1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * SN Platform GRU Driver
4 *
5 *            GRU DRIVER TABLES, MACROS, externs, etc
6 *
7 *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
8 */
9
10#ifndef __GRUTABLES_H__
11#define __GRUTABLES_H__
12
13/*
14 * GRU Chiplet:
15 *   The GRU is a user addressible memory accelerator. It provides
16 *   several forms of load, store, memset, bcopy instructions. In addition, it
17 *   contains special instructions for AMOs, sending messages to message
18 *   queues, etc.
19 *
20 *   The GRU is an integral part of the node controller. It connects
21 *   directly to the cpu socket. In its current implementation, there are 2
22 *   GRU chiplets in the node controller on each blade (~node).
23 *
24 *   The entire GRU memory space is fully coherent and cacheable by the cpus.
25 *
26 *   Each GRU chiplet has a physical memory map that looks like the following:
27 *
28 *   	+-----------------+
29 *   	|/////////////////|
30 *   	|/////////////////|
31 *   	|/////////////////|
32 *   	|/////////////////|
33 *   	|/////////////////|
34 *   	|/////////////////|
35 *   	|/////////////////|
36 *   	|/////////////////|
37 *   	+-----------------+
38 *   	|  system control |
39 *   	+-----------------+        _______ +-------------+
40 *   	|/////////////////|       /        |             |
41 *   	|/////////////////|      /         |             |
42 *   	|/////////////////|     /          | instructions|
43 *   	|/////////////////|    /           |             |
44 *   	|/////////////////|   /            |             |
45 *   	|/////////////////|  /             |-------------|
46 *   	|/////////////////| /              |             |
47 *   	+-----------------+                |             |
48 *   	|   context 15    |                |  data       |
49 *   	+-----------------+                |             |
50 *   	|    ......       | \              |             |
51 *   	+-----------------+  \____________ +-------------+
52 *   	|   context 1     |
53 *   	+-----------------+
54 *   	|   context 0     |
55 *   	+-----------------+
56 *
57 *   Each of the "contexts" is a chunk of memory that can be mmaped into user
58 *   space. The context consists of 2 parts:
59 *
60 *  	- an instruction space that can be directly accessed by the user
61 *  	  to issue GRU instructions and to check instruction status.
62 *
63 *  	- a data area that acts as normal RAM.
64 *
65 *   User instructions contain virtual addresses of data to be accessed by the
66 *   GRU. The GRU contains a TLB that is used to convert these user virtual
67 *   addresses to physical addresses.
68 *
69 *   The "system control" area of the GRU chiplet is used by the kernel driver
70 *   to manage user contexts and to perform functions such as TLB dropin and
71 *   purging.
72 *
73 *   One context may be reserved for the kernel and used for cross-partition
74 *   communication. The GRU will also be used to asynchronously zero out
75 *   large blocks of memory (not currently implemented).
76 *
77 *
78 * Tables:
79 *
80 * 	VDATA-VMA Data		- Holds a few parameters. Head of linked list of
81 * 				  GTS tables for threads using the GSEG
82 * 	GTS - Gru Thread State  - contains info for managing a GSEG context. A
83 * 				  GTS is allocated for each thread accessing a
84 * 				  GSEG.
85 *     	GTD - GRU Thread Data   - contains shadow copy of GRU data when GSEG is
86 *     				  not loaded into a GRU
87 *	GMS - GRU Memory Struct - Used to manage TLB shootdowns. Tracks GRUs
88 *				  where a GSEG has been loaded. Similar to
89 *				  an mm_struct but for GRU.
90 *
91 *	GS  - GRU State 	- Used to manage the state of a GRU chiplet
92 *	BS  - Blade State	- Used to manage state of all GRU chiplets
93 *				  on a blade
94 *
95 *
96 *  Normal task tables for task using GRU.
97 *  		- 2 threads in process
98 *  		- 2 GSEGs open in process
99 *  		- GSEG1 is being used by both threads
100 *  		- GSEG2 is used only by thread 2
101 *
102 *       task -->|
103 *       task ---+---> mm ->------ (notifier) -------+-> gms
104 *                     |                             |
105 *                     |--> vma -> vdata ---> gts--->|		GSEG1 (thread1)
106 *                     |                  |          |
107 *                     |                  +-> gts--->|		GSEG1 (thread2)
108 *                     |                             |
109 *                     |--> vma -> vdata ---> gts--->|		GSEG2 (thread2)
110 *                     .
