1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2003-2022, Intel Corporation. All rights reserved.
4 * Intel Management Engine Interface (Intel MEI) Linux driver
5 */
6
7#include <linux/pci.h>
8
9#include <linux/kthread.h>
10#include <linux/interrupt.h>
11#include <linux/pm_runtime.h>
12#include <linux/sizes.h>
13#include <linux/delay.h>
14
15#include "mei_dev.h"
16#include "hbm.h"
17
18#include "hw-me.h"
19#include "hw-me-regs.h"
20
21#include "mei-trace.h"
22
23/**
24 * mei_me_reg_read - Reads 32bit data from the mei device
25 *
26 * @hw: the me hardware structure
27 * @offset: offset from which to read the data
28 *
29 * Return: register value (u32)
30 */
31static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
32			       unsigned long offset)
33{
34	return ioread32(hw->mem_addr + offset);
35}
36
37
38/**
39 * mei_me_reg_write - Writes 32bit data to the mei device
40 *
41 * @hw: the me hardware structure
42 * @offset: offset from which to write the data
43 * @value: register value to write (u32)
44 */
45static inline void mei_me_reg_write(const struct mei_me_hw *hw,
46				 unsigned long offset, u32 value)
47{
48	iowrite32(value, hw->mem_addr + offset);
49}
50
51/**
52 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
53 *  read window register
54 *
55 * @dev: the device structure
56 *
57 * Return: ME_CB_RW register value (u32)
58 */
59static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
60{
61	return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
62}
63
64/**
65 * mei_me_hcbww_write - write 32bit data to the host circular buffer
66 *
67 * @dev: the device structure
68 * @data: 32bit data to be written to the host circular buffer
69 */
70static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
71{
72	mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
73}
74
75/**
76 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
77 *
78 * @dev: the device structure
79 *
80 * Return: ME_CSR_HA register value (u32)
81 */
82static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
83{
84	u32 reg;
85
86	reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
87	trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
88
89	return reg;
90}
91
92/**
93 * mei_hcsr_read - Reads 32bit data from the host CSR
94 *
95 * @dev: the device structure
96 *
97 * Return: H_CSR register value (u32)
98 */
99static inline u32 mei_hcsr_read(const struct mei_device *dev)
100{
101	u32 reg;
102
103	reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
104	trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
105
106	return reg;
107}
108
109/**
110 * mei_hcsr_write - writes H_CSR register to the mei device
111 *
112 * @dev: the device structure
113 * @reg: new register value
114 */
115static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
116{
117	trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
118	mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
119}
120
121/**
122 * mei_hcsr_set - writes H_CSR register to the mei device,
123 * and ignores the H_IS bit for it is write-one-to-zero.
124 *
125 * @dev: the device structure
126 * @reg: new register value
127 */
128static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
129{
130	reg &= ~H_CSR_IS_MASK;
131	mei_hcsr_write(dev, reg);
132}
133
134/**
135 * mei_hcsr_set_hig - set host interrupt (set H_IG)
136 *
137 * @dev: the device structure
138 */
139static inline void mei_hcsr_set_hig(struct mei_device *dev)
140{
141	u32 hcsr;
142
143	hcsr = mei_hcsr_read(dev) | H_IG;
144	mei_hcsr_set(dev, hcsr);
145}
146
147/**
148 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
149 *
150 * @dev: the device structure
151 *
152 * Return: H_D0I3C register value (u32)
153 */
154static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
155{
156	u32 reg;
157
158	reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
159	trace_mei_reg_read(dev->dev, "H_D0I3C", H_D0I3C, reg);
160
161	return reg;
162}
163
164/**
165 * mei_me_d0i3c_write - writes H_D0I3C register to device
166 *
167 * @dev: the device structure
168 * @reg: new register value
169 */
170static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
171{
172	trace_mei_reg_write(dev->dev, "H_D0I3C", H_D0I3C, reg);
173	mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg);
174}
175
176/**
177 * mei_me_trc_status - read trc status register
178 *
179 * @dev: mei device
180 * @trc: trc status register value
181 *
182 * Return: 0 on success, error otherwise
183 */
184static int mei_me_trc_status(struct mei_device *dev, u32 *trc)
185{
186	struct mei_me_hw *hw = to_me_hw(dev);
187
188	if (!hw->cfg->hw_trc_supported)
189		return -EOPNOTSUPP;
190
191	*trc = mei_me_reg_read(hw, ME_TRC);
192	trace_mei_reg_read(dev->dev, "ME_TRC", ME_TRC, *trc);
193
194	return 0;
195}
196
197/**
198 * mei_me_fw_status - read fw status register from pci config space
199 *
200 * @dev: mei device
201 * @fw_status: fw status register values
202 *
203 * Return: 0 on success, error otherwise
204 */
205static int mei_me_fw_status(struct mei_device *dev,
206			    struct mei_fw_status *fw_status)
207{
208	struct mei_me_hw *hw = to_me_hw(dev);
209	const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
210	int ret;
211	int i;
212
213	if (!fw_status || !hw->read_fws)
214		return -EINVAL;
215
216	fw_status->count = fw_src->count;
217	for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
218		ret = hw->read_fws(dev, fw_src->status[i],
219				   &fw_status->status[i]);
220		trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_X",
221				       fw_src->status[i],
222				       fw_status->status[i]);
223		if (ret)
224			return ret;
225	}
226
227	return 0;
228}
229
230/**
231 * mei_me_hw_config - configure hw dependent settings
232 *
233 * @dev: mei device
234 *
235 * Return:
236 *  * -EINVAL when read_fws is not set
237 *  * 0 on success
238 *
239 */
240static int mei_me_hw_config(struct mei_device *dev)
241{
242	struct mei_me_hw *hw = to_me_hw(dev);
243	u32 hcsr, reg;
244
245	if (WARN_ON(!hw->read_fws))
246		return -EINVAL;
247
248	/* Doesn't change in runtime */
249	hcsr = mei_hcsr_read(dev);
250	hw->hbuf_depth = (hcsr & H_CBD) >> 24;
251
252	reg = 0;
253	hw->read_fws(dev, PCI_CFG_HFS_1, &reg);
254	trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
255	hw->d0i3_supported =
256		((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
257
258	hw->pg_state = MEI_PG_OFF;
259	if (hw->d0i3_supported) {
260		reg = mei_me_d0i3c_read(dev);
261		if (reg & H_D0I3C_I3)
262			hw->pg_state = MEI_PG_ON;
263	}
264
265	return 0;
266}
267
268/**
269 * mei_me_pg_state  - translate internal pg state
270 *   to the mei power gating state
271 *
272 * @dev:  mei device
273 *
274 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
275 */
276static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
277{
278	struct mei_me_hw *hw = to_me_hw(dev);
279
280	return hw->pg_state;
281}
282
283static inline u32 me_intr_src(u32 hcsr)
284{
285	return hcsr & H_CSR_IS_MASK;
286}
287
288/**
289 * me_intr_disable - disables mei device interrupts
290 *      using supplied hcsr register value.
