1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 *
5 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6 *  Copyright (C) 2010 ST-Ericsson SA
7 */
8#include <linux/module.h>
9#include <linux/moduleparam.h>
10#include <linux/init.h>
11#include <linux/ioport.h>
12#include <linux/device.h>
13#include <linux/io.h>
14#include <linux/interrupt.h>
15#include <linux/kernel.h>
16#include <linux/slab.h>
17#include <linux/delay.h>
18#include <linux/err.h>
19#include <linux/highmem.h>
20#include <linux/log2.h>
21#include <linux/mmc/mmc.h>
22#include <linux/mmc/pm.h>
23#include <linux/mmc/host.h>
24#include <linux/mmc/card.h>
25#include <linux/mmc/sd.h>
26#include <linux/mmc/slot-gpio.h>
27#include <linux/amba/bus.h>
28#include <linux/clk.h>
29#include <linux/scatterlist.h>
30#include <linux/of.h>
31#include <linux/regulator/consumer.h>
32#include <linux/dmaengine.h>
33#include <linux/dma-mapping.h>
34#include <linux/amba/mmci.h>
35#include <linux/pm_runtime.h>
36#include <linux/types.h>
37#include <linux/pinctrl/consumer.h>
38#include <linux/reset.h>
39#include <linux/gpio/consumer.h>
40#include <linux/workqueue.h>
41
42#include <asm/div64.h>
43#include <asm/io.h>
44
45#include "mmci.h"
46
47#define DRIVER_NAME "mmci-pl18x"
48
49static void mmci_variant_init(struct mmci_host *host);
50static void ux500_variant_init(struct mmci_host *host);
51static void ux500v2_variant_init(struct mmci_host *host);
52
53static unsigned int fmax = 515633;
54
55static struct variant_data variant_arm = {
56	.fifosize		= 16 * 4,
57	.fifohalfsize		= 8 * 4,
58	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
59	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
60	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
61	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
62	.datalength_bits	= 16,
63	.datactrl_blocksz	= 11,
64	.pwrreg_powerup		= MCI_PWR_UP,
65	.f_max			= 100000000,
66	.reversed_irq_handling	= true,
67	.mmcimask1		= true,
68	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
69	.start_err		= MCI_STARTBITERR,
70	.opendrain		= MCI_ROD,
71	.init			= mmci_variant_init,
72};
73
74static struct variant_data variant_arm_extended_fifo = {
75	.fifosize		= 128 * 4,
76	.fifohalfsize		= 64 * 4,
77	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
78	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
79	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
80	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
81	.datalength_bits	= 16,
82	.datactrl_blocksz	= 11,
83	.pwrreg_powerup		= MCI_PWR_UP,
84	.f_max			= 100000000,
85	.mmcimask1		= true,
86	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
87	.start_err		= MCI_STARTBITERR,
88	.opendrain		= MCI_ROD,
89	.init			= mmci_variant_init,
90};
91
92static struct variant_data variant_arm_extended_fifo_hwfc = {
93	.fifosize		= 128 * 4,
94	.fifohalfsize		= 64 * 4,
95	.clkreg_enable		= MCI_ARM_HWFCEN,
96	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
97	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
98	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
99	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
100	.datalength_bits	= 16,
101	.datactrl_blocksz	= 11,
102	.pwrreg_powerup		= MCI_PWR_UP,
103	.f_max			= 100000000,
104	.mmcimask1		= true,
105	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
106	.start_err		= MCI_STARTBITERR,
107	.opendrain		= MCI_ROD,
108	.init			= mmci_variant_init,
109};
110
111static struct variant_data variant_u300 = {
112	.fifosize		= 16 * 4,
113	.fifohalfsize		= 8 * 4,
114	.clkreg_enable		= MCI_ST_U300_HWFCEN,
115	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
116	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
117	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
118	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
119	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
120	.datalength_bits	= 16,
121	.datactrl_blocksz	= 11,
122	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
123	.st_sdio			= true,
124	.pwrreg_powerup		= MCI_PWR_ON,
125	.f_max			= 100000000,
126	.signal_direction	= true,
127	.pwrreg_clkgate		= true,
128	.pwrreg_nopower		= true,
129	.mmcimask1		= true,
130	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
131	.start_err		= MCI_STARTBITERR,
132	.opendrain		= MCI_OD,
133	.init			= mmci_variant_init,
134};
135
136static struct variant_data variant_nomadik = {
137	.fifosize		= 16 * 4,
138	.fifohalfsize		= 8 * 4,
139	.clkreg			= MCI_CLK_ENABLE,
140	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
141	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
142	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
143	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
144	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
145	.datalength_bits	= 24,
146	.datactrl_blocksz	= 11,
147	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
148	.st_sdio		= true,
149	.st_clkdiv		= true,
150	.pwrreg_powerup		= MCI_PWR_ON,
151	.f_max			= 100000000,
152	.signal_direction	= true,
153	.pwrreg_clkgate		= true,
154	.pwrreg_nopower		= true,
155	.mmcimask1		= true,
156	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
157	.start_err		= MCI_STARTBITERR,
158	.opendrain		= MCI_OD,
159	.init			= mmci_variant_init,
160};
161
162static struct variant_data variant_ux500 = {
163	.fifosize		= 30 * 4,
164	.fifohalfsize		= 8 * 4,
165	.clkreg			= MCI_CLK_ENABLE,
166	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
167	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
168	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
169	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
170	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
171	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
172	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
173	.datalength_bits	= 24,
174	.datactrl_blocksz	= 11,
175	.datactrl_any_blocksz	= true,
176	.dma_power_of_2		= true,
177	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
178	.st_sdio		= true,
179	.st_clkdiv		= true,
180	.pwrreg_powerup		= MCI_PWR_ON,
181	.f_max			= 100000000,
182	.signal_direction	= true,
183	.pwrreg_clkgate		= true,
184	.busy_detect		= true,
185	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
186	.busy_detect_flag	= MCI_ST_CARDBUSY,
187	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
188	.pwrreg_nopower		= true,
189	.mmcimask1		= true,
190	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
191	.start_err		= MCI_STARTBITERR,
192	.opendrain		= MCI_OD,
193	.init			= ux500_variant_init,
194};
195
196static struct variant_data variant_ux500v2 = {
197	.fifosize		= 30 * 4,
198	.fifohalfsize		= 8 * 4,
199	.clkreg			= MCI_CLK_ENABLE,
200	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
201	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
202	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
203	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
204	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
205	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
206	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
207	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
208	.datalength_bits	= 24,
209	.datactrl_blocksz	= 11,
210	.datactrl_any_blocksz	= true,
211	.dma_power_of_2		= true,
212	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
213	.st_sdio		= true,
214	.st_clkdiv		= true,
215	.pwrreg_powerup		= MCI_PWR_ON,
216	.f_max			= 100000000,
217	.signal_direction	= true,
218	.pwrreg_clkgate		= true,
219	.busy_detect		= true,
220	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
221	.busy_detect_flag	= MCI_ST_CARDBUSY,
222	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
223	.pwrreg_nopower		= true,
224	.mmcimask1		= true,
225	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
226	.start_err		= MCI_STARTBITERR,
227	.opendrain		= MCI_OD,
228	.init			= ux500v2_variant_init,
229};
230
231static struct variant_data variant_stm32 = {
232	.fifosize		= 32 * 4,
233	.fifohalfsize		= 8 * 4,
234	.clkreg			= MCI_CLK_ENABLE,
235	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
236	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
237	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
238	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
239	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
240	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
241	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
242	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
243	.datalength_bits	= 24,
244	.datactrl_blocksz	= 11,
245	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
246	.st_sdio		= true,
247	.st_clkdiv		= true,
248	.pwrreg_powerup		= MCI_PWR_ON,
249	.f_max			= 48000000,
250	.pwrreg_clkgate		= true,
251	.pwrreg_nopower		= true,
252	.dma_flow_controller	= true,
253	.init			= mmci_variant_init,
254};
255
256static struct variant_data variant_stm32_sdmmc = {
257	.fifosize		= 16 * 4,
258	.fifohalfsize		= 8 * 4,
259	.f_max			= 208000000,
260	.stm32_clkdiv		= true,
261	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
262	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
263	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
264	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
265	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
266	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
267	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
268	.datactrl_first		= true,
269	.datacnt_useless	= true,
270	.datalength_bits	= 25,
271	.datactrl_blocksz	= 14,
272	.datactrl_any_blocksz	= true,
273	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
274	.stm32_idmabsize_mask	= GENMASK(12, 5),
275	.stm32_idmabsize_align	= BIT(5),
276	.supports_sdio_irq	= true,
277	.busy_timeout		= true,
278	.busy_detect		= true,
279	.busy_detect_flag	= MCI_STM32_BUSYD0,
280	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
281	.init			= sdmmc_variant_init,
282};
283
284static struct variant_data variant_stm32_sdmmcv2 = {
285	.fifosize		= 16 * 4,
286	.fifohalfsize		= 8 * 4,
287	.f_max			= 267000000,
288	.stm32_clkdiv		= true,
289	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
290	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
291	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
292	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
293	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
294	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
295	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
296	.datactrl_first		= true,
297	.datacnt_useless	= true,
298	.datalength_bits	= 25,
299	.datactrl_blocksz	= 14,
300	.datactrl_any_blocksz	= true,
301	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
302	.stm32_idmabsize_mask	= GENMASK(16, 5),
303	.stm32_idmabsize_align	= BIT(5),
304	.supports_sdio_irq	= true,
305	.dma_lli		= true,
306	.busy_timeout		= true,
307	.busy_detect		= true,
308	.busy_detect_flag	= MCI_STM32_BUSYD0,
309	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
310	.init			= sdmmc_variant_init,
311};
312
313static struct variant_data variant_stm32_sdmmcv3 = {
314	.fifosize		= 256 * 4,
315	.fifohalfsize		= 128 * 4,
316	.f_max			= 267000000,
317	.stm32_clkdiv		= true,
318	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
319	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
320	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
321	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
322	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
323	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
324	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
325	.datactrl_first		= true,
326	.datacnt_useless	= true,
327	.datalength_bits	= 25,
328	.datactrl_blocksz	= 14,
329	.datactrl_any_blocksz	= true,
330	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
331	.stm32_idmabsize_mask	= GENMASK(16, 6),
332	.stm32_idmabsize_align	= BIT(6),
333	.supports_sdio_irq	= true,
334	.dma_lli		= true,
335	.busy_timeout		= true,
336	.busy_detect		= true,
337	.busy_detect_flag	= MCI_STM32_BUSYD0,
338	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
339	.init			= sdmmc_variant_init,
340};
341
342static struct variant_data variant_qcom = {
343	.fifosize		= 16 * 4,
344	.fifohalfsize		= 8 * 4,
345	.clkreg			= MCI_CLK_ENABLE,
346	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
347				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
348	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
349	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
350	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
351	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
352	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
353	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
354	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
355	.datalength_bits	= 24,
356	.datactrl_blocksz	= 11,
357	.datactrl_any_blocksz	= true,
358	.pwrreg_powerup		= MCI_PWR_UP,
359	.f_max			= 208000000,
360	.explicit_mclk_control	= true,
361	.qcom_fifo		= true,
362	.qcom_dml		= true,
363	.mmcimask1		= true,
364	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
365	.start_err		= MCI_STARTBITERR,
366	.opendrain		= MCI_ROD,
367	.init			= qcom_variant_init,
368};
369
370/* Busy detection for the ST Micro variant */
371static int mmci_card_busy(struct mmc_host *mmc)
372{
373	struct mmci_host *host = mmc_priv(mmc);
374	unsigned long flags;
375	int busy = 0;
376
377	spin_lock_irqsave(&host->lock, flags);
378	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
379		busy = 1;
380	spin_unlock_irqrestore(&host->lock, flags);
381
382	return busy;
383}
384
385static void mmci_reg_delay(struct mmci_host *host)
386{
387	/*
388	 * According to the spec, at least three feedback clock cycles
389	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
390	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
391	 * Worst delay time during card init is at 100 kHz => 30 us.
