11849Swollman// SPDX-License-Identifier: GPL-2.0-or-later
21849Swollman/*
31849Swollman * Simple MTD partitioning layer
41849Swollman *
51849Swollman * Copyright �� 2000 Nicolas Pitre <nico@fluxnic.net>
61849Swollman * Copyright �� 2002 Thomas Gleixner <gleixner@linutronix.de>
71849Swollman * Copyright �� 2000-2010 David Woodhouse <dwmw2@infradead.org>
81849Swollman */
91849Swollman
101849Swollman#include <linux/module.h>
111849Swollman#include <linux/types.h>
121849Swollman#include <linux/kernel.h>
131849Swollman#include <linux/slab.h>
141849Swollman#include <linux/list.h>
151849Swollman#include <linux/kmod.h>
161849Swollman#include <linux/mtd/mtd.h>
171849Swollman#include <linux/mtd/partitions.h>
181849Swollman#include <linux/err.h>
191849Swollman#include <linux/of.h>
201849Swollman#include <linux/of_platform.h>
211849Swollman
221849Swollman#include "mtdcore.h"
231849Swollman
241849Swollman/*
251849Swollman * MTD methods which simply translate the effective address and pass through
261849Swollman * to the _real_ device.
271849Swollman */
281849Swollman
291849Swollmanstatic inline void free_partition(struct mtd_info *mtd)
301849Swollman{
311849Swollman	kfree(mtd->name);
321849Swollman	kfree(mtd);
331849Swollman}
341849Swollman
355790Sdgvoid release_mtd_partition(struct mtd_info *mtd)
3650476Speter{
371849Swollman	WARN_ON(!list_empty(&mtd->part.node));
381849Swollman	free_partition(mtd);
395790Sdg}
405790Sdg
4150476Speterstatic struct mtd_info *allocate_partition(struct mtd_info *parent,
425790Sdg					   const struct mtd_partition *part,
431849Swollman					   int partno, uint64_t cur_offset)
441849Swollman{
451849Swollman	struct mtd_info *master = mtd_get_master(parent);
461849Swollman	int wr_alignment = (parent->flags & MTD_NO_ERASE) ?
471849Swollman			   master->writesize : master->erasesize;
481849Swollman	u64 parent_size = mtd_is_partition(parent) ?
491849Swollman			  parent->part.size : parent->size;
501849Swollman	struct mtd_info *child;
511849Swollman	u32 remainder;
521849Swollman	char *name;
531849Swollman	u64 tmp;
541849Swollman
551849Swollman	/* allocate the partition structure */
5656345Sjasone	child = kzalloc(sizeof(*child), GFP_KERNEL);
571849Swollman	name = kstrdup(part->name, GFP_KERNEL);
581849Swollman	if (!name || !child) {
591849Swollman		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
601849Swollman		       parent->name);
611849Swollman		kfree(name);
621849Swollman		kfree(child);
631849Swollman		return ERR_PTR(-ENOMEM);
641849Swollman	}
6551794Smarcel
661849Swollman	/* set up the MTD object for this partition */
671849Swollman	child->type = parent->type;
681849Swollman	child->part.flags = parent->flags & ~part->mask_flags;
6956345Sjasone	child->part.flags |= part->add_flags;
7056345Sjasone	child->flags = child->part.flags;
7156345Sjasone	child->part.size = part->size;
7256345Sjasone	child->writesize = parent->writesize;
7356345Sjasone	child->writebufsize = parent->writebufsize;
7456276Sjasone	child->oobsize = parent->oobsize;
751849Swollman	child->oobavail = parent->oobavail;
761849Swollman	child->subpage_sft = parent->subpage_sft;
771849Swollman
781849Swollman	child->name = name;
791849Swollman	child->owner = parent->owner;
801849Swollman
811849Swollman	/* NOTE: Historically, we didn't arrange MTDs as a tree out of
821849Swollman	 * concern for showing the same data in multiple partitions.
831849Swollman	 * However, it is very useful to have the master node present,
8451794Smarcel	 * so the MTD_PARTITIONED_MASTER option allows that. The master
851849Swollman	 * will have device nodes etc only if this is set, so make the
861849Swollman	 * parent conditional on that option. Note, this is a way to
871849Swollman	 * distinguish between the parent and its partitions in sysfs.