291 *
292 * @dev: the device structure
293 * @hcsr: supplied hcsr register value
294 */
295static inline void me_intr_disable(struct mei_device *dev, u32 hcsr)
296{
297	hcsr &= ~H_CSR_IE_MASK;
298	mei_hcsr_set(dev, hcsr);
299}
300
301/**
302 * me_intr_clear - clear and stop interrupts
303 *
304 * @dev: the device structure
305 * @hcsr: supplied hcsr register value
306 */
307static inline void me_intr_clear(struct mei_device *dev, u32 hcsr)
308{
309	if (me_intr_src(hcsr))
310		mei_hcsr_write(dev, hcsr);
311}
312
313/**
314 * mei_me_intr_clear - clear and stop interrupts
315 *
316 * @dev: the device structure
317 */
318static void mei_me_intr_clear(struct mei_device *dev)
319{
320	u32 hcsr = mei_hcsr_read(dev);
321
322	me_intr_clear(dev, hcsr);
323}
324/**
325 * mei_me_intr_enable - enables mei device interrupts
326 *
327 * @dev: the device structure
328 */
329static void mei_me_intr_enable(struct mei_device *dev)
330{
331	u32 hcsr;
332
333	if (mei_me_hw_use_polling(to_me_hw(dev)))
334		return;
335
336	hcsr = mei_hcsr_read(dev) | H_CSR_IE_MASK;
337	mei_hcsr_set(dev, hcsr);
338}
339
340/**
341 * mei_me_intr_disable - disables mei device interrupts
342 *
343 * @dev: the device structure
344 */
345static void mei_me_intr_disable(struct mei_device *dev)
346{
347	u32 hcsr = mei_hcsr_read(dev);
348
349	me_intr_disable(dev, hcsr);
350}
351
352/**
353 * mei_me_synchronize_irq - wait for pending IRQ handlers
354 *
355 * @dev: the device structure
356 */
357static void mei_me_synchronize_irq(struct mei_device *dev)
358{
359	struct mei_me_hw *hw = to_me_hw(dev);
360
361	if (mei_me_hw_use_polling(hw))
362		return;
363
364	synchronize_irq(hw->irq);
365}
366
367/**
368 * mei_me_hw_reset_release - release device from the reset
369 *
370 * @dev: the device structure
371 */
372static void mei_me_hw_reset_release(struct mei_device *dev)
373{
374	u32 hcsr = mei_hcsr_read(dev);
375
376	hcsr |= H_IG;
377	hcsr &= ~H_RST;
378	mei_hcsr_set(dev, hcsr);
379}
380
381/**
382 * mei_me_host_set_ready - enable device
383 *
384 * @dev: mei device
385 */
386static void mei_me_host_set_ready(struct mei_device *dev)
387{
388	u32 hcsr = mei_hcsr_read(dev);
389
390	if (!mei_me_hw_use_polling(to_me_hw(dev)))
391		hcsr |= H_CSR_IE_MASK;
392
393	hcsr |=  H_IG | H_RDY;
394	mei_hcsr_set(dev, hcsr);
395}
396
397/**
398 * mei_me_host_is_ready - check whether the host has turned ready
399 *
400 * @dev: mei device
401 * Return: bool
402 */
403static bool mei_me_host_is_ready(struct mei_device *dev)
404{
405	u32 hcsr = mei_hcsr_read(dev);
406
407	return (hcsr & H_RDY) == H_RDY;
408}
409
410/**
411 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
412 *
413 * @dev: mei device
414 * Return: bool
415 */
416static bool mei_me_hw_is_ready(struct mei_device *dev)
417{
418	u32 mecsr = mei_me_mecsr_read(dev);
419
420	return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
421}
422
423/**
424 * mei_me_hw_is_resetting - check whether the me(hw) is in reset
425 *
426 * @dev: mei device
427 * Return: bool
428 */
429static bool mei_me_hw_is_resetting(struct mei_device *dev)
430{
431	u32 mecsr = mei_me_mecsr_read(dev);
432
433	return (mecsr & ME_RST_HRA) == ME_RST_HRA;
434}
435
436/**
437 * mei_gsc_pxp_check - check for gsc firmware entering pxp mode
438 *
439 * @dev: the device structure
440 */
441static void mei_gsc_pxp_check(struct mei_device *dev)
442{
443	struct mei_me_hw *hw = to_me_hw(dev);
444	u32 fwsts5 = 0;
445
446	if (!kind_is_gsc(dev) && !kind_is_gscfi(dev))
447		return;
448
449	hw->read_fws(dev, PCI_CFG_HFS_5, &fwsts5);
450	trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_5", PCI_CFG_HFS_5, fwsts5);
451
452	if ((fwsts5 & GSC_CFG_HFS_5_BOOT_TYPE_MSK) == GSC_CFG_HFS_5_BOOT_TYPE_PXP) {
453		if (dev->gsc_reset_to_pxp == MEI_DEV_RESET_TO_PXP_DEFAULT)
454			dev->gsc_reset_to_pxp = MEI_DEV_RESET_TO_PXP_PERFORMED;
455	} else {
456		dev->gsc_reset_to_pxp = MEI_DEV_RESET_TO_PXP_DEFAULT;
457	}
458
459	if (dev->pxp_mode == MEI_DEV_PXP_DEFAULT)
460		return;
461
462	if ((fwsts5 & GSC_CFG_HFS_5_BOOT_TYPE_MSK) == GSC_CFG_HFS_5_BOOT_TYPE_PXP) {
463		dev_dbg(dev->dev, "pxp mode is ready 0x%08x\n", fwsts5);
464		dev->pxp_mode = MEI_DEV_PXP_READY;
465	} else {
466		dev_dbg(dev->dev, "pxp mode is not ready 0x%08x\n", fwsts5);
467	}
468}
469
470/**
471 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
472 *  or timeout is reached
473 *
474 * @dev: mei device
475 * Return: 0 on success, error otherwise
476 */
477static int mei_me_hw_ready_wait(struct mei_device *dev)
478{
479	mutex_unlock(&dev->device_lock);
480	wait_event_timeout(dev->wait_hw_ready,
481			dev->recvd_hw_ready,
482			dev->timeouts.hw_ready);
483	mutex_lock(&dev->device_lock);
484	if (!dev->recvd_hw_ready) {
485		dev_err(dev->dev, "wait hw ready failed\n");
486		return -ETIME;
487	}
488
489	mei_gsc_pxp_check(dev);
490
491	mei_me_hw_reset_release(dev);
492	dev->recvd_hw_ready = false;
493	return 0;
494}
495
496/**
497 * mei_me_check_fw_reset - check for the firmware reset error and exception conditions
498 *
499 * @dev: mei device
500 */
501static void mei_me_check_fw_reset(struct mei_device *dev)
502{
503	struct mei_fw_status fw_status;
504	char fw_sts_str[MEI_FW_STATUS_STR_SZ] = {0};
505	int ret;
506	u32 fw_pm_event = 0;
507
508	if (!dev->saved_fw_status_flag)
509		goto end;
510
511	if (dev->gsc_reset_to_pxp == MEI_DEV_RESET_TO_PXP_PERFORMED) {
512		ret = mei_fw_status(dev, &fw_status);
513		if (!ret) {
514			fw_pm_event = fw_status.status[1] & PCI_CFG_HFS_2_PM_EVENT_MASK;
515			if (fw_pm_event != PCI_CFG_HFS_2_PM_CMOFF_TO_CMX_ERROR &&
516			    fw_pm_event != PCI_CFG_HFS_2_PM_CM_RESET_ERROR)
517				goto end;
518		} else {
519			dev_err(dev->dev, "failed to read firmware status: %d\n", ret);
520		}
521	}
522
523	mei_fw_status2str(&dev->saved_fw_status, fw_sts_str, sizeof(fw_sts_str));
524	dev_warn(dev->dev, "unexpected reset: fw_pm_event = 0x%x, dev_state = %u fw status = %s\n",
525		 fw_pm_event, dev->saved_dev_state, fw_sts_str);
526
527end:
528	if (dev->gsc_reset_to_pxp == MEI_DEV_RESET_TO_PXP_PERFORMED)
529		dev->gsc_reset_to_pxp = MEI_DEV_RESET_TO_PXP_DONE;
530	dev->saved_fw_status_flag = false;
531}
532
533/**
534 * mei_me_hw_start - hw start routine
535 *
536 * @dev: mei device
537 * Return: 0 on success, error otherwise
538 */
539static int mei_me_hw_start(struct mei_device *dev)
540{
541	int ret = mei_me_hw_ready_wait(dev);
542
543	if (kind_is_gsc(dev) || kind_is_gscfi(dev))
544		mei_me_check_fw_reset(dev);
545	if (ret)
546		return ret;
547	dev_dbg(dev->dev, "hw is ready\n");
548
549	mei_me_host_set_ready(dev);
550	return ret;
551}
552
553
554/**
555 * mei_hbuf_filled_slots - gets number of device filled buffer slots
556 *
557 * @dev: the device structure
558 *
559 * Return: number of filled slots
560 */
561static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
562{
563	u32 hcsr;
564	char read_ptr, write_ptr;
565
566	hcsr = mei_hcsr_read(dev);
567
568	read_ptr = (char) ((hcsr & H_CBRP) >> 8);
569	write_ptr = (char) ((hcsr & H_CBWP) >> 16);
570
571	return (unsigned char) (write_ptr - read_ptr);
572}
573
574/**
575 * mei_me_hbuf_is_empty - checks if host buffer is empty.
