1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * CQHCI crypto engine (inline encryption) support
4 *
5 * Copyright 2020 Google LLC
6 */
7
8#include <linux/blk-crypto.h>
9#include <linux/blk-crypto-profile.h>
10#include <linux/mmc/host.h>
11
12#include "cqhci-crypto.h"
13
14/* Map from blk-crypto modes to CQHCI crypto algorithm IDs and key sizes */
15static const struct cqhci_crypto_alg_entry {
16	enum cqhci_crypto_alg alg;
17	enum cqhci_crypto_key_size key_size;
18} cqhci_crypto_algs[BLK_ENCRYPTION_MODE_MAX] = {
19	[BLK_ENCRYPTION_MODE_AES_256_XTS] = {
20		.alg = CQHCI_CRYPTO_ALG_AES_XTS,
21		.key_size = CQHCI_CRYPTO_KEY_SIZE_256,
22	},
23};
24
25static inline struct cqhci_host *
26cqhci_host_from_crypto_profile(struct blk_crypto_profile *profile)
27{
28	struct mmc_host *mmc =
29		container_of(profile, struct mmc_host, crypto_profile);
30
31	return mmc->cqe_private;
32}
33
34static int cqhci_crypto_program_key(struct cqhci_host *cq_host,
35				    const union cqhci_crypto_cfg_entry *cfg,
36				    int slot)
37{
38	u32 slot_offset = cq_host->crypto_cfg_register + slot * sizeof(*cfg);
39	int i;
40
41	if (cq_host->ops->program_key)
42		return cq_host->ops->program_key(cq_host, cfg, slot);
43
44	/* Clear CFGE */
45	cqhci_writel(cq_host, 0, slot_offset + 16 * sizeof(cfg->reg_val[0]));
46
47	/* Write the key */
48	for (i = 0; i < 16; i++) {
49		cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[i]),
50			     slot_offset + i * sizeof(cfg->reg_val[0]));
51	}
52	/* Write dword 17 */
53	cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[17]),
54		     slot_offset + 17 * sizeof(cfg->reg_val[0]));
55	/* Write dword 16, which includes the new value of CFGE */
56	cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[16]),
57		     slot_offset + 16 * sizeof(cfg->reg_val[0]));
58	return 0;
59}
60
61static int cqhci_crypto_keyslot_program(struct blk_crypto_profile *profile,
62					const struct blk_crypto_key *key,
63					unsigned int slot)
64
65{
66	struct cqhci_host *cq_host = cqhci_host_from_crypto_profile(profile);
67	const union cqhci_crypto_cap_entry *ccap_array =
68		cq_host->crypto_cap_array;
69	const struct cqhci_crypto_alg_entry *alg =
70			&cqhci_crypto_algs[key->crypto_cfg.crypto_mode];
71	u8 data_unit_mask = key->crypto_cfg.data_unit_size / 512;
72	int i;
73	int cap_idx = -1;
74	union cqhci_crypto_cfg_entry cfg = {};
75	int err;
76
77	BUILD_BUG_ON(CQHCI_CRYPTO_KEY_SIZE_INVALID != 0);
78	for (i = 0; i < cq_host->crypto_capabilities.num_crypto_cap; i++) {
79		if (ccap_array[i].algorithm_id == alg->alg &&
80		    ccap_array[i].key_size == alg->key_size &&
81		    (ccap_array[i].sdus_mask & data_unit_mask)) {
82			cap_idx = i;
83			break;
84		}
85	}
86	if (WARN_ON(cap_idx < 0))
87		return -EOPNOTSUPP;
88
89	cfg.data_unit_size = data_unit_mask;
90	cfg.crypto_cap_idx = cap_idx;
91	cfg.config_enable = CQHCI_CRYPTO_CONFIGURATION_ENABLE;
92
93	if (ccap_array[cap_idx].algorithm_id == CQHCI_CRYPTO_ALG_AES_XTS) {
94		/* In XTS mode, the blk_crypto_key's size is already doubled */
95		memcpy(cfg.crypto_key, key->raw, key->size/2);
96		memcpy(cfg.crypto_key + CQHCI_CRYPTO_KEY_MAX_SIZE/2,
97		       key->raw + key->size/2, key->size/2);
98	} else {
99		memcpy(cfg.crypto_key, key->raw, key->size);
100	}
101
102	err = cqhci_crypto_program_key(cq_host, &cfg, slot);
103
104	memzero_explicit(&cfg, sizeof(cfg));
105	return err;
106}
107
108static int cqhci_crypto_clear_keyslot(struct cqhci_host *cq_host, int slot)
109{
110	/*
111	 * Clear the crypto cfg on the device. Clearing CFGE
112	 * might not be sufficient, so just clear the entire cfg.
113	 */
114	union cqhci_crypto_cfg_entry cfg = {};
115
116	return cqhci_crypto_program_key(cq_host, &cfg, slot);
117}
118
119static int cqhci_crypto_keyslot_evict(struct blk_crypto_profile *profile,
120				      const struct blk_crypto_key *key,
121				      unsigned int slot)
122{
123	struct cqhci_host *cq_host = cqhci_host_from_crypto_profile(profile);
124
125	return cqhci_crypto_clear_keyslot(cq_host, slot);
126}
127
128/*
129 * The keyslot management operations for CQHCI crypto.