881849Swollman	 */
891849Swollman	child->dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
90			    &parent->dev : parent->dev.parent;
91	child->dev.of_node = part->of_node;
92	child->parent = parent;
93	child->part.offset = part->offset;
94	INIT_LIST_HEAD(&child->partitions);
95
96	if (child->part.offset == MTDPART_OFS_APPEND)
97		child->part.offset = cur_offset;
98	if (child->part.offset == MTDPART_OFS_NXTBLK) {
99		tmp = cur_offset;
100		child->part.offset = cur_offset;
101		remainder = do_div(tmp, wr_alignment);
102		if (remainder) {
103			child->part.offset += wr_alignment - remainder;
104			printk(KERN_NOTICE "Moving partition %d: "
105			       "0x%012llx -> 0x%012llx\n", partno,
106			       (unsigned long long)cur_offset,
107			       child->part.offset);
108		}
109	}
110	if (child->part.offset == MTDPART_OFS_RETAIN) {
111		child->part.offset = cur_offset;
112		if (parent_size - child->part.offset >= child->part.size) {
113			child->part.size = parent_size - child->part.offset -
114					   child->part.size;
115		} else {
116			printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
117				part->name, parent_size - child->part.offset,
118				child->part.size);
119			/* register to preserve ordering */
120			goto out_register;
121		}
122	}
123	if (child->part.size == MTDPART_SIZ_FULL)
124		child->part.size = parent_size - child->part.offset;
125
126	printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n",
127	       child->part.offset, child->part.offset + child->part.size,
128	       child->name);
129
130	/* let's do some sanity checks */
131	if (child->part.offset >= parent_size) {
132		/* let's register it anyway to preserve ordering */
133		child->part.offset = 0;
134		child->part.size = 0;
135
136		/* Initialize ->erasesize to make add_mtd_device() happy. */
137		child->erasesize = parent->erasesize;
138		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
139			part->name);
140		goto out_register;
141	}
142	if (child->part.offset + child->part.size > parent->size) {
143		child->part.size = parent_size - child->part.offset;
144		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
145			part->name, parent->name, child->part.size);
146	}
147
148	if (parent->numeraseregions > 1) {
149		/* Deal with variable erase size stuff */
150		int i, max = parent->numeraseregions;
151		u64 end = child->part.offset + child->part.size;
152		struct mtd_erase_region_info *regions = parent->eraseregions;
153
154		/* Find the first erase regions which is part of this
155		 * partition. */
156		for (i = 0; i < max && regions[i].offset <= child->part.offset;
157		     i++)
158			;
159		/* The loop searched for the region _behind_ the first one */
160		if (i > 0)
161			i--;
162
163		/* Pick biggest erasesize */
164		for (; i < max && regions[i].offset < end; i++) {
165			if (child->erasesize < regions[i].erasesize)
166				child->erasesize = regions[i].erasesize;
167		}
168		BUG_ON(child->erasesize == 0);
169	} else {
170		/* Single erase size */
171		child->erasesize = master->erasesize;
172	}
173
174	/*
175	 * Child erasesize might differ from the parent one if the parent
176	 * exposes several regions with different erasesize. Adjust
177	 * wr_alignment accordingly.
