1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Freescale eSDHC controller driver.
4 *
5 * Copyright (c) 2007, 2010, 2012 Freescale Semiconductor, Inc.
6 * Copyright (c) 2009 MontaVista Software, Inc.
7 * Copyright 2020 NXP
8 *
9 * Authors: Xiaobo Xie <X.Xie@freescale.com>
10 *	    Anton Vorontsov <avorontsov@ru.mvista.com>
11 */
12
13#include <linux/err.h>
14#include <linux/io.h>
15#include <linux/of.h>
16#include <linux/of_address.h>
17#include <linux/delay.h>
18#include <linux/module.h>
19#include <linux/sys_soc.h>
20#include <linux/clk.h>
21#include <linux/ktime.h>
22#include <linux/dma-mapping.h>
23#include <linux/iopoll.h>
24#include <linux/mmc/host.h>
25#include <linux/mmc/mmc.h>
26#include "sdhci-pltfm.h"
27#include "sdhci-esdhc.h"
28
29#define VENDOR_V_22	0x12
30#define VENDOR_V_23	0x13
31
32#define MMC_TIMING_NUM (MMC_TIMING_MMC_HS400 + 1)
33
34struct esdhc_clk_fixup {
35	const unsigned int sd_dflt_max_clk;
36	const unsigned int max_clk[MMC_TIMING_NUM];
37};
38
39static const struct esdhc_clk_fixup ls1021a_esdhc_clk = {
40	.sd_dflt_max_clk = 25000000,
41	.max_clk[MMC_TIMING_MMC_HS] = 46500000,
42	.max_clk[MMC_TIMING_SD_HS] = 46500000,
43};
44
45static const struct esdhc_clk_fixup ls1043a_esdhc_clk = {
46	.sd_dflt_max_clk = 25000000,
47	.max_clk[MMC_TIMING_UHS_SDR104] = 116700000,
48	.max_clk[MMC_TIMING_MMC_HS200] = 116700000,
49};
50
51static const struct esdhc_clk_fixup ls1046a_esdhc_clk = {
52	.sd_dflt_max_clk = 25000000,
53	.max_clk[MMC_TIMING_UHS_SDR104] = 167000000,
54	.max_clk[MMC_TIMING_MMC_HS200] = 167000000,
55};
56
57static const struct esdhc_clk_fixup ls1012a_esdhc_clk = {
58	.sd_dflt_max_clk = 25000000,
59	.max_clk[MMC_TIMING_UHS_SDR104] = 125000000,
60	.max_clk[MMC_TIMING_MMC_HS200] = 125000000,
61};
62
63static const struct esdhc_clk_fixup p1010_esdhc_clk = {
64	.sd_dflt_max_clk = 20000000,
65	.max_clk[MMC_TIMING_LEGACY] = 20000000,
66	.max_clk[MMC_TIMING_MMC_HS] = 42000000,
67	.max_clk[MMC_TIMING_SD_HS] = 40000000,
68};
69
70static const struct of_device_id sdhci_esdhc_of_match[] = {
71	{ .compatible = "fsl,ls1021a-esdhc", .data = &ls1021a_esdhc_clk},
72	{ .compatible = "fsl,ls1043a-esdhc", .data = &ls1043a_esdhc_clk},
73	{ .compatible = "fsl,ls1046a-esdhc", .data = &ls1046a_esdhc_clk},
74	{ .compatible = "fsl,ls1012a-esdhc", .data = &ls1012a_esdhc_clk},
75	{ .compatible = "fsl,p1010-esdhc",   .data = &p1010_esdhc_clk},
76	{ .compatible = "fsl,mpc8379-esdhc" },
77	{ .compatible = "fsl,mpc8536-esdhc" },
78	{ .compatible = "fsl,esdhc" },
79	{ }
80};
81MODULE_DEVICE_TABLE(of, sdhci_esdhc_of_match);
82
83struct sdhci_esdhc {
84	u8 vendor_ver;
85	u8 spec_ver;
86	bool quirk_incorrect_hostver;
87	bool quirk_limited_clk_division;
88	bool quirk_unreliable_pulse_detection;
89	bool quirk_tuning_erratum_type1;
90	bool quirk_tuning_erratum_type2;
91	bool quirk_ignore_data_inhibit;
92	bool quirk_delay_before_data_reset;
93	bool quirk_trans_complete_erratum;
94	bool in_sw_tuning;
95	unsigned int peripheral_clock;
96	const struct esdhc_clk_fixup *clk_fixup;
97	u32 div_ratio;
98};
99
100/**
101 * esdhc_readl_fixup - Fixup the value read from incompatible eSDHC register
102 *		       to make it compatible with SD spec.
103 *
104 * @host: pointer to sdhci_host
105 * @spec_reg: SD spec register address
106 * @value: 32bit eSDHC register value on spec_reg address
107 *
108 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
109 * registers are 32 bits. There are differences in register size, register
110 * address, register function, bit position and function between eSDHC spec
111 * and SD spec.
112 *
113 * Return a fixed up register value
114 */
115static u32 esdhc_readl_fixup(struct sdhci_host *host,
116				     int spec_reg, u32 value)
117{
118	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
119	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
120	u32 ret;
121
122	/*
123	 * The bit of ADMA flag in eSDHC is not compatible with standard
124	 * SDHC register, so set fake flag SDHCI_CAN_DO_ADMA2 when ADMA is
125	 * supported by eSDHC.
126	 * And for many FSL eSDHC controller, the reset value of field
127	 * SDHCI_CAN_DO_ADMA1 is 1, but some of them can't support ADMA,
128	 * only these vendor version is greater than 2.2/0x12 support ADMA.
129	 */
130	if ((spec_reg == SDHCI_CAPABILITIES) && (value & SDHCI_CAN_DO_ADMA1)) {
131		if (esdhc->vendor_ver > VENDOR_V_22) {
132			ret = value | SDHCI_CAN_DO_ADMA2;
133			return ret;
134		}
135	}
136
137	/*
138	 * The DAT[3:0] line signal levels and the CMD line signal level are
139	 * not compatible with standard SDHC register. The line signal levels
140	 * DAT[7:0] are at bits 31:24 and the command line signal level is at
141	 * bit 23. All other bits are the same as in the standard SDHC
142	 * register.
143	 */
144	if (spec_reg == SDHCI_PRESENT_STATE) {
145		ret = value & 0x000fffff;
146		ret |= (value >> 4) & SDHCI_DATA_LVL_MASK;
147		ret |= (value << 1) & SDHCI_CMD_LVL;
148
149		/*
150		 * Some controllers have unreliable Data Line Active
151		 * bit for commands with busy signal. This affects
152		 * Command Inhibit (data) bit. Just ignore it since
153		 * MMC core driver has already polled card status
154		 * with CMD13 after any command with busy siganl.
155		 */
156		if (esdhc->quirk_ignore_data_inhibit)
157			ret &= ~SDHCI_DATA_INHIBIT;
158		return ret;
159	}
160
161	/*
162	 * DTS properties of mmc host are used to enable each speed mode
163	 * according to soc and board capability. So clean up
164	 * SDR50/SDR104/DDR50 support bits here.
165	 */
166	if (spec_reg == SDHCI_CAPABILITIES_1) {
167		ret = value & ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 |
168				SDHCI_SUPPORT_DDR50);
169		return ret;
170	}
171
172	ret = value;
173	return ret;
174}
175
176static u16 esdhc_readw_fixup(struct sdhci_host *host,
177				     int spec_reg, u32 value)
178{
179	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
180	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
181	u16 ret;
182	int shift = (spec_reg & 0x2) * 8;
183
184	if (spec_reg == SDHCI_TRANSFER_MODE)
185		return pltfm_host->xfer_mode_shadow;
186
187	if (spec_reg == SDHCI_HOST_VERSION)
188		ret = value & 0xffff;
189	else
190		ret = (value >> shift) & 0xffff;
191	/* Workaround for T4240-R1.0-R2.0 eSDHC which has incorrect
192	 * vendor version and spec version information.
