1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * SN Platform GRU Driver
4 *
5 * 		MMUOPS callbacks  + TLB flushing
6 *
7 * This file handles emu notifier callbacks from the core kernel. The callbacks
8 * are used to update the TLB in the GRU as a result of changes in the
9 * state of a process address space. This file also handles TLB invalidates
10 * from the GRU driver.
11 *
12 *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
13 */
14
15#include <linux/kernel.h>
16#include <linux/list.h>
17#include <linux/spinlock.h>
18#include <linux/mm.h>
19#include <linux/slab.h>
20#include <linux/device.h>
21#include <linux/hugetlb.h>
22#include <linux/delay.h>
23#include <linux/timex.h>
24#include <linux/srcu.h>
25#include <asm/processor.h>
26#include "gru.h"
27#include "grutables.h"
28#include <asm/uv/uv_hub.h>
29
30#define gru_random()	get_cycles()
31
32/* ---------------------------------- TLB Invalidation functions --------
33 * get_tgh_handle
34 *
35 * Find a TGH to use for issuing a TLB invalidate. For GRUs that are on the
36 * local blade, use a fixed TGH that is a function of the blade-local cpu
37 * number. Normally, this TGH is private to the cpu & no contention occurs for
38 * the TGH. For offblade GRUs, select a random TGH in the range above the
39 * private TGHs. A spinlock is required to access this TGH & the lock must be
40 * released when the invalidate is completes. This sucks, but it is the best we
41 * can do.
42 *
43 * Note that the spinlock is IN the TGH handle so locking does not involve
44 * additional cache lines.
45 *
46 */
47static inline int get_off_blade_tgh(struct gru_state *gru)
48{
49	int n;
50
51	n = GRU_NUM_TGH - gru->gs_tgh_first_remote;
52	n = gru_random() % n;
53	n += gru->gs_tgh_first_remote;
54	return n;
55}
56
57static inline int get_on_blade_tgh(struct gru_state *gru)
58{
59	return uv_blade_processor_id() >> gru->gs_tgh_local_shift;
60}
61
62static struct gru_tlb_global_handle *get_lock_tgh_handle(struct gru_state
63							 *gru)
64{
65	struct gru_tlb_global_handle *tgh;
66	int n;
67
68	preempt_disable();
69	if (uv_numa_blade_id() == gru->gs_blade_id)
70		n = get_on_blade_tgh(gru);
71	else
72		n = get_off_blade_tgh(gru);
73	tgh = get_tgh_by_index(gru, n);
74	lock_tgh_handle(tgh);
75
76	return tgh;
77}
78
79static void get_unlock_tgh_handle(struct gru_tlb_global_handle *tgh)
80{
81	unlock_tgh_handle(tgh);
82	preempt_enable();
83}
84
85/*
86 * gru_flush_tlb_range
87 *
88 * General purpose TLB invalidation function. This function scans every GRU in
89 * the ENTIRE system (partition) looking for GRUs where the specified MM has
90 * been accessed by the GRU. For each GRU found, the TLB must be invalidated OR
91 * the ASID invalidated. Invalidating an ASID causes a new ASID to be assigned
92 * on the next fault. This effectively flushes the ENTIRE TLB for the MM at the
93 * cost of (possibly) a large number of future TLBmisses.
94 *
95 * The current algorithm is optimized based on the following (somewhat true)
96 * assumptions:
97 * 	- GRU contexts are not loaded into a GRU unless a reference is made to
98 * 	  the data segment or control block (this is true, not an assumption).
99 * 	  If a DS/CB is referenced, the user will also issue instructions that
100 * 	  cause TLBmisses. It is not necessary to optimize for the case where
101 * 	  contexts are loaded but no instructions cause TLB misses. (I know
102 * 	  this will happen but I'm not optimizing for it).
103 * 	- GRU instructions to invalidate TLB entries are SLOOOOWWW - normally
104 * 	  a few usec but in unusual cases, it could be longer. Avoid if
105 * 	  possible.
106 * 	- intrablade process migration between cpus is not frequent but is
107 * 	  common.
108 * 	- a GRU context is not typically migrated to a different GRU on the
109 * 	  blade because of intrablade migration
110 *	- interblade migration is rare. Processes migrate their GRU context to
111 *	  the new blade.
112 *	- if interblade migration occurs, migration back to the original blade
113 *	  is very very rare (ie., no optimization for this case)
114 *	- most GRU instruction operate on a subset of the user REGIONS. Code
115 *	  & shared library regions are not likely targets of GRU instructions.