178	 */
179	if (!(child->flags & MTD_NO_ERASE))
180		wr_alignment = child->erasesize;
181
182	tmp = mtd_get_master_ofs(child, 0);
183	remainder = do_div(tmp, wr_alignment);
184	if ((child->flags & MTD_WRITEABLE) && remainder) {
185		/* Doesn't start on a boundary of major erase size */
186		/* FIXME: Let it be writable if it is on a boundary of
187		 * _minor_ erase size though */
188		child->flags &= ~MTD_WRITEABLE;
189		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
190			part->name);
191	}
192
193	tmp = mtd_get_master_ofs(child, 0) + child->part.size;
194	remainder = do_div(tmp, wr_alignment);
195	if ((child->flags & MTD_WRITEABLE) && remainder) {
196		child->flags &= ~MTD_WRITEABLE;
197		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
198			part->name);
199	}
200
201	child->size = child->part.size;
202	child->ecc_step_size = parent->ecc_step_size;
203	child->ecc_strength = parent->ecc_strength;
204	child->bitflip_threshold = parent->bitflip_threshold;
205
206	if (master->_block_isbad) {
207		uint64_t offs = 0;
208
209		while (offs < child->part.size) {
210			if (mtd_block_isreserved(child, offs))
211				child->ecc_stats.bbtblocks++;
212			else if (mtd_block_isbad(child, offs))
213				child->ecc_stats.badblocks++;
214			offs += child->erasesize;
215		}
216	}
217
218out_register:
219	return child;
220}
221
222static ssize_t offset_show(struct device *dev,
223			   struct device_attribute *attr, char *buf)
224{
225	struct mtd_info *mtd = dev_get_drvdata(dev);
226
227	return sysfs_emit(buf, "%lld\n", mtd->part.offset);
228}
229static DEVICE_ATTR_RO(offset);	/* mtd partition offset */
230
231static const struct attribute *mtd_partition_attrs[] = {
232	&dev_attr_offset.attr,
233	NULL
234};
235
236static int mtd_add_partition_attrs(struct mtd_info *new)
237{
238	int ret = sysfs_create_files(&new->dev.kobj, mtd_partition_attrs);
239	if (ret)
240		printk(KERN_WARNING
241		       "mtd: failed to create partition attrs, err=%d\n", ret);
242	return ret;
243}
244
245int mtd_add_partition(struct mtd_info *parent, const char *name,
246		      long long offset, long long length)
247{
248	struct mtd_info *master = mtd_get_master(parent);
249	u64 parent_size = mtd_is_partition(parent) ?
250			  parent->part.size : parent->size;
251	struct mtd_partition part;
252	struct mtd_info *child;
253	int ret = 0;
254
255	/* the direct offset is expected */
256	if (offset == MTDPART_OFS_APPEND ||
257	    offset == MTDPART_OFS_NXTBLK)
258		return -EINVAL;
259
260	if (length == MTDPART_SIZ_FULL)
261		length = parent_size - offset;
262
263	if (length <= 0)
264		return -EINVAL;
265
266	memset(&part, 0, sizeof(part));
267	part.name = name;
268	part.size = length;
269	part.offset = offset;
270
271	child = allocate_partition(parent, &part, -1, offset);
272	if (IS_ERR(child))
273		return PTR_ERR(child);
274
275	mutex_lock(&master->master.partitions_lock);
276	list_add_tail(&child->part.node, &parent->partitions);
277	mutex_unlock(&master->master.partitions_lock);
278
279	ret = add_mtd_device(child);
280	if (ret)
281		goto err_remove_part;
282
283	mtd_add_partition_attrs(child);
284
285	return 0;
286
287err_remove_part:
288	mutex_lock(&master->master.partitions_lock);
289	list_del(&child->part.node);
290	mutex_unlock(&master->master.partitions_lock);
291
292	free_partition(child);
293
294	return ret;
295}
296EXPORT_SYMBOL_GPL(mtd_add_partition);
297
298/**
299 * __mtd_del_partition - delete MTD partition
300 *
301 * @mtd: MTD structure to be deleted
302 *
303 * This function must be called with the partitions mutex locked.
304 */
305static int __mtd_del_partition(struct mtd_info *mtd)
306{
307	struct mtd_info *child, *next;
308	int err;
309
310	list_for_each_entry_safe(child, next, &mtd->partitions, part.node) {
311		err = __mtd_del_partition(child);
312		if (err)
313			return err;
314	}
315
316	sysfs_remove_files(&mtd->dev.kobj, mtd_partition_attrs);
317
318	list_del_init(&mtd->part.node);
319	err = del_mtd_device(mtd);
320	if (err)
321		return err;
322
323	return 0;
324}
325
326/*
327 * This function unregisters and destroy all slave MTD objects which are
328 * attached to the given MTD object, recursively.