193	 */
194	if ((spec_reg == SDHCI_HOST_VERSION) &&
195	    (esdhc->quirk_incorrect_hostver))
196		ret = (VENDOR_V_23 << SDHCI_VENDOR_VER_SHIFT) | SDHCI_SPEC_200;
197	return ret;
198}
199
200static u8 esdhc_readb_fixup(struct sdhci_host *host,
201				     int spec_reg, u32 value)
202{
203	u8 ret;
204	u8 dma_bits;
205	int shift = (spec_reg & 0x3) * 8;
206
207	ret = (value >> shift) & 0xff;
208
209	/*
210	 * "DMA select" locates at offset 0x28 in SD specification, but on
211	 * P5020 or P3041, it locates at 0x29.
212	 */
213	if (spec_reg == SDHCI_HOST_CONTROL) {
214		/* DMA select is 22,23 bits in Protocol Control Register */
215		dma_bits = (value >> 5) & SDHCI_CTRL_DMA_MASK;
216		/* fixup the result */
217		ret &= ~SDHCI_CTRL_DMA_MASK;
218		ret |= dma_bits;
219	}
220	return ret;
221}
222
223/**
224 * esdhc_writel_fixup - Fixup the SD spec register value so that it could be
225 *			written into eSDHC register.
226 *
227 * @host: pointer to sdhci_host
228 * @spec_reg: SD spec register address
229 * @value: 8/16/32bit SD spec register value that would be written
230 * @old_value: 32bit eSDHC register value on spec_reg address
231 *
232 * In SD spec, there are 8/16/32/64 bits registers, while all of eSDHC
233 * registers are 32 bits. There are differences in register size, register
234 * address, register function, bit position and function between eSDHC spec
235 * and SD spec.
236 *
237 * Return a fixed up register value
238 */
239static u32 esdhc_writel_fixup(struct sdhci_host *host,
240				     int spec_reg, u32 value, u32 old_value)
241{
242	u32 ret;
243
244	/*
245	 * Enabling IRQSTATEN[BGESEN] is just to set IRQSTAT[BGE]
246	 * when SYSCTL[RSTD] is set for some special operations.
247	 * No any impact on other operation.
248	 */
249	if (spec_reg == SDHCI_INT_ENABLE)
250		ret = value | SDHCI_INT_BLK_GAP;
251	else
252		ret = value;
253
254	return ret;
255}
256
257static u32 esdhc_writew_fixup(struct sdhci_host *host,
258				     int spec_reg, u16 value, u32 old_value)
259{
260	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
261	int shift = (spec_reg & 0x2) * 8;
262	u32 ret;
263
264	switch (spec_reg) {
265	case SDHCI_TRANSFER_MODE:
266		/*
267		 * Postpone this write, we must do it together with a
268		 * command write that is down below. Return old value.
269		 */
270		pltfm_host->xfer_mode_shadow = value;
271		return old_value;
272	case SDHCI_COMMAND:
273		ret = (value << 16) | pltfm_host->xfer_mode_shadow;
274		return ret;
275	}
276
277	ret = old_value & (~(0xffff << shift));
278	ret |= (value << shift);
279
280	if (spec_reg == SDHCI_BLOCK_SIZE) {
281		/*
282		 * Two last DMA bits are reserved, and first one is used for
283		 * non-standard blksz of 4096 bytes that we don't support
284		 * yet. So clear the DMA boundary bits.
285		 */
286		ret &= (~SDHCI_MAKE_BLKSZ(0x7, 0));
287	}
288	return ret;
289}
290
291static u32 esdhc_writeb_fixup(struct sdhci_host *host,
292				     int spec_reg, u8 value, u32 old_value)
293{
294	u32 ret;
295	u32 dma_bits;
296	u8 tmp;
297	int shift = (spec_reg & 0x3) * 8;
298
299	/*
300	 * eSDHC doesn't have a standard power control register, so we do
301	 * nothing here to avoid incorrect operation.
302	 */
303	if (spec_reg == SDHCI_POWER_CONTROL)
304		return old_value;
305	/*
306	 * "DMA select" location is offset 0x28 in SD specification, but on
307	 * P5020 or P3041, it's located at 0x29.
308	 */
309	if (spec_reg == SDHCI_HOST_CONTROL) {
310		/*
311		 * If host control register is not standard, exit
312		 * this function
313		 */
314		if (host->quirks2 & SDHCI_QUIRK2_BROKEN_HOST_CONTROL)
315			return old_value;
316
317		/* DMA select is 22,23 bits in Protocol Control Register */
318		dma_bits = (value & SDHCI_CTRL_DMA_MASK) << 5;
319		ret = (old_value & (~(SDHCI_CTRL_DMA_MASK << 5))) | dma_bits;
320		tmp = (value & (~SDHCI_CTRL_DMA_MASK)) |
321		      (old_value & SDHCI_CTRL_DMA_MASK);
322		ret = (ret & (~0xff)) | tmp;
323
324		/* Prevent SDHCI core from writing reserved bits (e.g. HISPD) */
325		ret &= ~ESDHC_HOST_CONTROL_RES;
326		return ret;
327	}
328
329	ret = (old_value & (~(0xff << shift))) | (value << shift);
330	return ret;
331}
332
333static u32 esdhc_be_readl(struct sdhci_host *host, int reg)
334{
335	u32 ret;
336	u32 value;
337
338	if (reg == SDHCI_CAPABILITIES_1)
339		value = ioread32be(host->ioaddr + ESDHC_CAPABILITIES_1);
340	else
341		value = ioread32be(host->ioaddr + reg);
342
343	ret = esdhc_readl_fixup(host, reg, value);
344
345	return ret;
346}
347
348static u32 esdhc_le_readl(struct sdhci_host *host, int reg)
349{
350	u32 ret;
351	u32 value;
352
353	if (reg == SDHCI_CAPABILITIES_1)
354		value = ioread32(host->ioaddr + ESDHC_CAPABILITIES_1);
355	else
356		value = ioread32(host->ioaddr + reg);
357
358	ret = esdhc_readl_fixup(host, reg, value);
359
360	return ret;
361}
362
363static u16 esdhc_be_readw(struct sdhci_host *host, int reg)
364{
365	u16 ret;
366	u32 value;
367	int base = reg & ~0x3;
368
369	value = ioread32be(host->ioaddr + base);
370	ret = esdhc_readw_fixup(host, reg, value);
371	return ret;
372}
373
374static u16 esdhc_le_readw(struct sdhci_host *host, int reg)
375{
376	u16 ret;
377	u32 value;
378	int base = reg & ~0x3;
379
380	value = ioread32(host->ioaddr + base);
381	ret = esdhc_readw_fixup(host, reg, value);
382	return ret;
383}
384
385static u8 esdhc_be_readb(struct sdhci_host *host, int reg)
386{
387	u8 ret;
388	u32 value;
389	int base = reg & ~0x3;
390
391	value = ioread32be(host->ioaddr + base);
392	ret = esdhc_readb_fixup(host, reg, value);
393	return ret;
394}
395
396static u8 esdhc_le_readb(struct sdhci_host *host, int reg)
397{
398	u8 ret;
399	u32 value;
400	int base = reg & ~0x3;
401
402	value = ioread32(host->ioaddr + base);
403	ret = esdhc_readb_fixup(host, reg, value);
404	return ret;
405}
406
407static void esdhc_be_writel(struct sdhci_host *host, u32 val, int reg)
408{
409	u32 value;
410
411	value = esdhc_writel_fixup(host, reg, val, 0);
412	iowrite32be(value, host->ioaddr + reg);
413}
414
415static void esdhc_le_writel(struct sdhci_host *host, u32 val, int reg)
416{
417	u32 value;
418
419	value = esdhc_writel_fixup(host, reg, val, 0);
420	iowrite32(value, host->ioaddr + reg);
421}
422
423static void esdhc_be_writew(struct sdhci_host *host, u16 val, int reg)
424{
425	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
426	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
427	int base = reg & ~0x3;
428	u32 value;
429	u32 ret;
430
431	value = ioread32be(host->ioaddr + base);
432	ret = esdhc_writew_fixup(host, reg, val, value);
433	if (reg != SDHCI_TRANSFER_MODE)
434		iowrite32be(ret, host->ioaddr + base);
435
436	/* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
437	 * 1us later after ESDHC_EXTN is set.