111 *                     .
112 *
113 *  GSEGs are marked DONTCOPY on fork
114 *
115 * At open
116 * 	file.private_data -> NULL
117 *
118 * At mmap,
119 * 	vma -> vdata
120 *
121 * After gseg reference
122 * 	vma -> vdata ->gts
123 *
124 * After fork
125 *   parent
126 * 	vma -> vdata -> gts
127 *   child
128 * 	(vma is not copied)
129 *
130 */
131
132#include <linux/refcount.h>
133#include <linux/rmap.h>
134#include <linux/interrupt.h>
135#include <linux/mutex.h>
136#include <linux/wait.h>
137#include <linux/mmu_notifier.h>
138#include <linux/mm_types.h>
139#include "gru.h"
140#include "grulib.h"
141#include "gruhandles.h"
142
143extern struct gru_stats_s gru_stats;
144extern struct gru_blade_state *gru_base[];
145extern unsigned long gru_start_paddr, gru_end_paddr;
146extern void *gru_start_vaddr;
147extern unsigned int gru_max_gids;
148
149#define GRU_MAX_BLADES		MAX_NUMNODES
150#define GRU_MAX_GRUS		(GRU_MAX_BLADES * GRU_CHIPLETS_PER_BLADE)
151
152#define GRU_DRIVER_ID_STR	"SGI GRU Device Driver"
153#define GRU_DRIVER_VERSION_STR	"0.85"
154
155/*
156 * GRU statistics.
157 */
158struct gru_stats_s {
159	atomic_long_t vdata_alloc;
160	atomic_long_t vdata_free;
161	atomic_long_t gts_alloc;
162	atomic_long_t gts_free;
163	atomic_long_t gms_alloc;
164	atomic_long_t gms_free;
165	atomic_long_t gts_double_allocate;
166	atomic_long_t assign_context;
167	atomic_long_t assign_context_failed;
168	atomic_long_t free_context;
169	atomic_long_t load_user_context;
170	atomic_long_t load_kernel_context;
171	atomic_long_t lock_kernel_context;
172	atomic_long_t unlock_kernel_context;
173	atomic_long_t steal_user_context;
174	atomic_long_t steal_kernel_context;
175	atomic_long_t steal_context_failed;
176	atomic_long_t nopfn;
177	atomic_long_t asid_new;
178	atomic_long_t asid_next;
179	atomic_long_t asid_wrap;
180	atomic_long_t asid_reuse;
181	atomic_long_t intr;
182	atomic_long_t intr_cbr;
183	atomic_long_t intr_tfh;
184	atomic_long_t intr_spurious;
185	atomic_long_t intr_mm_lock_failed;
186	atomic_long_t call_os;
187	atomic_long_t call_os_wait_queue;
188	atomic_long_t user_flush_tlb;
189	atomic_long_t user_unload_context;
190	atomic_long_t user_exception;
191	atomic_long_t set_context_option;
192	atomic_long_t check_context_retarget_intr;
193	atomic_long_t check_context_unload;
194	atomic_long_t tlb_dropin;
195	atomic_long_t tlb_preload_page;
196	atomic_long_t tlb_dropin_fail_no_asid;
197	atomic_long_t tlb_dropin_fail_upm;
198	atomic_long_t tlb_dropin_fail_invalid;
199	atomic_long_t tlb_dropin_fail_range_active;
200	atomic_long_t tlb_dropin_fail_idle;
201	atomic_long_t tlb_dropin_fail_fmm;
202	atomic_long_t tlb_dropin_fail_no_exception;
203	atomic_long_t tfh_stale_on_fault;
204	atomic_long_t mmu_invalidate_range;
205	atomic_long_t mmu_invalidate_page;
206	atomic_long_t flush_tlb;
207	atomic_long_t flush_tlb_gru;
208	atomic_long_t flush_tlb_gru_tgh;