392	 * Worst delay time when up and running is at 25 MHz => 120 ns.
393	 */
394	if (host->cclk < 25000000)
395		udelay(30);
396	else
397		ndelay(120);
398}
399
400/*
401 * This must be called with host->lock held
402 */
403void mmci_write_clkreg(struct mmci_host *host, u32 clk)
404{
405	if (host->clk_reg != clk) {
406		host->clk_reg = clk;
407		writel(clk, host->base + MMCICLOCK);
408	}
409}
410
411/*
412 * This must be called with host->lock held
413 */
414void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
415{
416	if (host->pwr_reg != pwr) {
417		host->pwr_reg = pwr;
418		writel(pwr, host->base + MMCIPOWER);
419	}
420}
421
422/*
423 * This must be called with host->lock held
424 */
425static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
426{
427	/* Keep busy mode in DPSM and SDIO mask if enabled */
428	datactrl |= host->datactrl_reg & (host->variant->busy_dpsm_flag |
429					  host->variant->datactrl_mask_sdio);
430
431	if (host->datactrl_reg != datactrl) {
432		host->datactrl_reg = datactrl;
433		writel(datactrl, host->base + MMCIDATACTRL);
434	}
435}
436
437/*
438 * This must be called with host->lock held
439 */
440static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
441{
442	struct variant_data *variant = host->variant;
443	u32 clk = variant->clkreg;
444
445	/* Make sure cclk reflects the current calculated clock */
446	host->cclk = 0;
447
448	if (desired) {
449		if (variant->explicit_mclk_control) {
450			host->cclk = host->mclk;
451		} else if (desired >= host->mclk) {
452			clk = MCI_CLK_BYPASS;
453			if (variant->st_clkdiv)
454				clk |= MCI_ST_UX500_NEG_EDGE;
455			host->cclk = host->mclk;
456		} else if (variant->st_clkdiv) {
457			/*
458			 * DB8500 TRM says f = mclk / (clkdiv + 2)
459			 * => clkdiv = (mclk / f) - 2
460			 * Round the divider up so we don't exceed the max
461			 * frequency
462			 */
463			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
464			if (clk >= 256)
465				clk = 255;
466			host->cclk = host->mclk / (clk + 2);
467		} else {
468			/*
469			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
470			 * => clkdiv = mclk / (2 * f) - 1
471			 */
472			clk = host->mclk / (2 * desired) - 1;
473			if (clk >= 256)
474				clk = 255;
475			host->cclk = host->mclk / (2 * (clk + 1));
476		}
477
478		clk |= variant->clkreg_enable;
479		clk |= MCI_CLK_ENABLE;
480		/* This hasn't proven to be worthwhile */
481		/* clk |= MCI_CLK_PWRSAVE; */
482	}
483
484	/* Set actual clock for debug */
485	host->mmc->actual_clock = host->cclk;
486
487	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
488		clk |= MCI_4BIT_BUS;
489	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
490		clk |= variant->clkreg_8bit_bus_enable;
491
492	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
493	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
494		clk |= variant->clkreg_neg_edge_enable;
495
496	mmci_write_clkreg(host, clk);
497}
498
499static void mmci_dma_release(struct mmci_host *host)
500{
501	if (host->ops && host->ops->dma_release)
502		host->ops->dma_release(host);
503
504	host->use_dma = false;
505}
506
507static void mmci_dma_setup(struct mmci_host *host)
508{
509	if (!host->ops || !host->ops->dma_setup)
510		return;
511
512	if (host->ops->dma_setup(host))
513		return;
514
515	/* initialize pre request cookie */
516	host->next_cookie = 1;
517
518	host->use_dma = true;
519}
520
521/*
522 * Validate mmc prerequisites
523 */
524static int mmci_validate_data(struct mmci_host *host,
525			      struct mmc_data *data)
526{
527	struct variant_data *variant = host->variant;
528
529	if (!data)
530		return 0;
531	if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
532		dev_err(mmc_dev(host->mmc),
533			"unsupported block size (%d bytes)\n", data->blksz);
534		return -EINVAL;
535	}
536
537	if (host->ops && host->ops->validate_data)
538		return host->ops->validate_data(host, data);
539
540	return 0;
541}
542
543static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
544{
545	int err;
546
547	if (!host->ops || !host->ops->prep_data)
548		return 0;
549
550	err = host->ops->prep_data(host, data, next);
551
552	if (next && !err)
553		data->host_cookie = ++host->next_cookie < 0 ?
554			1 : host->next_cookie;
555
556	return err;
557}
558
559static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
560		      int err)
561{
562	if (host->ops && host->ops->unprep_data)
563		host->ops->unprep_data(host, data, err);
564
565	data->host_cookie = 0;
566}
567
568static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
569{
570	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
571
572	if (host->ops && host->ops->get_next_data)
573		host->ops->get_next_data(host, data);
574}
575
576static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
577{
578	struct mmc_data *data = host->data;
579	int ret;
580
581	if (!host->use_dma)
582		return -EINVAL;
583
584	ret = mmci_prep_data(host, data, false);
585	if (ret)
586		return ret;
587
588	if (!host->ops || !host->ops->dma_start)
589		return -EINVAL;
590
591	/* Okay, go for it. */
592	dev_vdbg(mmc_dev(host->mmc),
593		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
594		 data->sg_len, data->blksz, data->blocks, data->flags);
595
596	ret = host->ops->dma_start(host, &datactrl);
597	if (ret)
598		return ret;
599
600	/* Trigger the DMA transfer */
601	mmci_write_datactrlreg(host, datactrl);
602
603	/*
604	 * Let the MMCI say when the data is ended and it's time
605	 * to fire next DMA request. When that happens, MMCI will
606	 * call mmci_data_end()
607	 */
608	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
609	       host->base + MMCIMASK0);
610	return 0;
611}
612
613static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
614{
615	if (!host->use_dma)
616		return;
617
618	if (host->ops && host->ops->dma_finalize)
619		host->ops->dma_finalize(host, data);
620}
621
622static void mmci_dma_error(struct mmci_host *host)
623{
624	if (!host->use_dma)
625		return;
626
627	if (host->ops && host->ops->dma_error)
628		host->ops->dma_error(host);
629}
630
631static void
632mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
633{
634	writel(0, host->base + MMCICOMMAND);
635
636	BUG_ON(host->data);
637
638	host->mrq = NULL;
639	host->cmd = NULL;
640
641	mmc_request_done(host->mmc, mrq);
642}
643
644static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
645{
646	void __iomem *base = host->base;
647	struct variant_data *variant = host->variant;
648
649	if (host->singleirq) {
650		unsigned int mask0 = readl(base + MMCIMASK0);
651
652		mask0 &= ~variant->irq_pio_mask;
653		mask0 |= mask;
654
655		writel(mask0, base + MMCIMASK0);
656	}
657
658	if (variant->mmcimask1)
659		writel(mask, base + MMCIMASK1);
660
661	host->mask1_reg = mask;
662}
663
664static void mmci_stop_data(struct mmci_host *host)
665{
666	mmci_write_datactrlreg(host, 0);
667	mmci_set_mask1(host, 0);
668	host->data = NULL;
669}
670
671static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
672{
673	unsigned int flags = SG_MITER_ATOMIC;
674
675	if (data->flags & MMC_DATA_READ)
676		flags |= SG_MITER_TO_SG;
677	else
678		flags |= SG_MITER_FROM_SG;
679
680	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
681}
682
683static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
684{
685	return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
686}
687
688static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
689{
690	return MCI_DPSM_ENABLE | (host->data->blksz << 16);
691}
692
693static void ux500_busy_clear_mask_done(struct mmci_host *host)
694{
695	void __iomem *base = host->base;
696
697	writel(host->variant->busy_detect_mask, base + MMCICLEAR);
698	writel(readl(base + MMCIMASK0) &
699	       ~host->variant->busy_detect_mask, base + MMCIMASK0);
700	host->busy_state = MMCI_BUSY_DONE;
701	host->busy_status = 0;
702}
703
704/*
705 * ux500_busy_complete() - this will wait until the busy status
706 * goes off, saving any status that occur in the meantime into
707 * host->busy_status until we know the card is not busy any more.
708 * The function returns true when the busy detection is ended
709 * and we should continue processing the command.
710 *
711 * The Ux500 typically fires two IRQs over a busy cycle like this:
712 *
713 *  DAT0 busy          +-----------------+
714 *                     |                 |
715 *  DAT0 not busy  ----+                 +--------
716 *
717 *                     ^                 ^
718 *                     |                 |
719 *                    IRQ1              IRQ2
720 */
721static bool ux500_busy_complete(struct mmci_host *host, struct mmc_command *cmd,
722				u32 status, u32 err_msk)
723{
724	void __iomem *base = host->base;
725	int retries = 10;
726
727	if (status & err_msk) {
728		/* Stop any ongoing busy detection if an error occurs */
729		ux500_busy_clear_mask_done(host);
730		goto out_ret_state;
731	}
732
733	/*
734	 * The state transitions are encoded in a state machine crossing
735	 * the edges in this switch statement.