438	 */
439	if (base == ESDHC_SYSTEM_CONTROL_2) {
440		if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
441		    esdhc->in_sw_tuning) {
442			udelay(1);
443			ret |= ESDHC_SMPCLKSEL;
444			iowrite32be(ret, host->ioaddr + base);
445		}
446	}
447}
448
449static void esdhc_le_writew(struct sdhci_host *host, u16 val, int reg)
450{
451	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
452	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
453	int base = reg & ~0x3;
454	u32 value;
455	u32 ret;
456
457	value = ioread32(host->ioaddr + base);
458	ret = esdhc_writew_fixup(host, reg, val, value);
459	if (reg != SDHCI_TRANSFER_MODE)
460		iowrite32(ret, host->ioaddr + base);
461
462	/* Starting SW tuning requires ESDHC_SMPCLKSEL to be set
463	 * 1us later after ESDHC_EXTN is set.
464	 */
465	if (base == ESDHC_SYSTEM_CONTROL_2) {
466		if (!(value & ESDHC_EXTN) && (ret & ESDHC_EXTN) &&
467		    esdhc->in_sw_tuning) {
468			udelay(1);
469			ret |= ESDHC_SMPCLKSEL;
470			iowrite32(ret, host->ioaddr + base);
471		}
472	}
473}
474
475static void esdhc_be_writeb(struct sdhci_host *host, u8 val, int reg)
476{
477	int base = reg & ~0x3;
478	u32 value;
479	u32 ret;
480
481	value = ioread32be(host->ioaddr + base);
482	ret = esdhc_writeb_fixup(host, reg, val, value);
483	iowrite32be(ret, host->ioaddr + base);
484}
485
486static void esdhc_le_writeb(struct sdhci_host *host, u8 val, int reg)
487{
488	int base = reg & ~0x3;
489	u32 value;
490	u32 ret;
491
492	value = ioread32(host->ioaddr + base);
493	ret = esdhc_writeb_fixup(host, reg, val, value);
494	iowrite32(ret, host->ioaddr + base);
495}
496
497/*
498 * For Abort or Suspend after Stop at Block Gap, ignore the ADMA
499 * error(IRQSTAT[ADMAE]) if both Transfer Complete(IRQSTAT[TC])
500 * and Block Gap Event(IRQSTAT[BGE]) are also set.
501 * For Continue, apply soft reset for data(SYSCTL[RSTD]);
502 * and re-issue the entire read transaction from beginning.
503 */
504static void esdhc_of_adma_workaround(struct sdhci_host *host, u32 intmask)
505{
506	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
507	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
508	bool applicable;
509	dma_addr_t dmastart;
510	dma_addr_t dmanow;
511
512	applicable = (intmask & SDHCI_INT_DATA_END) &&
513		     (intmask & SDHCI_INT_BLK_GAP) &&
514		     (esdhc->vendor_ver == VENDOR_V_23);
515	if (!applicable)
516		return;
517
518	host->data->error = 0;
519	dmastart = sg_dma_address(host->data->sg);
520	dmanow = dmastart + host->data->bytes_xfered;
521	/*
522	 * Force update to the next DMA block boundary.
523	 */
524	dmanow = (dmanow & ~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
525		SDHCI_DEFAULT_BOUNDARY_SIZE;
526	host->data->bytes_xfered = dmanow - dmastart;
527	sdhci_writel(host, dmanow, SDHCI_DMA_ADDRESS);
528}
529
530static int esdhc_of_enable_dma(struct sdhci_host *host)
531{
532	int ret;
533	u32 value;
534	struct device *dev = mmc_dev(host->mmc);
535
536	if (of_device_is_compatible(dev->of_node, "fsl,ls1043a-esdhc") ||
537	    of_device_is_compatible(dev->of_node, "fsl,ls1046a-esdhc")) {
538		ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
539		if (ret)
540			return ret;
541	}
542
543	value = sdhci_readl(host, ESDHC_DMA_SYSCTL);
544
545	if (of_dma_is_coherent(dev->of_node))
546		value |= ESDHC_DMA_SNOOP;
547	else
548		value &= ~ESDHC_DMA_SNOOP;
549
550	sdhci_writel(host, value, ESDHC_DMA_SYSCTL);
551	return 0;
552}
553
554static unsigned int esdhc_of_get_max_clock(struct sdhci_host *host)
555{
556	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
557	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
558
559	if (esdhc->peripheral_clock)
560		return esdhc->peripheral_clock;
561	else
562		return pltfm_host->clock;
563}
564
565static unsigned int esdhc_of_get_min_clock(struct sdhci_host *host)
566{
567	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
568	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
569	unsigned int clock;
570
571	if (esdhc->peripheral_clock)
572		clock = esdhc->peripheral_clock;
573	else
574		clock = pltfm_host->clock;
575	return clock / 256 / 16;
576}
577
578static void esdhc_clock_enable(struct sdhci_host *host, bool enable)
579{
580	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
581	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
582	ktime_t timeout;
583	u32 val, clk_en;
584
585	clk_en = ESDHC_CLOCK_SDCLKEN;
586
587	/*
588	 * IPGEN/HCKEN/PEREN bits exist on eSDHC whose vendor version
589	 * is 2.2 or lower.
590	 */
591	if (esdhc->vendor_ver <= VENDOR_V_22)
592		clk_en |= (ESDHC_CLOCK_IPGEN | ESDHC_CLOCK_HCKEN |
593			   ESDHC_CLOCK_PEREN);
594
595	val = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
596
597	if (enable)
598		val |= clk_en;
599	else
600		val &= ~clk_en;
601
602	sdhci_writel(host, val, ESDHC_SYSTEM_CONTROL);
603
604	/*
605	 * Wait max 20 ms. If vendor version is 2.2 or lower, do not
606	 * wait clock stable bit which does not exist.