116 *
117 * To help improve the efficiency of TLB invalidation, the GMS data
118 * structure is maintained for EACH address space (MM struct). The GMS is
119 * also the structure that contains the pointer to the mmu callout
120 * functions. This structure is linked to the mm_struct for the address space
121 * using the mmu "register" function. The mmu interfaces are used to
122 * provide the callbacks for TLB invalidation. The GMS contains:
123 *
124 * 	- asid[maxgrus] array. ASIDs are assigned to a GRU when a context is
125 * 	  loaded into the GRU.
126 * 	- asidmap[maxgrus]. bitmap to make it easier to find non-zero asids in
127 * 	  the above array
128 *	- ctxbitmap[maxgrus]. Indicates the contexts that are currently active
129 *	  in the GRU for the address space. This bitmap must be passed to the
130 *	  GRU to do an invalidate.
131 *
132 * The current algorithm for invalidating TLBs is:
133 * 	- scan the asidmap for GRUs where the context has been loaded, ie,
134 * 	  asid is non-zero.
135 * 	- for each gru found:
136 * 		- if the ctxtmap is non-zero, there are active contexts in the
137 * 		  GRU. TLB invalidate instructions must be issued to the GRU.
138 *		- if the ctxtmap is zero, no context is active. Set the ASID to
139 *		  zero to force a full TLB invalidation. This is fast but will
140 *		  cause a lot of TLB misses if the context is reloaded onto the
141 *		  GRU
142 *
143 */
144
145void gru_flush_tlb_range(struct gru_mm_struct *gms, unsigned long start,
146			 unsigned long len)
147{
148	struct gru_state *gru;
149	struct gru_mm_tracker *asids;
150	struct gru_tlb_global_handle *tgh;
151	unsigned long num;
152	int grupagesize, pagesize, pageshift, gid, asid;
153
154	/* ZZZ TODO - handle huge pages */
155	pageshift = PAGE_SHIFT;
156	pagesize = (1UL << pageshift);
157	grupagesize = GRU_PAGESIZE(pageshift);
158	num = min(((len + pagesize - 1) >> pageshift), GRUMAXINVAL);
159
160	STAT(flush_tlb);
161	gru_dbg(grudev, "gms %p, start 0x%lx, len 0x%lx, asidmap 0x%lx\n", gms,
162		start, len, gms->ms_asidmap[0]);
163
164	spin_lock(&gms->ms_asid_lock);
165	for_each_gru_in_bitmap(gid, gms->ms_asidmap) {
166		STAT(flush_tlb_gru);
167		gru = GID_TO_GRU(gid);
168		asids = gms->ms_asids + gid;
169		asid = asids->mt_asid;
170		if (asids->mt_ctxbitmap && asid) {
171			STAT(flush_tlb_gru_tgh);
172			asid = GRUASID(asid, start);
173			gru_dbg(grudev,
174	"  FLUSH gruid %d, asid 0x%x, vaddr 0x%lx, vamask 0x%x, num %ld, cbmap 0x%x\n",
175			      gid, asid, start, grupagesize, num, asids->mt_ctxbitmap);
176			tgh = get_lock_tgh_handle(gru);
177			tgh_invalidate(tgh, start, ~0, asid, grupagesize, 0,
178				       num - 1, asids->mt_ctxbitmap);
179			get_unlock_tgh_handle(tgh);
180		} else {
181			STAT(flush_tlb_gru_zero_asid);
182			asids->mt_asid = 0;
183			__clear_bit(gru->gs_gid, gms->ms_asidmap);
184			gru_dbg(grudev,
185	"  CLEARASID gruid %d, asid 0x%x, cbtmap 0x%x, asidmap 0x%lx\n",
186				gid, asid, asids->mt_ctxbitmap,
187				gms->ms_asidmap[0]);
188		}
189	}
190	spin_unlock(&gms->ms_asid_lock);
191}
192
193/*
194 * Flush the entire TLB on a chiplet.