736	 */
737	switch (host->busy_state) {
738
739	/*
740	 * Before unmasking for the busy end IRQ, confirm that the
741	 * command was sent successfully. To keep track of having a
742	 * command in-progress, waiting for busy signaling to end,
743	 * store the status in host->busy_status.
744	 *
745	 * Note that, the card may need a couple of clock cycles before
746	 * it starts signaling busy on DAT0, hence re-read the
747	 * MMCISTATUS register here, to allow the busy bit to be set.
748	 */
749	case MMCI_BUSY_DONE:
750		/*
751		 * Save the first status register read to be sure to catch
752		 * all bits that may be lost will retrying. If the command
753		 * is still busy this will result in assigning 0 to
754		 * host->busy_status, which is what it should be in IDLE.
755		 */
756		host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
757		while (retries) {
758			status = readl(base + MMCISTATUS);
759			/* Keep accumulating status bits */
760			host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
761			if (status & host->variant->busy_detect_flag) {
762				writel(readl(base + MMCIMASK0) |
763				       host->variant->busy_detect_mask,
764				       base + MMCIMASK0);
765				host->busy_state = MMCI_BUSY_WAITING_FOR_START_IRQ;
766				schedule_delayed_work(&host->ux500_busy_timeout_work,
767				      msecs_to_jiffies(cmd->busy_timeout));
768				goto out_ret_state;
769			}
770			retries--;
771		}
772		dev_dbg(mmc_dev(host->mmc),
773			"no busy signalling in time CMD%02x\n", cmd->opcode);
774		ux500_busy_clear_mask_done(host);
775		break;
776
777	/*
778	 * If there is a command in-progress that has been successfully
779	 * sent, then bail out if busy status is set and wait for the
780	 * busy end IRQ.
781	 *
782	 * Note that, the HW triggers an IRQ on both edges while
783	 * monitoring DAT0 for busy completion, but there is only one
784	 * status bit in MMCISTATUS for the busy state. Therefore
785	 * both the start and the end interrupts needs to be cleared,
786	 * one after the other. So, clear the busy start IRQ here.
787	 */
788	case MMCI_BUSY_WAITING_FOR_START_IRQ:
789		if (status & host->variant->busy_detect_flag) {
790			host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
791			writel(host->variant->busy_detect_mask, base + MMCICLEAR);
792			host->busy_state = MMCI_BUSY_WAITING_FOR_END_IRQ;
793		} else {
794			dev_dbg(mmc_dev(host->mmc),
795				"lost busy status when waiting for busy start IRQ CMD%02x\n",
796				cmd->opcode);
797			cancel_delayed_work(&host->ux500_busy_timeout_work);
798			ux500_busy_clear_mask_done(host);
799		}
800		break;
801
802	case MMCI_BUSY_WAITING_FOR_END_IRQ:
803		if (!(status & host->variant->busy_detect_flag)) {
804			host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND);
805			writel(host->variant->busy_detect_mask, base + MMCICLEAR);
806			cancel_delayed_work(&host->ux500_busy_timeout_work);
807			ux500_busy_clear_mask_done(host);
808		} else {
809			dev_dbg(mmc_dev(host->mmc),
810				"busy status still asserted when handling busy end IRQ - will keep waiting CMD%02x\n",
811				cmd->opcode);
812		}
813		break;
814
815	default:
816		dev_dbg(mmc_dev(host->mmc), "fell through on state %d, CMD%02x\n",
817			host->busy_state, cmd->opcode);
818		break;
819	}
820
821out_ret_state:
822	return (host->busy_state == MMCI_BUSY_DONE);
823}
824
825/*
826 * All the DMA operation mode stuff goes inside this ifdef.
827 * This assumes that you have a generic DMA device interface,
828 * no custom DMA interfaces are supported.
829 */
830#ifdef CONFIG_DMA_ENGINE
831struct mmci_dmae_next {
832	struct dma_async_tx_descriptor *desc;
833	struct dma_chan	*chan;
834};
835
836struct mmci_dmae_priv {
837	struct dma_chan	*cur;
838	struct dma_chan	*rx_channel;
839	struct dma_chan	*tx_channel;
840	struct dma_async_tx_descriptor	*desc_current;
841	struct mmci_dmae_next next_data;
842};
843
844int mmci_dmae_setup(struct mmci_host *host)
845{
846	const char *rxname, *txname;
847	struct mmci_dmae_priv *dmae;
848
849	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
850	if (!dmae)
851		return -ENOMEM;
852
853	host->dma_priv = dmae;
854
855	dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
856	if (IS_ERR(dmae->rx_channel)) {
857		int ret = PTR_ERR(dmae->rx_channel);
858		dmae->rx_channel = NULL;
859		return ret;
860	}
861
862	dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
863	if (IS_ERR(dmae->tx_channel)) {
864		if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
865			dev_warn(mmc_dev(host->mmc),
866				 "Deferred probe for TX channel ignored\n");
867		dmae->tx_channel = NULL;
868	}
869
870	/*
871	 * If only an RX channel is specified, the driver will
872	 * attempt to use it bidirectionally, however if it
873	 * is specified but cannot be located, DMA will be disabled.
874	 */
875	if (dmae->rx_channel && !dmae->tx_channel)
876		dmae->tx_channel = dmae->rx_channel;
877
878	if (dmae->rx_channel)
879		rxname = dma_chan_name(dmae->rx_channel);
880	else
881		rxname = "none";
882
883	if (dmae->tx_channel)
884		txname = dma_chan_name(dmae->tx_channel);
885	else
886		txname = "none";
887
888	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
889		 rxname, txname);
890
891	/*
892	 * Limit the maximum segment size in any SG entry according to
893	 * the parameters of the DMA engine device.
894	 */
895	if (dmae->tx_channel) {
896		struct device *dev = dmae->tx_channel->device->dev;
897		unsigned int max_seg_size = dma_get_max_seg_size(dev);
898
899		if (max_seg_size < host->mmc->max_seg_size)
900			host->mmc->max_seg_size = max_seg_size;
901	}
902	if (dmae->rx_channel) {
903		struct device *dev = dmae->rx_channel->device->dev;
904		unsigned int max_seg_size = dma_get_max_seg_size(dev);
905
906		if (max_seg_size < host->mmc->max_seg_size)
907			host->mmc->max_seg_size = max_seg_size;
908	}
909
910	if (!dmae->tx_channel || !dmae->rx_channel) {
911		mmci_dmae_release(host);
912		return -EINVAL;
913	}
914
915	return 0;
916}
917
918/*
919 * This is used in or so inline it
920 * so it can be discarded.
921 */
922void mmci_dmae_release(struct mmci_host *host)
923{
924	struct mmci_dmae_priv *dmae = host->dma_priv;
925
926	if (dmae->rx_channel)
927		dma_release_channel(dmae->rx_channel);
928	if (dmae->tx_channel)
929		dma_release_channel(dmae->tx_channel);
930	dmae->rx_channel = dmae->tx_channel = NULL;
931}
932
933static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
934{
935	struct mmci_dmae_priv *dmae = host->dma_priv;
936	struct dma_chan *chan;
937
938	if (data->flags & MMC_DATA_READ)
939		chan = dmae->rx_channel;
940	else
941		chan = dmae->tx_channel;
942
943	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
944		     mmc_get_dma_dir(data));
945}
946
947void mmci_dmae_error(struct mmci_host *host)
948{
949	struct mmci_dmae_priv *dmae = host->dma_priv;
950
951	if (!dma_inprogress(host))
952		return;
953
954	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
955	dmaengine_terminate_all(dmae->cur);
956	host->dma_in_progress = false;
957	dmae->cur = NULL;
958	dmae->desc_current = NULL;
959	host->data->host_cookie = 0;
960
961	mmci_dma_unmap(host, host->data);
962}
963
964void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
965{
966	struct mmci_dmae_priv *dmae = host->dma_priv;
967	u32 status;
968	int i;
969
970	if (!dma_inprogress(host))
971		return;
972
973	/* Wait up to 1ms for the DMA to complete */
974	for (i = 0; ; i++) {
975		status = readl(host->base + MMCISTATUS);
976		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
977			break;
978		udelay(10);
979	}
980
981	/*
982	 * Check to see whether we still have some data left in the FIFO -
983	 * this catches DMA controllers which are unable to monitor the
984	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
985	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
986	 */
987	if (status & MCI_RXDATAAVLBLMASK) {
988		mmci_dma_error(host);
989		if (!data->error)
990			data->error = -EIO;
991	} else if (!data->host_cookie) {
992		mmci_dma_unmap(host, data);
993	}
994
995	/*
996	 * Use of DMA with scatter-gather is impossible.
997	 * Give up with DMA and switch back to PIO mode.
998	 */
999	if (status & MCI_RXDATAAVLBLMASK) {
1000		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
1001		mmci_dma_release(host);
1002	}
1003
1004	host->dma_in_progress = false;
1005	dmae->cur = NULL;
1006	dmae->desc_current = NULL;
1007}
1008
1009/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
1010static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
1011				struct dma_chan **dma_chan,
1012				struct dma_async_tx_descriptor **dma_desc)
1013{
1014	struct mmci_dmae_priv *dmae = host->dma_priv;
1015	struct variant_data *variant = host->variant;
1016	struct dma_slave_config conf = {
1017		.src_addr = host->phybase + MMCIFIFO,
1018		.dst_addr = host->phybase + MMCIFIFO,
1019		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1020		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1021		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
1022		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
1023		.device_fc = variant->dma_flow_controller,
1024	};
1025	struct dma_chan *chan;
1026	struct dma_device *device;
1027	struct dma_async_tx_descriptor *desc;
1028	int nr_sg;
1029	unsigned long flags = DMA_CTRL_ACK;
1030
1031	if (data->flags & MMC_DATA_READ) {
1032		conf.direction = DMA_DEV_TO_MEM;
1033		chan = dmae->rx_channel;
1034	} else {
1035		conf.direction = DMA_MEM_TO_DEV;
1036		chan = dmae->tx_channel;
1037	}
1038
1039	/* If there's no DMA channel, fall back to PIO */
1040	if (!chan)
1041		return -EINVAL;
1042
1043	/* If less than or equal to the fifo size, don't bother with DMA */
1044	if (data->blksz * data->blocks <= variant->fifosize)
1045		return -EINVAL;
1046
1047	/*
1048	 * This is necessary to get SDIO working on the Ux500. We do not yet
1049	 * know if this is a bug in:
1050	 * - The Ux500 DMA controller (DMA40)
1051	 * - The MMCI DMA interface on the Ux500
1052	 * some power of two blocks (such as 64 bytes) are sent regularly
1053	 * during SDIO traffic and those work fine so for these we enable DMA
1054	 * transfers.