607	 */
608	timeout = ktime_add_ms(ktime_get(), 20);
609	while (esdhc->vendor_ver > VENDOR_V_22) {
610		bool timedout = ktime_after(ktime_get(), timeout);
611
612		if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
613			break;
614		if (timedout) {
615			pr_err("%s: Internal clock never stabilised.\n",
616				mmc_hostname(host->mmc));
617			break;
618		}
619		usleep_range(10, 20);
620	}
621}
622
623static void esdhc_flush_async_fifo(struct sdhci_host *host)
624{
625	ktime_t timeout;
626	u32 val;
627
628	val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
629	val |= ESDHC_FLUSH_ASYNC_FIFO;
630	sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
631
632	/* Wait max 20 ms */
633	timeout = ktime_add_ms(ktime_get(), 20);
634	while (1) {
635		bool timedout = ktime_after(ktime_get(), timeout);
636
637		if (!(sdhci_readl(host, ESDHC_DMA_SYSCTL) &
638		      ESDHC_FLUSH_ASYNC_FIFO))
639			break;
640		if (timedout) {
641			pr_err("%s: flushing asynchronous FIFO timeout.\n",
642				mmc_hostname(host->mmc));
643			break;
644		}
645		usleep_range(10, 20);
646	}
647}
648
649static void esdhc_of_set_clock(struct sdhci_host *host, unsigned int clock)
650{
651	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
652	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
653	unsigned int pre_div = 1, div = 1;
654	unsigned int clock_fixup = 0;
655	ktime_t timeout;
656	u32 temp;
657
658	if (clock == 0) {
659		host->mmc->actual_clock = 0;
660		esdhc_clock_enable(host, false);
661		return;
662	}
663
664	/* Start pre_div at 2 for vendor version < 2.3. */
665	if (esdhc->vendor_ver < VENDOR_V_23)
666		pre_div = 2;
667
668	/* Fix clock value. */
669	if (host->mmc->card && mmc_card_sd(host->mmc->card) &&
670	    esdhc->clk_fixup && host->mmc->ios.timing == MMC_TIMING_LEGACY)
671		clock_fixup = esdhc->clk_fixup->sd_dflt_max_clk;
672	else if (esdhc->clk_fixup)
673		clock_fixup = esdhc->clk_fixup->max_clk[host->mmc->ios.timing];
674
675	if (clock_fixup == 0 || clock < clock_fixup)
676		clock_fixup = clock;
677
678	/* Calculate pre_div and div. */
679	while (host->max_clk / pre_div / 16 > clock_fixup && pre_div < 256)
680		pre_div *= 2;
681
682	while (host->max_clk / pre_div / div > clock_fixup && div < 16)
683		div++;
684
685	esdhc->div_ratio = pre_div * div;
686
687	/* Limit clock division for HS400 200MHz clock for quirk. */
688	if (esdhc->quirk_limited_clk_division &&
689	    clock == MMC_HS200_MAX_DTR &&
690	    (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 ||
691	     host->flags & SDHCI_HS400_TUNING)) {
692		if (esdhc->div_ratio <= 4) {
693			pre_div = 4;
694			div = 1;
695		} else if (esdhc->div_ratio <= 8) {
696			pre_div = 4;
697			div = 2;
698		} else if (esdhc->div_ratio <= 12) {
699			pre_div = 4;
700			div = 3;
701		} else {
702			pr_warn("%s: using unsupported clock division.\n",
703				mmc_hostname(host->mmc));
704		}
705		esdhc->div_ratio = pre_div * div;
706	}
707
708	host->mmc->actual_clock = host->max_clk / esdhc->div_ratio;
709
710	dev_dbg(mmc_dev(host->mmc), "desired SD clock: %d, actual: %d\n",
711		clock, host->mmc->actual_clock);
712
713	/* Set clock division into register. */
714	pre_div >>= 1;
715	div--;
716
717	esdhc_clock_enable(host, false);
718
719	temp = sdhci_readl(host, ESDHC_SYSTEM_CONTROL);
720	temp &= ~ESDHC_CLOCK_MASK;
721	temp |= ((div << ESDHC_DIVIDER_SHIFT) |
722		(pre_div << ESDHC_PREDIV_SHIFT));
723	sdhci_writel(host, temp, ESDHC_SYSTEM_CONTROL);
724
725	/*
726	 * Wait max 20 ms. If vendor version is 2.2 or lower, do not
727	 * wait clock stable bit which does not exist.
728	 */
729	timeout = ktime_add_ms(ktime_get(), 20);
730	while (esdhc->vendor_ver > VENDOR_V_22) {
731		bool timedout = ktime_after(ktime_get(), timeout);
732
733		if (sdhci_readl(host, ESDHC_PRSSTAT) & ESDHC_CLOCK_STABLE)
734			break;
735		if (timedout) {
736			pr_err("%s: Internal clock never stabilised.\n",
737				mmc_hostname(host->mmc));
738			break;
739		}
740		usleep_range(10, 20);
741	}
742
743	/* Additional setting for HS400. */
744	if (host->mmc->ios.timing == MMC_TIMING_MMC_HS400 &&
745	    clock == MMC_HS200_MAX_DTR) {
746		temp = sdhci_readl(host, ESDHC_TBCTL);
747		sdhci_writel(host, temp | ESDHC_HS400_MODE, ESDHC_TBCTL);
748		temp = sdhci_readl(host, ESDHC_SDCLKCTL);
749		sdhci_writel(host, temp | ESDHC_CMD_CLK_CTL, ESDHC_SDCLKCTL);
750		esdhc_clock_enable(host, true);
751
752		temp = sdhci_readl(host, ESDHC_DLLCFG0);
753		temp |= ESDHC_DLL_ENABLE;
754		if (host->mmc->actual_clock == MMC_HS200_MAX_DTR)
755			temp |= ESDHC_DLL_FREQ_SEL;
756		sdhci_writel(host, temp, ESDHC_DLLCFG0);
757
758		temp |= ESDHC_DLL_RESET;
759		sdhci_writel(host, temp, ESDHC_DLLCFG0);
760		udelay(1);
761		temp &= ~ESDHC_DLL_RESET;
762		sdhci_writel(host, temp, ESDHC_DLLCFG0);
763
764		/* Wait max 20 ms */
765		if (read_poll_timeout(sdhci_readl, temp,
766				      temp & ESDHC_DLL_STS_SLV_LOCK,
767				      10, 20000, false,
768				      host, ESDHC_DLLSTAT0))
769			pr_err("%s: timeout for delay chain lock.\n",
770			       mmc_hostname(host->mmc));
771
772		temp = sdhci_readl(host, ESDHC_TBCTL);
773		sdhci_writel(host, temp | ESDHC_HS400_WNDW_ADJUST, ESDHC_TBCTL);
774
775		esdhc_clock_enable(host, false);
776		esdhc_flush_async_fifo(host);
777	}
778	esdhc_clock_enable(host, true);
779}
780
781static void esdhc_pltfm_set_bus_width(struct sdhci_host *host, int width)
782{
783	u32 ctrl;
784
785	ctrl = sdhci_readl(host, ESDHC_PROCTL);
786	ctrl &= (~ESDHC_CTRL_BUSWIDTH_MASK);
787	switch (width) {
788	case MMC_BUS_WIDTH_8:
789		ctrl |= ESDHC_CTRL_8BITBUS;
790		break;
791
792	case MMC_BUS_WIDTH_4:
793		ctrl |= ESDHC_CTRL_4BITBUS;
794		break;
795
796	default:
797		break;
798	}
799
800	sdhci_writel(host, ctrl, ESDHC_PROCTL);
801}
802
803static void esdhc_reset(struct sdhci_host *host, u8 mask)
804{
805	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
806	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
807	u32 val, bus_width = 0;
808
809	/*
810	 * Add delay to make sure all the DMA transfers are finished
811	 * for quirk.
812	 */
813	if (esdhc->quirk_delay_before_data_reset &&
814	    (mask & SDHCI_RESET_DATA) &&
815	    (host->flags & SDHCI_REQ_USE_DMA))
816		mdelay(5);
817
818	/*
819	 * Save bus-width for eSDHC whose vendor version is 2.2
820	 * or lower for data reset.