195 */
196void gru_flush_all_tlb(struct gru_state *gru)
197{
198	struct gru_tlb_global_handle *tgh;
199
200	gru_dbg(grudev, "gid %d\n", gru->gs_gid);
201	tgh = get_lock_tgh_handle(gru);
202	tgh_invalidate(tgh, 0, ~0, 0, 1, 1, GRUMAXINVAL - 1, 0xffff);
203	get_unlock_tgh_handle(tgh);
204}
205
206/*
207 * MMUOPS notifier callout functions
208 */
209static int gru_invalidate_range_start(struct mmu_notifier *mn,
210			const struct mmu_notifier_range *range)
211{
212	struct gru_mm_struct *gms = container_of(mn, struct gru_mm_struct,
213						 ms_notifier);
214
215	STAT(mmu_invalidate_range);
216	atomic_inc(&gms->ms_range_active);
217	gru_dbg(grudev, "gms %p, start 0x%lx, end 0x%lx, act %d\n", gms,
218		range->start, range->end, atomic_read(&gms->ms_range_active));
219	gru_flush_tlb_range(gms, range->start, range->end - range->start);
220
221	return 0;
222}
223
224static void gru_invalidate_range_end(struct mmu_notifier *mn,
225			const struct mmu_notifier_range *range)
226{
227	struct gru_mm_struct *gms = container_of(mn, struct gru_mm_struct,
228						 ms_notifier);
229
230	/* ..._and_test() provides needed barrier */
231	(void)atomic_dec_and_test(&gms->ms_range_active);
232
233	wake_up_all(&gms->ms_wait_queue);
234	gru_dbg(grudev, "gms %p, start 0x%lx, end 0x%lx\n",
235		gms, range->start, range->end);
236}
237
238static struct mmu_notifier *gru_alloc_notifier(struct mm_struct *mm)
239{
240	struct gru_mm_struct *gms;
241
242	gms = kzalloc(sizeof(*gms), GFP_KERNEL);
243	if (!gms)
244		return ERR_PTR(-ENOMEM);
245	STAT(gms_alloc);
246	spin_lock_init(&gms->ms_asid_lock);
247	init_waitqueue_head(&gms->ms_wait_queue);
248
249	return &gms->ms_notifier;
250}
251
252static void gru_free_notifier(struct mmu_notifier *mn)
253{
254	kfree(container_of(mn, struct gru_mm_struct, ms_notifier));
255	STAT(gms_free);
256}
257
258static const struct mmu_notifier_ops gru_mmuops = {
259	.invalidate_range_start	= gru_invalidate_range_start,
260	.invalidate_range_end	= gru_invalidate_range_end,
261	.alloc_notifier		= gru_alloc_notifier,
262	.free_notifier		= gru_free_notifier,
263};
264
265struct gru_mm_struct *gru_register_mmu_notifier(void)
266{
267	struct mmu_notifier *mn;
268
269	mn = mmu_notifier_get_locked(&gru_mmuops, current->mm);
270	if (IS_ERR(mn))
271		return ERR_CAST(mn);
272
273	return container_of(mn, struct gru_mm_struct, ms_notifier);
274}
275
276void gru_drop_mmu_notifier(struct gru_mm_struct *gms)
277{
278	mmu_notifier_put(&gms->ms_notifier);
279}
280
281/*
282 * Setup TGH parameters. There are:
283 * 	- 24 TGH handles per GRU chiplet
284 * 	- a portion (MAX_LOCAL_TGH) of the handles are reserved for
285 * 	  use by blade-local cpus
286 * 	- the rest are used by off-blade cpus. This usage is
287 * 	  less frequent than blade-local usage.
288 *
289 * For now, use 16 handles for local flushes, 8 for remote flushes. If the blade
290 * has less tan or equal to 16 cpus, each cpu has a unique handle that it can
291 * use.
292 */
293#define MAX_LOCAL_TGH	16
294
295void gru_tgh_flush_init(struct gru_state *gru)
296{
297	int cpus, shift = 0, n;
298
299	cpus = uv_blade_nr_possible_cpus(gru->gs_blade_id);
300
301	/* n = cpus rounded up to next power of 2 */
302	if (cpus) {
303		n = 1 << fls(cpus - 1);
304
305		/*
306		 * shift count for converting local cpu# to TGH index
307		 *      0 if cpus <= MAX_LOCAL_TGH,
308		 *      1 if cpus <= 2*MAX_LOCAL_TGH,
309		 *      etc
310		 */
311		shift = max(0, fls(n - 1) - fls(MAX_LOCAL_TGH - 1));
312	}
313	gru->gs_tgh_local_shift = shift;
314
315	/* first starting TGH index to use for remote purges */
316	gru->gs_tgh_first_remote = (cpus + (1 << shift) - 1) >> shift;
317
318}
319