1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * IBM Accelerator Family 'GenWQE'
4 *
5 * (C) Copyright IBM Corp. 2013
6 *
7 * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
8 * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
9 * Author: Michael Jung <mijung@gmx.net>
10 * Author: Michael Ruettger <michael@ibmra.de>
11 */
12
13/*
14 * Device Driver Control Block (DDCB) queue support. Definition of
15 * interrupt handlers for queue support as well as triggering the
16 * health monitor code in case of problems. The current hardware uses
17 * an MSI interrupt which is shared between error handling and
18 * functional code.
19 */
20
21#include <linux/types.h>
22#include <linux/sched.h>
23#include <linux/wait.h>
24#include <linux/pci.h>
25#include <linux/string.h>
26#include <linux/dma-mapping.h>
27#include <linux/delay.h>
28#include <linux/module.h>
29#include <linux/interrupt.h>
30#include <linux/crc-itu-t.h>
31
32#include "card_base.h"
33#include "card_ddcb.h"
34
35/*
36 * N: next DDCB, this is where the next DDCB will be put.
37 * A: active DDCB, this is where the code will look for the next completion.
38 * x: DDCB is enqueued, we are waiting for its completion.
39
40 * Situation (1): Empty queue
41 *  +---+---+---+---+---+---+---+---+
42 *  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
43 *  |   |   |   |   |   |   |   |   |
44 *  +---+---+---+---+---+---+---+---+
45 *           A/N
46 *  enqueued_ddcbs = A - N = 2 - 2 = 0
47 *
48 * Situation (2): Wrapped, N > A
49 *  +---+---+---+---+---+---+---+---+
50 *  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
51 *  |   |   | x | x |   |   |   |   |
52 *  +---+---+---+---+---+---+---+---+
53 *            A       N
54 *  enqueued_ddcbs = N - A = 4 - 2 = 2
55 *
56 * Situation (3): Queue wrapped, A > N
57 *  +---+---+---+---+---+---+---+---+
58 *  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
59 *  | x | x |   |   | x | x | x | x |
60 *  +---+---+---+---+---+---+---+---+
61 *            N       A
62 *  enqueued_ddcbs = queue_max  - (A - N) = 8 - (4 - 2) = 6
63 *
64 * Situation (4a): Queue full N > A
65 *  +---+---+---+---+---+---+---+---+
66 *  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
67 *  | x | x | x | x | x | x | x |   |
68 *  +---+---+---+---+---+---+---+---+
69 *    A                           N
70 *
71 *  enqueued_ddcbs = N - A = 7 - 0 = 7
72 *
73 * Situation (4a): Queue full A > N
74 *  +---+---+---+---+---+---+---+---+
75 *  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
76 *  | x | x | x |   | x | x | x | x |
77 *  +---+---+---+---+---+---+---+---+
78 *                N   A
79 *  enqueued_ddcbs = queue_max - (A - N) = 8 - (4 - 3) = 7
80 */
81
82static int queue_empty(struct ddcb_queue *queue)
83{
84	return queue->ddcb_next == queue->ddcb_act;
85}
86
87static int queue_enqueued_ddcbs(struct ddcb_queue *queue)
88{
89	if (queue->ddcb_next >= queue->ddcb_act)
90		return queue->ddcb_next - queue->ddcb_act;
91
92	return queue->ddcb_max - (queue->ddcb_act - queue->ddcb_next);
93}
94
95static int queue_free_ddcbs(struct ddcb_queue *queue)
96{
97	int free_ddcbs = queue->ddcb_max - queue_enqueued_ddcbs(queue) - 1;
98
99	if (WARN_ON_ONCE(free_ddcbs < 0)) { /* must never ever happen! */
100		return 0;
101	}
102	return free_ddcbs;
103}
104
105/*
106 * Use of the PRIV field in the DDCB for queue debugging:
107 *
108 * (1) Trying to get rid of a DDCB which saw a timeout:
109 *     pddcb->priv[6] = 0xcc;   # cleared
110 *
111 * (2) Append a DDCB via NEXT bit:
112 *     pddcb->priv[7] = 0xaa;	# appended
113 *
114 * (3) DDCB needed tapping:
115 *     pddcb->priv[7] = 0xbb;   # tapped
116 *
117 * (4) DDCB marked as correctly finished:
118 *     pddcb->priv[6] = 0xff;	# finished
119 */
120
121static inline void ddcb_mark_tapped(struct ddcb *pddcb)
122{
123	pddcb->priv[7] = 0xbb;  /* tapped */
124}
125
126static inline void ddcb_mark_appended(struct ddcb *pddcb)
127{
128	pddcb->priv[7] = 0xaa;	/* appended */
129}
130
131static inline void ddcb_mark_cleared(struct ddcb *pddcb)
132{
133	pddcb->priv[6] = 0xcc; /* cleared */
134}
135
136static inline void ddcb_mark_finished(struct ddcb *pddcb)
137{
138	pddcb->priv[6] = 0xff;	/* finished */
139}
140
141static inline void ddcb_mark_unused(struct ddcb *pddcb)
142{
143	pddcb->priv_64 = cpu_to_be64(0); /* not tapped */
144}
145
146/**
147 * genwqe_crc16() - Generate 16-bit crc as required for DDCBs
148 * @buff:       pointer to data buffer
149 * @len:        length of data for calculation
150 * @init:       initial crc (0xffff at start)
151 *
152 * Polynomial = x^16 + x^12 + x^5 + 1   (0x1021)
153 * Example: 4 bytes 0x01 0x02 0x03 0x04 with init = 0xffff
154 *          should result in a crc16 of 0x89c3
155 *
156 * Return: crc16 checksum in big endian format !