130 *
131 * Note that the block layer ensures that these are never called while the host
132 * controller is runtime-suspended.  However, the CQE won't necessarily be
133 * "enabled" when these are called, i.e. CQHCI_ENABLE might not be set in the
134 * CQHCI_CFG register.  But the hardware allows that.
135 */
136static const struct blk_crypto_ll_ops cqhci_crypto_ops = {
137	.keyslot_program	= cqhci_crypto_keyslot_program,
138	.keyslot_evict		= cqhci_crypto_keyslot_evict,
139};
140
141static enum blk_crypto_mode_num
142cqhci_find_blk_crypto_mode(union cqhci_crypto_cap_entry cap)
143{
144	int i;
145
146	for (i = 0; i < ARRAY_SIZE(cqhci_crypto_algs); i++) {
147		BUILD_BUG_ON(CQHCI_CRYPTO_KEY_SIZE_INVALID != 0);
148		if (cqhci_crypto_algs[i].alg == cap.algorithm_id &&
149		    cqhci_crypto_algs[i].key_size == cap.key_size)
150			return i;
151	}
152	return BLK_ENCRYPTION_MODE_INVALID;
153}
154
155/**
156 * cqhci_crypto_init - initialize CQHCI crypto support
157 * @cq_host: a cqhci host
158 *
159 * If the driver previously set MMC_CAP2_CRYPTO and the CQE declares
160 * CQHCI_CAP_CS, initialize the crypto support.  This involves reading the
161 * crypto capability registers, initializing the blk_crypto_profile, clearing
162 * all keyslots, and enabling 128-bit task descriptors.
163 *
164 * Return: 0 if crypto was initialized or isn't supported; whether
165 *	   MMC_CAP2_CRYPTO remains set indicates which one of those cases it is.
166 *	   Also can return a negative errno value on unexpected error.
167 */
168int cqhci_crypto_init(struct cqhci_host *cq_host)
169{
170	struct mmc_host *mmc = cq_host->mmc;
171	struct device *dev = mmc_dev(mmc);
172	struct blk_crypto_profile *profile = &mmc->crypto_profile;
173	unsigned int num_keyslots;
174	unsigned int cap_idx;
175	enum blk_crypto_mode_num blk_mode_num;
176	unsigned int slot;
177	int err = 0;
178
179	if (!(mmc->caps2 & MMC_CAP2_CRYPTO) ||
180	    !(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
181		goto out;
182
183	cq_host->crypto_capabilities.reg_val =
184			cpu_to_le32(cqhci_readl(cq_host, CQHCI_CCAP));
185
186	cq_host->crypto_cfg_register =
187		(u32)cq_host->crypto_capabilities.config_array_ptr * 0x100;
188
189	cq_host->crypto_cap_array =
190		devm_kcalloc(dev, cq_host->crypto_capabilities.num_crypto_cap,
191			     sizeof(cq_host->crypto_cap_array[0]), GFP_KERNEL);
192	if (!cq_host->crypto_cap_array) {
193		err = -ENOMEM;
194		goto out;
195	}
196
197	/*
198	 * CCAP.CFGC is off by one, so the actual number of crypto
199	 * configurations (a.k.a. keyslots) is CCAP.CFGC + 1.
200	 */
201	num_keyslots = cq_host->crypto_capabilities.config_count + 1;
202
203	err = devm_blk_crypto_profile_init(dev, profile, num_keyslots);
204	if (err)
205		goto out;
206
207	profile->ll_ops = cqhci_crypto_ops;
208	profile->dev = dev;
209
210	/* Unfortunately, CQHCI crypto only supports 32 DUN bits. */
211	profile->max_dun_bytes_supported = 4;
212
213	/*
214	 * Cache all the crypto capabilities and advertise the supported crypto
215	 * modes and data unit sizes to the block layer.
216	 */
217	for (cap_idx = 0; cap_idx < cq_host->crypto_capabilities.num_crypto_cap;
218	     cap_idx++) {
219		cq_host->crypto_cap_array[cap_idx].reg_val =
220			cpu_to_le32(cqhci_readl(cq_host,
221						CQHCI_CRYPTOCAP +
222						cap_idx * sizeof(__le32)));
223		blk_mode_num = cqhci_find_blk_crypto_mode(
224					cq_host->crypto_cap_array[cap_idx]);
225		if (blk_mode_num == BLK_ENCRYPTION_MODE_INVALID)
226			continue;
227		profile->modes_supported[blk_mode_num] |=
228			cq_host->crypto_cap_array[cap_idx].sdus_mask * 512;
229	}
230
231	/* Clear all the keyslots so that we start in a known state. */
232	for (slot = 0; slot < num_keyslots; slot++)
233		cqhci_crypto_clear_keyslot(cq_host, slot);
234
235	/* CQHCI crypto requires the use of 128-bit task descriptors. */
236	cq_host->caps |= CQHCI_TASK_DESC_SZ_128;
237
238	return 0;
239
240out:
241	mmc->caps2 &= ~MMC_CAP2_CRYPTO;
242	return err;
243}
244