576 *
577 * @dev: the device structure
578 *
579 * Return: true if empty, false - otherwise.
580 */
581static bool mei_me_hbuf_is_empty(struct mei_device *dev)
582{
583	return mei_hbuf_filled_slots(dev) == 0;
584}
585
586/**
587 * mei_me_hbuf_empty_slots - counts write empty slots.
588 *
589 * @dev: the device structure
590 *
591 * Return: -EOVERFLOW if overflow, otherwise empty slots count
592 */
593static int mei_me_hbuf_empty_slots(struct mei_device *dev)
594{
595	struct mei_me_hw *hw = to_me_hw(dev);
596	unsigned char filled_slots, empty_slots;
597
598	filled_slots = mei_hbuf_filled_slots(dev);
599	empty_slots = hw->hbuf_depth - filled_slots;
600
601	/* check for overflow */
602	if (filled_slots > hw->hbuf_depth)
603		return -EOVERFLOW;
604
605	return empty_slots;
606}
607
608/**
609 * mei_me_hbuf_depth - returns depth of the hw buffer.
610 *
611 * @dev: the device structure
612 *
613 * Return: size of hw buffer in slots
614 */
615static u32 mei_me_hbuf_depth(const struct mei_device *dev)
616{
617	struct mei_me_hw *hw = to_me_hw(dev);
618
619	return hw->hbuf_depth;
620}
621
622/**
623 * mei_me_hbuf_write - writes a message to host hw buffer.
624 *
625 * @dev: the device structure
626 * @hdr: header of message
627 * @hdr_len: header length in bytes: must be multiplication of a slot (4bytes)
628 * @data: payload
629 * @data_len: payload length in bytes
630 *
631 * Return: 0 if success, < 0 - otherwise.
632 */
633static int mei_me_hbuf_write(struct mei_device *dev,
634			     const void *hdr, size_t hdr_len,
635			     const void *data, size_t data_len)
636{
637	unsigned long rem;
638	unsigned long i;
639	const u32 *reg_buf;
640	u32 dw_cnt;
641	int empty_slots;
642
643	if (WARN_ON(!hdr || hdr_len & 0x3))
644		return -EINVAL;
645
646	if (!data && data_len) {
647		dev_err(dev->dev, "wrong parameters null data with data_len = %zu\n", data_len);
648		return -EINVAL;
649	}
650
651	dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM((struct mei_msg_hdr *)hdr));
652
653	empty_slots = mei_hbuf_empty_slots(dev);
654	dev_dbg(dev->dev, "empty slots = %d.\n", empty_slots);
655
656	if (empty_slots < 0)
657		return -EOVERFLOW;
658
659	dw_cnt = mei_data2slots(hdr_len + data_len);
660	if (dw_cnt > (u32)empty_slots)
661		return -EMSGSIZE;
662
663	reg_buf = hdr;
664	for (i = 0; i < hdr_len / MEI_SLOT_SIZE; i++)
665		mei_me_hcbww_write(dev, reg_buf[i]);
666
667	reg_buf = data;
668	for (i = 0; i < data_len / MEI_SLOT_SIZE; i++)
669		mei_me_hcbww_write(dev, reg_buf[i]);
670
671	rem = data_len & 0x3;
672	if (rem > 0) {
673		u32 reg = 0;
674
675		memcpy(&reg, (const u8 *)data + data_len - rem, rem);
676		mei_me_hcbww_write(dev, reg);
677	}
678
679	mei_hcsr_set_hig(dev);
680	if (!mei_me_hw_is_ready(dev))
681		return -EIO;
682
683	return 0;
684}
685
686/**
687 * mei_me_count_full_read_slots - counts read full slots.
688 *
689 * @dev: the device structure
690 *
691 * Return: -EOVERFLOW if overflow, otherwise filled slots count
692 */
693static int mei_me_count_full_read_slots(struct mei_device *dev)
694{
695	u32 me_csr;
696	char read_ptr, write_ptr;
697	unsigned char buffer_depth, filled_slots;
698
699	me_csr = mei_me_mecsr_read(dev);
700	buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
701	read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
702	write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
703	filled_slots = (unsigned char) (write_ptr - read_ptr);
704
705	/* check for overflow */
706	if (filled_slots > buffer_depth)
707		return -EOVERFLOW;
708
709	dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
710	return (int)filled_slots;
711}
712
713/**
714 * mei_me_read_slots - reads a message from mei device.
