1// SPDX-License-Identifier: GPL-2.0
2/*
3 * MMCIF eMMC driver.
4 *
5 * Copyright (C) 2010 Renesas Solutions Corp.
6 * Yusuke Goda <yusuke.goda.sx@renesas.com>
7 */
8
9/*
10 * The MMCIF driver is now processing MMC requests asynchronously, according
11 * to the Linux MMC API requirement.
12 *
13 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
14 * data, and optional stop. To achieve asynchronous processing each of these
15 * stages is split into two halves: a top and a bottom half. The top half
16 * initialises the hardware, installs a timeout handler to handle completion
17 * timeouts, and returns. In case of the command stage this immediately returns
18 * control to the caller, leaving all further processing to run asynchronously.
19 * All further request processing is performed by the bottom halves.
20 *
21 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
22 * thread, a DMA completion callback, if DMA is used, a timeout work, and
23 * request- and stage-specific handler methods.
24 *
25 * Each bottom half run begins with either a hardware interrupt, a DMA callback
26 * invocation, or a timeout work run. In case of an error or a successful
27 * processing completion, the MMC core is informed and the request processing is
28 * finished. In case processing has to continue, i.e., if data has to be read
29 * from or written to the card, or if a stop command has to be sent, the next
30 * top half is called, which performs the necessary hardware handling and
31 * reschedules the timeout work. This returns the driver state machine into the
32 * bottom half waiting state.
33 */
34
35#include <linux/bitops.h>
36#include <linux/clk.h>
37#include <linux/completion.h>
38#include <linux/delay.h>
39#include <linux/dma-mapping.h>
40#include <linux/dmaengine.h>
41#include <linux/mmc/card.h>
42#include <linux/mmc/core.h>
43#include <linux/mmc/host.h>
44#include <linux/mmc/mmc.h>
45#include <linux/mmc/sdio.h>
46#include <linux/mmc/slot-gpio.h>
47#include <linux/mod_devicetable.h>
48#include <linux/mutex.h>
49#include <linux/pagemap.h>
50#include <linux/platform_data/sh_mmcif.h>
51#include <linux/platform_device.h>
52#include <linux/pm_qos.h>
53#include <linux/pm_runtime.h>
54#include <linux/sh_dma.h>
55#include <linux/spinlock.h>
56#include <linux/module.h>
57
58#define DRIVER_NAME	"sh_mmcif"
59
60/* CE_CMD_SET */
61#define CMD_MASK		0x3f000000
62#define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
63#define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
64#define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
65#define CMD_SET_RBSY		(1 << 21) /* R1b */
66#define CMD_SET_CCSEN		(1 << 20)
67#define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
68#define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
69#define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
70#define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
71#define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
72#define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
73#define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
74#define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
75#define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
76#define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
77#define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
78#define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
79#define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
80#define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
81#define CMD_SET_CCSH		(1 << 5)
82#define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
83#define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
84#define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
85#define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
86
87/* CE_CMD_CTRL */
88#define CMD_CTRL_BREAK		(1 << 0)
89
90/* CE_BLOCK_SET */
91#define BLOCK_SIZE_MASK		0x0000ffff
92
93/* CE_INT */
94#define INT_CCSDE		(1 << 29)
95#define INT_CMD12DRE		(1 << 26)
96#define INT_CMD12RBE		(1 << 25)
97#define INT_CMD12CRE		(1 << 24)
98#define INT_DTRANE		(1 << 23)
99#define INT_BUFRE		(1 << 22)
100#define INT_BUFWEN		(1 << 21)
101#define INT_BUFREN		(1 << 20)
102#define INT_CCSRCV		(1 << 19)
103#define INT_RBSYE		(1 << 17)
104#define INT_CRSPE		(1 << 16)
105#define INT_CMDVIO		(1 << 15)
106#define INT_BUFVIO		(1 << 14)
107#define INT_WDATERR		(1 << 11)
108#define INT_RDATERR		(1 << 10)
109#define INT_RIDXERR		(1 << 9)
110#define INT_RSPERR		(1 << 8)
111#define INT_CCSTO		(1 << 5)
112#define INT_CRCSTO		(1 << 4)
113#define INT_WDATTO		(1 << 3)
114#define INT_RDATTO		(1 << 2)
115#define INT_RBSYTO		(1 << 1)
116#define INT_RSPTO		(1 << 0)
117#define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
118				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
119				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
120				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
121
122#define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
123				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
124				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
125
126#define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
127
128/* CE_INT_MASK */
129#define MASK_ALL		0x00000000
130#define MASK_MCCSDE		(1 << 29)
131#define MASK_MCMD12DRE		(1 << 26)
132#define MASK_MCMD12RBE		(1 << 25)
133#define MASK_MCMD12CRE		(1 << 24)
134#define MASK_MDTRANE		(1 << 23)
135#define MASK_MBUFRE		(1 << 22)
136#define MASK_MBUFWEN		(1 << 21)
137#define MASK_MBUFREN		(1 << 20)
138#define MASK_MCCSRCV		(1 << 19)
139#define MASK_MRBSYE		(1 << 17)
140#define MASK_MCRSPE		(1 << 16)
141#define MASK_MCMDVIO		(1 << 15)
142#define MASK_MBUFVIO		(1 << 14)
143#define MASK_MWDATERR		(1 << 11)
144#define MASK_MRDATERR		(1 << 10)
145#define MASK_MRIDXERR		(1 << 9)
146#define MASK_MRSPERR		(1 << 8)
147#define MASK_MCCSTO		(1 << 5)
148#define MASK_MCRCSTO		(1 << 4)
149#define MASK_MWDATTO		(1 << 3)
150#define MASK_MRDATTO		(1 << 2)
151#define MASK_MRBSYTO		(1 << 1)
152#define MASK_MRSPTO		(1 << 0)
153
154#define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
155				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
156				 MASK_MCRCSTO | MASK_MWDATTO | \
157				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
158
159#define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
160				 MASK_MBUFREN | MASK_MBUFWEN |			\
161				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
162				 MASK_MCMD12RBE | MASK_MCMD12CRE)
163
164/* CE_HOST_STS1 */
165#define STS1_CMDSEQ		(1 << 31)
166
167/* CE_HOST_STS2 */
168#define STS2_CRCSTE		(1 << 31)
169#define STS2_CRC16E		(1 << 30)
170#define STS2_AC12CRCE		(1 << 29)
171#define STS2_RSPCRC7E		(1 << 28)