1055	 */
1056	if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
1057		return -EINVAL;
1058
1059	device = chan->device;
1060	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
1061			   mmc_get_dma_dir(data));
1062	if (nr_sg == 0)
1063		return -EINVAL;
1064
1065	if (host->variant->qcom_dml)
1066		flags |= DMA_PREP_INTERRUPT;
1067
1068	dmaengine_slave_config(chan, &conf);
1069	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
1070					    conf.direction, flags);
1071	if (!desc)
1072		goto unmap_exit;
1073
1074	*dma_chan = chan;
1075	*dma_desc = desc;
1076
1077	return 0;
1078
1079 unmap_exit:
1080	dma_unmap_sg(device->dev, data->sg, data->sg_len,
1081		     mmc_get_dma_dir(data));
1082	return -ENOMEM;
1083}
1084
1085int mmci_dmae_prep_data(struct mmci_host *host,
1086			struct mmc_data *data,
1087			bool next)
1088{
1089	struct mmci_dmae_priv *dmae = host->dma_priv;
1090	struct mmci_dmae_next *nd = &dmae->next_data;
1091
1092	if (!host->use_dma)
1093		return -EINVAL;
1094
1095	if (next)
1096		return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
1097	/* Check if next job is already prepared. */
1098	if (dmae->cur && dmae->desc_current)
1099		return 0;
1100
1101	/* No job were prepared thus do it now. */
1102	return _mmci_dmae_prep_data(host, data, &dmae->cur,
1103				    &dmae->desc_current);
1104}
1105
1106int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
1107{
1108	struct mmci_dmae_priv *dmae = host->dma_priv;
1109	int ret;
1110
1111	host->dma_in_progress = true;
1112	ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1113	if (ret < 0) {
1114		host->dma_in_progress = false;
1115		return ret;
1116	}
1117	dma_async_issue_pending(dmae->cur);
1118
1119	*datactrl |= MCI_DPSM_DMAENABLE;
1120
1121	return 0;
1122}
1123
1124void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
1125{
1126	struct mmci_dmae_priv *dmae = host->dma_priv;
1127	struct mmci_dmae_next *next = &dmae->next_data;
1128
1129	if (!host->use_dma)
1130		return;
1131
1132	WARN_ON(!data->host_cookie && (next->desc || next->chan));
1133
1134	dmae->desc_current = next->desc;
1135	dmae->cur = next->chan;
1136	next->desc = NULL;
1137	next->chan = NULL;
1138}
1139
1140void mmci_dmae_unprep_data(struct mmci_host *host,
1141			   struct mmc_data *data, int err)
1142
1143{
1144	struct mmci_dmae_priv *dmae = host->dma_priv;
1145
1146	if (!host->use_dma)
1147		return;
1148
1149	mmci_dma_unmap(host, data);
1150
1151	if (err) {
1152		struct mmci_dmae_next *next = &dmae->next_data;
1153		struct dma_chan *chan;
1154		if (data->flags & MMC_DATA_READ)
1155			chan = dmae->rx_channel;
1156		else
1157			chan = dmae->tx_channel;
1158		dmaengine_terminate_all(chan);
1159
1160		if (dmae->desc_current == next->desc)
1161			dmae->desc_current = NULL;
1162
1163		if (dmae->cur == next->chan) {
1164			host->dma_in_progress = false;
1165			dmae->cur = NULL;
1166		}
1167
1168		next->desc = NULL;
1169		next->chan = NULL;
1170	}
1171}
1172
1173static struct mmci_host_ops mmci_variant_ops = {
1174	.prep_data = mmci_dmae_prep_data,
1175	.unprep_data = mmci_dmae_unprep_data,
1176	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1177	.get_next_data = mmci_dmae_get_next_data,
1178	.dma_setup = mmci_dmae_setup,
1179	.dma_release = mmci_dmae_release,
1180	.dma_start = mmci_dmae_start,
1181	.dma_finalize = mmci_dmae_finalize,
1182	.dma_error = mmci_dmae_error,
1183};
1184#else
1185static struct mmci_host_ops mmci_variant_ops = {
1186	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1187};
1188#endif
1189
1190static void mmci_variant_init(struct mmci_host *host)
1191{
1192	host->ops = &mmci_variant_ops;
1193}
1194
1195static void ux500_variant_init(struct mmci_host *host)
1196{
1197	host->ops = &mmci_variant_ops;
1198	host->ops->busy_complete = ux500_busy_complete;
1199}
1200
1201static void ux500v2_variant_init(struct mmci_host *host)
1202{
1203	host->ops = &mmci_variant_ops;
1204	host->ops->busy_complete = ux500_busy_complete;
1205	host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1206}
1207
1208static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1209{
1210	struct mmci_host *host = mmc_priv(mmc);
1211	struct mmc_data *data = mrq->data;
1212
1213	if (!data)
1214		return;
1215
1216	WARN_ON(data->host_cookie);
1217
1218	if (mmci_validate_data(host, data))
1219		return;
1220
1221	mmci_prep_data(host, data, true);
1222}
1223
1224static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1225			      int err)
1226{
1227	struct mmci_host *host = mmc_priv(mmc);
1228	struct mmc_data *data = mrq->data;
1229
1230	if (!data || !data->host_cookie)
1231		return;
1232
1233	mmci_unprep_data(host, data, err);
1234}
1235
1236static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1237{
1238	struct variant_data *variant = host->variant;
1239	unsigned int datactrl, timeout, irqmask;
1240	unsigned long long clks;
1241	void __iomem *base;
1242
1243	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1244		data->blksz, data->blocks, data->flags);
1245
1246	host->data = data;
1247	host->size = data->blksz * data->blocks;
1248	data->bytes_xfered = 0;
1249
1250	clks = (unsigned long long)data->timeout_ns * host->cclk;
1251	do_div(clks, NSEC_PER_SEC);
1252
1253	timeout = data->timeout_clks + (unsigned int)clks;
1254
1255	base = host->base;
1256	writel(timeout, base + MMCIDATATIMER);
1257	writel(host->size, base + MMCIDATALENGTH);
1258
1259	datactrl = host->ops->get_datactrl_cfg(host);
1260	datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1261
1262	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1263		u32 clk;
1264
1265		datactrl |= variant->datactrl_mask_sdio;
1266
1267		/*
1268		 * The ST Micro variant for SDIO small write transfers
1269		 * needs to have clock H/W flow control disabled,
1270		 * otherwise the transfer will not start. The threshold
1271		 * depends on the rate of MCLK.
1272		 */
1273		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1274		    (host->size < 8 ||
1275		     (host->size <= 8 && host->mclk > 50000000)))
1276			clk = host->clk_reg & ~variant->clkreg_enable;
1277		else
1278			clk = host->clk_reg | variant->clkreg_enable;
1279
1280		mmci_write_clkreg(host, clk);
1281	}
1282
1283	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1284	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1285		datactrl |= variant->datactrl_mask_ddrmode;
1286
1287	/*
1288	 * Attempt to use DMA operation mode, if this
1289	 * should fail, fall back to PIO mode
1290	 */
1291	if (!mmci_dma_start(host, datactrl))
1292		return;
1293
1294	/* IRQ mode, map the SG list for CPU reading/writing */
1295	mmci_init_sg(host, data);
1296
1297	if (data->flags & MMC_DATA_READ) {
1298		irqmask = MCI_RXFIFOHALFFULLMASK;
1299
1300		/*
1301		 * If we have less than the fifo 'half-full' threshold to
1302		 * transfer, trigger a PIO interrupt as soon as any data
1303		 * is available.
1304		 */
1305		if (host->size < variant->fifohalfsize)
1306			irqmask |= MCI_RXDATAAVLBLMASK;
1307	} else {
1308		/*
1309		 * We don't actually need to include "FIFO empty" here
1310		 * since its implicit in "FIFO half empty".
1311		 */
1312		irqmask = MCI_TXFIFOHALFEMPTYMASK;
1313	}
1314
1315	mmci_write_datactrlreg(host, datactrl);
1316	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1317	mmci_set_mask1(host, irqmask);
1318}
1319
1320static void
1321mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1322{
1323	void __iomem *base = host->base;
1324	bool busy_resp = cmd->flags & MMC_RSP_BUSY;
1325	unsigned long long clks;
1326
1327	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1328	    cmd->opcode, cmd->arg, cmd->flags);
1329
1330	if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1331		writel(0, base + MMCICOMMAND);
1332		mmci_reg_delay(host);
1333	}
1334
1335	if (host->variant->cmdreg_stop &&
1336	    cmd->opcode == MMC_STOP_TRANSMISSION)
1337		c |= host->variant->cmdreg_stop;
1338
1339	c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1340	if (cmd->flags & MMC_RSP_PRESENT) {
1341		if (cmd->flags & MMC_RSP_136)
1342			c |= host->variant->cmdreg_lrsp_crc;
1343		else if (cmd->flags & MMC_RSP_CRC)
1344			c |= host->variant->cmdreg_srsp_crc;
1345		else
1346			c |= host->variant->cmdreg_srsp;
1347	}
1348
1349	host->busy_status = 0;
1350	host->busy_state = MMCI_BUSY_DONE;
1351
1352	/* Assign a default timeout if the core does not provide one */
1353	if (busy_resp && !cmd->busy_timeout)
1354		cmd->busy_timeout = 10 * MSEC_PER_SEC;
1355
1356	if (busy_resp && host->variant->busy_timeout) {
1357		if (cmd->busy_timeout > host->mmc->max_busy_timeout)
1358			clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk;
1359		else
1360			clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1361
1362		do_div(clks, MSEC_PER_SEC);
1363		writel_relaxed(clks, host->base + MMCIDATATIMER);
1364	}
1365
1366	if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1367		host->ops->pre_sig_volt_switch(host);
1368
1369	if (/*interrupt*/0)
1370		c |= MCI_CPSM_INTERRUPT;
1371
1372	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1373		c |= host->variant->data_cmd_enable;
1374
1375	host->cmd = cmd;
1376
1377	writel(cmd->arg, base + MMCIARGUMENT);
1378	writel(c, base + MMCICOMMAND);
1379}
1380
1381static void mmci_stop_command(struct mmci_host *host)
1382{
1383	host->stop_abort.error = 0;
1384	mmci_start_command(host, &host->stop_abort, 0);
1385}
1386
1387static void
1388mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1389	      unsigned int status)
1390{
1391	unsigned int status_err;
1392
1393	/* Make sure we have data to handle */
1394	if (!data)
1395		return;
1396
1397	/* First check for errors */
1398	status_err = status & (host->variant->start_err |
1399			       MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1400			       MCI_TXUNDERRUN | MCI_RXOVERRUN);
1401
1402	if (status_err) {
1403		u32 remain, success;
1404
1405		/* Terminate the DMA transfer */
1406		mmci_dma_error(host);
1407
1408		/*
1409		 * Calculate how far we are into the transfer.  Note that
1410		 * the data counter gives the number of bytes transferred
1411		 * on the MMC bus, not on the host side.  On reads, this
1412		 * can be as much as a FIFO-worth of data ahead.  This
1413		 * matters for FIFO overruns only.