157 */
158static inline u16 genwqe_crc16(const u8 *buff, size_t len, u16 init)
159{
160	return crc_itu_t(init, buff, len);
161}
162
163static void print_ddcb_info(struct genwqe_dev *cd, struct ddcb_queue *queue)
164{
165	int i;
166	struct ddcb *pddcb;
167	unsigned long flags;
168	struct pci_dev *pci_dev = cd->pci_dev;
169
170	spin_lock_irqsave(&cd->print_lock, flags);
171
172	dev_info(&pci_dev->dev,
173		 "DDCB list for card #%d (ddcb_act=%d / ddcb_next=%d):\n",
174		 cd->card_idx, queue->ddcb_act, queue->ddcb_next);
175
176	pddcb = queue->ddcb_vaddr;
177	for (i = 0; i < queue->ddcb_max; i++) {
178		dev_err(&pci_dev->dev,
179			"  %c %-3d: RETC=%03x SEQ=%04x HSI=%02X SHI=%02x PRIV=%06llx CMD=%03x\n",
180			i == queue->ddcb_act ? '>' : ' ',
181			i,
182			be16_to_cpu(pddcb->retc_16),
183			be16_to_cpu(pddcb->seqnum_16),
184			pddcb->hsi,
185			pddcb->shi,
186			be64_to_cpu(pddcb->priv_64),
187			pddcb->cmd);
188		pddcb++;
189	}
190	spin_unlock_irqrestore(&cd->print_lock, flags);
191}
192
193struct genwqe_ddcb_cmd *ddcb_requ_alloc(void)
194{
195	struct ddcb_requ *req;
196
197	req = kzalloc(sizeof(*req), GFP_KERNEL);
198	if (!req)
199		return NULL;
200
201	return &req->cmd;
202}
203
204void ddcb_requ_free(struct genwqe_ddcb_cmd *cmd)
205{
206	struct ddcb_requ *req = container_of(cmd, struct ddcb_requ, cmd);
207
208	kfree(req);
209}
210
211static inline enum genwqe_requ_state ddcb_requ_get_state(struct ddcb_requ *req)
212{
213	return req->req_state;
214}
215
216static inline void ddcb_requ_set_state(struct ddcb_requ *req,
217				       enum genwqe_requ_state new_state)
218{
219	req->req_state = new_state;
220}
221
222static inline int ddcb_requ_collect_debug_data(struct ddcb_requ *req)
223{
224	return req->cmd.ddata_addr != 0x0;
225}
226
227/**
228 * ddcb_requ_finished() - Returns the hardware state of the associated DDCB
229 * @cd:          pointer to genwqe device descriptor
230 * @req:         DDCB work request
231 *
232 * Status of ddcb_requ mirrors this hardware state, but is copied in
233 * the ddcb_requ on interrupt/polling function. The lowlevel code
234 * should check the hardware state directly, the higher level code
235 * should check the copy.
236 *
237 * This function will also return true if the state of the queue is
238 * not GENWQE_CARD_USED. This enables us to purge all DDCBs in the
239 * shutdown case.