715 *
716 * @dev: the device structure
717 * @buffer: message buffer will be written
718 * @buffer_length: message size will be read
719 *
720 * Return: always 0
721 */
722static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
723			     unsigned long buffer_length)
724{
725	u32 *reg_buf = (u32 *)buffer;
726
727	for (; buffer_length >= MEI_SLOT_SIZE; buffer_length -= MEI_SLOT_SIZE)
728		*reg_buf++ = mei_me_mecbrw_read(dev);
729
730	if (buffer_length > 0) {
731		u32 reg = mei_me_mecbrw_read(dev);
732
733		memcpy(reg_buf, &reg, buffer_length);
734	}
735
736	mei_hcsr_set_hig(dev);
737	return 0;
738}
739
740/**
741 * mei_me_pg_set - write pg enter register
742 *
743 * @dev: the device structure
744 */
745static void mei_me_pg_set(struct mei_device *dev)
746{
747	struct mei_me_hw *hw = to_me_hw(dev);
748	u32 reg;
749
750	reg = mei_me_reg_read(hw, H_HPG_CSR);
751	trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
752
753	reg |= H_HPG_CSR_PGI;
754
755	trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
756	mei_me_reg_write(hw, H_HPG_CSR, reg);
757}
758
759/**
760 * mei_me_pg_unset - write pg exit register
761 *
762 * @dev: the device structure
763 */
764static void mei_me_pg_unset(struct mei_device *dev)
765{
766	struct mei_me_hw *hw = to_me_hw(dev);
767	u32 reg;
768
769	reg = mei_me_reg_read(hw, H_HPG_CSR);
770	trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
771
772	WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
773
774	reg |= H_HPG_CSR_PGIHEXR;
775
776	trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
777	mei_me_reg_write(hw, H_HPG_CSR, reg);
778}
779
780/**
781 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
782 *
783 * @dev: the device structure
784 *
785 * Return: 0 on success an error code otherwise
786 */
787static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
788{
789	struct mei_me_hw *hw = to_me_hw(dev);
790	int ret;
791
792	dev->pg_event = MEI_PG_EVENT_WAIT;
793
794	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
795	if (ret)
796		return ret;
797
798	mutex_unlock(&dev->device_lock);
799	wait_event_timeout(dev->wait_pg,
800		dev->pg_event == MEI_PG_EVENT_RECEIVED,
801		dev->timeouts.pgi);
802	mutex_lock(&dev->device_lock);
803
804	if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
805		mei_me_pg_set(dev);
806		ret = 0;
807	} else {
808		ret = -ETIME;
809	}
810
811	dev->pg_event = MEI_PG_EVENT_IDLE;
812	hw->pg_state = MEI_PG_ON;
813
814	return ret;
815}
816
817/**
818 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
819 *
820 * @dev: the device structure
821 *
822 * Return: 0 on success an error code otherwise
823 */
824static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
825{
826	struct mei_me_hw *hw = to_me_hw(dev);
827	int ret;
828
829	if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
830		goto reply;
831
832	dev->pg_event = MEI_PG_EVENT_WAIT;
833
834	mei_me_pg_unset(dev);
835
836	mutex_unlock(&dev->device_lock);
837	wait_event_timeout(dev->wait_pg,
838		dev->pg_event == MEI_PG_EVENT_RECEIVED,
839		dev->timeouts.pgi);
840	mutex_lock(&dev->device_lock);
841
842reply:
843	if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
844		ret = -ETIME;
845		goto out;
846	}
847
848	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
849	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
850	if (ret)
851		return ret;
852
853	mutex_unlock(&dev->device_lock);
854	wait_event_timeout(dev->wait_pg,
855		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED,
856		dev->timeouts.pgi);
857	mutex_lock(&dev->device_lock);
858
859	if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
860		ret = 0;
861	else
862		ret = -ETIME;
863
864out:
865	dev->pg_event = MEI_PG_EVENT_IDLE;
866	hw->pg_state = MEI_PG_OFF;
867
868	return ret;
869}
870
871/**
872 * mei_me_pg_in_transition - is device now in pg transition
873 *
874 * @dev: the device structure
875 *
876 * Return: true if in pg transition, false otherwise
877 */
878static bool mei_me_pg_in_transition(struct mei_device *dev)
879{
880	return dev->pg_event >= MEI_PG_EVENT_WAIT &&
881	       dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
882}
883
884/**
885 * mei_me_pg_is_enabled - detect if PG is supported by HW
886 *
887 * @dev: the device structure
888 *
889 * Return: true is pg supported, false otherwise
890 */
891static bool mei_me_pg_is_enabled(struct mei_device *dev)
892{
893	struct mei_me_hw *hw = to_me_hw(dev);
894	u32 reg = mei_me_mecsr_read(dev);
895
896	if (hw->d0i3_supported)
897		return true;
898
899	if ((reg & ME_PGIC_HRA) == 0)
900		goto notsupported;
901
902	if (!dev->hbm_f_pg_supported)
903		goto notsupported;
904
905	return true;
906
907notsupported:
908	dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
909		hw->d0i3_supported,
910		!!(reg & ME_PGIC_HRA),
911		dev->version.major_version,
912		dev->version.minor_version,
913		HBM_MAJOR_VERSION_PGI,
914		HBM_MINOR_VERSION_PGI);
915
916	return false;
917}
918
919/**
920 * mei_me_d0i3_set - write d0i3 register bit on mei device.
921 *
922 * @dev: the device structure
923 * @intr: ask for interrupt
924 *
925 * Return: D0I3C register value
926 */
927static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
928{
929	u32 reg = mei_me_d0i3c_read(dev);
930
931	reg |= H_D0I3C_I3;
932	if (intr)
933		reg |= H_D0I3C_IR;
934	else
935		reg &= ~H_D0I3C_IR;
936	mei_me_d0i3c_write(dev, reg);
937	/* read it to ensure HW consistency */
938	reg = mei_me_d0i3c_read(dev);
939	return reg;
940}
941
942/**
943 * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
944 *
945 * @dev: the device structure
946 *
947 * Return: D0I3C register value
948 */
949static u32 mei_me_d0i3_unset(struct mei_device *dev)
950{
951	u32 reg = mei_me_d0i3c_read(dev);
952
953	reg &= ~H_D0I3C_I3;
954	reg |= H_D0I3C_IR;
955	mei_me_d0i3c_write(dev, reg);
956	/* read it to ensure HW consistency */
957	reg = mei_me_d0i3c_read(dev);
958	return reg;
959}
960
961/**
962 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
963 *
964 * @dev: the device structure
965 *
966 * Return: 0 on success an error code otherwise
967 */
968static int mei_me_d0i3_enter_sync(struct mei_device *dev)
969{
970	struct mei_me_hw *hw = to_me_hw(dev);
971	int ret;
972	u32 reg;
973
974	reg = mei_me_d0i3c_read(dev);
975	if (reg & H_D0I3C_I3) {
976		/* we are in d0i3, nothing to do */
977		dev_dbg(dev->dev, "d0i3 set not needed\n");
978		ret = 0;
979		goto on;
980	}
981
982	/* PGI entry procedure */
983	dev->pg_event = MEI_PG_EVENT_WAIT;
984
985	ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
986	if (ret)
987		/* FIXME: should we reset here? */
988		goto out;
989
990	mutex_unlock(&dev->device_lock);
991	wait_event_timeout(dev->wait_pg,
992		dev->pg_event == MEI_PG_EVENT_RECEIVED,
993		dev->timeouts.pgi);
994	mutex_lock(&dev->device_lock);
995
996	if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
997		ret = -ETIME;
998		goto out;
999	}
1000	/* end PGI entry procedure */
1001
1002	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
1003
1004	reg = mei_me_d0i3_set(dev, true);
1005	if (!(reg & H_D0I3C_CIP)) {
1006		dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
1007		ret = 0;
1008		goto on;
1009	}
1010
