pages per a block are always 64 in OneNAND */
3752	mtd->erasesize = mtd->writesize << 6;
3753	/*
3754	 * Flex-OneNAND SLC area has 64 pages per block.
3755	 * Flex-OneNAND MLC area has 128 pages per block.
3756	 * Expose MLC erase size to find erase_shift and page_mask.
3757	 */
3758	if (FLEXONENAND(this))
3759		mtd->erasesize <<= 1;
3760
3761	this->erase_shift = ffs(mtd->erasesize) - 1;
3762	this->page_shift = ffs(mtd->writesize) - 1;
3763	this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3764	/* Set density mask. it is used for DDP */
3765	if (ONENAND_IS_DDP(this))
3766		this->density_mask = this->chipsize >> (this->erase_shift + 1);
3767	/* It's real page size */
3768	this->writesize = mtd->writesize;
3769
3770	/* REVISIT: Multichip handling */
3771
3772	if (FLEXONENAND(this))
3773		flexonenand_get_size(mtd);
3774	else
3775		mtd->size = this->chipsize;
3776
3777	/*
3778	 * We emulate the 4KiB page and 256KiB erase block size
3779	 * But oobsize is still 64 bytes.
3780	 * It is only valid if you turn on 2X program support,
3781	 * Otherwise it will be ignored by compiler.
3782	 */
3783	if (ONENAND_IS_2PLANE(this)) {
3784		mtd->writesize <<= 1;
3785		mtd->erasesize <<= 1;
3786	}
3787
3788	return 0;
3789}
3790
3791/**
3792 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3793 * @mtd:		MTD device structure
3794 */
3795static int onenand_suspend(struct mtd_info *mtd)
3796{
3797	return onenand_get_device(mtd, FL_PM_SUSPENDED);
3798}
3799
3800/**
3801 * onenand_resume - [MTD Interface] Resume the OneNAND flash
3802 * @mtd:		MTD device structure
3803 */
3804static void onenand_resume(struct mtd_info *mtd)
3805{
3806	struct onenand_chip *this = mtd->priv;
3807
3808	if (this->state == FL_PM_SUSPENDED)
3809		onenand_release_device(mtd);
3810	else
3811		printk(KERN_ERR "%s: resume() called for the chip which is not "
3812				"in suspended state\n", __func__);
3813}
3814
3815/**
3816 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3817 * @mtd:		MTD device structure
3818 * @maxchips:	Number of chips to scan for
3819 *
3820 * This fills out all the not initialized function pointers
3821 * with the defaults.
3822 * The flash ID is read and the mtd/chip structures are
3823 * filled with the appropriate values.
3824 */
3825int onenand_scan(struct mtd_info *mtd, int maxchips)
3826{
3827	int i, ret;
3828	struct onenand_chip *this = mtd->priv;
3829
3830	if (!this->read_word)
3831		this->read_word = onenand_readw;
3832	if (!this->write_word)
3833		this->write_word = onenand_writew;
3834
3835	if (!this->command)
3836		this->command = onenand_command;
3837	if (!this->wait)
3838		onenand_setup_wait(mtd);
3839	if (!this->bbt_wait)
3840		this->bbt_wait = onenand_bbt_wait;
3841	if (!this->unlock_all)
3842		this->unlock_all = onenand_unlock_all;
3843
3844	if (!this->chip_probe)
3845		this->chip_probe = onenand_chip_probe;
3846
3847	if (!this->read_bufferram)
3848		this->read_bufferram = onenand_read_bufferram;
3849	if (!this->write_bufferram)
3850		this->write_bufferram = onenand_write_bufferram;
3851
3852	if (!this->block_markbad)
3853		this->block_markbad = onenand_default_block_markbad;
3854	if (!this->scan_bbt)
3855		this->scan_bbt = onenand_default_bbt;
3856
3857	if (onenand_probe(mtd))
3858		return -ENXIO;
3859
3860	/* Set Sync. Burst Read after probing */
3861	if (this->mmcontrol) {
3862		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3863		this->read_bufferram = onenand_sync_read_bufferram;
3864	}
3865
3866	/* Allocate buffers, if necessary */
3867	if (!this->page_buf) {
3868		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3869		if (!this->page_buf)
3870			return -ENOMEM;
3871#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3872		this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
3873		if (!this->verify_buf) {
3874			kfree(this->page_buf);
3875			return -ENOMEM;
3876		}
3877#endif
3878		this->options |= ONENAND_PAGEBUF_ALLOC;
3879	}
3880	if (!this->oob_buf) {
3881		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
3882		if (!this->oob_buf) {
3883			if (this->options & ONENAND_PAGEBUF_ALLOC) {
3884				this->options &= ~ONENAND_PAGEBUF_ALLOC;
3885#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3886				kfree(this->verify_buf);
3887#endif
3888				kfree(this->page_buf);
3889			}
3890			return -ENOMEM;
3891		}
3892		this->options |= ONENAND_OOBBUF_ALLOC;
3893	}
3894
3895	this->state = FL_READY;
3896	init_waitqueue_head(&this->wq);
3897	spin_lock_init(&this->chip_lock);
3898
3899	/*
3900	 * Allow subpage writes up to oobsize.