329 */
330static int __del_mtd_partitions(struct mtd_info *mtd)
331{
332	struct mtd_info *child, *next;
333	int ret, err = 0;
334
335	list_for_each_entry_safe(child, next, &mtd->partitions, part.node) {
336		if (mtd_has_partitions(child))
337			__del_mtd_partitions(child);
338
339		pr_info("Deleting %s MTD partition\n", child->name);
340		list_del_init(&child->part.node);
341		ret = del_mtd_device(child);
342		if (ret < 0) {
343			pr_err("Error when deleting partition \"%s\" (%d)\n",
344			       child->name, ret);
345			err = ret;
346			continue;
347		}
348	}
349
350	return err;
351}
352
353int del_mtd_partitions(struct mtd_info *mtd)
354{
355	struct mtd_info *master = mtd_get_master(mtd);
356	int ret;
357
358	pr_info("Deleting MTD partitions on \"%s\":\n", mtd->name);
359
360	mutex_lock(&master->master.partitions_lock);
361	ret = __del_mtd_partitions(mtd);
362	mutex_unlock(&master->master.partitions_lock);
363
364	return ret;
365}
366
367int mtd_del_partition(struct mtd_info *mtd, int partno)
368{
369	struct mtd_info *child, *master = mtd_get_master(mtd);
370	int ret = -EINVAL;
371
372	mutex_lock(&master->master.partitions_lock);
373	list_for_each_entry(child, &mtd->partitions, part.node) {
374		if (child->index == partno) {
375			ret = __mtd_del_partition(child);
376			break;
377		}
378	}
379	mutex_unlock(&master->master.partitions_lock);
380
381	return ret;
382}
383EXPORT_SYMBOL_GPL(mtd_del_partition);
384
385/*
386 * This function, given a parent MTD object and a partition table, creates
387 * and registers the child MTD objects which are bound to the parent according
388 * to the partition definitions.
389 *
390 * For historical reasons, this function's caller only registers the parent
391 * if the MTD_PARTITIONED_MASTER config option is set.
392 */
393
394int add_mtd_partitions(struct mtd_info *parent,
395		       const struct mtd_partition *parts,
396		       int nbparts)
397{
398	struct mtd_info *child, *master = mtd_get_master(parent);
399	uint64_t cur_offset = 0;
400	int i, ret;
401
402	printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n",
403	       nbparts, parent->name);
404
405	for (i = 0; i < nbparts; i++) {
406		child = allocate_partition(parent, parts + i, i, cur_offset);
407		if (IS_ERR(child)) {
408			ret = PTR_ERR(child);
409			goto err_del_partitions;
410		}
411
412		mutex_lock(&master->master.partitions_lock);
413		list_add_tail(&child->part.node, &parent->partitions);
414		mutex_unlock(&master->master.partitions_lock);
415
416		ret = add_mtd_device(child);
417		if (ret) {
418			mutex_lock(&master->master.partitions_lock);
419			list_del(&child->part.node);
420			mutex_unlock(&master->master.partitions_lock);
421
422			free_partition(child);
423			goto err_del_partitions;
424		}
425
426		mtd_add_partition_attrs(child);
427
428		/* Look for subpartitions */
429		ret = parse_mtd_partitions(child, parts[i].types, NULL);
430		if (ret < 0) {
431			pr_err("Failed to parse subpartitions: %d\n", ret);
432			goto err_del_partitions;
433		}
434
435		cur_offset = child->part.offset + child->part.size;
436	}
437
438	return 0;
439
440err_del_partitions:
441	del_mtd_partitions(master);
442
443	return ret;
444}
445
446static DEFINE_SPINLOCK(part_parser_lock);
447static LIST_HEAD(part_parsers);
448
449static struct mtd_part_parser *mtd_part_parser_get(const char *name)
450{
451	struct mtd_part_parser *p, *ret = NULL;
452
453	spin_lock(&part_parser_lock);
454
455	list_for_each_entry(p, &part_parsers, list)
456		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
457			ret = p;
458			break;
459		}
460
461	spin_unlock(&part_parser_lock);
462
463	return ret;
464}
465
466static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
467{
468	module_put(p->owner);
469}
470
471/*
472 * Many partition parsers just expected the core to kfree() all their data in
473 * one chunk. Do that by default.