821	 */
822	if ((mask & SDHCI_RESET_DATA) &&
823	    (esdhc->vendor_ver <= VENDOR_V_22)) {
824		val = sdhci_readl(host, ESDHC_PROCTL);
825		bus_width = val & ESDHC_CTRL_BUSWIDTH_MASK;
826	}
827
828	sdhci_reset(host, mask);
829
830	/*
831	 * Restore bus-width setting and interrupt registers for eSDHC
832	 * whose vendor version is 2.2 or lower for data reset.
833	 */
834	if ((mask & SDHCI_RESET_DATA) &&
835	    (esdhc->vendor_ver <= VENDOR_V_22)) {
836		val = sdhci_readl(host, ESDHC_PROCTL);
837		val &= ~ESDHC_CTRL_BUSWIDTH_MASK;
838		val |= bus_width;
839		sdhci_writel(host, val, ESDHC_PROCTL);
840
841		sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
842		sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
843	}
844
845	/*
846	 * Some bits have to be cleaned manually for eSDHC whose spec
847	 * version is higher than 3.0 for all reset.
848	 */
849	if ((mask & SDHCI_RESET_ALL) &&
850	    (esdhc->spec_ver >= SDHCI_SPEC_300)) {
851		val = sdhci_readl(host, ESDHC_TBCTL);
852		val &= ~ESDHC_TB_EN;
853		sdhci_writel(host, val, ESDHC_TBCTL);
854
855		/*
856		 * Initialize eSDHC_DLLCFG1[DLL_PD_PULSE_STRETCH_SEL] to
857		 * 0 for quirk.
858		 */
859		if (esdhc->quirk_unreliable_pulse_detection) {
860			val = sdhci_readl(host, ESDHC_DLLCFG1);
861			val &= ~ESDHC_DLL_PD_PULSE_STRETCH_SEL;
862			sdhci_writel(host, val, ESDHC_DLLCFG1);
863		}
864	}
865}
866
867/* The SCFG, Supplemental Configuration Unit, provides SoC specific
868 * configuration and status registers for the device. There is a
869 * SDHC IO VSEL control register on SCFG for some platforms. It's
870 * used to support SDHC IO voltage switching.
871 */
872static const struct of_device_id scfg_device_ids[] = {
873	{ .compatible = "fsl,t1040-scfg", },
874	{ .compatible = "fsl,ls1012a-scfg", },
875	{ .compatible = "fsl,ls1046a-scfg", },
876	{}
877};
878
879/* SDHC IO VSEL control register definition */
880#define SCFG_SDHCIOVSELCR	0x408
881#define SDHCIOVSELCR_TGLEN	0x80000000
882#define SDHCIOVSELCR_VSELVAL	0x60000000
883#define SDHCIOVSELCR_SDHC_VS	0x00000001
884
885static int esdhc_signal_voltage_switch(struct mmc_host *mmc,
886				       struct mmc_ios *ios)
887{
888	struct sdhci_host *host = mmc_priv(mmc);
889	struct device_node *scfg_node;
890	void __iomem *scfg_base = NULL;
891	u32 sdhciovselcr;
892	u32 val;
893
894	/*
895	 * Signal Voltage Switching is only applicable for Host Controllers
896	 * v3.00 and above.
897	 */
898	if (host->version < SDHCI_SPEC_300)
899		return 0;
900
901	val = sdhci_readl(host, ESDHC_PROCTL);
902
903	switch (ios->signal_voltage) {
904	case MMC_SIGNAL_VOLTAGE_330:
905		val &= ~ESDHC_VOLT_SEL;
906		sdhci_writel(host, val, ESDHC_PROCTL);
907		return 0;
908	case MMC_SIGNAL_VOLTAGE_180:
909		scfg_node = of_find_matching_node(NULL, scfg_device_ids);
910		if (scfg_node)
911			scfg_base = of_iomap(scfg_node, 0);
912		of_node_put(scfg_node);
913		if (scfg_base) {
914			sdhciovselcr = SDHCIOVSELCR_TGLEN |
915				       SDHCIOVSELCR_VSELVAL;
916			iowrite32be(sdhciovselcr,
917				scfg_base + SCFG_SDHCIOVSELCR);
918
919			val |= ESDHC_VOLT_SEL;
920			sdhci_writel(host, val, ESDHC_PROCTL);
921			mdelay(5);
922
923			sdhciovselcr = SDHCIOVSELCR_TGLEN |
924				       SDHCIOVSELCR_SDHC_VS;
925			iowrite32be(sdhciovselcr,
926				scfg_base + SCFG_SDHCIOVSELCR);
927			iounmap(scfg_base);
928		} else {
929			val |= ESDHC_VOLT_SEL;
930			sdhci_writel(host, val, ESDHC_PROCTL);
931		}
932		return 0;
933	default:
934		return 0;
935	}
936}
937
938static struct soc_device_attribute soc_tuning_erratum_type1[] = {
939	{ .family = "QorIQ T1023", },
940	{ .family = "QorIQ T1040", },
941	{ .family = "QorIQ T2080", },
942	{ .family = "QorIQ LS1021A", },
943	{ /* sentinel */ }
944};
945
946static struct soc_device_attribute soc_tuning_erratum_type2[] = {
947	{ .family = "QorIQ LS1012A", },
948	{ .family = "QorIQ LS1043A", },
949	{ .family = "QorIQ LS1046A", },
950	{ .family = "QorIQ LS1080A", },
951	{ .family = "QorIQ LS2080A", },
952	{ .family = "QorIQ LA1575A", },
953	{ /* sentinel */ }
954};
955
956static void esdhc_tuning_block_enable(struct sdhci_host *host, bool enable)
957{
958	u32 val;
959
960	esdhc_clock_enable(host, false);
961	esdhc_flush_async_fifo(host);
962
963	val = sdhci_readl(host, ESDHC_TBCTL);
964	if (enable)
965		val |= ESDHC_TB_EN;
966	else
967		val &= ~ESDHC_TB_EN;
968	sdhci_writel(host, val, ESDHC_TBCTL);
969
970	esdhc_clock_enable(host, true);
971}
972
973static void esdhc_tuning_window_ptr(struct sdhci_host *host, u8 *window_start,
974				    u8 *window_end)
975{
976	u32 val;
977
978	/* Write TBCTL[11:8]=4'h8 */
979	val = sdhci_readl(host, ESDHC_TBCTL);
980	val &= ~(0xf << 8);
981	val |= 8 << 8;
982	sdhci_writel(host, val, ESDHC_TBCTL);
983
984	mdelay(1);
985
986	/* Read TBCTL[31:0] register and rewrite again */
987	val = sdhci_readl(host, ESDHC_TBCTL);
988	sdhci_writel(host, val, ESDHC_TBCTL);
989
990	mdelay(1);
991
992	/* Read the TBSTAT[31:0] register twice */
993	val = sdhci_readl(host, ESDHC_TBSTAT);
994	val = sdhci_readl(host, ESDHC_TBSTAT);
995
996	*window_end = val & 0xff;
997	*window_start = (val >> 8) & 0xff;
998}
999
1000static void esdhc_prepare_sw_tuning(struct sdhci_host *host, u8 *window_start,
1001				    u8 *window_end)
1002{
1003	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1004	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1005	u8 start_ptr, end_ptr;
1006
1007	if (esdhc->quirk_tuning_erratum_type1) {
1008		*window_start = 5 * esdhc->div_ratio;
1009		*window_end = 3 * esdhc->div_ratio;
1010		return;
1011	}
1012
1013	esdhc_tuning_window_ptr(host, &start_ptr, &end_ptr);
1014
1015	/* Reset data lines by setting ESDHCCTL[RSTD] */
1016	sdhci_reset(host, SDHCI_RESET_DATA);
1017	/* Write 32'hFFFF_FFFF to IRQSTAT register */
1018	sdhci_writel(host, 0xFFFFFFFF, SDHCI_INT_STATUS);
1019
1020	/* If TBSTAT[15:8]-TBSTAT[7:0] > (4 * div_ratio) + 2
1021	 * or TBSTAT[7:0]-TBSTAT[15:8] > (4 * div_ratio) + 2,
1022	 * then program TBPTR[TB_WNDW_END_PTR] = 4 * div_ratio
1023	 * and program TBPTR[TB_WNDW_START_PTR] = 8 * div_ratio.