1011	mutex_unlock(&dev->device_lock);
1012	wait_event_timeout(dev->wait_pg,
1013		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED,
1014		dev->timeouts.d0i3);
1015	mutex_lock(&dev->device_lock);
1016
1017	if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
1018		reg = mei_me_d0i3c_read(dev);
1019		if (!(reg & H_D0I3C_I3)) {
1020			ret = -ETIME;
1021			goto out;
1022		}
1023	}
1024
1025	ret = 0;
1026on:
1027	hw->pg_state = MEI_PG_ON;
1028out:
1029	dev->pg_event = MEI_PG_EVENT_IDLE;
1030	dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
1031	return ret;
1032}
1033
1034/**
1035 * mei_me_d0i3_enter - perform d0i3 entry procedure
1036 *   no hbm PG handshake
1037 *   no waiting for confirmation; runs with interrupts
1038 *   disabled
1039 *
1040 * @dev: the device structure
1041 *
1042 * Return: 0 on success an error code otherwise
1043 */
1044static int mei_me_d0i3_enter(struct mei_device *dev)
1045{
1046	struct mei_me_hw *hw = to_me_hw(dev);
1047	u32 reg;
1048
1049	reg = mei_me_d0i3c_read(dev);
1050	if (reg & H_D0I3C_I3) {
1051		/* we are in d0i3, nothing to do */
1052		dev_dbg(dev->dev, "already d0i3 : set not needed\n");
1053		goto on;
1054	}
1055
1056	mei_me_d0i3_set(dev, false);
1057on:
1058	hw->pg_state = MEI_PG_ON;
1059	dev->pg_event = MEI_PG_EVENT_IDLE;
1060	dev_dbg(dev->dev, "d0i3 enter\n");
1061	return 0;
1062}
1063
1064/**
1065 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
1066 *
1067 * @dev: the device structure
1068 *
1069 * Return: 0 on success an error code otherwise
1070 */
1071static int mei_me_d0i3_exit_sync(struct mei_device *dev)
1072{
1073	struct mei_me_hw *hw = to_me_hw(dev);
1074	int ret;
1075	u32 reg;
1076
1077	dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
1078
1079	reg = mei_me_d0i3c_read(dev);
1080	if (!(reg & H_D0I3C_I3)) {
1081		/* we are not in d0i3, nothing to do */
1082		dev_dbg(dev->dev, "d0i3 exit not needed\n");
1083		ret = 0;
1084		goto off;
1085	}
1086
1087	reg = mei_me_d0i3_unset(dev);
1088	if (!(reg & H_D0I3C_CIP)) {
1089		dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
1090		ret = 0;
1091		goto off;
1092	}
1093
1094	mutex_unlock(&dev->device_lock);
1095	wait_event_timeout(dev->wait_pg,
1096		dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED,
1097		dev->timeouts.d0i3);
1098	mutex_lock(&dev->device_lock);
1099
1100	if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
1101		reg = mei_me_d0i3c_read(dev);
1102		if (reg & H_D0I3C_I3) {
1103			ret = -ETIME;
1104			goto out;
1105		}
1106	}
1107
1108	ret = 0;
1109off:
1110	hw->pg_state = MEI_PG_OFF;
1111out:
1112	dev->pg_event = MEI_PG_EVENT_IDLE;
1113
1114	dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
1115	return ret;
1116}
1117
1118/**
1119 * mei_me_pg_legacy_intr - perform legacy pg processing
1120 *			   in interrupt thread handler
1121 *
1122 * @dev: the device structure
1123 */
1124static void mei_me_pg_legacy_intr(struct mei_device *dev)
1125{
1126	struct mei_me_hw *hw = to_me_hw(dev);
1127
1128	if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
1129		return;
1130
1131	dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1132	hw->pg_state = MEI_PG_OFF;
1133	if (waitqueue_active(&dev->wait_pg))
1134		wake_up(&dev->wait_pg);
1135}
1136
1137/**
1138 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
1139 *
1140 * @dev: the device structure
1141 * @intr_source: interrupt source
1142 */
1143static void mei_me_d0i3_intr(struct mei_device *dev, u32 intr_source)
1144{
1145	struct mei_me_hw *hw = to_me_hw(dev);
1146
1147	if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
1148	    (intr_source & H_D0I3C_IS)) {
1149		dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
1150		if (hw->pg_state == MEI_PG_ON) {
1151			hw->pg_state = MEI_PG_OFF;
1152			if (dev->hbm_state != MEI_HBM_IDLE) {
1153				/*
1154				 * force H_RDY because it could be
1155				 * wiped off during PG
1156				 */
1157				dev_dbg(dev->dev, "d0i3 set host ready\n");
1158				mei_me_host_set_ready(dev);
1159			}
1160		} else {
1161			hw->pg_state = MEI_PG_ON;
1162		}
1163
1164		wake_up(&dev->wait_pg);
1165	}
1166
1167	if (hw->pg_state == MEI_PG_ON && (intr_source & H_IS)) {
1168		/*
1169		 * HW sent some data and we are in D0i3, so
1170		 * we got here because of HW initiated exit from D0i3.
1171		 * Start runtime pm resume sequence to exit low power state.
1172		 */
1173		dev_dbg(dev->dev, "d0i3 want resume\n");
1174		mei_hbm_pg_resume(dev);
1175	}
1176}
1177
1178/**
1179 * mei_me_pg_intr - perform pg processing in interrupt thread handler
1180 *
1181 * @dev: the device structure
1182 * @intr_source: interrupt source
1183 */
1184static void mei_me_pg_intr(struct mei_device *dev, u32 intr_source)
1185{
1186	struct mei_me_hw *hw = to_me_hw(dev);
1187
1188	if (hw->d0i3_supported)
1189		mei_me_d0i3_intr(dev, intr_source);
1190	else
1191		mei_me_pg_legacy_intr(dev);
1192}
1193
1194/**
1195 * mei_me_pg_enter_sync - perform runtime pm entry procedure
1196 *
1197 * @dev: the device structure
1198 *
1199 * Return: 0 on success an error code otherwise
1200 */
1201int mei_me_pg_enter_sync(struct mei_device *dev)
1202{
1203	struct mei_me_hw *hw = to_me_hw(dev);
1204
1205	if (hw->d0i3_supported)
1206		return mei_me_d0i3_enter_sync(dev);
1207	else
1208		return mei_me_pg_legacy_enter_sync(dev);
1209}
1210
1211/**
1212 * mei_me_pg_exit_sync - perform runtime pm exit procedure
1213 *
1214 * @dev: the device structure
1215 *
1216 * Return: 0 on success an error code otherwise
1217 */
1218int mei_me_pg_exit_sync(struct mei_device *dev)
1219{
1220	struct mei_me_hw *hw = to_me_hw(dev);
1221
1222	if (hw->d0i3_supported)
1223		return mei_me_d0i3_exit_sync(dev);
1224	else
1225		return mei_me_pg_legacy_exit_sync(dev);
1226}
1227
1228/**
1229 * mei_me_hw_reset - resets fw via mei csr register.
1230 *
1231 * @dev: the device structure
1232 * @intr_enable: if interrupt should be enabled after reset.
1233 *
1234 * Return: 0 on success an error code otherwise
1235 */
1236static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
1237{
1238	struct mei_me_hw *hw = to_me_hw(dev);
1239	int ret;
1240	u32 hcsr;
1241
1242	if (intr_enable) {
1243		mei_me_intr_enable(dev);
1244		if (hw->d0i3_supported) {
1245			ret = mei_me_d0i3_exit_sync(dev);
1246			if (ret)
1247				return ret;
1248		} else {
1249			hw->pg_state = MEI_PG_OFF;
1250		}
1251	}
1252
1253	pm_runtime_set_active(dev->dev);
1254
1255	hcsr = mei_hcsr_read(dev);
1256	/* H_RST may be found lit before reset is started,
1257	 * for example if preceding reset flow hasn't completed.
1258	 * In that case asserting H_RST will be ignored, therefore
1259	 * we need to clean H_RST bit to start a successful reset sequence.
1260	 */
1261	if ((hcsr & H_RST) == H_RST) {
1262		dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
1263		hcsr &= ~H_RST;
1264		mei_hcsr_set(dev, hcsr);
1265		hcsr = mei_hcsr_read(dev);
1266	}
1267
1268	hcsr |= H_RST | H_IG | H_CSR_IS_MASK;
1269
1270	if (!intr_enable || mei_me_hw_use_polling(to_me_hw(dev)))
1271		hcsr &= ~H_CSR_IE_MASK;
1272
1273	dev->recvd_hw_ready = false;
1274	mei_hcsr_write(dev, hcsr);
1275
1276	/*
1277	 * Host reads the H_CSR once to ensure that the
1278	 * posted write to H_CSR completes.