172#define STS2_CRCSTEBE		(1 << 27)
173#define STS2_RDATEBE		(1 << 26)
174#define STS2_AC12REBE		(1 << 25)
175#define STS2_RSPEBE		(1 << 24)
176#define STS2_AC12IDXE		(1 << 23)
177#define STS2_RSPIDXE		(1 << 22)
178#define STS2_CCSTO		(1 << 15)
179#define STS2_RDATTO		(1 << 14)
180#define STS2_DATBSYTO		(1 << 13)
181#define STS2_CRCSTTO		(1 << 12)
182#define STS2_AC12BSYTO		(1 << 11)
183#define STS2_RSPBSYTO		(1 << 10)
184#define STS2_AC12RSPTO		(1 << 9)
185#define STS2_RSPTO		(1 << 8)
186#define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
187				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
188#define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
189				 STS2_DATBSYTO | STS2_CRCSTTO |		\
190				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
191				 STS2_AC12RSPTO | STS2_RSPTO)
192
193#define CLKDEV_EMMC_DATA	52000000 /* 52 MHz */
194#define CLKDEV_MMC_DATA		20000000 /* 20 MHz */
195#define CLKDEV_INIT		400000   /* 400 kHz */
196
197enum sh_mmcif_state {
198	STATE_IDLE,
199	STATE_REQUEST,
200	STATE_IOS,
201	STATE_TIMEOUT,
202};
203
204enum sh_mmcif_wait_for {
205	MMCIF_WAIT_FOR_REQUEST,
206	MMCIF_WAIT_FOR_CMD,
207	MMCIF_WAIT_FOR_MREAD,
208	MMCIF_WAIT_FOR_MWRITE,
209	MMCIF_WAIT_FOR_READ,
210	MMCIF_WAIT_FOR_WRITE,
211	MMCIF_WAIT_FOR_READ_END,
212	MMCIF_WAIT_FOR_WRITE_END,
213	MMCIF_WAIT_FOR_STOP,
214};
215
216/*
217 * difference for each SoC
218 */
219struct sh_mmcif_host {
220	struct mmc_host *mmc;
221	struct mmc_request *mrq;
222	struct platform_device *pd;
223	struct clk *clk;
224	int bus_width;
225	unsigned char timing;
226	bool sd_error;
227	bool dying;
228	long timeout;
229	void __iomem *addr;
230	spinlock_t lock;		/* protect sh_mmcif_host::state */
231	enum sh_mmcif_state state;
232	enum sh_mmcif_wait_for wait_for;
233	struct delayed_work timeout_work;
234	size_t blocksize;
235	struct sg_mapping_iter sg_miter;
236	bool power;
237	bool ccs_enable;		/* Command Completion Signal support */
238	bool clk_ctrl2_enable;
239	struct mutex thread_lock;
240	u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
241
242	/* DMA support */
243	struct dma_chan		*chan_rx;
244	struct dma_chan		*chan_tx;
245	struct completion	dma_complete;
246	bool			dma_active;
247};
248
249static const struct of_device_id sh_mmcif_of_match[] = {
250	{ .compatible = "renesas,sh-mmcif" },
251	{ }
252};
253MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
254
255#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
256
257static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
258					unsigned int reg, u32 val)
259{
260	writel(val | readl(host->addr + reg), host->addr + reg);
261}
262
263static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
264					unsigned int reg, u32 val)
265{
266	writel(~val & readl(host->addr + reg), host->addr + reg);
267}
268
269static void sh_mmcif_dma_complete(void *arg)
270{
271	struct sh_mmcif_host *host = arg;
272	struct mmc_request *mrq = host->mrq;
273	struct device *dev = sh_mmcif_host_to_dev(host);
274
275	dev_dbg(dev, "Command completed\n");
276
277	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
278		 dev_name(dev)))
279		return;
280
281	complete(&host->dma_complete);
282}
283
284static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
285{
286	struct mmc_data *data = host->mrq->data;
287	struct scatterlist *sg = data->sg;
288	struct dma_async_tx_descriptor *desc = NULL;
289	struct dma_chan *chan = host->chan_rx;
290	struct device *dev = sh_mmcif_host_to_dev(host);
291	dma_cookie_t cookie = -EINVAL;
292	int ret;
293
294	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
295			 DMA_FROM_DEVICE);
296	if (ret > 0) {
297		host->dma_active = true;
298		desc = dmaengine_prep_slave_sg(chan, sg, ret,
299			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
300	}
301
302	if (desc) {
303		desc->callback = sh_mmcif_dma_complete;
304		desc->callback_param = host;
305		cookie = dmaengine_submit(desc);
306		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
307		dma_async_issue_pending(chan);
308	}
309	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
310		__func__, data->sg_len, ret, cookie);
311
312	if (!desc) {
313		/* DMA failed, fall back to PIO */
314		if (ret >= 0)
315			ret = -EIO;
316		host->chan_rx = NULL;
317		host->dma_active = false;
318		dma_release_channel(chan);
319		/* Free the Tx channel too */
320		chan = host->chan_tx;
321		if (chan) {
322			host->chan_tx = NULL;
323			dma_release_channel(chan);
324		}
325		dev_warn(dev,
326			 "DMA failed: %d, falling back to PIO\n", ret);
327		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
328	}
329
330	dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
331		desc, cookie, data->sg_len);
332}
333
334static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
335{
336	struct mmc_data *data = host->mrq->data;
337	struct scatterlist *sg = data->sg;
338	struct dma_async_tx_descriptor *desc = NULL;
339	struct dma_chan *chan = host->chan_tx;
340	struct device *dev = sh_mmcif_host_to_dev(host);
341	dma_cookie_t cookie = -EINVAL;
342	int ret;
343
344	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
345			 DMA_TO_DEVICE);
346	if (ret > 0) {
347		host->dma_active = true;
348		desc = dmaengine_prep_slave_sg(chan, sg, ret,
349			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
350	}
351
352	if (desc) {
353		desc->callback = sh_mmcif_dma_complete;
354		desc->callback_param = host;
355		cookie = dmaengine_submit(desc);
356		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
357		dma_async_issue_pending(chan);
358	}
359	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
360		__func__, data->sg_len, ret, cookie);
361
362	if (!desc) {
363		/* DMA failed, fall back to PIO */
364		if (ret >= 0)
365			ret = -EIO;
366		host->chan_tx = NULL;
367		host->dma_active = false;
368		dma_release_channel(chan);
369		/* Free the Rx channel too */
370		chan = host->chan_rx;
371		if (chan) {
372			host->chan_rx = NULL;
373			dma_release_channel(chan);
374		}
375		dev_warn(dev,
376			 "DMA failed: %d, falling back to PIO\n", ret);
377		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
378	}
379
380	dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
381		desc, cookie);
382}
383
384static struct dma_chan *
385sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
386{
387	dma_cap_mask_t mask;
388
389	dma_cap_zero(mask);
390	dma_cap_set(DMA_SLAVE, mask);
391	if (slave_id <= 0)
392		return NULL;
393
394	return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
395}
396
397static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
398				     struct dma_chan *chan,
399				     enum dma_transfer_direction direction)
400{
401	struct resource *res;
402	struct dma_slave_config cfg = { 0, };
403
404	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