240 */
241static int ddcb_requ_finished(struct genwqe_dev *cd, struct ddcb_requ *req)
242{
243	return (ddcb_requ_get_state(req) == GENWQE_REQU_FINISHED) ||
244		(cd->card_state != GENWQE_CARD_USED);
245}
246
247#define RET_DDCB_APPENDED 1
248#define RET_DDCB_TAPPED   2
249/**
250 * enqueue_ddcb() - Enqueue a DDCB
251 * @cd:         pointer to genwqe device descriptor
252 * @queue:	queue this operation should be done on
253 * @pddcb:      pointer to ddcb structure
254 * @ddcb_no:    pointer to ddcb number being tapped
255 *
256 * Start execution of DDCB by tapping or append to queue via NEXT
257 * bit. This is done by an atomic 'compare and swap' instruction and
258 * checking SHI and HSI of the previous DDCB.
259 *
260 * This function must only be called with ddcb_lock held.
261 *
262 * Return: 1 if new DDCB is appended to previous
263 *         2 if DDCB queue is tapped via register/simulation
264 */
265static int enqueue_ddcb(struct genwqe_dev *cd, struct ddcb_queue *queue,
266			struct ddcb *pddcb, int ddcb_no)
267{
268	unsigned int try;
269	int prev_no;
270	struct ddcb *prev_ddcb;
271	__be32 old, new, icrc_hsi_shi;
272	u64 num;
273
274	/*
275	 * For performance checks a Dispatch Timestamp can be put into
276	 * DDCB It is supposed to use the SLU's free running counter,
277	 * but this requires PCIe cycles.
278	 */
279	ddcb_mark_unused(pddcb);
280
281	/* check previous DDCB if already fetched */
282	prev_no = (ddcb_no == 0) ? queue->ddcb_max - 1 : ddcb_no - 1;
283	prev_ddcb = &queue->ddcb_vaddr[prev_no];
284
285	/*
286	 * It might have happened that the HSI.FETCHED bit is
287	 * set. Retry in this case. Therefore I expect maximum 2 times
288	 * trying.
289	 */
290	ddcb_mark_appended(pddcb);
291	for (try = 0; try < 2; try++) {
292		old = prev_ddcb->icrc_hsi_shi_32; /* read SHI/HSI in BE32 */
293
294		/* try to append via NEXT bit if prev DDCB is not completed */
295		if ((old & DDCB_COMPLETED_BE32) != 0x00000000)
296			break;
297
298		new = (old | DDCB_NEXT_BE32);
299
300		wmb();		/* need to ensure write ordering */
301		icrc_hsi_shi = cmpxchg(&prev_ddcb->icrc_hsi_shi_32, old, new);
302
303		if (icrc_hsi_shi == old)
304			return RET_DDCB_APPENDED; /* appended to queue */
305	}
306
307	/* Queue must be re-started by updating QUEUE_OFFSET */
308	ddcb_mark_tapped(pddcb);
309	num = (u64)ddcb_no << 8;
310
311	wmb();			/* need to ensure write ordering */
312	__genwqe_writeq(cd, queue->IO_QUEUE_OFFSET, num); /* start queue */
313
314	return RET_DDCB_TAPPED;
315}
316
317/**
318 * copy_ddcb_results() - Copy output state from real DDCB to request
319 * @req:        pointer to requested DDCB parameters
320 * @ddcb_no:    pointer to ddcb number being tapped
321 *
322 * Copy DDCB ASV to request struct. There is no endian
323 * conversion made, since data structure in ASV is still
324 * unknown here.
325 *
326 * This is needed by:
327 *   - genwqe_purge_ddcb()
328 *   - genwqe_check_ddcb_queue()
329 */
330static void copy_ddcb_results(struct ddcb_requ *req, int ddcb_no)
331{
332	struct ddcb_queue *queue = req->queue;
333	struct ddcb *pddcb = &queue->ddcb_vaddr[req->num];
334
335	memcpy(&req->cmd.asv[0], &pddcb->asv[0], DDCB_ASV_LENGTH);
336
337	/* copy status flags of the variant part */
338	req->cmd.vcrc     = be16_to_cpu(pddcb->vcrc_16);
339	req->cmd.deque_ts = be64_to_cpu(pddcb->deque_ts_64);
340	req->cmd.cmplt_ts = be64_to_cpu(pddcb->cmplt_ts_64);
341
342	req->cmd.attn     = be16_to_cpu(pddcb->attn_16);
343	req->cmd.progress = be32_to_cpu(pddcb->progress_32);
344	req->cmd.retc     = be16_to_cpu(pddcb->retc_16);
345
346	if (ddcb_requ_collect_debug_data(req)) {
347		int prev_no = (ddcb_no == 0) ?