209	atomic_long_t flush_tlb_gru_zero_asid;
210
211	atomic_long_t copy_gpa;
212	atomic_long_t read_gpa;
213
214	atomic_long_t mesq_receive;
215	atomic_long_t mesq_receive_none;
216	atomic_long_t mesq_send;
217	atomic_long_t mesq_send_failed;
218	atomic_long_t mesq_noop;
219	atomic_long_t mesq_send_unexpected_error;
220	atomic_long_t mesq_send_lb_overflow;
221	atomic_long_t mesq_send_qlimit_reached;
222	atomic_long_t mesq_send_amo_nacked;
223	atomic_long_t mesq_send_put_nacked;
224	atomic_long_t mesq_page_overflow;
225	atomic_long_t mesq_qf_locked;
226	atomic_long_t mesq_qf_noop_not_full;
227	atomic_long_t mesq_qf_switch_head_failed;
228	atomic_long_t mesq_qf_unexpected_error;
229	atomic_long_t mesq_noop_unexpected_error;
230	atomic_long_t mesq_noop_lb_overflow;
231	atomic_long_t mesq_noop_qlimit_reached;
232	atomic_long_t mesq_noop_amo_nacked;
233	atomic_long_t mesq_noop_put_nacked;
234	atomic_long_t mesq_noop_page_overflow;
235
236};
237
238enum mcs_op {cchop_allocate, cchop_start, cchop_interrupt, cchop_interrupt_sync,
239	cchop_deallocate, tfhop_write_only, tfhop_write_restart,
240	tghop_invalidate, mcsop_last};
241
242struct mcs_op_statistic {
243	atomic_long_t	count;
244	atomic_long_t	total;
245	unsigned long	max;
246};
247
248extern struct mcs_op_statistic mcs_op_statistics[mcsop_last];
249
250#define OPT_DPRINT		1
251#define OPT_STATS		2
252
253
254#define IRQ_GRU			110	/* Starting IRQ number for interrupts */
255
256/* Delay in jiffies between attempts to assign a GRU context */
257#define GRU_ASSIGN_DELAY	((HZ * 20) / 1000)
258
259/*
260 * If a process has it's context stolen, min delay in jiffies before trying to
261 * steal a context from another process.
262 */
263#define GRU_STEAL_DELAY		((HZ * 200) / 1000)
264
265#define STAT(id)	do {						\
266				if (gru_options & OPT_STATS)		\
267					atomic_long_inc(&gru_stats.id);	\
268			} while (0)
269
270#ifdef CONFIG_SGI_GRU_DEBUG
271#define gru_dbg(dev, fmt, x...)						\
272	do {								\
273		if (gru_options & OPT_DPRINT)				\
274			printk(KERN_DEBUG "GRU:%d %s: " fmt, smp_processor_id(), __func__, x);\
275	} while (0)
276#else
277#define gru_dbg(x...)
278#endif
279
280/*-----------------------------------------------------------------------------
281 * ASID management
282 */
283#define MAX_ASID	0xfffff0
284#define MIN_ASID	8
285#define ASID_INC	8	/* number of regions */
286
287/* Generate a GRU asid value from a GRU base asid & a virtual address. */
288#define VADDR_HI_BIT		64
289#define GRUREGION(addr)		((addr) >> (VADDR_HI_BIT - 3) & 3)
290#define GRUASID(asid, addr)	((asid) + GRUREGION(addr))
291
292/*------------------------------------------------------------------------------
293 *  File & VMS Tables
294 */
295
296struct gru_state;
297
298/*
299 * This structure is pointed to from the mmstruct via the notifier pointer.
300 * There is one of these per address space.