1024	 */
1025
1026	if (abs(start_ptr - end_ptr) > (4 * esdhc->div_ratio + 2)) {
1027		*window_start = 8 * esdhc->div_ratio;
1028		*window_end = 4 * esdhc->div_ratio;
1029	} else {
1030		*window_start = 5 * esdhc->div_ratio;
1031		*window_end = 3 * esdhc->div_ratio;
1032	}
1033}
1034
1035static int esdhc_execute_sw_tuning(struct mmc_host *mmc, u32 opcode,
1036				   u8 window_start, u8 window_end)
1037{
1038	struct sdhci_host *host = mmc_priv(mmc);
1039	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1040	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1041	u32 val;
1042	int ret;
1043
1044	/* Program TBPTR[TB_WNDW_END_PTR] and TBPTR[TB_WNDW_START_PTR] */
1045	val = ((u32)window_start << ESDHC_WNDW_STRT_PTR_SHIFT) &
1046	      ESDHC_WNDW_STRT_PTR_MASK;
1047	val |= window_end & ESDHC_WNDW_END_PTR_MASK;
1048	sdhci_writel(host, val, ESDHC_TBPTR);
1049
1050	/* Program the software tuning mode by setting TBCTL[TB_MODE]=2'h3 */
1051	val = sdhci_readl(host, ESDHC_TBCTL);
1052	val &= ~ESDHC_TB_MODE_MASK;
1053	val |= ESDHC_TB_MODE_SW;
1054	sdhci_writel(host, val, ESDHC_TBCTL);
1055
1056	esdhc->in_sw_tuning = true;
1057	ret = sdhci_execute_tuning(mmc, opcode);
1058	esdhc->in_sw_tuning = false;
1059	return ret;
1060}
1061
1062static int esdhc_execute_tuning(struct mmc_host *mmc, u32 opcode)
1063{
1064	struct sdhci_host *host = mmc_priv(mmc);
1065	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1066	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1067	u8 window_start, window_end;
1068	int ret, retries = 1;
1069	bool hs400_tuning;
1070	unsigned int clk;
1071	u32 val;
1072
1073	/* For tuning mode, the sd clock divisor value
1074	 * must be larger than 3 according to reference manual.
1075	 */
1076	clk = esdhc->peripheral_clock / 3;
1077	if (host->clock > clk)
1078		esdhc_of_set_clock(host, clk);
1079
1080	esdhc_tuning_block_enable(host, true);
1081
1082	/*
1083	 * The eSDHC controller takes the data timeout value into account
1084	 * during tuning. If the SD card is too slow sending the response, the
1085	 * timer will expire and a "Buffer Read Ready" interrupt without data
1086	 * is triggered. This leads to tuning errors.
1087	 *
1088	 * Just set the timeout to the maximum value because the core will
1089	 * already take care of it in sdhci_send_tuning().
1090	 */
1091	sdhci_writeb(host, 0xe, SDHCI_TIMEOUT_CONTROL);
1092
1093	hs400_tuning = host->flags & SDHCI_HS400_TUNING;
1094
1095	do {
1096		if (esdhc->quirk_limited_clk_division &&
1097		    hs400_tuning)
1098			esdhc_of_set_clock(host, host->clock);
1099
1100		/* Do HW tuning */
1101		val = sdhci_readl(host, ESDHC_TBCTL);
1102		val &= ~ESDHC_TB_MODE_MASK;
1103		val |= ESDHC_TB_MODE_3;
1104		sdhci_writel(host, val, ESDHC_TBCTL);
1105
1106		ret = sdhci_execute_tuning(mmc, opcode);
1107		if (ret)
1108			break;
1109
1110		/* For type2 affected platforms of the tuning erratum,
1111		 * tuning may succeed although eSDHC might not have
1112		 * tuned properly. Need to check tuning window.
1113		 */
1114		if (esdhc->quirk_tuning_erratum_type2 &&
1115		    !host->tuning_err) {
1116			esdhc_tuning_window_ptr(host, &window_start,
1117						&window_end);
1118			if (abs(window_start - window_end) >
1119			    (4 * esdhc->div_ratio + 2))
1120				host->tuning_err = -EAGAIN;
1121		}
1122
1123		/* If HW tuning fails and triggers erratum,
1124		 * try workaround.
1125		 */
1126		ret = host->tuning_err;
1127		if (ret == -EAGAIN &&
1128		    (esdhc->quirk_tuning_erratum_type1 ||
1129		     esdhc->quirk_tuning_erratum_type2)) {
1130			/* Recover HS400 tuning flag */
1131			if (hs400_tuning)
1132				host->flags |= SDHCI_HS400_TUNING;
1133			pr_info("%s: Hold on to use fixed sampling clock. Try SW tuning!\n",
1134				mmc_hostname(mmc));
1135			/* Do SW tuning */
1136			esdhc_prepare_sw_tuning(host, &window_start,
1137						&window_end);
1138			ret = esdhc_execute_sw_tuning(mmc, opcode,
1139						      window_start,
1140						      window_end);
1141			if (ret)
1142				break;
1143
1144			/* Retry both HW/SW tuning with reduced clock. */
1145			ret = host->tuning_err;
1146			if (ret == -EAGAIN && retries) {
1147				/* Recover HS400 tuning flag */
1148				if (hs400_tuning)
1149					host->flags |= SDHCI_HS400_TUNING;
1150
1151				clk = host->max_clk / (esdhc->div_ratio + 1);
1152				esdhc_of_set_clock(host, clk);
1153				pr_info("%s: Hold on to use fixed sampling clock. Try tuning with reduced clock!\n",
1154					mmc_hostname(mmc));
1155			} else {
1156				break;
1157			}
1158		} else {
1159			break;
1160		}
1161	} while (retries--);
1162
1163	if (ret) {
1164		esdhc_tuning_block_enable(host, false);
1165	} else if (hs400_tuning) {
1166		val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
1167		val |= ESDHC_FLW_CTL_BG;
1168		sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
1169	}
1170
1171	return ret;
1172}
1173
1174static void esdhc_set_uhs_signaling(struct sdhci_host *host,
1175				   unsigned int timing)
1176{
1177	u32 val;
1178
1179	/*
1180	 * There are specific registers setting for HS400 mode.
1181	 * Clean all of them if controller is in HS400 mode to
1182	 * exit HS400 mode before re-setting any speed mode.