474 */
475static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
476					    int nr_parts)
477{
478	kfree(pparts);
479}
480
481int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
482{
483	p->owner = owner;
484
485	if (!p->cleanup)
486		p->cleanup = &mtd_part_parser_cleanup_default;
487
488	spin_lock(&part_parser_lock);
489	list_add(&p->list, &part_parsers);
490	spin_unlock(&part_parser_lock);
491
492	return 0;
493}
494EXPORT_SYMBOL_GPL(__register_mtd_parser);
495
496void deregister_mtd_parser(struct mtd_part_parser *p)
497{
498	spin_lock(&part_parser_lock);
499	list_del(&p->list);
500	spin_unlock(&part_parser_lock);
501}
502EXPORT_SYMBOL_GPL(deregister_mtd_parser);
503
504/*
505 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
506 * are changing this array!
507 */
508static const char * const default_mtd_part_types[] = {
509	"cmdlinepart",
510	"ofpart",
511	NULL
512};
513
514/* Check DT only when looking for subpartitions. */
515static const char * const default_subpartition_types[] = {
516	"ofpart",
517	NULL
518};
519
520static int mtd_part_do_parse(struct mtd_part_parser *parser,
521			     struct mtd_info *master,
522			     struct mtd_partitions *pparts,
523			     struct mtd_part_parser_data *data)
524{
525	int ret;
526
527	ret = (*parser->parse_fn)(master, &pparts->parts, data);
528	pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret);
529	if (ret <= 0)
530		return ret;
531
532	pr_notice("%d %s partitions found on MTD device %s\n", ret,
533		  parser->name, master->name);
534
535	pparts->nr_parts = ret;
536	pparts->parser = parser;
537
538	return ret;
539}
540
541/**
542 * mtd_part_get_compatible_parser - find MTD parser by a compatible string
543 *
544 * @compat: compatible string describing partitions in a device tree
545 *
546 * MTD parsers can specify supported partitions by providing a table of
547 * compatibility strings. This function finds a parser that advertises support
548 * for a passed value of "compatible".
549 */
550static struct mtd_part_parser *mtd_part_get_compatible_parser(const char *compat)
551{
552	struct mtd_part_parser *p, *ret = NULL;
553
554	spin_lock(&part_parser_lock);
555
556	list_for_each_entry(p, &part_parsers, list) {
557		const struct of_device_id *matches;
558
559		matches = p->of_match_table;
560		if (!matches)
561			continue;
562
563		for (; matches->compatible[0]; matches++) {
564			if (!strcmp(matches->compatible, compat) &&
565			    try_module_get(p->owner)) {
566				ret = p;
567				break;
568			}
569		}
570
571		if (ret)
572			break;
573	}
574
575	spin_unlock(&part_parser_lock);
576
577	return ret;
578}
579
580static int mtd_part_of_parse(struct mtd_info *master,
581			     struct mtd_partitions *pparts)
582{
583	struct mtd_part_parser *parser;
584	struct device_node *np;
585	struct device_node *child;
586	struct property *prop;
587	struct device *dev;
588	const char *compat;
589	const char *fixed = "fixed-partitions";
590	int ret, err = 0;
591
592	dev = &master->dev;
593	/* Use parent device (controller) if the top level MTD is not registered */
594	if (!IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) && !mtd_is_partition(master))
595		dev = master->dev.parent;
596
597	np = mtd_get_of_node(master);
598	if (mtd_is_partition(master))
599		of_node_get(np);
600	else
601		np = of_get_child_by_name(np, "partitions");
602
603	/*
604	 * Don't create devices that are added to a bus but will never get
605	 * probed. That'll cause fw_devlink to block probing of consumers of
606	 * this partition until the partition device is probed.