1414		 */
1415		if (!host->variant->datacnt_useless) {
1416			remain = readl(host->base + MMCIDATACNT);
1417			success = data->blksz * data->blocks - remain;
1418		} else {
1419			success = 0;
1420		}
1421
1422		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1423			status_err, success);
1424		if (status_err & MCI_DATACRCFAIL) {
1425			/* Last block was not successful */
1426			success -= 1;
1427			data->error = -EILSEQ;
1428		} else if (status_err & MCI_DATATIMEOUT) {
1429			data->error = -ETIMEDOUT;
1430		} else if (status_err & MCI_STARTBITERR) {
1431			data->error = -ECOMM;
1432		} else if (status_err & MCI_TXUNDERRUN) {
1433			data->error = -EIO;
1434		} else if (status_err & MCI_RXOVERRUN) {
1435			if (success > host->variant->fifosize)
1436				success -= host->variant->fifosize;
1437			else
1438				success = 0;
1439			data->error = -EIO;
1440		}
1441		data->bytes_xfered = round_down(success, data->blksz);
1442	}
1443
1444	if (status & MCI_DATABLOCKEND)
1445		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1446
1447	if (status & MCI_DATAEND || data->error) {
1448		mmci_dma_finalize(host, data);
1449
1450		mmci_stop_data(host);
1451
1452		if (!data->error)
1453			/* The error clause is handled above, success! */
1454			data->bytes_xfered = data->blksz * data->blocks;
1455
1456		if (!data->stop) {
1457			if (host->variant->cmdreg_stop && data->error)
1458				mmci_stop_command(host);
1459			else
1460				mmci_request_end(host, data->mrq);
1461		} else if (host->mrq->sbc && !data->error) {
1462			mmci_request_end(host, data->mrq);
1463		} else {
1464			mmci_start_command(host, data->stop, 0);
1465		}
1466	}
1467}
1468
1469static void
1470mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1471	     unsigned int status)
1472{
1473	u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1474	void __iomem *base = host->base;
1475	bool sbc, busy_resp;
1476
1477	if (!cmd)
1478		return;
1479
1480	sbc = (cmd == host->mrq->sbc);
1481	busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1482
1483	/*
1484	 * We need to be one of these interrupts to be considered worth
1485	 * handling. Note that we tag on any latent IRQs postponed
1486	 * due to waiting for busy status.
1487	 */
1488	if (host->variant->busy_timeout && busy_resp)
1489		err_msk |= MCI_DATATIMEOUT;
1490
1491	if (!((status | host->busy_status) &
1492	      (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1493		return;
1494
1495	/* Handle busy detection on DAT0 if the variant supports it. */
1496	if (busy_resp && host->variant->busy_detect)
1497		if (!host->ops->busy_complete(host, cmd, status, err_msk))
1498			return;
1499
1500	host->cmd = NULL;
1501
1502	if (status & MCI_CMDTIMEOUT) {
1503		cmd->error = -ETIMEDOUT;
1504	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1505		cmd->error = -EILSEQ;
1506	} else if (host->variant->busy_timeout && busy_resp &&
1507		   status & MCI_DATATIMEOUT) {
1508		cmd->error = -ETIMEDOUT;
1509		/*
1510		 * This will wake up mmci_irq_thread() which will issue
1511		 * a hardware reset of the MMCI block.
1512		 */
1513		host->irq_action = IRQ_WAKE_THREAD;
1514	} else {
1515		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1516		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1517		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1518		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1519	}
1520
1521	if ((!sbc && !cmd->data) || cmd->error) {
1522		if (host->data) {
1523			/* Terminate the DMA transfer */
1524			mmci_dma_error(host);
1525
1526			mmci_stop_data(host);
1527			if (host->variant->cmdreg_stop && cmd->error) {
1528				mmci_stop_command(host);
1529				return;
1530			}
1531		}
1532
1533		if (host->irq_action != IRQ_WAKE_THREAD)
1534			mmci_request_end(host, host->mrq);
1535
1536	} else if (sbc) {
1537		mmci_start_command(host, host->mrq->cmd, 0);
1538	} else if (!host->variant->datactrl_first &&
1539		   !(cmd->data->flags & MMC_DATA_READ)) {
1540		mmci_start_data(host, cmd->data);
1541	}
1542}
1543
1544static char *ux500_state_str(struct mmci_host *host)
1545{
1546	switch (host->busy_state) {
1547	case MMCI_BUSY_WAITING_FOR_START_IRQ:
1548		return "waiting for start IRQ";
1549	case MMCI_BUSY_WAITING_FOR_END_IRQ:
1550		return "waiting for end IRQ";
1551	case MMCI_BUSY_DONE:
1552		return "not waiting for IRQs";
1553	default:
1554		return "unknown";
1555	}
1556}
1557
1558/*
1559 * This busy timeout worker is used to "kick" the command IRQ if a
1560 * busy detect IRQ fails to appear in reasonable time. Only used on
1561 * variants with busy detection IRQ delivery.
1562 */
1563static void ux500_busy_timeout_work(struct work_struct *work)
1564{
1565	struct mmci_host *host = container_of(work, struct mmci_host,
1566					ux500_busy_timeout_work.work);
1567	unsigned long flags;
1568	u32 status;
1569
1570	spin_lock_irqsave(&host->lock, flags);
1571
1572	if (host->cmd) {
1573		/* If we are still busy let's tag on a cmd-timeout error. */
1574		status = readl(host->base + MMCISTATUS);
1575		if (status & host->variant->busy_detect_flag) {
1576			status |= MCI_CMDTIMEOUT;
1577			dev_err(mmc_dev(host->mmc),
1578				"timeout in state %s still busy with CMD%02x\n",
1579				ux500_state_str(host), host->cmd->opcode);
1580		} else {
1581			dev_err(mmc_dev(host->mmc),
1582				"timeout in state %s waiting for busy CMD%02x\n",
1583				ux500_state_str(host), host->cmd->opcode);
1584		}
1585
1586		mmci_cmd_irq(host, host->cmd, status);
1587	}
1588
1589	spin_unlock_irqrestore(&host->lock, flags);
1590}
1591
1592static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1593{
1594	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1595}
1596
1597static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1598{
1599	/*
1600	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1601	 * from the fifo range should be used
1602	 */
1603	if (status & MCI_RXFIFOHALFFULL)
1604		return host->variant->fifohalfsize;
1605	else if (status & MCI_RXDATAAVLBL)
1606		return 4;
1607
1608	return 0;
1609}
1610
1611static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1612{
1613	void __iomem *base = host->base;
1614	char *ptr = buffer;
1615	u32 status = readl(host->base + MMCISTATUS);
1616	int host_remain = host->size;
1617
1618	do {
1619		int count = host->get_rx_fifocnt(host, status, host_remain);
1620
1621		if (count > remain)
1622			count = remain;
1623
1624		if (count <= 0)
1625			break;
1626
1627		/*
1628		 * SDIO especially may want to send something that is
1629		 * not divisible by 4 (as opposed to card sectors
1630		 * etc). Therefore make sure to always read the last bytes
1631		 * while only doing full 32-bit reads towards the FIFO.
1632		 */
1633		if (unlikely(count & 0x3)) {
1634			if (count < 4) {
1635				unsigned char buf[4];
1636				ioread32_rep(base + MMCIFIFO, buf, 1);
1637				memcpy(ptr, buf, count);
1638			} else {
1639				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1640				count &= ~0x3;
1641			}
1642		} else {
1643			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1644		}
1645
1646		ptr += count;
1647		remain -= count;
1648		host_remain -= count;
1649
1650		if (remain == 0)
1651			break;
1652
1653		status = readl(base + MMCISTATUS);
1654	} while (status & MCI_RXDATAAVLBL);
1655
1656	return ptr - buffer;
1657}
1658
1659static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1660{
1661	struct variant_data *variant = host->variant;
1662	void __iomem *base = host->base;
1663	char *ptr = buffer;
1664
1665	do {
1666		unsigned int count, maxcnt;
1667
1668		maxcnt = status & MCI_TXFIFOEMPTY ?
1669			 variant->fifosize : variant->fifohalfsize;
1670		count = min(remain, maxcnt);
1671
1672		/*
1673		 * SDIO especially may want to send something that is
1674		 * not divisible by 4 (as opposed to card sectors
1675		 * etc), and the FIFO only accept full 32-bit writes.
1676		 * So compensate by adding +3 on the count, a single
1677		 * byte become a 32bit write, 7 bytes will be two
1678		 * 32bit writes etc.
1679		 */
1680		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1681
1682		ptr += count;
1683		remain -= count;
1684
1685		if (remain == 0)
1686			break;
1687
1688		status = readl(base + MMCISTATUS);
1689	} while (status & MCI_TXFIFOHALFEMPTY);
1690
1691	return ptr - buffer;
1692}
1693
1694/*
1695 * PIO data transfer IRQ handler.
1696 */
1697static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1698{
1699	struct mmci_host *host = dev_id;
1700	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1701	struct variant_data *variant = host->variant;
1702	void __iomem *base = host->base;
1703	u32 status;
1704
1705	status = readl(base + MMCISTATUS);
1706
1707	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1708
1709	do {
1710		unsigned int remain, len;
1711		char *buffer;
1712
1713		/*
1714		 * For write, we only need to test the half-empty flag
1715		 * here - if the FIFO is completely empty, then by
1716		 * definition it is more than half empty.
1717		 *
1718		 * For read, check for data available.