1183	 */
1184	val = sdhci_readl(host, ESDHC_TBCTL);
1185	if (val & ESDHC_HS400_MODE) {
1186		val = sdhci_readl(host, ESDHC_SDTIMNGCTL);
1187		val &= ~ESDHC_FLW_CTL_BG;
1188		sdhci_writel(host, val, ESDHC_SDTIMNGCTL);
1189
1190		val = sdhci_readl(host, ESDHC_SDCLKCTL);
1191		val &= ~ESDHC_CMD_CLK_CTL;
1192		sdhci_writel(host, val, ESDHC_SDCLKCTL);
1193
1194		esdhc_clock_enable(host, false);
1195		val = sdhci_readl(host, ESDHC_TBCTL);
1196		val &= ~ESDHC_HS400_MODE;
1197		sdhci_writel(host, val, ESDHC_TBCTL);
1198		esdhc_clock_enable(host, true);
1199
1200		val = sdhci_readl(host, ESDHC_DLLCFG0);
1201		val &= ~(ESDHC_DLL_ENABLE | ESDHC_DLL_FREQ_SEL);
1202		sdhci_writel(host, val, ESDHC_DLLCFG0);
1203
1204		val = sdhci_readl(host, ESDHC_TBCTL);
1205		val &= ~ESDHC_HS400_WNDW_ADJUST;
1206		sdhci_writel(host, val, ESDHC_TBCTL);
1207
1208		esdhc_tuning_block_enable(host, false);
1209	}
1210
1211	if (timing == MMC_TIMING_MMC_HS400)
1212		esdhc_tuning_block_enable(host, true);
1213	else
1214		sdhci_set_uhs_signaling(host, timing);
1215}
1216
1217static u32 esdhc_irq(struct sdhci_host *host, u32 intmask)
1218{
1219	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1220	struct sdhci_esdhc *esdhc = sdhci_pltfm_priv(pltfm_host);
1221	u32 command;
1222
1223	if (esdhc->quirk_trans_complete_erratum) {
1224		command = SDHCI_GET_CMD(sdhci_readw(host,
1225					SDHCI_COMMAND));
1226		if (command == MMC_WRITE_MULTIPLE_BLOCK &&
1227				sdhci_readw(host, SDHCI_BLOCK_COUNT) &&
1228				intmask & SDHCI_INT_DATA_END) {
1229			intmask &= ~SDHCI_INT_DATA_END;
1230			sdhci_writel(host, SDHCI_INT_DATA_END,
1231					SDHCI_INT_STATUS);
1232		}
1233	}
1234	return intmask;
1235}
1236
1237#ifdef CONFIG_PM_SLEEP
1238static u32 esdhc_proctl;
1239static int esdhc_of_suspend(struct device *dev)
1240{
1241	struct sdhci_host *host = dev_get_drvdata(dev);
1242
1243	esdhc_proctl = sdhci_readl(host, SDHCI_HOST_CONTROL);
1244
1245	if (host->tuning_mode != SDHCI_TUNING_MODE_3)
1246		mmc_retune_needed(host->mmc);
1247
1248	return sdhci_suspend_host(host);
1249}
1250
1251static int esdhc_of_resume(struct device *dev)
1252{
1253	struct sdhci_host *host = dev_get_drvdata(dev);
1254	int ret = sdhci_resume_host(host);
1255
1256	if (ret == 0) {
1257		/* Isn't this already done by sdhci_resume_host() ? --rmk */
1258		esdhc_of_enable_dma(host);
1259		sdhci_writel(host, esdhc_proctl, SDHCI_HOST_CONTROL);
1260	}
1261	return ret;
1262}
1263#endif
1264
1265static SIMPLE_DEV_PM_OPS(esdhc_of_dev_pm_ops,
1266			esdhc_of_suspend,
1267			esdhc_of_resume);
1268
1269static const struct sdhci_ops sdhci_esdhc_be_ops = {
1270	.read_l = esdhc_be_readl,
1271	.read_w = esdhc_be_readw,
1272	.read_b = esdhc_be_readb,
1273	.write_l = esdhc_be_writel,
1274	.write_w = esdhc_be_writew,
1275	.write_b = esdhc_be_writeb,
1276	.set_clock = esdhc_of_set_clock,
1277	.enable_dma = esdhc_of_enable_dma,
1278	.get_max_clock = esdhc_of_get_max_clock,
1279	.get_min_clock = esdhc_of_get_min_clock,
1280	.adma_workaround = esdhc_of_adma_workaround,
1281	.set_bus_width = esdhc_pltfm_set_bus_width,
1282	.reset = esdhc_reset,
1283	.set_uhs_signaling = esdhc_set_uhs_signaling,
1284	.irq = esdhc_irq,
1285};
1286
1287static const struct sdhci_ops sdhci_esdhc_le_ops = {
1288	.read_l = esdhc_le_readl,
1289	.read_w = esdhc_le_readw,
1290	.read_b = esdhc_le_readb,
1291	.write_l = esdhc_le_writel,
1292	.write_w = esdhc_le_writew,
1293	.write_b = esdhc_le_writeb,
1294	.set_clock = esdhc_of_set_clock,
1295	.enable_dma = esdhc_of_enable_dma,
1296	.get_max_clock = esdhc_of_get_max_clock,
1297	.get_min_clock = esdhc_of_get_min_clock,
1298	.adma_workaround = esdhc_of_adma_workaround,
1299	.set_bus_width = esdhc_pltfm_set_bus_width,
1300	.reset = esdhc_reset,
1301	.set_uhs_signaling = esdhc_set_uhs_signaling,
1302	.irq = esdhc_irq,
1303};
1304
1305static const struct sdhci_pltfm_data sdhci_esdhc_be_pdata = {
1306	.quirks = ESDHC_DEFAULT_QUIRKS |
1307#ifdef CONFIG_PPC
1308		  SDHCI_QUIRK_BROKEN_CARD_DETECTION |
1309#endif
1310		  SDHCI_QUIRK_NO_CARD_NO_RESET |
1311		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1312	.ops = &sdhci_esdhc_be_ops,
1313};
1314
1315static const struct sdhci_pltfm_data sdhci_esdhc_le_pdata = {
1316	.quirks = ESDHC_DEFAULT_QUIRKS |
1317		  SDHCI_QUIRK_NO_CARD_NO_RESET |
1318		  SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC,
1319	.ops = &sdhci_esdhc_le_ops,
1320};
1321
1322static struct soc_device_attribute soc_incorrect_hostver[] = {
1323	{ .family = "QorIQ T4240", .revision = "1.0", },
1324	{ .family = "QorIQ T4240", .revision = "2.0", },
1325	{ /* sentinel */ }
1326};
1327
1328static struct soc_device_attribute soc_fixup_sdhc_clkdivs[] = {
1329	{ .family = "QorIQ LX2160A", .revision = "1.0", },
1330	{ .family = "QorIQ LX2160A", .revision = "2.0", },
1331	{ .family = "QorIQ LS1028A", .revision = "1.0", },
1332	{ /* sentinel */ }
1333};
1334
1335static struct soc_device_attribute soc_unreliable_pulse_detection[] = {
1336	{ .family = "QorIQ LX2160A", .revision = "1.0", },
1337	{ .family = "QorIQ LX2160A", .revision = "2.0", },
1338	{ .family = "QorIQ LS1028A", .revision = "1.0", },
1339	{ /* sentinel */ }
1340};
1341
1342static void esdhc_init(struct platform_device *pdev, struct sdhci_host *host)
1343{
1344	const struct of_device_id *match;
1345	struct sdhci_pltfm_host *pltfm_host;
1346	struct sdhci_esdhc *esdhc;
1347	struct device_node *np;
1348	struct clk *clk;
1349	u32 val;
1350	u16 host_ver;
1351
1352	pltfm_host = sdhci_priv(host);
1353	esdhc = sdhci_pltfm_priv(pltfm_host);
1354
1355	host_ver = sdhci_readw(host, SDHCI_HOST_VERSION);
1356	esdhc->vendor_ver = (host_ver & SDHCI_VENDOR_VER_MASK) >>
1357			     SDHCI_VENDOR_VER_SHIFT;
1358	esdhc->spec_ver = host_ver & SDHCI_SPEC_VER_MASK;
1359	if (soc_device_match(soc_incorrect_hostver))
1360		esdhc->quirk_incorrect_hostver = true;
1361	else
1362		esdhc->quirk_incorrect_hostver = false;
1363
1364	if (soc_device_match(soc_fixup_sdhc_clkdivs))
1365		esdhc->quirk_limited_clk_division = true;
1366	else
1367		esdhc->quirk_limited_clk_division = false;
1368
1369	if (soc_device_match(soc_unreliable_pulse_detection))
1370		esdhc->quirk_unreliable_pulse_detection = true;
1371	else
1372		esdhc->quirk_unreliable_pulse_detection = false;
1373
1374	match = of_match_node(sdhci_esdhc_of_match, pdev->dev.of_node);
1375	if (match)
1376		esdhc->clk_fixup = match->data;
1377	np = pdev->dev.of_node;
1378
1379	if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
1380		esdhc->quirk_delay_before_data_reset = true;
1381		esdhc->quirk_trans_complete_erratum = true;
1382	}
1383
1384	clk = of_clk_get(np, 0);
1385	if (!IS_ERR(clk)) {
1386		/*
1387		 * esdhc->peripheral_clock would be assigned with a value
1388		 * which is eSDHC base clock when use periperal clock.