348			queue->ddcb_max - 1 : ddcb_no - 1;
349		struct ddcb *prev_pddcb = &queue->ddcb_vaddr[prev_no];
350
351		memcpy(&req->debug_data.ddcb_finished, pddcb,
352		       sizeof(req->debug_data.ddcb_finished));
353		memcpy(&req->debug_data.ddcb_prev, prev_pddcb,
354		       sizeof(req->debug_data.ddcb_prev));
355	}
356}
357
358/**
359 * genwqe_check_ddcb_queue() - Checks DDCB queue for completed work requests.
360 * @cd:         pointer to genwqe device descriptor
361 * @queue:	queue to be checked
362 *
363 * Return: Number of DDCBs which were finished
364 */
365static int genwqe_check_ddcb_queue(struct genwqe_dev *cd,
366				   struct ddcb_queue *queue)
367{
368	unsigned long flags;
369	int ddcbs_finished = 0;
370	struct pci_dev *pci_dev = cd->pci_dev;
371
372	spin_lock_irqsave(&queue->ddcb_lock, flags);
373
374	/* FIXME avoid soft locking CPU */
375	while (!queue_empty(queue) && (ddcbs_finished < queue->ddcb_max)) {
376
377		struct ddcb *pddcb;
378		struct ddcb_requ *req;
379		u16 vcrc, vcrc_16, retc_16;
380
381		pddcb = &queue->ddcb_vaddr[queue->ddcb_act];
382
383		if ((pddcb->icrc_hsi_shi_32 & DDCB_COMPLETED_BE32) ==
384		    0x00000000)
385			goto go_home; /* not completed, continue waiting */
386
387		wmb();  /*  Add sync to decouple prev. read operations */
388
389		/* Note: DDCB could be purged */
390		req = queue->ddcb_req[queue->ddcb_act];
391		if (req == NULL) {
392			/* this occurs if DDCB is purged, not an error */
393			/* Move active DDCB further; Nothing to do anymore. */
394			goto pick_next_one;
395		}
396
397		/*
398		 * HSI=0x44 (fetched and completed), but RETC is
399		 * 0x101, or even worse 0x000.
400		 *
401		 * In case of seeing the queue in inconsistent state
402		 * we read the errcnts and the queue status to provide
403		 * a trigger for our PCIe analyzer stop capturing.
404		 */
405		retc_16 = be16_to_cpu(pddcb->retc_16);
406		if ((pddcb->hsi == 0x44) && (retc_16 <= 0x101)) {
407			u64 errcnts, status;
408			u64 ddcb_offs = (u64)pddcb - (u64)queue->ddcb_vaddr;
409
410			errcnts = __genwqe_readq(cd, queue->IO_QUEUE_ERRCNTS);
411			status  = __genwqe_readq(cd, queue->IO_QUEUE_STATUS);
412
413			dev_err(&pci_dev->dev,
414				"[%s] SEQN=%04x HSI=%02x RETC=%03x Q_ERRCNTS=%016llx Q_STATUS=%016llx DDCB_DMA_ADDR=%016llx\n",
415				__func__, be16_to_cpu(pddcb->seqnum_16),
416				pddcb->hsi, retc_16, errcnts, status,
417				queue->ddcb_daddr + ddcb_offs);
418		}
419
420		copy_ddcb_results(req, queue->ddcb_act);
421		queue->ddcb_req[queue->ddcb_act] = NULL; /* take from queue */
422
423		dev_dbg(&pci_dev->dev, "FINISHED DDCB#%d\n", req->num);
424		genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb));
425
426		ddcb_mark_finished(pddcb);
427
428		/* calculate CRC_16 to see if VCRC is correct */
429		vcrc = genwqe_crc16(pddcb->asv,
430				   VCRC_LENGTH(req->cmd.asv_length),
431				   0xffff);
432		vcrc_16 = be16_to_cpu(pddcb->vcrc_16);
433		if (vcrc != vcrc_16) {
434			printk_ratelimited(KERN_ERR
435				"%s %s: err: wrong VCRC pre=%02x vcrc_len=%d bytes vcrc_data=%04x is not vcrc_card=%04x\n",
436				GENWQE_DEVNAME, dev_name(&pci_dev->dev),
437				pddcb->pre, VCRC_LENGTH(req->cmd.asv_length),
438				vcrc, vcrc_16);
439		}
440
441		ddcb_requ_set_state(req, GENWQE_REQU_FINISHED);
442		queue->ddcbs_completed++;
443		queue->ddcbs_in_flight--;
444
445		/* wake up process waiting for this DDCB, and
446                   processes on the busy queue */
447		wake_up_interruptible(&queue->ddcb_waitqs[queue->ddcb_act]);
448		wake_up_interruptible(&queue->busy_waitq);
449
450pick_next_one:
451		queue->ddcb_act = (queue->ddcb_act + 1) % queue->ddcb_max;
452		ddcbs_finished++;
453	}
454
455 go_home:
456	spin_unlock_irqrestore(&queue->ddcb_lock, flags);
457	return ddcbs_finished;
458}
459
460/**
461 * __genwqe_wait_ddcb(): Waits until DDCB is completed
462 * @cd:         pointer to genwqe device descriptor
463 * @req:        pointer to requsted DDCB parameters
464 *
465 * The Service Layer will update the RETC in DDCB when processing is
466 * pending or done.