1279	 */
1280	hcsr = mei_hcsr_read(dev);
1281
1282	if ((hcsr & H_RST) == 0)
1283		dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
1284
1285	if ((hcsr & H_RDY) == H_RDY)
1286		dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
1287
1288	if (!intr_enable) {
1289		mei_me_hw_reset_release(dev);
1290		if (hw->d0i3_supported) {
1291			ret = mei_me_d0i3_enter(dev);
1292			if (ret)
1293				return ret;
1294		}
1295	}
1296	return 0;
1297}
1298
1299/**
1300 * mei_me_irq_quick_handler - The ISR of the MEI device
1301 *
1302 * @irq: The irq number
1303 * @dev_id: pointer to the device structure
1304 *
1305 * Return: irqreturn_t
1306 */
1307irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
1308{
1309	struct mei_device *dev = (struct mei_device *)dev_id;
1310	u32 hcsr;
1311
1312	hcsr = mei_hcsr_read(dev);
1313	if (!me_intr_src(hcsr))
1314		return IRQ_NONE;
1315
1316	dev_dbg(dev->dev, "interrupt source 0x%08X\n", me_intr_src(hcsr));
1317
1318	/* disable interrupts on device */
1319	me_intr_disable(dev, hcsr);
1320	return IRQ_WAKE_THREAD;
1321}
1322EXPORT_SYMBOL_GPL(mei_me_irq_quick_handler);
1323
1324/**
1325 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
1326 * processing.
1327 *
1328 * @irq: The irq number
1329 * @dev_id: pointer to the device structure
1330 *
1331 * Return: irqreturn_t
1332 *
1333 */
1334irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
1335{
1336	struct mei_device *dev = (struct mei_device *) dev_id;
1337	struct list_head cmpl_list;
1338	s32 slots;
1339	u32 hcsr;
1340	int rets = 0;
1341
1342	dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
1343	/* initialize our complete list */
1344	mutex_lock(&dev->device_lock);
1345
1346	hcsr = mei_hcsr_read(dev);
1347	me_intr_clear(dev, hcsr);
1348
1349	INIT_LIST_HEAD(&cmpl_list);
1350
1351	/* check if ME wants a reset */
1352	if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
1353		if (kind_is_gsc(dev) || kind_is_gscfi(dev)) {
1354			dev_dbg(dev->dev, "FW not ready: resetting: dev_state = %d\n",
1355				dev->dev_state);
1356		} else {
1357			dev_warn(dev->dev, "FW not ready: resetting: dev_state = %d\n",
1358				 dev->dev_state);
1359		}
1360		if (dev->dev_state == MEI_DEV_POWERING_DOWN ||
1361		    dev->dev_state == MEI_DEV_POWER_DOWN)
1362			mei_cl_all_disconnect(dev);
1363		else if (dev->dev_state != MEI_DEV_DISABLED)
1364			schedule_work(&dev->reset_work);
1365		goto end;
1366	}
1367
1368	if (mei_me_hw_is_resetting(dev))
1369		mei_hcsr_set_hig(dev);
1370
1371	mei_me_pg_intr(dev, me_intr_src(hcsr));
1372
1373	/*  check if we need to start the dev */
1374	if (!mei_host_is_ready(dev)) {
1375		if (mei_hw_is_ready(dev)) {
1376			dev_dbg(dev->dev, "we need to start the dev.\n");
1377			dev->recvd_hw_ready = true;
1378			wake_up(&dev->wait_hw_ready);
1379		} else {
1380			dev_dbg(dev->dev, "Spurious Interrupt\n");
1381		}
1382		goto end;
1383	}
1384	/* check slots available for reading */
1385	slots = mei_count_full_read_slots(dev);
1386	while (slots > 0) {
1387		dev_dbg(dev->dev, "slots to read = %08x\n", slots);
1388		rets = mei_irq_read_handler(dev, &cmpl_list, &slots);
1389		/* There is a race between ME write and interrupt delivery:
1390		 * Not all data is always available immediately after the
1391		 * interrupt, so try to read again on the next interrupt.
1392		 */
1393		if (rets == -ENODATA)
1394			break;
1395
1396		if (rets) {
1397			dev_err(dev->dev, "mei_irq_read_handler ret = %d, state = %d.\n",
1398				rets, dev->dev_state);
1399			if (dev->dev_state != MEI_DEV_RESETTING &&
1400			    dev->dev_state != MEI_DEV_DISABLED &&
1401			    dev->dev_state != MEI_DEV_POWERING_DOWN &&
1402			    dev->dev_state != MEI_DEV_POWER_DOWN)
1403				schedule_work(&dev->reset_work);
1404			goto end;
1405		}
1406	}
1407
1408	dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1409
1410	/*
1411	 * During PG handshake only allowed write is the replay to the
1412	 * PG exit message, so block calling write function
1413	 * if the pg event is in PG handshake
1414	 */
1415	if (dev->pg_event != MEI_PG_EVENT_WAIT &&
1416	    dev->pg_event != MEI_PG_EVENT_RECEIVED) {
1417		rets = mei_irq_write_handler(dev, &cmpl_list);
1418		dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1419	}
1420
1421	mei_irq_compl_handler(dev, &cmpl_list);
1422
1423end:
1424	dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1425	mei_me_intr_enable(dev);
1426	mutex_unlock(&dev->device_lock);
1427	return IRQ_HANDLED;
1428}
1429EXPORT_SYMBOL_GPL(mei_me_irq_thread_handler);
1430
1431#define MEI_POLLING_TIMEOUT_ACTIVE 100
1432#define MEI_POLLING_TIMEOUT_IDLE   500
1433
1434/**
1435 * mei_me_polling_thread - interrupt register polling thread
1436 *
1437 * @_dev: mei device
1438 *
1439 * The thread monitors the interrupt source register and calls
1440 * mei_me_irq_thread_handler() to handle the firmware
1441 * input.
1442 *
1443 * The function polls in MEI_POLLING_TIMEOUT_ACTIVE timeout
1444 * in case there was an event, in idle case the polling
1445 * time increases yet again by MEI_POLLING_TIMEOUT_ACTIVE
1446 * up to MEI_POLLING_TIMEOUT_IDLE.