405	if (!res)
406		return -EINVAL;
407
408	cfg.direction = direction;
409
410	if (direction == DMA_DEV_TO_MEM) {
411		cfg.src_addr = res->start + MMCIF_CE_DATA;
412		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
413	} else {
414		cfg.dst_addr = res->start + MMCIF_CE_DATA;
415		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
416	}
417
418	return dmaengine_slave_config(chan, &cfg);
419}
420
421static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
422{
423	struct device *dev = sh_mmcif_host_to_dev(host);
424	host->dma_active = false;
425
426	/* We can only either use DMA for both Tx and Rx or not use it at all */
427	if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
428		struct sh_mmcif_plat_data *pdata = dev->platform_data;
429
430		host->chan_tx = sh_mmcif_request_dma_pdata(host,
431							pdata->slave_id_tx);
432		host->chan_rx = sh_mmcif_request_dma_pdata(host,
433							pdata->slave_id_rx);
434	} else {
435		host->chan_tx = dma_request_chan(dev, "tx");
436		if (IS_ERR(host->chan_tx))
437			host->chan_tx = NULL;
438		host->chan_rx = dma_request_chan(dev, "rx");
439		if (IS_ERR(host->chan_rx))
440			host->chan_rx = NULL;
441	}
442	dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
443		host->chan_rx);
444
445	if (!host->chan_tx || !host->chan_rx ||
446	    sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
447	    sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
448		goto error;
449
450	return;
451
452error:
453	if (host->chan_tx)
454		dma_release_channel(host->chan_tx);
455	if (host->chan_rx)
456		dma_release_channel(host->chan_rx);
457	host->chan_tx = host->chan_rx = NULL;
458}
459
460static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
461{
462	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
463	/* Descriptors are freed automatically */
464	if (host->chan_tx) {
465		struct dma_chan *chan = host->chan_tx;
466		host->chan_tx = NULL;
467		dma_release_channel(chan);
468	}
469	if (host->chan_rx) {
470		struct dma_chan *chan = host->chan_rx;
471		host->chan_rx = NULL;
472		dma_release_channel(chan);
473	}
474
475	host->dma_active = false;
476}
477
478static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
479{
480	struct device *dev = sh_mmcif_host_to_dev(host);
481	struct sh_mmcif_plat_data *p = dev->platform_data;
482	bool sup_pclk = p ? p->sup_pclk : false;
483	unsigned int current_clk = clk_get_rate(host->clk);
484	unsigned int clkdiv;
485
486	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
487	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
488
489	if (!clk)
490		return;
491
492	if (host->clkdiv_map) {
493		unsigned int freq, best_freq, myclk, div, diff_min, diff;
494		int i;
495
496		clkdiv = 0;
497		diff_min = ~0;
498		best_freq = 0;
499		for (i = 31; i >= 0; i--) {
500			if (!((1 << i) & host->clkdiv_map))
501				continue;
502
503			/*
504			 * clk = parent_freq / div
505			 * -> parent_freq = clk x div
506			 */
507
508			div = 1 << (i + 1);
509			freq = clk_round_rate(host->clk, clk * div);
510			myclk = freq / div;
511			diff = (myclk > clk) ? myclk - clk : clk - myclk;
512
513			if (diff <= diff_min) {
514				best_freq = freq;
515				clkdiv = i;
516				diff_min = diff;
517			}
518		}
519
520		dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
521			(best_freq >> (clkdiv + 1)), clk, best_freq, clkdiv);
522
523		clk_set_rate(host->clk, best_freq);
524		clkdiv = clkdiv << 16;
525	} else if (sup_pclk && clk == current_clk) {
526		clkdiv = CLK_SUP_PCLK;
527	} else {
528		clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
529	}
530
531	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
532	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
533}
534
535static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
536{
537	u32 tmp;
538
539	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
540
541	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
542	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
543	if (host->ccs_enable)
544		tmp |= SCCSTO_29;
545	if (host->clk_ctrl2_enable)
546		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
547	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
548		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
549	/* byte swap on */
550	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
551}
552
553static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
554{
555	struct device *dev = sh_mmcif_host_to_dev(host);
556	u32 state1, state2;
557	int ret, timeout;
558
559	host->sd_error = false;
560
561	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
562	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
563	dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
564	dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
565
566	if (state1 & STS1_CMDSEQ) {
567		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
568		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
569		for (timeout = 10000; timeout; timeout--) {
570			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
571			      & STS1_CMDSEQ))
572				break;
573			mdelay(1);
574		}
575		if (!timeout) {
576			dev_err(dev,
577				"Forced end of command sequence timeout err\n");
578			return -EIO;
579		}
580		sh_mmcif_sync_reset(host);
581		dev_dbg(dev, "Forced end of command sequence\n");
582		return -EIO;
583	}
584
585	if (state2 & STS2_CRC_ERR) {
586		dev_err(dev, " CRC error: state %u, wait %u\n",
587			host->state, host->wait_for);
588		ret = -EIO;
589	} else if (state2 & STS2_TIMEOUT_ERR) {
590		dev_err(dev, " Timeout: state %u, wait %u\n",
591			host->state, host->wait_for);
592		ret = -ETIMEDOUT;
593	} else {
594		dev_dbg(dev, " End/Index error: state %u, wait %u\n",
595			host->state, host->wait_for);
596		ret = -EIO;
597	}
598	return ret;
599}
600
601static void sh_mmcif_single_read(struct sh_mmcif_host *host,
602				 struct mmc_request *mrq)
603{
604	struct mmc_data *data = mrq->data;
605
606	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
607			   BLOCK_SIZE_MASK) + 3;
608
609	sg_miter_start(&host->sg_miter, data->sg, data->sg_len,
610		       SG_MITER_TO_SG);
611
612	host->wait_for = MMCIF_WAIT_FOR_READ;
613
614	/* buf read enable */
615	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
616}
617
618static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
619{
620	struct sg_mapping_iter *sgm = &host->sg_miter;
621	struct device *dev = sh_mmcif_host_to_dev(host);
622	struct mmc_data *data = host->mrq->data;
623	u32 *p;
624	int i;
625
626	if (host->sd_error) {
627		sg_miter_stop(sgm);
628		data->error = sh_mmcif_error_manage(host);
629		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
630		return false;
631	}
632
633	if (!sg_miter_next(sgm)) {
634		/* This should not happen on single blocks */