1719		 */
1720		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1721			break;
1722
1723		if (!sg_miter_next(sg_miter))
1724			break;
1725
1726		buffer = sg_miter->addr;
1727		remain = sg_miter->length;
1728
1729		len = 0;
1730		if (status & MCI_RXACTIVE)
1731			len = mmci_pio_read(host, buffer, remain);
1732		if (status & MCI_TXACTIVE)
1733			len = mmci_pio_write(host, buffer, remain, status);
1734
1735		sg_miter->consumed = len;
1736
1737		host->size -= len;
1738		remain -= len;
1739
1740		if (remain)
1741			break;
1742
1743		status = readl(base + MMCISTATUS);
1744	} while (1);
1745
1746	sg_miter_stop(sg_miter);
1747
1748	/*
1749	 * If we have less than the fifo 'half-full' threshold to transfer,
1750	 * trigger a PIO interrupt as soon as any data is available.
1751	 */
1752	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1753		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1754
1755	/*
1756	 * If we run out of data, disable the data IRQs; this
1757	 * prevents a race where the FIFO becomes empty before
1758	 * the chip itself has disabled the data path, and
1759	 * stops us racing with our data end IRQ.
1760	 */
1761	if (host->size == 0) {
1762		mmci_set_mask1(host, 0);
1763		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1764	}
1765
1766	return IRQ_HANDLED;
1767}
1768
1769static void mmci_write_sdio_irq_bit(struct mmci_host *host, int enable)
1770{
1771	void __iomem *base = host->base;
1772	u32 mask = readl_relaxed(base + MMCIMASK0);
1773
1774	if (enable)
1775		writel_relaxed(mask | MCI_ST_SDIOITMASK, base + MMCIMASK0);
1776	else
1777		writel_relaxed(mask & ~MCI_ST_SDIOITMASK, base + MMCIMASK0);
1778}
1779
1780static void mmci_signal_sdio_irq(struct mmci_host *host, u32 status)
1781{
1782	if (status & MCI_ST_SDIOIT) {
1783		mmci_write_sdio_irq_bit(host, 0);
1784		sdio_signal_irq(host->mmc);
1785	}
1786}
1787
1788/*
1789 * Handle completion of command and data transfers.
1790 */
1791static irqreturn_t mmci_irq(int irq, void *dev_id)
1792{
1793	struct mmci_host *host = dev_id;
1794	u32 status;
1795
1796	spin_lock(&host->lock);
1797	host->irq_action = IRQ_HANDLED;
1798
1799	do {
1800		status = readl(host->base + MMCISTATUS);
1801		if (!status)
1802			break;
1803
1804		if (host->singleirq) {
1805			if (status & host->mask1_reg)
1806				mmci_pio_irq(irq, dev_id);
1807
1808			status &= ~host->variant->irq_pio_mask;
1809		}
1810
1811		/*
1812		 * Busy detection is managed by mmci_cmd_irq(), including to
1813		 * clear the corresponding IRQ.
1814		 */
1815		status &= readl(host->base + MMCIMASK0);
1816		if (host->variant->busy_detect)
1817			writel(status & ~host->variant->busy_detect_mask,
1818			       host->base + MMCICLEAR);
1819		else
1820			writel(status, host->base + MMCICLEAR);
1821
1822		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1823
1824		if (host->variant->reversed_irq_handling) {
1825			mmci_data_irq(host, host->data, status);
1826			mmci_cmd_irq(host, host->cmd, status);
1827		} else {
1828			mmci_cmd_irq(host, host->cmd, status);
1829			mmci_data_irq(host, host->data, status);
1830		}
1831
1832		if (host->variant->supports_sdio_irq)
1833			mmci_signal_sdio_irq(host, status);
1834
1835		/*
1836		 * Busy detection has been handled by mmci_cmd_irq() above.
1837		 * Clear the status bit to prevent polling in IRQ context.
1838		 */
1839		if (host->variant->busy_detect_flag)
1840			status &= ~host->variant->busy_detect_flag;
1841
1842	} while (status);
1843
1844	spin_unlock(&host->lock);
1845
1846	return host->irq_action;
1847}
1848
1849/*
1850 * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1851 *
1852 * A reset is needed for some variants, where a datatimeout for a R1B request
1853 * causes the DPSM to stay busy (non-functional).
1854 */
1855static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1856{
1857	struct mmci_host *host = dev_id;
1858	unsigned long flags;
1859
1860	if (host->rst) {
1861		reset_control_assert(host->rst);
1862		udelay(2);
1863		reset_control_deassert(host->rst);
1864	}
1865
1866	spin_lock_irqsave(&host->lock, flags);
1867	writel(host->clk_reg, host->base + MMCICLOCK);
1868	writel(host->pwr_reg, host->base + MMCIPOWER);
1869	writel(MCI_IRQENABLE | host->variant->start_err,
1870	       host->base + MMCIMASK0);
1871
1872	host->irq_action = IRQ_HANDLED;
1873	mmci_request_end(host, host->mrq);
1874	spin_unlock_irqrestore(&host->lock, flags);
1875
1876	return host->irq_action;
1877}
1878
1879static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1880{
1881	struct mmci_host *host = mmc_priv(mmc);
1882	unsigned long flags;
1883
1884	WARN_ON(host->mrq != NULL);
1885
1886	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1887	if (mrq->cmd->error) {
1888		mmc_request_done(mmc, mrq);
1889		return;
1890	}
1891
1892	spin_lock_irqsave(&host->lock, flags);
1893
1894	host->mrq = mrq;
1895
1896	if (mrq->data)
1897		mmci_get_next_data(host, mrq->data);
1898
1899	if (mrq->data &&
1900	    (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1901		mmci_start_data(host, mrq->data);
1902
1903	if (mrq->sbc)
1904		mmci_start_command(host, mrq->sbc, 0);
1905	else
1906		mmci_start_command(host, mrq->cmd, 0);
1907
1908	spin_unlock_irqrestore(&host->lock, flags);
1909}
1910
1911static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1912{
1913	struct mmci_host *host = mmc_priv(mmc);
1914	u32 max_busy_timeout = 0;
1915
1916	if (!host->variant->busy_detect)
1917		return;
1918
1919	if (host->variant->busy_timeout && mmc->actual_clock)
1920		max_busy_timeout = U32_MAX / DIV_ROUND_UP(mmc->actual_clock,
1921							  MSEC_PER_SEC);
1922
1923	mmc->max_busy_timeout = max_busy_timeout;
1924}
1925
1926static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1927{
1928	struct mmci_host *host = mmc_priv(mmc);
1929	struct variant_data *variant = host->variant;
1930	u32 pwr = 0;
1931	unsigned long flags;
1932	int ret;
1933
1934	switch (ios->power_mode) {
1935	case MMC_POWER_OFF:
1936		if (!IS_ERR(mmc->supply.vmmc))
1937			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1938
1939		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1940			regulator_disable(mmc->supply.vqmmc);
1941			host->vqmmc_enabled = false;
1942		}
1943
1944		break;
1945	case MMC_POWER_UP:
1946		if (!IS_ERR(mmc->supply.vmmc))
1947			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1948
1949		/*
1950		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1951		 * and instead uses MCI_PWR_ON so apply whatever value is
1952		 * configured in the variant data.
1953		 */
1954		pwr |= variant->pwrreg_powerup;
1955
1956		break;
1957	case MMC_POWER_ON:
1958		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1959			ret = regulator_enable(mmc->supply.vqmmc);
1960			if (ret < 0)
1961				dev_err(mmc_dev(mmc),
1962					"failed to enable vqmmc regulator\n");
1963			else
1964				host->vqmmc_enabled = true;
1965		}
1966
1967		pwr |= MCI_PWR_ON;
1968		break;
1969	}
1970
1971	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1972		/*
1973		 * The ST Micro variant has some additional bits
1974		 * indicating signal direction for the signals in
1975		 * the SD/MMC bus and feedback-clock usage.
1976		 */
1977		pwr |= host->pwr_reg_add;
1978
1979		if (ios->bus_width == MMC_BUS_WIDTH_4)
1980			pwr &= ~MCI_ST_DATA74DIREN;
1981		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1982			pwr &= (~MCI_ST_DATA74DIREN &
1983				~MCI_ST_DATA31DIREN &
1984				~MCI_ST_DATA2DIREN);
1985	}
1986
1987	if (variant->opendrain) {
1988		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1989			pwr |= variant->opendrain;
1990	} else {
1991		/*
1992		 * If the variant cannot configure the pads by its own, then we
1993		 * expect the pinctrl to be able to do that for us
1994		 */
1995		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1996			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1997		else
1998			pinctrl_select_default_state(mmc_dev(mmc));
1999	}
2000
2001	/*
2002	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
2003	 * gating the clock, the MCI_PWR_ON bit is cleared.