301 */
302struct gru_mm_tracker {				/* pack to reduce size */
303	unsigned int		mt_asid_gen:24;	/* ASID wrap count */
304	unsigned int		mt_asid:24;	/* current base ASID for gru */
305	unsigned short		mt_ctxbitmap:16;/* bitmap of contexts using
306						   asid */
307} __attribute__ ((packed));
308
309struct gru_mm_struct {
310	struct mmu_notifier	ms_notifier;
311	spinlock_t		ms_asid_lock;	/* protects ASID assignment */
312	atomic_t		ms_range_active;/* num range_invals active */
313	wait_queue_head_t	ms_wait_queue;
314	DECLARE_BITMAP(ms_asidmap, GRU_MAX_GRUS);
315	struct gru_mm_tracker	ms_asids[GRU_MAX_GRUS];
316};
317
318/*
319 * One of these structures is allocated when a GSEG is mmaped. The
320 * structure is pointed to by the vma->vm_private_data field in the vma struct.
321 */
322struct gru_vma_data {
323	spinlock_t		vd_lock;	/* Serialize access to vma */
324	struct list_head	vd_head;	/* head of linked list of gts */
325	long			vd_user_options;/* misc user option flags */
326	int			vd_cbr_au_count;
327	int			vd_dsr_au_count;
328	unsigned char		vd_tlb_preload_count;
329};
330
331/*
332 * One of these is allocated for each thread accessing a mmaped GRU. A linked
333 * list of these structure is hung off the struct gru_vma_data in the mm_struct.
334 */
335struct gru_thread_state {
336	struct list_head	ts_next;	/* list - head at vma-private */
337	struct mutex		ts_ctxlock;	/* load/unload CTX lock */
338	struct mm_struct	*ts_mm;		/* mm currently mapped to
339						   context */
340	struct vm_area_struct	*ts_vma;	/* vma of GRU context */
341	struct gru_state	*ts_gru;	/* GRU where the context is
342						   loaded */
343	struct gru_mm_struct	*ts_gms;	/* asid & ioproc struct */
344	unsigned char		ts_tlb_preload_count; /* TLB preload pages */
345	unsigned long		ts_cbr_map;	/* map of allocated CBRs */
346	unsigned long		ts_dsr_map;	/* map of allocated DATA
347						   resources */
348	unsigned long		ts_steal_jiffies;/* jiffies when context last
349						    stolen */
350	long			ts_user_options;/* misc user option flags */
351	pid_t			ts_tgid_owner;	/* task that is using the
352						   context - for migration */
353	short			ts_user_blade_id;/* user selected blade */
354	signed char		ts_user_chiplet_id;/* user selected chiplet */
355	unsigned short		ts_sizeavail;	/* Pagesizes in use */
356	int			ts_tsid;	/* thread that owns the
357						   structure */
358	int			ts_tlb_int_select;/* target cpu if interrupts
359						     enabled */
360	int			ts_ctxnum;	/* context number where the
361						   context is loaded */
362	refcount_t		ts_refcnt;	/* reference count GTS */
363	unsigned char		ts_dsr_au_count;/* Number of DSR resources
364						   required for contest */
365	unsigned char		ts_cbr_au_count;/* Number of CBR resources
366						   required for contest */
367	signed char		ts_cch_req_slice;/* CCH packet slice */
368	signed char		ts_blade;	/* If >= 0, migrate context if
369						   ref from different blade */
370	signed char		ts_force_cch_reload;
371	signed char		ts_cbr_idx[GRU_CBR_AU];/* CBR numbers of each
372							  allocated CB */
373	int			ts_data_valid;	/* Indicates if ts_gdata has
374						   valid data */
375	struct gru_gseg_statistics ustats;	/* User statistics */
376	unsigned long		ts_gdata[];	/* save area for GRU data (CB,
377						   DS, CBE) */
378};
379
380/*
381 * Threaded programs actually allocate an array of GSEGs when a context is
382 * created. Each thread uses a separate GSEG. TSID is the index into the GSEG
383 * array.
384 */
385#define TSID(a, v)		(((a) - (v)->vm_start) / GRU_GSEG_PAGESIZE)
386#define UGRUADDR(gts)		((gts)->ts_vma->vm_start +		\
387					(gts)->ts_tsid * GRU_GSEG_PAGESIZE)
388
389#define NULLCTX			(-1)	/* if context not loaded into GRU */
390
391/*-----------------------------------------------------------------------------
392 *  GRU State Tables
393 */
394
395/*
396 * One of these exists for each GRU chiplet.