607	 */
608	for_each_child_of_node(np, child)
609		if (of_device_is_compatible(child, "nvmem-cells"))
610			of_node_set_flag(child, OF_POPULATED);
611
612	of_property_for_each_string(np, "compatible", prop, compat) {
613		parser = mtd_part_get_compatible_parser(compat);
614		if (!parser)
615			continue;
616		ret = mtd_part_do_parse(parser, master, pparts, NULL);
617		if (ret > 0) {
618			of_platform_populate(np, NULL, NULL, dev);
619			of_node_put(np);
620			return ret;
621		}
622		mtd_part_parser_put(parser);
623		if (ret < 0 && !err)
624			err = ret;
625	}
626	of_platform_populate(np, NULL, NULL, dev);
627	of_node_put(np);
628
629	/*
630	 * For backward compatibility we have to try the "fixed-partitions"
631	 * parser. It supports old DT format with partitions specified as a
632	 * direct subnodes of a flash device DT node without any compatibility
633	 * specified we could match.
634	 */
635	parser = mtd_part_parser_get(fixed);
636	if (!parser && !request_module("%s", fixed))
637		parser = mtd_part_parser_get(fixed);
638	if (parser) {
639		ret = mtd_part_do_parse(parser, master, pparts, NULL);
640		if (ret > 0)
641			return ret;
642		mtd_part_parser_put(parser);
643		if (ret < 0 && !err)
644			err = ret;
645	}
646
647	return err;
648}
649
650/**
651 * parse_mtd_partitions - parse and register MTD partitions
652 *
653 * @master: the master partition (describes whole MTD device)
654 * @types: names of partition parsers to try or %NULL
655 * @data: MTD partition parser-specific data
656 *
657 * This function tries to find & register partitions on MTD device @master. It
658 * uses MTD partition parsers, specified in @types. However, if @types is %NULL,
659 * then the default list of parsers is used. The default list contains only the
660 * "cmdlinepart" and "ofpart" parsers ATM.
661 * Note: If there are more then one parser in @types, the kernel only takes the
662 * partitions parsed out by the first parser.
663 *
664 * This function may return:
665 * o a negative error code in case of failure
666 * o number of found partitions otherwise
667 */
668int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
669			 struct mtd_part_parser_data *data)
670{
671	struct mtd_partitions pparts = { };
672	struct mtd_part_parser *parser;
673	int ret, err = 0;
674
675	if (!types)
676		types = mtd_is_partition(master) ? default_subpartition_types :
677			default_mtd_part_types;
678
679	for ( ; *types; types++) {
680		/*
681		 * ofpart is a special type that means OF partitioning info
682		 * should be used. It requires a bit different logic so it is
683		 * handled in a separated function.
684		 */
685		if (!strcmp(*types, "ofpart")) {
686			ret = mtd_part_of_parse(master, &pparts);
687		} else {
688			pr_debug("%s: parsing partitions %s\n", master->name,
689				 *types);
690			parser = mtd_part_parser_get(*types);
691			if (!parser && !request_module("%s", *types))
692				parser = mtd_part_parser_get(*types);
693			pr_debug("%s: got parser %s\n", master->name,
694				parser ? parser->name : NULL);
695			if (!parser)
696				continue;
697			ret = mtd_part_do_parse(parser, master, &pparts, data);
698			if (ret <= 0)
699				mtd_part_parser_put(parser);
700		}
701		/* Found partitions! */
702		if (ret > 0) {
703			err = add_mtd_partitions(master, pparts.parts,
704						 pparts.nr_parts);
705			mtd_part_parser_cleanup(&pparts);
706			return err ? err : pparts.nr_parts;
707		}
708		/*
709		 * Stash the first error we see; only report it if no parser
710		 * succeeds
711		 */
712		if (ret < 0 && !err)
713			err = ret;
714	}
715	return err;
716}
717
718void mtd_part_parser_cleanup(struct mtd_partitions *parts)
719{
720	const struct mtd_part_parser *parser;
721
722	if (!parts)
723		return;
724
725	parser = parts->parser;
726	if (parser) {
727		if (parser->cleanup)
728			parser->cleanup(parts->parts, parts->nr_parts);
729
730		mtd_part_parser_put(parser);
731	}
732}
733
734/* Returns the size of the entire flash chip */
735uint64_t mtd_get_device_size(const struct mtd_info *mtd)
736{
737	struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
738
739	return master->size;
740}
741EXPORT_SYMBOL_GPL(mtd_get_device_size);
742