3901	 */
3902	switch (mtd->oobsize) {
3903	case 128:
3904		if (FLEXONENAND(this)) {
3905			mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops);
3906			mtd->subpage_sft = 0;
3907		} else {
3908			mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops);
3909			mtd->subpage_sft = 2;
3910		}
3911		if (ONENAND_IS_NOP_1(this))
3912			mtd->subpage_sft = 0;
3913		break;
3914	case 64:
3915		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3916		mtd->subpage_sft = 2;
3917		break;
3918
3919	case 32:
3920		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3921		mtd->subpage_sft = 1;
3922		break;
3923
3924	default:
3925		printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
3926			__func__, mtd->oobsize);
3927		mtd->subpage_sft = 0;
3928		/* To prevent kernel oops */
3929		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
3930		break;
3931	}
3932
3933	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
3934
3935	/*
3936	 * The number of bytes available for a client to place data into
3937	 * the out of band area
3938	 */
3939	ret = mtd_ooblayout_count_freebytes(mtd);
3940	if (ret < 0)
3941		ret = 0;
3942
3943	mtd->oobavail = ret;
3944
3945	mtd->ecc_strength = 1;
3946
3947	/* Fill in remaining MTD driver data */
3948	mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
3949	mtd->flags = MTD_CAP_NANDFLASH;
3950	mtd->_erase = onenand_erase;
3951	mtd->_point = NULL;
3952	mtd->_unpoint = NULL;
3953	mtd->_read_oob = onenand_read_oob;
3954	mtd->_write_oob = onenand_write_oob;
3955	mtd->_panic_write = onenand_panic_write;
3956#ifdef CONFIG_MTD_ONENAND_OTP
3957	mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
3958	mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
3959	mtd->_get_user_prot_info = onenand_get_user_prot_info;
3960	mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
3961	mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
3962	mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
3963#endif
3964	mtd->_sync = onenand_sync;
3965	mtd->_lock = onenand_lock;
3966	mtd->_unlock = onenand_unlock;
3967	mtd->_suspend = onenand_suspend;
3968	mtd->_resume = onenand_resume;
3969	mtd->_block_isbad = onenand_block_isbad;
3970	mtd->_block_markbad = onenand_block_markbad;
3971	mtd->owner = THIS_MODULE;
3972	mtd->writebufsize = mtd->writesize;
3973
3974	/* Unlock whole block */
3975	if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
3976		this->unlock_all(mtd);
3977
3978	/* Set the bad block marker position */
3979	this->badblockpos = ONENAND_BADBLOCK_POS;
3980
3981	ret = this->scan_bbt(mtd);
3982	if ((!FLEXONENAND(this)) || ret)
3983		return ret;
3984
3985	/* Change Flex-OneNAND boundaries if required */
3986	for (i = 0; i < MAX_DIES; i++)
3987		flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
3988						 flex_bdry[(2 * i) + 1]);
3989
3990	return 0;
3991}
3992
3993/**
3994 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
3995 * @mtd:		MTD device structure
3996 */
3997void onenand_release(struct mtd_info *mtd)
3998{
3999	struct onenand_chip *this = mtd->priv;
4000
4001	/* Deregister partitions */
4002	mtd_device_unregister(mtd);
4003
4004	/* Free bad block table memory, if allocated */
4005	if (this->bbm) {
4006		struct bbm_info *bbm = this->bbm;
4007		kfree(bbm->bbt);
4008		kfree(this->bbm);
4009	}
4010	/* Buffers allocated by onenand_scan */
4011	if (this->options & ONENAND_PAGEBUF_ALLOC) {
4012		kfree(this->page_buf);
4013#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4014		kfree(this->verify_buf);
4015#endif
4016	}
4017	if (this->options & ONENAND_OOBBUF_ALLOC)
4018		kfree(this->oob_buf);
4019	kfree(mtd->eraseregions);
4020}
4021
4022EXPORT_SYMBOL_GPL(onenand_scan);
4023EXPORT_SYMBOL_GPL(onenand_release);
4024
4025MODULE_LICENSE("GPL");
4026MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4027MODULE_DESCRIPTION("Generic OneNAND flash driver code");
4028