397 */
398struct gru_state {
399	struct gru_blade_state	*gs_blade;		/* GRU state for entire
400							   blade */
401	unsigned long		gs_gru_base_paddr;	/* Physical address of
402							   gru segments (64) */
403	void			*gs_gru_base_vaddr;	/* Virtual address of
404							   gru segments (64) */
405	unsigned short		gs_gid;			/* unique GRU number */
406	unsigned short		gs_blade_id;		/* blade of GRU */
407	unsigned char		gs_chiplet_id;		/* blade chiplet of GRU */
408	unsigned char		gs_tgh_local_shift;	/* used to pick TGH for
409							   local flush */
410	unsigned char		gs_tgh_first_remote;	/* starting TGH# for
411							   remote flush */
412	spinlock_t		gs_asid_lock;		/* lock used for
413							   assigning asids */
414	spinlock_t		gs_lock;		/* lock used for
415							   assigning contexts */
416
417	/* -- the following are protected by the gs_asid_lock spinlock ---- */
418	unsigned int		gs_asid;		/* Next availe ASID */
419	unsigned int		gs_asid_limit;		/* Limit of available
420							   ASIDs */
421	unsigned int		gs_asid_gen;		/* asid generation.
422							   Inc on wrap */
423
424	/* --- the following fields are protected by the gs_lock spinlock --- */
425	unsigned long		gs_context_map;		/* bitmap to manage
426							   contexts in use */
427	unsigned long		gs_cbr_map;		/* bitmap to manage CB
428							   resources */
429	unsigned long		gs_dsr_map;		/* bitmap used to manage
430							   DATA resources */
431	unsigned int		gs_reserved_cbrs;	/* Number of kernel-
432							   reserved cbrs */
433	unsigned int		gs_reserved_dsr_bytes;	/* Bytes of kernel-
434							   reserved dsrs */
435	unsigned short		gs_active_contexts;	/* number of contexts
436							   in use */
437	struct gru_thread_state	*gs_gts[GRU_NUM_CCH];	/* GTS currently using
438							   the context */
439	int			gs_irq[GRU_NUM_TFM];	/* Interrupt irqs */
440};
441
442/*
443 * This structure contains the GRU state for all the GRUs on a blade.
444 */
445struct gru_blade_state {
446	void			*kernel_cb;		/* First kernel
447							   reserved cb */
448	void			*kernel_dsr;		/* First kernel
449							   reserved DSR */
450	struct rw_semaphore	bs_kgts_sema;		/* lock for kgts */
451	struct gru_thread_state *bs_kgts;		/* GTS for kernel use */
452
453	/* ---- the following are used for managing kernel async GRU CBRs --- */
454	int			bs_async_dsr_bytes;	/* DSRs for async */
455	int			bs_async_cbrs;		/* CBRs AU for async */
456	struct completion	*bs_async_wq;
457
458	/* ---- the following are protected by the bs_lock spinlock ---- */
459	spinlock_t		bs_lock;		/* lock used for
460							   stealing contexts */
461	int			bs_lru_ctxnum;		/* STEAL - last context
462							   stolen */
463	struct gru_state	*bs_lru_gru;		/* STEAL - last gru
464							   stolen */
465
466	struct gru_state	bs_grus[GRU_CHIPLETS_PER_BLADE];
467};
468
469/*-----------------------------------------------------------------------------
470 * Address Primitives
471 */
472#define get_tfm_for_cpu(g, c)						\
473	((struct gru_tlb_fault_map *)get_tfm((g)->gs_gru_base_vaddr, (c)))
474#define get_tfh_by_index(g, i)						\
475	((struct gru_tlb_fault_handle *)get_tfh((g)->gs_gru_base_vaddr, (i)))
476#define get_tgh_by_index(g, i)						\
477	((struct gru_tlb_global_handle *)get_tgh((g)->gs_gru_base_vaddr, (i)))
478#define get_cbe_by_index(g, i)						\
479	((struct gru_control_block_extended *)get_cbe((g)->gs_gru_base_vaddr,\
480			(i)))
481
482/*-----------------------------------------------------------------------------
483 * Useful Macros
484 */
485