467 *
468 * Return: > 0 remaining jiffies, DDCB completed
469 *           -ETIMEDOUT	when timeout
470 *           -ERESTARTSYS when ^C
471 *           -EINVAL when unknown error condition
472 *
473 * When an error is returned the called needs to ensure that
474 * purge_ddcb() is being called to get the &req removed from the
475 * queue.
476 */
477int __genwqe_wait_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req)
478{
479	int rc;
480	unsigned int ddcb_no;
481	struct ddcb_queue *queue;
482	struct pci_dev *pci_dev = cd->pci_dev;
483
484	if (req == NULL)
485		return -EINVAL;
486
487	queue = req->queue;
488	if (queue == NULL)
489		return -EINVAL;
490
491	ddcb_no = req->num;
492	if (ddcb_no >= queue->ddcb_max)
493		return -EINVAL;
494
495	rc = wait_event_interruptible_timeout(queue->ddcb_waitqs[ddcb_no],
496				ddcb_requ_finished(cd, req),
497				GENWQE_DDCB_SOFTWARE_TIMEOUT * HZ);
498
499	/*
500	 * We need to distinguish 3 cases here:
501	 *   1. rc == 0              timeout occurred
502	 *   2. rc == -ERESTARTSYS   signal received
503	 *   3. rc > 0               remaining jiffies condition is true
504	 */
505	if (rc == 0) {
506		struct ddcb_queue *queue = req->queue;
507		struct ddcb *pddcb;
508
509		/*
510		 * Timeout may be caused by long task switching time.
511		 * When timeout happens, check if the request has
512		 * meanwhile completed.
513		 */
514		genwqe_check_ddcb_queue(cd, req->queue);
515		if (ddcb_requ_finished(cd, req))
516			return rc;
517
518		dev_err(&pci_dev->dev,
519			"[%s] err: DDCB#%d timeout rc=%d state=%d req @ %p\n",
520			__func__, req->num, rc,	ddcb_requ_get_state(req),
521			req);
522		dev_err(&pci_dev->dev,
523			"[%s]      IO_QUEUE_STATUS=0x%016llx\n", __func__,
524			__genwqe_readq(cd, queue->IO_QUEUE_STATUS));
525
526		pddcb = &queue->ddcb_vaddr[req->num];
527		genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb));
528
529		print_ddcb_info(cd, req->queue);
530		return -ETIMEDOUT;
531
532	} else if (rc == -ERESTARTSYS) {
533		return rc;
534		/*
535		 * EINTR:       Stops the application
536		 * ERESTARTSYS: Restartable systemcall; called again
537		 */
538
539	} else if (rc < 0) {
540		dev_err(&pci_dev->dev,
541			"[%s] err: DDCB#%d unknown result (rc=%d) %d!\n",
542			__func__, req->num, rc, ddcb_requ_get_state(req));
543		return -EINVAL;
544	}
545
546	/* Severe error occured. Driver is forced to stop operation */
547	if (cd->card_state != GENWQE_CARD_USED) {
548		dev_err(&pci_dev->dev,
549			"[%s] err: DDCB#%d forced to stop (rc=%d)\n",
550			__func__, req->num, rc);
551		return -EIO;
552	}
553	return rc;
554}
555
556/**
557 * get_next_ddcb() - Get next available DDCB
558 * @cd:         pointer to genwqe device descriptor
559 * @queue:      DDCB queue
560 * @num:        internal DDCB number
561 *
562 * DDCB's content is completely cleared but presets for PRE and
563 * SEQNUM. This function must only be called when ddcb_lock is held.
564 *
565 * Return: NULL if no empty DDCB available otherwise ptr to next DDCB.