1389		 * For some platforms, the clock value got by common clk
1390		 * API is peripheral clock while the eSDHC base clock is
1391		 * 1/2 peripheral clock.
1392		 */
1393		if (of_device_is_compatible(np, "fsl,ls1046a-esdhc") ||
1394		    of_device_is_compatible(np, "fsl,ls1028a-esdhc") ||
1395		    of_device_is_compatible(np, "fsl,ls1088a-esdhc"))
1396			esdhc->peripheral_clock = clk_get_rate(clk) / 2;
1397		else
1398			esdhc->peripheral_clock = clk_get_rate(clk);
1399
1400		clk_put(clk);
1401	}
1402
1403	esdhc_clock_enable(host, false);
1404	val = sdhci_readl(host, ESDHC_DMA_SYSCTL);
1405	/*
1406	 * This bit is not able to be reset by SDHCI_RESET_ALL. Need to
1407	 * initialize it as 1 or 0 once, to override the different value
1408	 * which may be configured in bootloader.
1409	 */
1410	if (esdhc->peripheral_clock)
1411		val |= ESDHC_PERIPHERAL_CLK_SEL;
1412	else
1413		val &= ~ESDHC_PERIPHERAL_CLK_SEL;
1414	sdhci_writel(host, val, ESDHC_DMA_SYSCTL);
1415	esdhc_clock_enable(host, true);
1416}
1417
1418static int esdhc_hs400_prepare_ddr(struct mmc_host *mmc)
1419{
1420	esdhc_tuning_block_enable(mmc_priv(mmc), false);
1421	return 0;
1422}
1423
1424static int sdhci_esdhc_probe(struct platform_device *pdev)
1425{
1426	struct sdhci_host *host;
1427	struct device_node *np, *tp;
1428	struct sdhci_pltfm_host *pltfm_host;
1429	struct sdhci_esdhc *esdhc;
1430	int ret;
1431
1432	np = pdev->dev.of_node;
1433
1434	if (of_property_read_bool(np, "little-endian"))
1435		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_le_pdata,
1436					sizeof(struct sdhci_esdhc));
1437	else
1438		host = sdhci_pltfm_init(pdev, &sdhci_esdhc_be_pdata,
1439					sizeof(struct sdhci_esdhc));
1440
1441	if (IS_ERR(host))
1442		return PTR_ERR(host);
1443
1444	host->mmc_host_ops.start_signal_voltage_switch =
1445		esdhc_signal_voltage_switch;
1446	host->mmc_host_ops.execute_tuning = esdhc_execute_tuning;
1447	host->mmc_host_ops.hs400_prepare_ddr = esdhc_hs400_prepare_ddr;
1448	host->tuning_delay = 1;
1449
1450	esdhc_init(pdev, host);
1451
1452	sdhci_get_of_property(pdev);
1453
1454	pltfm_host = sdhci_priv(host);
1455	esdhc = sdhci_pltfm_priv(pltfm_host);
1456	if (soc_device_match(soc_tuning_erratum_type1))
1457		esdhc->quirk_tuning_erratum_type1 = true;
1458	else
1459		esdhc->quirk_tuning_erratum_type1 = false;
1460
1461	if (soc_device_match(soc_tuning_erratum_type2))
1462		esdhc->quirk_tuning_erratum_type2 = true;
1463	else
1464		esdhc->quirk_tuning_erratum_type2 = false;
1465
1466	if (esdhc->vendor_ver == VENDOR_V_22)
1467		host->quirks2 |= SDHCI_QUIRK2_HOST_NO_CMD23;
1468
1469	if (esdhc->vendor_ver > VENDOR_V_22)
1470		host->quirks &= ~SDHCI_QUIRK_NO_BUSY_IRQ;
1471
1472	tp = of_find_compatible_node(NULL, NULL, "fsl,p2020-esdhc");
1473	if (tp) {
1474		of_node_put(tp);
1475		host->quirks |= SDHCI_QUIRK_RESET_AFTER_REQUEST;
1476		host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1477	}
1478
1479	if (of_device_is_compatible(np, "fsl,p5040-esdhc") ||
1480	    of_device_is_compatible(np, "fsl,p5020-esdhc") ||
1481	    of_device_is_compatible(np, "fsl,p4080-esdhc") ||
1482	    of_device_is_compatible(np, "fsl,p1020-esdhc") ||
1483	    of_device_is_compatible(np, "fsl,t1040-esdhc"))
1484		host->quirks &= ~SDHCI_QUIRK_BROKEN_CARD_DETECTION;
1485
1486	if (of_device_is_compatible(np, "fsl,ls1021a-esdhc"))
1487		host->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
1488
1489	esdhc->quirk_ignore_data_inhibit = false;
1490	if (of_device_is_compatible(np, "fsl,p2020-esdhc")) {
1491		/*
1492		 * Freescale messed up with P2020 as it has a non-standard
1493		 * host control register
1494		 */
1495		host->quirks2 |= SDHCI_QUIRK2_BROKEN_HOST_CONTROL;
1496		esdhc->quirk_ignore_data_inhibit = true;
1497	}
1498
1499	/* call to generic mmc_of_parse to support additional capabilities */
1500	ret = mmc_of_parse(host->mmc);
1501	if (ret)
1502		goto err;
1503
1504	mmc_of_parse_voltage(host->mmc, &host->ocr_mask);
1505
1506	ret = sdhci_add_host(host);
1507	if (ret)
1508		goto err;
1509
1510	return 0;
1511 err:
1512	sdhci_pltfm_free(pdev);
1513	return ret;
1514}
1515
1516static struct platform_driver sdhci_esdhc_driver = {
1517	.driver = {
1518		.name = "sdhci-esdhc",
1519		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1520		.of_match_table = sdhci_esdhc_of_match,
1521		.pm = &esdhc_of_dev_pm_ops,
1522	},
1523	.probe = sdhci_esdhc_probe,
1524	.remove_new = sdhci_pltfm_remove,
1525};
1526
1527module_platform_driver(sdhci_esdhc_driver);
1528
1529MODULE_DESCRIPTION("SDHCI OF driver for Freescale MPC eSDHC");
1530MODULE_AUTHOR("Xiaobo Xie <X.Xie@freescale.com>, "
1531	      "Anton Vorontsov <avorontsov@ru.mvista.com>");
1532MODULE_LICENSE("GPL v2");
1533