1447 *
1448 * Return: always 0
1449 */
1450int mei_me_polling_thread(void *_dev)
1451{
1452	struct mei_device *dev = _dev;
1453	irqreturn_t irq_ret;
1454	long polling_timeout = MEI_POLLING_TIMEOUT_ACTIVE;
1455
1456	dev_dbg(dev->dev, "kernel thread is running\n");
1457	while (!kthread_should_stop()) {
1458		struct mei_me_hw *hw = to_me_hw(dev);
1459		u32 hcsr;
1460
1461		wait_event_timeout(hw->wait_active,
1462				   hw->is_active || kthread_should_stop(),
1463				   msecs_to_jiffies(MEI_POLLING_TIMEOUT_IDLE));
1464
1465		if (kthread_should_stop())
1466			break;
1467
1468		hcsr = mei_hcsr_read(dev);
1469		if (me_intr_src(hcsr)) {
1470			polling_timeout = MEI_POLLING_TIMEOUT_ACTIVE;
1471			irq_ret = mei_me_irq_thread_handler(1, dev);
1472			if (irq_ret != IRQ_HANDLED)
1473				dev_err(dev->dev, "irq_ret %d\n", irq_ret);
1474		} else {
1475			/*
1476			 * Increase timeout by MEI_POLLING_TIMEOUT_ACTIVE
1477			 * up to MEI_POLLING_TIMEOUT_IDLE
1478			 */
1479			polling_timeout = clamp_val(polling_timeout + MEI_POLLING_TIMEOUT_ACTIVE,
1480						    MEI_POLLING_TIMEOUT_ACTIVE,
1481						    MEI_POLLING_TIMEOUT_IDLE);
1482		}
1483
1484		schedule_timeout_interruptible(msecs_to_jiffies(polling_timeout));
1485	}
1486
1487	return 0;
1488}
1489EXPORT_SYMBOL_GPL(mei_me_polling_thread);
1490
1491static const struct mei_hw_ops mei_me_hw_ops = {
1492
1493	.trc_status = mei_me_trc_status,
1494	.fw_status = mei_me_fw_status,
1495	.pg_state  = mei_me_pg_state,
1496
1497	.host_is_ready = mei_me_host_is_ready,
1498
1499	.hw_is_ready = mei_me_hw_is_ready,
1500	.hw_reset = mei_me_hw_reset,
1501	.hw_config = mei_me_hw_config,
1502	.hw_start = mei_me_hw_start,
1503
1504	.pg_in_transition = mei_me_pg_in_transition,
1505	.pg_is_enabled = mei_me_pg_is_enabled,
1506
1507	.intr_clear = mei_me_intr_clear,
1508	.intr_enable = mei_me_intr_enable,
1509	.intr_disable = mei_me_intr_disable,
1510	.synchronize_irq = mei_me_synchronize_irq,
1511
1512	.hbuf_free_slots = mei_me_hbuf_empty_slots,
1513	.hbuf_is_ready = mei_me_hbuf_is_empty,
1514	.hbuf_depth = mei_me_hbuf_depth,
1515
1516	.write = mei_me_hbuf_write,
1517
1518	.rdbuf_full_slots = mei_me_count_full_read_slots,
1519	.read_hdr = mei_me_mecbrw_read,
1520	.read = mei_me_read_slots
1521};
1522
1523/**
1524 * mei_me_fw_type_nm() - check for nm sku
1525 *
1526 * @pdev: pci device
1527 *
1528 * Read ME FW Status register to check for the Node Manager (NM) Firmware.
1529 * The NM FW is only signaled in PCI function 0.
1530 * __Note__: Deprecated by PCH8 and newer.
1531 *
1532 * Return: true in case of NM firmware
1533 */
1534static bool mei_me_fw_type_nm(const struct pci_dev *pdev)
1535{
1536	u32 reg;
1537	unsigned int devfn;
1538
1539	devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1540	pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_2, &reg);
1541	trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_2", PCI_CFG_HFS_2, reg);
1542	/* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
1543	return (reg & 0x600) == 0x200;
1544}
1545
1546#define MEI_CFG_FW_NM                           \
1547	.quirk_probe = mei_me_fw_type_nm
1548
1549/**
1550 * mei_me_fw_type_sps_4() - check for sps 4.0 sku
1551 *
1552 * @pdev: pci device
1553 *
1554 * Read ME FW Status register to check for SPS Firmware.
1555 * The SPS FW is only signaled in the PCI function 0.
1556 * __Note__: Deprecated by SPS 5.0 and newer.
1557 *
1558 * Return: true in case of SPS firmware
1559 */
1560static bool mei_me_fw_type_sps_4(const struct pci_dev *pdev)
1561{
1562	u32 reg;
1563	unsigned int devfn;
1564
1565	devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1566	pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_1, &reg);
1567	trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
1568	return (reg & PCI_CFG_HFS_1_OPMODE_MSK) == PCI_CFG_HFS_1_OPMODE_SPS;
1569}
1570
1571#define MEI_CFG_FW_SPS_4                          \
1572	.quirk_probe = mei_me_fw_type_sps_4
1573
1574/**
1575 * mei_me_fw_type_sps_ign() - check for sps or ign sku
1576 *
1577 * @pdev: pci device
1578 *
1579 * Read ME FW Status register to check for SPS or IGN Firmware.
1580 * The SPS/IGN FW is only signaled in pci function 0
1581 *
1582 * Return: true in case of SPS/IGN firmware
1583 */
1584static bool mei_me_fw_type_sps_ign(const struct pci_dev *pdev)
1585{
1586	u32 reg;
1587	u32 fw_type;
1588	unsigned int devfn;
1589
1590	devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1591	pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_3, &reg);
1592	trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_3", PCI_CFG_HFS_3, reg);
1593	fw_type = (reg & PCI_CFG_HFS_3_FW_SKU_MSK);
1594
1595	dev_dbg(&pdev->dev, "fw type is %d\n", fw_type);
1596
1597	return fw_type == PCI_CFG_HFS_3_FW_SKU_IGN ||
1598	       fw_type == PCI_CFG_HFS_3_FW_SKU_SPS;
1599}
1600
1601#define MEI_CFG_KIND_ITOUCH                     \
1602	.kind = "itouch"
1603
1604#define MEI_CFG_TYPE_GSC                        \
1605	.kind = "gsc"
1606
1607#define MEI_CFG_TYPE_GSCFI                      \
1608	.kind = "gscfi"
1609
1610#define MEI_CFG_FW_SPS_IGN                      \
1611	.quirk_probe = mei_me_fw_type_sps_ign
1612
1613#define MEI_CFG_FW_VER_SUPP                     \
1614	.fw_ver_supported = 1
1615
1616#define MEI_CFG_ICH_HFS                      \
1617	.fw_status.count = 0
1618
1619#define MEI_CFG_ICH10_HFS                        \
1620	.fw_status.count = 1,                   \
1621	.fw_status.status[0] = PCI_CFG_HFS_1
1622
1623#define MEI_CFG_PCH_HFS                         \
1624	.fw_status.count = 2,                   \
1625	.fw_status.status[0] = PCI_CFG_HFS_1,   \
1626	.fw_status.status[1] = PCI_CFG_HFS_2
1627
1628#define MEI_CFG_PCH8_HFS                        \
1629	.fw_status.count = 6,                   \
1630	.fw_status.status[0] = PCI_CFG_HFS_1,   \
1631	.fw_status.status[1] = PCI_CFG_HFS_2,   \
1632	.fw_status.status[2] = PCI_CFG_HFS_3,   \
1633	.fw_status.status[3] = PCI_CFG_HFS_4,   \
1634	.fw_status.status[4] = PCI_CFG_HFS_5,   \
1635	.fw_status.status[5] = PCI_CFG_HFS_6
1636
1637#define MEI_CFG_DMA_128 \
1638	.dma_size[DMA_DSCR_HOST] = SZ_128K, \
1639	.dma_size[DMA_DSCR_DEVICE] = SZ_128K, \
1640	.dma_size[DMA_DSCR_CTRL] = PAGE_SIZE
1641
1642#define MEI_CFG_TRC \
1643	.hw_trc_supported = 1
1644
1645/* ICH Legacy devices */
1646static const struct mei_cfg mei_me_ich_cfg = {
1647	MEI_CFG_ICH_HFS,
1648};
1649
1650/* ICH devices */
1651static const struct mei_cfg mei_me_ich10_cfg = {
1652	MEI_CFG_ICH10_HFS,
1653};
1654
1655/* PCH6 devices */
1656static const struct mei_cfg mei_me_pch6_cfg = {
1657	MEI_CFG_PCH_HFS,
1658};
1659
1660/* PCH7 devices */
1661static const struct mei_cfg mei_me_pch7_cfg = {
1662	MEI_CFG_PCH_HFS,
1663	MEI_CFG_FW_VER_SUPP,
1664};
1665
1666/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
1667static const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
1668	MEI_CFG_PCH_HFS,
1669	MEI_CFG_FW_VER_SUPP,
1670	MEI_CFG_FW_NM,
1671};
1672
1673/* PCH8 Lynx Point and newer devices */
1674static const struct mei_cfg mei_me_pch8_cfg = {
1675	MEI_CFG_PCH8_HFS,
1676	MEI_CFG_FW_VER_SUPP,
1677};
1678
1679/* PCH8 Lynx Point and newer devices - iTouch */
1680static const struct mei_cfg mei_me_pch8_itouch_cfg = {
1681	MEI_CFG_KIND_ITOUCH,
1682	MEI_CFG_PCH8_HFS,
1683	MEI_CFG_FW_VER_SUPP,
1684};
1685
1686/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
1687static const struct mei_cfg mei_me_pch8_sps_4_cfg = {
1688	MEI_CFG_PCH8_HFS,
1689	MEI_CFG_FW_VER_SUPP,
1690	MEI_CFG_FW_SPS_4,
1691};
1692
1693/* LBG with quirk for SPS (4.0) Firmware exclusion */
1694static const struct mei_cfg mei_me_pch12_sps_4_cfg = {
1695	MEI_CFG_PCH8_HFS,
1696	MEI_CFG_FW_VER_SUPP,
1697	MEI_CFG_FW_SPS_4,
1698};
1699
1700/* Cannon Lake and newer devices */
1701static const struct mei_cfg mei_me_pch12_cfg = {
1702	MEI_CFG_PCH8_HFS,
1703	MEI_CFG_FW_VER_SUPP,
1704	MEI_CFG_DMA_128,
1705};
1706
1707/* Cannon Lake with quirk for SPS 5.0 and newer Firmware exclusion */
1708static const struct mei_cfg mei_me_pch12_sps_cfg = {
1709	MEI_CFG_PCH8_HFS,
1710	MEI_CFG_FW_VER_SUPP,
1711	MEI_CFG_DMA_128,
1712	MEI_CFG_FW_SPS_IGN,
1713};
1714
1715/* Cannon Lake itouch with quirk for SPS 5.0 and newer Firmware exclusion
1716 * w/o DMA support.