635		sg_miter_stop(sgm);
636		return false;
637	}
638
639	p = sgm->addr;
640
641	for (i = 0; i < host->blocksize / 4; i++)
642		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
643
644	sg_miter_stop(&host->sg_miter);
645
646	/* buffer read end */
647	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
648	host->wait_for = MMCIF_WAIT_FOR_READ_END;
649
650	return true;
651}
652
653static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
654				struct mmc_request *mrq)
655{
656	struct sg_mapping_iter *sgm = &host->sg_miter;
657	struct mmc_data *data = mrq->data;
658
659	if (!data->sg_len || !data->sg->length)
660		return;
661
662	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
663		BLOCK_SIZE_MASK;
664
665	sg_miter_start(sgm, data->sg, data->sg_len,
666		       SG_MITER_TO_SG);
667
668	/* Advance to the first sglist entry */
669	if (!sg_miter_next(sgm)) {
670		sg_miter_stop(sgm);
671		return;
672	}
673
674	host->wait_for = MMCIF_WAIT_FOR_MREAD;
675
676	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
677}
678
679static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
680{
681	struct sg_mapping_iter *sgm = &host->sg_miter;
682	struct device *dev = sh_mmcif_host_to_dev(host);
683	struct mmc_data *data = host->mrq->data;
684	u32 *p;
685	int i;
686
687	if (host->sd_error) {
688		sg_miter_stop(sgm);
689		data->error = sh_mmcif_error_manage(host);
690		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
691		return false;
692	}
693
694	p = sgm->addr;
695
696	for (i = 0; i < host->blocksize / 4; i++)
697		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
698
699	sgm->consumed = host->blocksize;
700
701	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
702
703	if (!sg_miter_next(sgm)) {
704		sg_miter_stop(sgm);
705		return false;
706	}
707
708	return true;
709}
710
711static void sh_mmcif_single_write(struct sh_mmcif_host *host,
712					struct mmc_request *mrq)
713{
714	struct mmc_data *data = mrq->data;
715
716	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
717			   BLOCK_SIZE_MASK) + 3;
718
719	sg_miter_start(&host->sg_miter, data->sg, data->sg_len,
720		       SG_MITER_FROM_SG);
721
722	host->wait_for = MMCIF_WAIT_FOR_WRITE;
723
724	/* buf write enable */
725	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
726}
727
728static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
729{
730	struct sg_mapping_iter *sgm = &host->sg_miter;
731	struct device *dev = sh_mmcif_host_to_dev(host);
732	struct mmc_data *data = host->mrq->data;
733	u32 *p;
734	int i;
735
736	if (host->sd_error) {
737		sg_miter_stop(sgm);
738		data->error = sh_mmcif_error_manage(host);
739		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
740		return false;
741	}
742
743	if (!sg_miter_next(sgm)) {
744		/* This should not happen on single blocks */
745		sg_miter_stop(sgm);
746		return false;
747	}
748
749	p = sgm->addr;
750
751	for (i = 0; i < host->blocksize / 4; i++)
752		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
753
754	sg_miter_stop(&host->sg_miter);
755
756	/* buffer write end */
757	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
758	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
759
760	return true;
761}
762
763static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
764				struct mmc_request *mrq)
765{
766	struct sg_mapping_iter *sgm = &host->sg_miter;
767	struct mmc_data *data = mrq->data;
768
769	if (!data->sg_len || !data->sg->length)
770		return;
771
772	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
773		BLOCK_SIZE_MASK;
774
775	sg_miter_start(sgm, data->sg, data->sg_len,
776		       SG_MITER_FROM_SG);
777
778	/* Advance to the first sglist entry */
779	if (!sg_miter_next(sgm)) {
780		sg_miter_stop(sgm);
781		return;
782	}
783
784	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
785
786	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
787}
788
789static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
790{
791	struct sg_mapping_iter *sgm = &host->sg_miter;
792	struct device *dev = sh_mmcif_host_to_dev(host);
793	struct mmc_data *data = host->mrq->data;
794	u32 *p;
795	int i;
796
797	if (host->sd_error) {
798		sg_miter_stop(sgm);
799		data->error = sh_mmcif_error_manage(host);
800		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
801		return false;
802	}
803
804	p = sgm->addr;
805
806	for (i = 0; i < host->blocksize / 4; i++)
807		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
808
809	sgm->consumed = host->blocksize;
810
811	if (!sg_miter_next(sgm)) {
812		sg_miter_stop(sgm);
813		return false;
814	}
815
816	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
817
818	return true;
819}
820
821static void sh_mmcif_get_response(struct sh_mmcif_host *host,
822						struct mmc_command *cmd)
823{
824	if (cmd->flags & MMC_RSP_136) {
825		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
826		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
827		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
828		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
829	} else
830		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
831}
832
833static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
834						struct mmc_command *cmd)
835{
836	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
837}
838
839static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
840			    struct mmc_request *mrq)
841{
842	struct device *dev = sh_mmcif_host_to_dev(host);
843	struct mmc_data *data = mrq->data;
844	struct mmc_command *cmd = mrq->cmd;
845	u32 opc = cmd->opcode;
846	u32 tmp = 0;
847
848	/* Response Type check */
849	switch (mmc_resp_type(cmd)) {
850	case MMC_RSP_NONE:
851		tmp |= CMD_SET_RTYP_NO;
852		break;
853	case MMC_RSP_R1:
854	case MMC_RSP_R3:
855		tmp |= CMD_SET_RTYP_6B;
856		break;
857	case MMC_RSP_R1B:
858		tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
859		break;
860	case MMC_RSP_R2:
861		tmp |= CMD_SET_RTYP_17B;
862		break;
863	default:
864		dev_err(dev, "Unsupported response type.\n");
865		break;
866	}
867
868	/* WDAT / DATW */
869	if (data) {
870		tmp |= CMD_SET_WDAT;
871		switch (host->bus_width) {
872		case MMC_BUS_WIDTH_1:
873			tmp |= CMD_SET_DATW_1;
874			break;
875		case MMC_BUS_WIDTH_4:
876			tmp |= CMD_SET_DATW_4;
877			break;
878		case MMC_BUS_WIDTH_8:
879			tmp |= CMD_SET_DATW_8;
880			break;
881		default:
882			dev_err(dev, "Unsupported bus width.\n");
883			break;
884		}
885		switch (host->timing) {
886		case MMC_TIMING_MMC_DDR52:
887			/*
888			 * MMC core will only set this timing, if the host
889			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
890			 * capability. MMCIF implementations with this
891			 * capability, e.g. sh73a0, will have to set it
892			 * in their platform data.