486/* Given a blade# & chiplet#, get a pointer to the GRU */
487#define get_gru(b, c)		(&gru_base[b]->bs_grus[c])
488
489/* Number of bytes to save/restore when unloading/loading GRU contexts */
490#define DSR_BYTES(dsr)		((dsr) * GRU_DSR_AU_BYTES)
491#define CBR_BYTES(cbr)		((cbr) * GRU_HANDLE_BYTES * GRU_CBR_AU_SIZE * 2)
492
493/* Convert a user CB number to the actual CBRNUM */
494#define thread_cbr_number(gts, n) ((gts)->ts_cbr_idx[(n) / GRU_CBR_AU_SIZE] \
495				  * GRU_CBR_AU_SIZE + (n) % GRU_CBR_AU_SIZE)
496
497/* Convert a gid to a pointer to the GRU */
498#define GID_TO_GRU(gid)							\
499	(gru_base[(gid) / GRU_CHIPLETS_PER_BLADE] ?			\
500		(&gru_base[(gid) / GRU_CHIPLETS_PER_BLADE]->		\
501			bs_grus[(gid) % GRU_CHIPLETS_PER_BLADE]) :	\
502	 NULL)
503
504/* Scan all active GRUs in a GRU bitmap */
505#define for_each_gru_in_bitmap(gid, map)				\
506	for_each_set_bit((gid), (map), GRU_MAX_GRUS)
507
508/* Scan all active GRUs on a specific blade */
509#define for_each_gru_on_blade(gru, nid, i)				\
510	for ((gru) = gru_base[nid]->bs_grus, (i) = 0;			\
511			(i) < GRU_CHIPLETS_PER_BLADE;			\
512			(i)++, (gru)++)
513
514/* Scan all GRUs */
515#define foreach_gid(gid)						\
516	for ((gid) = 0; (gid) < gru_max_gids; (gid)++)
517
518/* Scan all active GTSs on a gru. Note: must hold ss_lock to use this macro. */
519#define for_each_gts_on_gru(gts, gru, ctxnum)				\
520	for ((ctxnum) = 0; (ctxnum) < GRU_NUM_CCH; (ctxnum)++)		\
521		if (((gts) = (gru)->gs_gts[ctxnum]))
522
523/* Scan each CBR whose bit is set in a TFM (or copy of) */
524#define for_each_cbr_in_tfm(i, map)					\
525	for_each_set_bit((i), (map), GRU_NUM_CBE)
526
527/* Scan each CBR in a CBR bitmap. Note: multiple CBRs in an allocation unit */
528#define for_each_cbr_in_allocation_map(i, map, k)			\
529	for_each_set_bit((k), (map), GRU_CBR_AU)			\
530		for ((i) = (k)*GRU_CBR_AU_SIZE;				\
531				(i) < ((k) + 1) * GRU_CBR_AU_SIZE; (i)++)
532
533#define gseg_physical_address(gru, ctxnum)				\
534		((gru)->gs_gru_base_paddr + ctxnum * GRU_GSEG_STRIDE)
535#define gseg_virtual_address(gru, ctxnum)				\
536		((gru)->gs_gru_base_vaddr + ctxnum * GRU_GSEG_STRIDE)
537
538/*-----------------------------------------------------------------------------
539 * Lock / Unlock GRU handles
540 * 	Use the "delresp" bit in the handle as a "lock" bit.
541 */
542
543/* Lock hierarchy checking enabled only in emulator */
544
545/* 0 = lock failed, 1 = locked */
546static inline int __trylock_handle(void *h)
547{
548	return !test_and_set_bit(1, h);
549}
550
551static inline void __lock_handle(void *h)
552{
553	while (test_and_set_bit(1, h))
554		cpu_relax();
555}
556
557static inline void __unlock_handle(void *h)
558{
559	clear_bit(1, h);
560}
561
562static inline int trylock_cch_handle(struct gru_context_configuration_handle *cch)
563{
564	return __trylock_handle(cch);
565}
566
567static inline void lock_cch_handle(struct gru_context_configuration_handle *cch)
568{
569	__lock_handle(cch);
570}
571
572static inline void unlock_cch_handle(struct gru_context_configuration_handle
573				     *cch)
574{
575	__unlock_handle(cch);
576}
577
578static inline void lock_tgh_handle(struct gru_tlb_global_handle *tgh)
579{
580	__lock_handle(tgh);
581}
582
583static inline void unlock_tgh_handle(struct gru_tlb_global_handle *tgh)
584{
585	__unlock_handle(tgh);
586}
587
588static inline int is_kernel_context(struct gru_thread_state *gts)
589{
590	return !gts->ts_mm;
591}
592
593/*
594 * The following are for Nehelem-EX. A more general scheme is needed for
595 * future processors.