1717 */
1718static const struct mei_cfg mei_me_pch12_itouch_sps_cfg = {
1719	MEI_CFG_KIND_ITOUCH,
1720	MEI_CFG_PCH8_HFS,
1721	MEI_CFG_FW_VER_SUPP,
1722	MEI_CFG_FW_SPS_IGN,
1723};
1724
1725/* Tiger Lake and newer devices */
1726static const struct mei_cfg mei_me_pch15_cfg = {
1727	MEI_CFG_PCH8_HFS,
1728	MEI_CFG_FW_VER_SUPP,
1729	MEI_CFG_DMA_128,
1730	MEI_CFG_TRC,
1731};
1732
1733/* Tiger Lake with quirk for SPS 5.0 and newer Firmware exclusion */
1734static const struct mei_cfg mei_me_pch15_sps_cfg = {
1735	MEI_CFG_PCH8_HFS,
1736	MEI_CFG_FW_VER_SUPP,
1737	MEI_CFG_DMA_128,
1738	MEI_CFG_TRC,
1739	MEI_CFG_FW_SPS_IGN,
1740};
1741
1742/* Graphics System Controller */
1743static const struct mei_cfg mei_me_gsc_cfg = {
1744	MEI_CFG_TYPE_GSC,
1745	MEI_CFG_PCH8_HFS,
1746	MEI_CFG_FW_VER_SUPP,
1747};
1748
1749/* Graphics System Controller Firmware Interface */
1750static const struct mei_cfg mei_me_gscfi_cfg = {
1751	MEI_CFG_TYPE_GSCFI,
1752	MEI_CFG_PCH8_HFS,
1753	MEI_CFG_FW_VER_SUPP,
1754};
1755
1756/*
1757 * mei_cfg_list - A list of platform platform specific configurations.
1758 * Note: has to be synchronized with  enum mei_cfg_idx.
1759 */
1760static const struct mei_cfg *const mei_cfg_list[] = {
1761	[MEI_ME_UNDEF_CFG] = NULL,
1762	[MEI_ME_ICH_CFG] = &mei_me_ich_cfg,
1763	[MEI_ME_ICH10_CFG] = &mei_me_ich10_cfg,
1764	[MEI_ME_PCH6_CFG] = &mei_me_pch6_cfg,
1765	[MEI_ME_PCH7_CFG] = &mei_me_pch7_cfg,
1766	[MEI_ME_PCH_CPT_PBG_CFG] = &mei_me_pch_cpt_pbg_cfg,
1767	[MEI_ME_PCH8_CFG] = &mei_me_pch8_cfg,
1768	[MEI_ME_PCH8_ITOUCH_CFG] = &mei_me_pch8_itouch_cfg,
1769	[MEI_ME_PCH8_SPS_4_CFG] = &mei_me_pch8_sps_4_cfg,
1770	[MEI_ME_PCH12_CFG] = &mei_me_pch12_cfg,
1771	[MEI_ME_PCH12_SPS_4_CFG] = &mei_me_pch12_sps_4_cfg,
1772	[MEI_ME_PCH12_SPS_CFG] = &mei_me_pch12_sps_cfg,
1773	[MEI_ME_PCH12_SPS_ITOUCH_CFG] = &mei_me_pch12_itouch_sps_cfg,
1774	[MEI_ME_PCH15_CFG] = &mei_me_pch15_cfg,
1775	[MEI_ME_PCH15_SPS_CFG] = &mei_me_pch15_sps_cfg,
1776	[MEI_ME_GSC_CFG] = &mei_me_gsc_cfg,
1777	[MEI_ME_GSCFI_CFG] = &mei_me_gscfi_cfg,
1778};
1779
1780const struct mei_cfg *mei_me_get_cfg(kernel_ulong_t idx)
1781{
1782	BUILD_BUG_ON(ARRAY_SIZE(mei_cfg_list) != MEI_ME_NUM_CFG);
1783
1784	if (idx >= MEI_ME_NUM_CFG)
1785		return NULL;
1786
1787	return mei_cfg_list[idx];
1788}
1789EXPORT_SYMBOL_GPL(mei_me_get_cfg);
1790
1791/**
1792 * mei_me_dev_init - allocates and initializes the mei device structure
1793 *
1794 * @parent: device associated with physical device (pci/platform)
1795 * @cfg: per device generation config
1796 * @slow_fw: configure longer timeouts as FW is slow
1797 *
1798 * Return: The mei_device pointer on success, NULL on failure.
1799 */
1800struct mei_device *mei_me_dev_init(struct device *parent,
1801				   const struct mei_cfg *cfg, bool slow_fw)
1802{
1803	struct mei_device *dev;
1804	struct mei_me_hw *hw;
1805	int i;
1806
1807	dev = devm_kzalloc(parent, sizeof(*dev) + sizeof(*hw), GFP_KERNEL);
1808	if (!dev)
1809		return NULL;
1810
1811	hw = to_me_hw(dev);
1812
1813	for (i = 0; i < DMA_DSCR_NUM; i++)
1814		dev->dr_dscr[i].size = cfg->dma_size[i];
1815
1816	mei_device_init(dev, parent, slow_fw, &mei_me_hw_ops);
1817	hw->cfg = cfg;
1818
1819	dev->fw_f_fw_ver_supported = cfg->fw_ver_supported;
1820
1821	dev->kind = cfg->kind;
1822
1823	return dev;
1824}
1825EXPORT_SYMBOL_GPL(mei_me_dev_init);
1826