893			 */
894			tmp |= CMD_SET_DARS;
895			break;
896		}
897	}
898	/* DWEN */
899	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
900		tmp |= CMD_SET_DWEN;
901	/* CMLTE/CMD12EN */
902	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
903		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
904		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
905				data->blocks << 16);
906	}
907	/* RIDXC[1:0] check bits */
908	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
909	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
910		tmp |= CMD_SET_RIDXC_BITS;
911	/* RCRC7C[1:0] check bits */
912	if (opc == MMC_SEND_OP_COND)
913		tmp |= CMD_SET_CRC7C_BITS;
914	/* RCRC7C[1:0] internal CRC7 */
915	if (opc == MMC_ALL_SEND_CID ||
916		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
917		tmp |= CMD_SET_CRC7C_INTERNAL;
918
919	return (opc << 24) | tmp;
920}
921
922static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
923			       struct mmc_request *mrq, u32 opc)
924{
925	struct device *dev = sh_mmcif_host_to_dev(host);
926
927	switch (opc) {
928	case MMC_READ_MULTIPLE_BLOCK:
929		sh_mmcif_multi_read(host, mrq);
930		return 0;
931	case MMC_WRITE_MULTIPLE_BLOCK:
932		sh_mmcif_multi_write(host, mrq);
933		return 0;
934	case MMC_WRITE_BLOCK:
935		sh_mmcif_single_write(host, mrq);
936		return 0;
937	case MMC_READ_SINGLE_BLOCK:
938	case MMC_SEND_EXT_CSD:
939		sh_mmcif_single_read(host, mrq);
940		return 0;
941	default:
942		dev_err(dev, "Unsupported CMD%d\n", opc);
943		return -EINVAL;
944	}
945}
946
947static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
948			       struct mmc_request *mrq)
949{
950	struct mmc_command *cmd = mrq->cmd;
951	u32 opc;
952	u32 mask = 0;
953	unsigned long flags;
954
955	if (cmd->flags & MMC_RSP_BUSY)
956		mask = MASK_START_CMD | MASK_MRBSYE;
957	else
958		mask = MASK_START_CMD | MASK_MCRSPE;
959
960	if (host->ccs_enable)
961		mask |= MASK_MCCSTO;
962
963	if (mrq->data) {
964		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
965		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
966				mrq->data->blksz);
967	}
968	opc = sh_mmcif_set_cmd(host, mrq);
969
970	if (host->ccs_enable)
971		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
972	else
973		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
974	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
975	/* set arg */
976	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
977	/* set cmd */
978	spin_lock_irqsave(&host->lock, flags);
979	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
980
981	host->wait_for = MMCIF_WAIT_FOR_CMD;
982	schedule_delayed_work(&host->timeout_work, host->timeout);
983	spin_unlock_irqrestore(&host->lock, flags);
984}
985
986static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
987			      struct mmc_request *mrq)
988{
989	struct device *dev = sh_mmcif_host_to_dev(host);
990
991	switch (mrq->cmd->opcode) {
992	case MMC_READ_MULTIPLE_BLOCK:
993		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
994		break;
995	case MMC_WRITE_MULTIPLE_BLOCK:
996		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
997		break;
998	default:
999		dev_err(dev, "unsupported stop cmd\n");
1000		mrq->stop->error = sh_mmcif_error_manage(host);
1001		return;
1002	}
1003
1004	host->wait_for = MMCIF_WAIT_FOR_STOP;
1005}
1006
1007static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
1008{
1009	struct sh_mmcif_host *host = mmc_priv(mmc);
1010	struct device *dev = sh_mmcif_host_to_dev(host);
1011	unsigned long flags;
1012
1013	spin_lock_irqsave(&host->lock, flags);
1014	if (host->state != STATE_IDLE) {
1015		dev_dbg(dev, "%s() rejected, state %u\n",
1016			__func__, host->state);
1017		spin_unlock_irqrestore(&host->lock, flags);
1018		mrq->cmd->error = -EAGAIN;
1019		mmc_request_done(mmc, mrq);
1020		return;
1021	}
1022
1023	host->state = STATE_REQUEST;
1024	spin_unlock_irqrestore(&host->lock, flags);
1025
1026	host->mrq = mrq;
1027
1028	sh_mmcif_start_cmd(host, mrq);
1029}
1030
1031static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
1032{
1033	struct device *dev = sh_mmcif_host_to_dev(host);
1034
1035	if (host->mmc->f_max) {
1036		unsigned int f_max, f_min = 0, f_min_old;
1037
1038		f_max = host->mmc->f_max;
1039		for (f_min_old = f_max; f_min_old > 2;) {
1040			f_min = clk_round_rate(host->clk, f_min_old / 2);
1041			if (f_min == f_min_old)
1042				break;
1043			f_min_old = f_min;
1044		}
1045
1046		/*
1047		 * This driver assumes this SoC is R-Car Gen2 or later
1048		 */
1049		host->clkdiv_map = 0x3ff;
1050
1051		host->mmc->f_max = f_max >> ffs(host->clkdiv_map);
1052		host->mmc->f_min = f_min >> fls(host->clkdiv_map);
1053	} else {
1054		unsigned int clk = clk_get_rate(host->clk);
1055
1056		host->mmc->f_max = clk / 2;
1057		host->mmc->f_min = clk / 512;
1058	}
1059
1060	dev_dbg(dev, "clk max/min = %d/%d\n",
1061		host->mmc->f_max, host->mmc->f_min);
1062}
1063
1064static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1065{
1066	struct sh_mmcif_host *host = mmc_priv(mmc);
1067	struct device *dev = sh_mmcif_host_to_dev(host);
1068	unsigned long flags;
1069
1070	spin_lock_irqsave(&host->lock, flags);