2004	 */
2005	if (!ios->clock && variant->pwrreg_clkgate)
2006		pwr &= ~MCI_PWR_ON;
2007
2008	if (host->variant->explicit_mclk_control &&
2009	    ios->clock != host->clock_cache) {
2010		ret = clk_set_rate(host->clk, ios->clock);
2011		if (ret < 0)
2012			dev_err(mmc_dev(host->mmc),
2013				"Error setting clock rate (%d)\n", ret);
2014		else
2015			host->mclk = clk_get_rate(host->clk);
2016	}
2017	host->clock_cache = ios->clock;
2018
2019	spin_lock_irqsave(&host->lock, flags);
2020
2021	if (host->ops && host->ops->set_clkreg)
2022		host->ops->set_clkreg(host, ios->clock);
2023	else
2024		mmci_set_clkreg(host, ios->clock);
2025
2026	mmci_set_max_busy_timeout(mmc);
2027
2028	if (host->ops && host->ops->set_pwrreg)
2029		host->ops->set_pwrreg(host, pwr);
2030	else
2031		mmci_write_pwrreg(host, pwr);
2032
2033	mmci_reg_delay(host);
2034
2035	spin_unlock_irqrestore(&host->lock, flags);
2036}
2037
2038static int mmci_get_cd(struct mmc_host *mmc)
2039{
2040	struct mmci_host *host = mmc_priv(mmc);
2041	struct mmci_platform_data *plat = host->plat;
2042	unsigned int status = mmc_gpio_get_cd(mmc);
2043
2044	if (status == -ENOSYS) {
2045		if (!plat->status)
2046			return 1; /* Assume always present */
2047
2048		status = plat->status(mmc_dev(host->mmc));
2049	}
2050	return status;
2051}
2052
2053static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
2054{
2055	struct mmci_host *host = mmc_priv(mmc);
2056	int ret;
2057
2058	ret = mmc_regulator_set_vqmmc(mmc, ios);
2059
2060	if (!ret && host->ops && host->ops->post_sig_volt_switch)
2061		ret = host->ops->post_sig_volt_switch(host, ios);
2062	else if (ret)
2063		ret = 0;
2064
2065	if (ret < 0)
2066		dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
2067
2068	return ret;
2069}
2070
2071static void mmci_enable_sdio_irq(struct mmc_host *mmc, int enable)
2072{
2073	struct mmci_host *host = mmc_priv(mmc);
2074	unsigned long flags;
2075
2076	if (enable)
2077		/* Keep the SDIO mode bit if SDIO irqs are enabled */
2078		pm_runtime_get_sync(mmc_dev(mmc));
2079
2080	spin_lock_irqsave(&host->lock, flags);
2081	mmci_write_sdio_irq_bit(host, enable);
2082	spin_unlock_irqrestore(&host->lock, flags);
2083
2084	if (!enable) {
2085		pm_runtime_mark_last_busy(mmc_dev(mmc));
2086		pm_runtime_put_autosuspend(mmc_dev(mmc));
2087	}
2088}
2089
2090static void mmci_ack_sdio_irq(struct mmc_host *mmc)
2091{
2092	struct mmci_host *host = mmc_priv(mmc);
2093	unsigned long flags;
2094
2095	spin_lock_irqsave(&host->lock, flags);
2096	mmci_write_sdio_irq_bit(host, 1);
2097	spin_unlock_irqrestore(&host->lock, flags);
2098}
2099
2100static struct mmc_host_ops mmci_ops = {
2101	.request	= mmci_request,
2102	.pre_req	= mmci_pre_request,
2103	.post_req	= mmci_post_request,
2104	.set_ios	= mmci_set_ios,
2105	.get_ro		= mmc_gpio_get_ro,
2106	.get_cd		= mmci_get_cd,
2107	.start_signal_voltage_switch = mmci_sig_volt_switch,
2108};
2109
2110static void mmci_probe_level_translator(struct mmc_host *mmc)
2111{
2112	struct device *dev = mmc_dev(mmc);
2113	struct mmci_host *host = mmc_priv(mmc);
2114	struct gpio_desc *cmd_gpio;
2115	struct gpio_desc *ck_gpio;
2116	struct gpio_desc *ckin_gpio;
2117	int clk_hi, clk_lo;
2118
2119	/*
2120	 * Assume the level translator is present if st,use-ckin is set.
2121	 * This is to cater for DTs which do not implement this test.
2122	 */
2123	host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
2124
2125	cmd_gpio = gpiod_get(dev, "st,cmd", GPIOD_OUT_HIGH);
2126	if (IS_ERR(cmd_gpio))
2127		goto exit_cmd;
2128
2129	ck_gpio = gpiod_get(dev, "st,ck", GPIOD_OUT_HIGH);
2130	if (IS_ERR(ck_gpio))
2131		goto exit_ck;
2132
2133	ckin_gpio = gpiod_get(dev, "st,ckin", GPIOD_IN);
2134	if (IS_ERR(ckin_gpio))
2135		goto exit_ckin;
2136
2137	/* All GPIOs are valid, test whether level translator works */
2138
2139	/* Sample CKIN */
2140	clk_hi = !!gpiod_get_value(ckin_gpio);
2141
2142	/* Set CK low */
2143	gpiod_set_value(ck_gpio, 0);
2144
2145	/* Sample CKIN */
2146	clk_lo = !!gpiod_get_value(ckin_gpio);
2147
2148	/* Tristate all */
2149	gpiod_direction_input(cmd_gpio);
2150	gpiod_direction_input(ck_gpio);
2151
2152	/* Level translator is present if CK signal is propagated to CKIN */
2153	if (!clk_hi || clk_lo) {
2154		host->clk_reg_add &= ~MCI_STM32_CLK_SELCKIN;
2155		dev_warn(dev,
2156			 "Level translator inoperable, CK signal not detected on CKIN, disabling.\n");
2157	}
2158
2159	gpiod_put(ckin_gpio);
2160
2161exit_ckin:
2162	gpiod_put(ck_gpio);
2163exit_ck:
2164	gpiod_put(cmd_gpio);
2165exit_cmd:
2166	pinctrl_select_default_state(dev);
2167}
2168
2169static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
2170{
2171	struct mmci_host *host = mmc_priv(mmc);
2172	int ret = mmc_of_parse(mmc);
2173
2174	if (ret)
2175		return ret;
2176
2177	if (of_property_read_bool(np, "st,sig-dir-dat0"))
2178		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
2179	if (of_property_read_bool(np, "st,sig-dir-dat2"))
2180		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
2181	if (of_property_read_bool(np, "st,sig-dir-dat31"))
2182		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
2183	if (of_property_read_bool(np, "st,sig-dir-dat74"))
2184		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
2185	if (of_property_read_bool(np, "st,sig-dir-cmd"))
2186		host->pwr_reg_add |= MCI_ST_CMDDIREN;
2187	if (of_property_read_bool(np, "st,sig-pin-fbclk"))
2188		host->pwr_reg_add |= MCI_ST_FBCLKEN;
2189	if (of_property_read_bool(np, "st,sig-dir"))
2190		host->pwr_reg_add |= MCI_STM32_DIRPOL;
2191	if (of_property_read_bool(np, "st,neg-edge"))
2192		host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
2193	if (of_property_read_bool(np, "st,use-ckin"))
2194		mmci_probe_level_translator(mmc);
2195
2196	if (of_property_read_bool(np, "mmc-cap-mmc-highspeed"))
2197		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
2198	if (of_property_read_bool(np, "mmc-cap-sd-highspeed"))
2199		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
2200
2201	return 0;
2202}
2203
2204static int mmci_probe(struct amba_device *dev,
2205	const struct amba_id *id)
2206{
2207	struct mmci_platform_data *plat = dev->dev.platform_data;
2208	struct device_node *np = dev->dev.of_node;
2209	struct variant_data *variant = id->data;
2210	struct mmci_host *host;
2211	struct mmc_host *mmc;
2212	int ret;
2213
2214	/* Must have platform data or Device Tree. */
2215	if (!plat && !np) {
2216		dev_err(&dev->dev, "No plat data or DT found\n");
2217		return -EINVAL;
2218	}
2219
2220	if (!plat) {
2221		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
2222		if (!plat)
2223			return -ENOMEM;
2224	}
2225
2226	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
2227	if (!mmc)
2228		return -ENOMEM;
2229
2230	host = mmc_priv(mmc);
2231	host->mmc = mmc;
2232	host->mmc_ops = &mmci_ops;
2233	mmc->ops = &mmci_ops;
2234
2235	ret = mmci_of_parse(np, mmc);
2236	if (ret)
2237		goto host_free;
2238
2239	/*
2240	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
2241	 * pins can be set accordingly using pinctrl
2242	 */
2243	if (!variant->opendrain) {
2244		host->pinctrl = devm_pinctrl_get(&dev->dev);
2245		if (IS_ERR(host->pinctrl)) {
2246			dev_err(&dev->dev, "failed to get pinctrl");
2247			ret = PTR_ERR(host->pinctrl);
2248			goto host_free;
2249		}
2250
2251		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
2252							    MMCI_PINCTRL_STATE_OPENDRAIN);
2253		if (IS_ERR(host->pins_opendrain)) {
2254			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
2255			ret = PTR_ERR(host->pins_opendrain);
2256			goto host_free;
2257		}
2258	}
2259
2260	host->hw_designer = amba_manf(dev);
2261	host->hw_revision = amba_rev(dev);
2262	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
2263	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
2264
2265	host->clk = devm_clk_get(&dev->dev, NULL);
2266	if (IS_ERR(host->clk)) {
2267		ret = PTR_ERR(host->clk);
2268		goto host_free;
2269	}
2270
2271	ret = clk_prepare_enable(host->clk);
2272	if (ret)
2273		goto host_free;
2274
2275	if (variant->qcom_fifo)
2276		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
2277	else
2278		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2279
2280	host->plat = plat;
2281	host->variant = variant;
2282	host->mclk = clk_get_rate(host->clk);
2283	/*
2284	 * According to the spec, mclk is max 100 MHz,
2285	 * so we try to adjust the clock down to this,
2286	 * (if possible).
2287	 */
2288	if (host->mclk > variant->f_max) {
2289		ret = clk_set_rate(host->clk, variant->f_max);
2290		if (ret < 0)
2291			goto clk_disable;
2292		host->mclk = clk_get_rate(host->clk);
2293		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2294			host->mclk);
2295	}
2296
2297	host->phybase = dev->res.start;
2298	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2299	if (IS_ERR(host->base)) {
2300		ret = PTR_ERR(host->base);
2301		goto clk_disable;
2302	}
2303
2304	if (variant->init)
2305		variant->init(host);
2306
2307	/*
2308	 * The ARM and ST versions of the block have slightly different
2309	 * clock divider equations which means that the minimum divider
2310	 * differs too.
2311	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2312	 */
2313	if (variant->st_clkdiv)
2314		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2315	else if (variant->stm32_clkdiv)
2316		mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2317	else if (variant->explicit_mclk_control)
2318		mmc->f_min = clk_round_rate(host->clk, 100000);
2319	else
2320		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2321	/*
2322	 * If no maximum operating frequency is supplied, fall back to use
2323	 * the module parameter, which has a (low) default value in case it
2324	 * is not specified. Either value must not exceed the clock rate into
2325	 * the block, of course.
2326	 */
2327	if (mmc->f_max)
2328		mmc->f_max = variant->explicit_mclk_control ?
2329				min(variant->f_max, mmc->f_max) :
2330				min(host->mclk, mmc->f_max);
2331	else
2332		mmc->f_max = variant->explicit_mclk_control ?
2333				fmax : min(host->mclk, fmax);
2334
2335
2336	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2337
2338	host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2339	if (IS_ERR(host->rst)) {
2340		ret = PTR_ERR(host->rst);
2341		goto clk_disable;
2342	}
2343	ret = reset_control_deassert(host->rst);
2344	if (ret)
2345		dev_err(mmc_dev(mmc), "failed to de-assert reset\n");
2346
2347	/* Get regulators and the supported OCR mask */
2348	ret = mmc_regulator_get_supply(mmc);
2349	if (ret)
2350		goto clk_disable;
2351
2352	if (!mmc->ocr_avail)
2353		mmc->ocr_avail = plat->ocr_mask;
2354	else if (plat->ocr_mask)
2355		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2356
2357	/* We support these capabilities. */
2358	mmc->caps |= MMC_CAP_CMD23;
2359
2360	/*
2361	 * Enable busy detection.