596 */
597#define UV_MAX_INT_CORES		8
598#define uv_cpu_socket_number(p)		((cpu_physical_id(p) >> 5) & 1)
599#define uv_cpu_ht_number(p)		(cpu_physical_id(p) & 1)
600#define uv_cpu_core_number(p)		(((cpu_physical_id(p) >> 2) & 4) |	\
601					((cpu_physical_id(p) >> 1) & 3))
602/*-----------------------------------------------------------------------------
603 * Function prototypes & externs
604 */
605struct gru_unload_context_req;
606
607extern const struct vm_operations_struct gru_vm_ops;
608extern struct device *grudev;
609
610extern struct gru_vma_data *gru_alloc_vma_data(struct vm_area_struct *vma,
611				int tsid);
612extern struct gru_thread_state *gru_find_thread_state(struct vm_area_struct
613				*vma, int tsid);
614extern struct gru_thread_state *gru_alloc_thread_state(struct vm_area_struct
615				*vma, int tsid);
616extern struct gru_state *gru_assign_gru_context(struct gru_thread_state *gts);
617extern void gru_load_context(struct gru_thread_state *gts);
618extern void gru_steal_context(struct gru_thread_state *gts);
619extern void gru_unload_context(struct gru_thread_state *gts, int savestate);
620extern int gru_update_cch(struct gru_thread_state *gts);
621extern void gts_drop(struct gru_thread_state *gts);
622extern void gru_tgh_flush_init(struct gru_state *gru);
623extern int gru_kservices_init(void);
624extern void gru_kservices_exit(void);
625extern irqreturn_t gru0_intr(int irq, void *dev_id);
626extern irqreturn_t gru1_intr(int irq, void *dev_id);
627extern irqreturn_t gru_intr_mblade(int irq, void *dev_id);
628extern int gru_dump_chiplet_request(unsigned long arg);
629extern long gru_get_gseg_statistics(unsigned long arg);
630extern int gru_handle_user_call_os(unsigned long address);
631extern int gru_user_flush_tlb(unsigned long arg);
632extern int gru_user_unload_context(unsigned long arg);
633extern int gru_get_exception_detail(unsigned long arg);
634extern int gru_set_context_option(unsigned long address);
635extern int gru_check_context_placement(struct gru_thread_state *gts);
636extern int gru_cpu_fault_map_id(void);
637extern struct vm_area_struct *gru_find_vma(unsigned long vaddr);
638extern void gru_flush_all_tlb(struct gru_state *gru);
639extern int gru_proc_init(void);
640extern void gru_proc_exit(void);
641
642extern struct gru_thread_state *gru_alloc_gts(struct vm_area_struct *vma,
643		int cbr_au_count, int dsr_au_count,
644		unsigned char tlb_preload_count, int options, int tsid);
645extern unsigned long gru_reserve_cb_resources(struct gru_state *gru,
646		int cbr_au_count, signed char *cbmap);
647extern unsigned long gru_reserve_ds_resources(struct gru_state *gru,
648		int dsr_au_count, signed char *dsmap);
649extern vm_fault_t gru_fault(struct vm_fault *vmf);
650extern struct gru_mm_struct *gru_register_mmu_notifier(void);
651extern void gru_drop_mmu_notifier(struct gru_mm_struct *gms);
652
653extern int gru_ktest(unsigned long arg);
654extern void gru_flush_tlb_range(struct gru_mm_struct *gms, unsigned long start,
655					unsigned long len);
656
657extern unsigned long gru_options;
658
659#endif /* __GRUTABLES_H__ */
660