1071	if (host->state != STATE_IDLE) {
1072		dev_dbg(dev, "%s() rejected, state %u\n",
1073			__func__, host->state);
1074		spin_unlock_irqrestore(&host->lock, flags);
1075		return;
1076	}
1077
1078	host->state = STATE_IOS;
1079	spin_unlock_irqrestore(&host->lock, flags);
1080
1081	switch (ios->power_mode) {
1082	case MMC_POWER_UP:
1083		if (!IS_ERR(mmc->supply.vmmc))
1084			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1085		if (!host->power) {
1086			clk_prepare_enable(host->clk);
1087			pm_runtime_get_sync(dev);
1088			sh_mmcif_sync_reset(host);
1089			sh_mmcif_request_dma(host);
1090			host->power = true;
1091		}
1092		break;
1093	case MMC_POWER_OFF:
1094		if (!IS_ERR(mmc->supply.vmmc))
1095			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1096		if (host->power) {
1097			sh_mmcif_clock_control(host, 0);
1098			sh_mmcif_release_dma(host);
1099			pm_runtime_put(dev);
1100			clk_disable_unprepare(host->clk);
1101			host->power = false;
1102		}
1103		break;
1104	case MMC_POWER_ON:
1105		sh_mmcif_clock_control(host, ios->clock);
1106		break;
1107	}
1108
1109	host->timing = ios->timing;
1110	host->bus_width = ios->bus_width;
1111	host->state = STATE_IDLE;
1112}
1113
1114static const struct mmc_host_ops sh_mmcif_ops = {
1115	.request	= sh_mmcif_request,
1116	.set_ios	= sh_mmcif_set_ios,
1117	.get_cd		= mmc_gpio_get_cd,
1118};
1119
1120static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1121{
1122	struct mmc_command *cmd = host->mrq->cmd;
1123	struct mmc_data *data = host->mrq->data;
1124	struct device *dev = sh_mmcif_host_to_dev(host);
1125	long time;
1126
1127	if (host->sd_error) {
1128		switch (cmd->opcode) {
1129		case MMC_ALL_SEND_CID:
1130		case MMC_SELECT_CARD:
1131		case MMC_APP_CMD:
1132			cmd->error = -ETIMEDOUT;
1133			break;
1134		default:
1135			cmd->error = sh_mmcif_error_manage(host);
1136			break;
1137		}
1138		dev_dbg(dev, "CMD%d error %d\n",
1139			cmd->opcode, cmd->error);
1140		host->sd_error = false;
1141		return false;
1142	}
1143	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1144		cmd->error = 0;
1145		return false;
1146	}
1147
1148	sh_mmcif_get_response(host, cmd);
1149
1150	if (!data)
1151		return false;
1152
1153	/*
1154	 * Completion can be signalled from DMA callback and error, so, have to
1155	 * reset here, before setting .dma_active
1156	 */
1157	init_completion(&host->dma_complete);
1158
1159	if (data->flags & MMC_DATA_READ) {
1160		if (host->chan_rx)
1161			sh_mmcif_start_dma_rx(host);
1162	} else {
1163		if (host->chan_tx)
1164			sh_mmcif_start_dma_tx(host);
1165	}
1166
1167	if (!host->dma_active) {
1168		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1169		return !data->error;
1170	}
1171
1172	/* Running in the IRQ thread, can sleep */
1173	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1174							 host->timeout);
1175
1176	if (data->flags & MMC_DATA_READ)
1177		dma_unmap_sg(host->chan_rx->device->dev,
1178			     data->sg, data->sg_len,
1179			     DMA_FROM_DEVICE);
1180	else
1181		dma_unmap_sg(host->chan_tx->device->dev,
1182			     data->sg, data->sg_len,
1183			     DMA_TO_DEVICE);
1184
1185	if (host->sd_error) {
1186		dev_err(host->mmc->parent,
1187			"Error IRQ while waiting for DMA completion!\n");
1188		/* Woken up by an error IRQ: abort DMA */
1189		data->error = sh_mmcif_error_manage(host);
1190	} else if (!time) {
1191		dev_err(host->mmc->parent, "DMA timeout!\n");
1192		data->error = -ETIMEDOUT;
1193	} else if (time < 0) {
1194		dev_err(host->mmc->parent,
1195			"wait_for_completion_...() error %ld!\n", time);
1196		data->error = time;
1197	}
1198	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1199			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1200	host->dma_active = false;
1201
1202	if (data->error) {
1203		data->bytes_xfered = 0;
1204		/* Abort DMA */
1205		if (data->flags & MMC_DATA_READ)
1206			dmaengine_terminate_sync(host->chan_rx);
1207		else
1208			dmaengine_terminate_sync(host->chan_tx);
1209	}
1210
1211	return false;
1212}
1213
1214static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1215{
1216	struct sh_mmcif_host *host = dev_id;
1217	struct mmc_request *mrq;
1218	struct device *dev = sh_mmcif_host_to_dev(host);
1219	bool wait = false;
1220	unsigned long flags;
1221	int wait_work;
1222
1223	spin_lock_irqsave(&host->lock, flags);
1224	wait_work = host->wait_for;
1225	spin_unlock_irqrestore(&host->lock, flags);
1226
1227	cancel_delayed_work_sync(&host->timeout_work);
1228
1229	mutex_lock(&host->thread_lock);
1230
1231	mrq = host->mrq;
1232	if (!mrq) {
1233		dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1234			host->state, host->wait_for);
1235		mutex_unlock(&host->thread_lock);
1236		return IRQ_HANDLED;
1237	}
1238
1239	/*
1240	 * All handlers return true, if processing continues, and false, if the
1241	 * request has to be completed - successfully or not
1242	 */
1243	switch (wait_work) {
1244	case MMCIF_WAIT_FOR_REQUEST:
1245		/* We're too late, the timeout has already kicked in */
1246		mutex_unlock(&host->thread_lock);
1247		return IRQ_HANDLED;
1248	case MMCIF_WAIT_FOR_CMD:
1249		/* Wait for data? */
1250		wait = sh_mmcif_end_cmd(host);
1251		break;