2362	 */
2363	if (variant->busy_detect) {
2364		mmci_ops.card_busy = mmci_card_busy;
2365		/*
2366		 * Not all variants have a flag to enable busy detection
2367		 * in the DPSM, but if they do, set it here.
2368		 */
2369		if (variant->busy_dpsm_flag)
2370			mmci_write_datactrlreg(host,
2371					       host->variant->busy_dpsm_flag);
2372		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2373	}
2374
2375	if (variant->supports_sdio_irq && host->mmc->caps & MMC_CAP_SDIO_IRQ) {
2376		mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
2377
2378		mmci_ops.enable_sdio_irq = mmci_enable_sdio_irq;
2379		mmci_ops.ack_sdio_irq	= mmci_ack_sdio_irq;
2380
2381		mmci_write_datactrlreg(host,
2382				       host->variant->datactrl_mask_sdio);
2383	}
2384
2385	/* Variants with mandatory busy timeout in HW needs R1B responses. */
2386	if (variant->busy_timeout)
2387		mmc->caps |= MMC_CAP_NEED_RSP_BUSY;
2388
2389	/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2390	host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2391	host->stop_abort.arg = 0;
2392	host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2393
2394	/* We support these PM capabilities. */
2395	mmc->pm_caps |= MMC_PM_KEEP_POWER;
2396
2397	/*
2398	 * We can do SGIO
2399	 */
2400	mmc->max_segs = NR_SG;
2401
2402	/*
2403	 * Since only a certain number of bits are valid in the data length
2404	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2405	 * single request.
2406	 */
2407	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2408
2409	/*
2410	 * Set the maximum segment size.  Since we aren't doing DMA
2411	 * (yet) we are only limited by the data length register.
2412	 */
2413	mmc->max_seg_size = mmc->max_req_size;
2414
2415	/*
2416	 * Block size can be up to 2048 bytes, but must be a power of two.
2417	 */
2418	mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2419
2420	/*
2421	 * Limit the number of blocks transferred so that we don't overflow
2422	 * the maximum request size.
2423	 */
2424	mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2425
2426	spin_lock_init(&host->lock);
2427
2428	writel(0, host->base + MMCIMASK0);
2429
2430	if (variant->mmcimask1)
2431		writel(0, host->base + MMCIMASK1);
2432
2433	writel(0xfff, host->base + MMCICLEAR);
2434
2435	/*
2436	 * If:
2437	 * - not using DT but using a descriptor table, or
2438	 * - using a table of descriptors ALONGSIDE DT, or
2439	 * look up these descriptors named "cd" and "wp" right here, fail
2440	 * silently of these do not exist
2441	 */
2442	if (!np) {
2443		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2444		if (ret == -EPROBE_DEFER)
2445			goto clk_disable;
2446
2447		ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2448		if (ret == -EPROBE_DEFER)
2449			goto clk_disable;
2450	}
2451
2452	ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2453					mmci_irq_thread, IRQF_SHARED,
2454					DRIVER_NAME " (cmd)", host);
2455	if (ret)
2456		goto clk_disable;
2457
2458	if (!dev->irq[1])
2459		host->singleirq = true;
2460	else {
2461		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2462				IRQF_SHARED, DRIVER_NAME " (pio)", host);
2463		if (ret)
2464			goto clk_disable;
2465	}
2466
2467	if (host->variant->busy_detect)
2468		INIT_DELAYED_WORK(&host->ux500_busy_timeout_work,
2469				  ux500_busy_timeout_work);
2470
2471	writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2472
2473	amba_set_drvdata(dev, mmc);
2474
2475	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2476		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2477		 amba_rev(dev), (unsigned long long)dev->res.start,
2478		 dev->irq[0], dev->irq[1]);
2479
2480	mmci_dma_setup(host);
2481
2482	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2483	pm_runtime_use_autosuspend(&dev->dev);
2484
2485	ret = mmc_add_host(mmc);
2486	if (ret)
2487		goto clk_disable;
2488
2489	pm_runtime_put(&dev->dev);
2490	return 0;
2491
2492 clk_disable:
2493	clk_disable_unprepare(host->clk);
2494 host_free:
2495	mmc_free_host(mmc);
2496	return ret;
2497}
2498
2499static void mmci_remove(struct amba_device *dev)
2500{
2501	struct mmc_host *mmc = amba_get_drvdata(dev);
2502
2503	if (mmc) {
2504		struct mmci_host *host = mmc_priv(mmc);
2505		struct variant_data *variant = host->variant;
2506
2507		/*
2508		 * Undo pm_runtime_put() in probe.  We use the _sync
2509		 * version here so that we can access the primecell.
2510		 */
2511		pm_runtime_get_sync(&dev->dev);
2512
2513		mmc_remove_host(mmc);
2514
2515		writel(0, host->base + MMCIMASK0);
2516
2517		if (variant->mmcimask1)
2518			writel(0, host->base + MMCIMASK1);
2519
2520		writel(0, host->base + MMCICOMMAND);
2521		writel(0, host->base + MMCIDATACTRL);
2522
2523		mmci_dma_release(host);
2524		clk_disable_unprepare(host->clk);
2525		mmc_free_host(mmc);
2526	}
2527}
2528
2529#ifdef CONFIG_PM
2530static void mmci_save(struct mmci_host *host)
2531{
2532	unsigned long flags;
2533
2534	spin_lock_irqsave(&host->lock, flags);
2535
2536	writel(0, host->base + MMCIMASK0);
2537	if (host->variant->pwrreg_nopower) {
2538		writel(0, host->base + MMCIDATACTRL);
2539		writel(0, host->base + MMCIPOWER);
2540		writel(0, host->base + MMCICLOCK);
2541	}
2542	mmci_reg_delay(host);
2543
2544	spin_unlock_irqrestore(&host->lock, flags);
2545}
2546
2547static void mmci_restore(struct mmci_host *host)
2548{
2549	unsigned long flags;
2550
2551	spin_lock_irqsave(&host->lock, flags);
2552
2553	if (host->variant->pwrreg_nopower) {
2554		writel(host->clk_reg, host->base + MMCICLOCK);
2555		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2556		writel(host->pwr_reg, host->base + MMCIPOWER);
2557	}
2558	writel(MCI_IRQENABLE | host->variant->start_err,
2559	       host->base + MMCIMASK0);
2560	mmci_reg_delay(host);
2561
2562	spin_unlock_irqrestore(&host->lock, flags);
2563}
2564
2565static int mmci_runtime_suspend(struct device *dev)
2566{
2567	struct amba_device *adev = to_amba_device(dev);
2568	struct mmc_host *mmc = amba_get_drvdata(adev);
2569
2570	if (mmc) {
2571		struct mmci_host *host = mmc_priv(mmc);
2572		pinctrl_pm_select_sleep_state(dev);
2573		mmci_save(host);
2574		clk_disable_unprepare(host->clk);
2575	}
2576
2577	return 0;
2578}
2579
2580static int mmci_runtime_resume(struct device *dev)
2581{
2582	struct amba_device *adev = to_amba_device(dev);
2583	struct mmc_host *mmc = amba_get_drvdata(adev);
2584
2585	if (mmc) {
2586		struct mmci_host *host = mmc_priv(mmc);
2587		clk_prepare_enable(host->clk);
2588		mmci_restore(host);
2589		pinctrl_select_default_state(dev);
2590	}
2591
2592	return 0;
2593}
2594#endif
2595
2596static const struct dev_pm_ops mmci_dev_pm_ops = {
2597	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2598				pm_runtime_force_resume)
2599	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2600};
2601
2602static const struct amba_id mmci_ids[] = {
2603	{
2604		.id	= 0x00041180,
2605		.mask	= 0xff0fffff,
2606		.data	= &variant_arm,
2607	},
2608	{
2609		.id	= 0x01041180,
2610		.mask	= 0xff0fffff,
2611		.data	= &variant_arm_extended_fifo,
2612	},
2613	{
2614		.id	= 0x02041180,
2615		.mask	= 0xff0fffff,
2616		.data	= &variant_arm_extended_fifo_hwfc,
2617	},
2618	{
2619		.id	= 0x00041181,
2620		.mask	= 0x000fffff,
2621		.data	= &variant_arm,
2622	},
2623	/* ST Micro variants */
2624	{
2625		.id     = 0x00180180,
2626		.mask   = 0x00ffffff,
2627		.data	= &variant_u300,
2628	},
2629	{
2630		.id     = 0x10180180,
2631		.mask   = 0xf0ffffff,
2632		.data	= &variant_nomadik,
2633	},
2634	{
2635		.id     = 0x00280180,
2636		.mask   = 0x00ffffff,
2637		.data	= &variant_nomadik,
2638	},
2639	{
2640		.id     = 0x00480180,
2641		.mask   = 0xf0ffffff,
2642		.data	= &variant_ux500,
2643	},
2644	{
2645		.id     = 0x10480180,
2646		.mask   = 0xf0ffffff,
2647		.data	= &variant_ux500v2,
2648	},
2649	{
2650		.id     = 0x00880180,
2651		.mask   = 0x00ffffff,
2652		.data	= &variant_stm32,
2653	},
2654	{
2655		.id     = 0x10153180,
2656		.mask	= 0xf0ffffff,
2657		.data	= &variant_stm32_sdmmc,
2658	},
2659	{
2660		.id     = 0x00253180,
2661		.mask	= 0xf0ffffff,
2662		.data	= &variant_stm32_sdmmcv2,
2663	},
2664	{
2665		.id     = 0x20253180,
2666		.mask	= 0xf0ffffff,
2667		.data	= &variant_stm32_sdmmcv2,
2668	},
2669	{
2670		.id     = 0x00353180,
2671		.mask	= 0xf0ffffff,
2672		.data	= &variant_stm32_sdmmcv3,
2673	},
2674	/* Qualcomm variants */
2675	{
2676		.id     = 0x00051180,
2677		.mask	= 0x000fffff,
2678		.data	= &variant_qcom,
2679	},
2680	{ 0, 0 },
2681};
2682
2683MODULE_DEVICE_TABLE(amba, mmci_ids);
2684
2685static struct amba_driver mmci_driver = {
2686	.drv		= {
2687		.name	= DRIVER_NAME,
2688		.pm	= &mmci_dev_pm_ops,
2689		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2690	},
2691	.probe		= mmci_probe,
2692	.remove		= mmci_remove,
2693	.id_table	= mmci_ids,
2694};
2695
2696module_amba_driver(mmci_driver);
2697
2698module_param(fmax, uint, 0444);
2699
2700MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2701MODULE_LICENSE("GPL");
2702