1252	case MMCIF_WAIT_FOR_MREAD:
1253		/* Wait for more data? */
1254		wait = sh_mmcif_mread_block(host);
1255		break;
1256	case MMCIF_WAIT_FOR_READ:
1257		/* Wait for data end? */
1258		wait = sh_mmcif_read_block(host);
1259		break;
1260	case MMCIF_WAIT_FOR_MWRITE:
1261		/* Wait data to write? */
1262		wait = sh_mmcif_mwrite_block(host);
1263		break;
1264	case MMCIF_WAIT_FOR_WRITE:
1265		/* Wait for data end? */
1266		wait = sh_mmcif_write_block(host);
1267		break;
1268	case MMCIF_WAIT_FOR_STOP:
1269		if (host->sd_error) {
1270			mrq->stop->error = sh_mmcif_error_manage(host);
1271			dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1272			break;
1273		}
1274		sh_mmcif_get_cmd12response(host, mrq->stop);
1275		mrq->stop->error = 0;
1276		break;
1277	case MMCIF_WAIT_FOR_READ_END:
1278	case MMCIF_WAIT_FOR_WRITE_END:
1279		if (host->sd_error) {
1280			mrq->data->error = sh_mmcif_error_manage(host);
1281			dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1282		}
1283		break;
1284	default:
1285		BUG();
1286	}
1287
1288	if (wait) {
1289		schedule_delayed_work(&host->timeout_work, host->timeout);
1290		/* Wait for more data */
1291		mutex_unlock(&host->thread_lock);
1292		return IRQ_HANDLED;
1293	}
1294
1295	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1296		struct mmc_data *data = mrq->data;
1297		if (!mrq->cmd->error && data && !data->error)
1298			data->bytes_xfered =
1299				data->blocks * data->blksz;
1300
1301		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1302			sh_mmcif_stop_cmd(host, mrq);
1303			if (!mrq->stop->error) {
1304				schedule_delayed_work(&host->timeout_work, host->timeout);
1305				mutex_unlock(&host->thread_lock);
1306				return IRQ_HANDLED;
1307			}
1308		}
1309	}
1310
1311	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1312	host->state = STATE_IDLE;
1313	host->mrq = NULL;
1314	mmc_request_done(host->mmc, mrq);
1315
1316	mutex_unlock(&host->thread_lock);
1317
1318	return IRQ_HANDLED;
1319}
1320
1321static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1322{
1323	struct sh_mmcif_host *host = dev_id;
1324	struct device *dev = sh_mmcif_host_to_dev(host);
1325	u32 state, mask;
1326
1327	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1328	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1329	if (host->ccs_enable)
1330		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1331	else
1332		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1333	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1334
1335	if (state & ~MASK_CLEAN)
1336		dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1337			state);
1338
1339	if (state & INT_ERR_STS || state & ~INT_ALL) {
1340		host->sd_error = true;
1341		dev_dbg(dev, "int err state = 0x%08x\n", state);
1342	}
1343	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1344		if (!host->mrq)
1345			dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1346		if (!host->dma_active)
1347			return IRQ_WAKE_THREAD;
1348		else if (host->sd_error)
1349			sh_mmcif_dma_complete(host);
1350	} else {
1351		dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1352	}
1353
1354	return IRQ_HANDLED;
1355}
1356
1357static void sh_mmcif_timeout_work(struct work_struct *work)
1358{
1359	struct delayed_work *d = to_delayed_work(work);
1360	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1361	struct mmc_request *mrq = host->mrq;
1362	struct device *dev = sh_mmcif_host_to_dev(host);
1363	unsigned long flags;
1364
1365	if (host->dying)
1366		/* Don't run after mmc_remove_host() */
1367		return;
1368
1369	spin_lock_irqsave(&host->lock, flags);
1370	if (host->state == STATE_IDLE) {
1371		spin_unlock_irqrestore(&host->lock, flags);
1372		return;
1373	}
1374
1375	dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1376		host->wait_for, mrq->cmd->opcode);
1377
1378	host->state = STATE_TIMEOUT;
1379	spin_unlock_irqrestore(&host->lock, flags);
1380
1381	/*
1382	 * Handle races with cancel_delayed_work(), unless
1383	 * cancel_delayed_work_sync() is used
1384	 */
1385	switch (host->wait_for) {
1386	case MMCIF_WAIT_FOR_CMD:
1387		mrq->cmd->error = sh_mmcif_error_manage(host);
1388		break;
1389	case MMCIF_WAIT_FOR_STOP:
1390		mrq->stop->error = sh_mmcif_error_manage(host);
1391		break;
1392	case MMCIF_WAIT_FOR_MREAD:
1393	case MMCIF_WAIT_FOR_MWRITE:
1394	case MMCIF_WAIT_FOR_READ:
1395	case MMCIF_WAIT_FOR_WRITE:
1396	case MMCIF_WAIT_FOR_READ_END:
1397	case MMCIF_WAIT_FOR_WRITE_END:
1398		mrq->data->error = sh_mmcif_error_manage(host);
1399		break;
1400	default:
1401		BUG();
1402	}
1403
1404	host->state = STATE_IDLE;
1405	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1406	host->mrq = NULL;
1407	mmc_request_done(host->mmc, mrq);
1408}
1409
1410static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1411{
1412	struct device *dev = sh_mmcif_host_to_dev(host);
1413	struct sh_mmcif_plat_data *pd = dev->platform_data;
1414	struct mmc_host *mmc = host->mmc;
1415
1416	mmc_regulator_get_supply(mmc);
1417
1418	if (!pd)
1419		return;
1420
1421	if (!mmc->ocr_avail)
1422		mmc->ocr_avail = pd->ocr;
1423	else if (pd->ocr)
1424		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1425}
1426
1427static int sh_mmcif_probe(struct platform_device *pdev)
1428{
1429	int ret = 0, irq[2];
1430	struct mmc_host *mmc;
1431	struct sh_mmcif_host *host;
1432	struct device *dev = &pdev->dev;
1433	struct sh_mmcif_plat_data *pd = dev->platform_data;
1434	void __iomem *reg;
1435	const char *name;
1436
1437	irq[0] = platform_get_irq(pdev, 0);
1438	irq[1] = platform_get_irq_optional(pdev, 1);
1439	if (irq[0] < 0)
1440		return irq[0];
1441
1442	reg = devm_platform_ioremap_resource(pdev, 0);
1443	if (IS_ERR(reg))
1444		return PTR_ERR(reg);
1445
1446	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1447	if (!mmc)
1448		return -ENOMEM;
1449
1450	ret = mmc_of_parse(mmc);
1451	if (ret < 0)
1452		goto err_host;
1453
1454	host		= mmc_priv(mmc);
1455	host->mmc	= mmc;
1456	host->addr	= reg;
1457	host->timeout	= msecs_to_jiffies(10000);
1458	host->ccs_enable = true;
1459	host->clk_ctrl2_enable = false;
1460
1461	host->pd = pdev;
1462
1463	spin_lock_init(&host->lock);
1464
1465	mmc->ops = &sh_mmcif_ops;
1466	sh_mmcif_init_ocr(host);
1467
1468	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1469	mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1470	mmc->max_busy_timeout = 10000;
1471
1472	if (pd && pd->caps)
1473		mmc->caps |= pd->caps;
1474	mmc->max_segs = 32;
1475	mmc->max_blk_size = 512;
1476	mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1477	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1478	mmc->max_seg_size = mmc->max_req_size;
1479
1480	platform_set_drvdata(pdev, host);
1481
1482	host->clk = devm_clk_get(dev, NULL);
1483	if (IS_ERR(host->clk)) {
1484		ret = PTR_ERR(host->clk);
1485		dev_err(dev, "cannot get clock: %d\n", ret);
1486		goto err_host;
1487	}
1488
1489	ret = clk_prepare_enable(host->clk);
1490	if (ret < 0)
1491		goto err_host;
1492
1493	sh_mmcif_clk_setup(host);
1494
1495	pm_runtime_enable(dev);
1496	host->power = false;
1497
1498	ret = pm_runtime_get_sync(dev);
1499	if (ret < 0)
1500		goto err_clk;
1501
1502	INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1503
1504	sh_mmcif_sync_reset(host);
1505	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1506
1507	name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1508	ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1509					sh_mmcif_irqt, 0, name, host);
1510	if (ret) {
1511		dev_err(dev, "request_irq error (%s)\n", name);
1512		goto err_clk;
1513	}
1514	if (irq[1] >= 0) {
1515		ret = devm_request_threaded_irq(dev, irq[1],
1516						sh_mmcif_intr, sh_mmcif_irqt,
1517						0, "sh_mmc:int", host);
1518		if (ret) {
1519			dev_err(dev, "request_irq error (sh_mmc:int)\n");
1520			goto err_clk;
1521		}
1522	}
1523
1524	mutex_init(&host->thread_lock);
1525
1526	ret = mmc_add_host(mmc);
1527	if (ret < 0)
1528		goto err_clk;
1529
1530	dev_pm_qos_expose_latency_limit(dev, 100);
1531
1532	dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1533		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1534		 clk_get_rate(host->clk) / 1000000UL);
1535
1536	pm_runtime_put(dev);
1537	clk_disable_unprepare(host->clk);
1538	return ret;
1539
1540err_clk:
1541	clk_disable_unprepare(host->clk);
1542	pm_runtime_put_sync(dev);
1543	pm_runtime_disable(dev);
1544err_host:
1545	mmc_free_host(mmc);
1546	return ret;
1547}
1548
1549static void sh_mmcif_remove(struct platform_device *pdev)
1550{
1551	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1552
1553	host->dying = true;
1554	clk_prepare_enable(host->clk);
1555	pm_runtime_get_sync(&pdev->dev);
1556
1557	dev_pm_qos_hide_latency_limit(&pdev->dev);
1558
1559	mmc_remove_host(host->mmc);
1560	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1561
1562	/*
1563	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1564	 * mmc_remove_host() call above. But swapping order doesn't help either
1565	 * (a query on the linux-mmc mailing list didn't bring any replies).
1566	 */
1567	cancel_delayed_work_sync(&host->timeout_work);
1568
1569	clk_disable_unprepare(host->clk);
1570	mmc_free_host(host->mmc);
1571	pm_runtime_put_sync(&pdev->dev);
1572	pm_runtime_disable(&pdev->dev);
1573}
1574
1575#ifdef CONFIG_PM_SLEEP
1576static int sh_mmcif_suspend(struct device *dev)
1577{
1578	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1579
1580	pm_runtime_get_sync(dev);
1581	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1582	pm_runtime_put(dev);
1583
1584	return 0;
1585}
1586
1587static int sh_mmcif_resume(struct device *dev)
1588{
1589	return 0;
1590}
1591#endif
1592
1593static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1594	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1595};
1596
1597static struct platform_driver sh_mmcif_driver = {
1598	.probe		= sh_mmcif_probe,
1599	.remove_new	= sh_mmcif_remove,
1600	.driver		= {
1601		.name	= DRIVER_NAME,
1602		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1603		.pm	= &sh_mmcif_dev_pm_ops,
1604		.of_match_table = sh_mmcif_of_match,
1605	},
1606};
1607
1608module_platform_driver(sh_mmcif_driver);
1609
1610MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1611MODULE_LICENSE("GPL v2");
1612MODULE_ALIAS("platform:" DRIVER_NAME);
1613MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1614