566 */
567static struct ddcb *get_next_ddcb(struct genwqe_dev *cd,
568				  struct ddcb_queue *queue,
569				  int *num)
570{
571	u64 *pu64;
572	struct ddcb *pddcb;
573
574	if (queue_free_ddcbs(queue) == 0) /* queue is  full */
575		return NULL;
576
577	/* find new ddcb */
578	pddcb = &queue->ddcb_vaddr[queue->ddcb_next];
579
580	/* if it is not completed, we are not allowed to use it */
581	/* barrier(); */
582	if ((pddcb->icrc_hsi_shi_32 & DDCB_COMPLETED_BE32) == 0x00000000)
583		return NULL;
584
585	*num = queue->ddcb_next;	/* internal DDCB number */
586	queue->ddcb_next = (queue->ddcb_next + 1) % queue->ddcb_max;
587
588	/* clear important DDCB fields */
589	pu64 = (u64 *)pddcb;
590	pu64[0] = 0ULL;		/* offs 0x00 (ICRC,HSI,SHI,...) */
591	pu64[1] = 0ULL;		/* offs 0x01 (ACFUNC,CMD...) */
592
593	/* destroy previous results in ASV */
594	pu64[0x80/8] = 0ULL;	/* offs 0x80 (ASV + 0) */
595	pu64[0x88/8] = 0ULL;	/* offs 0x88 (ASV + 0x08) */
596	pu64[0x90/8] = 0ULL;	/* offs 0x90 (ASV + 0x10) */
597	pu64[0x98/8] = 0ULL;	/* offs 0x98 (ASV + 0x18) */
598	pu64[0xd0/8] = 0ULL;	/* offs 0xd0 (RETC,ATTN...) */
599
600	pddcb->pre = DDCB_PRESET_PRE; /* 128 */
601	pddcb->seqnum_16 = cpu_to_be16(queue->ddcb_seq++);
602	return pddcb;
603}
604
605/**
606 * __genwqe_purge_ddcb() - Remove a DDCB from the workqueue
607 * @cd:         genwqe device descriptor
608 * @req:        DDCB request
609 *
610 * This will fail when the request was already FETCHED. In this case
611 * we need to wait until it is finished. Else the DDCB can be
612 * reused. This function also ensures that the request data structure
613 * is removed from ddcb_req[].
614 *
615 * Do not forget to call this function when genwqe_wait_ddcb() fails,
616 * such that the request gets really removed from ddcb_req[].
617 *
618 * Return: 0 success
619 */
620int __genwqe_purge_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req)
621{
622	struct ddcb *pddcb = NULL;
623	unsigned int t;
624	unsigned long flags;
625	struct ddcb_queue *queue = req->queue;
626	struct pci_dev *pci_dev = cd->pci_dev;
627	u64 queue_status;
628	__be32 icrc_hsi_shi = 0x0000;
629	__be32 old, new;
630
631	/* unsigned long flags; */
632	if (GENWQE_DDCB_SOFTWARE_TIMEOUT <= 0) {
633		dev_err(&pci_dev->dev,
634			"[%s] err: software timeout is not set!\n", __func__);
635		return -EFAULT;
636	}
637
638	pddcb = &queue->ddcb_vaddr[req->num];
639
640	for (t = 0; t < GENWQE_DDCB_SOFTWARE_TIMEOUT * 10; t++) {
641
642		spin_lock_irqsave(&queue->ddcb_lock, flags);
643
644		/* Check if req was meanwhile finished */
645		if (ddcb_requ_get_state(req) == GENWQE_REQU_FINISHED)
646			goto go_home;
647
648		/* try to set PURGE bit if FETCHED/COMPLETED are not set */
649		old = pddcb->icrc_hsi_shi_32;	/* read SHI/HSI in BE32 */
650		if ((old & DDCB_FETCHED_BE32) == 0x00000000) {
651
652			new = (old | DDCB_PURGE_BE32);
653			icrc_hsi_shi = cmpxchg(&pddcb->icrc_hsi_shi_32,
654					       old, new);
655			if (icrc_hsi_shi == old)
656				goto finish_ddcb;
657		}
658
659		/* normal finish with HSI bit */
660		barrier();
661		icrc_hsi_shi = pddcb->icrc_hsi_shi_32;
662		if (icrc_hsi_shi & DDCB_COMPLETED_BE32)
663			goto finish_ddcb;
664
665		spin_unlock_irqrestore(&queue->ddcb_lock, flags);
666
667		/*
668		 * Here the check_ddcb() function will most likely
669		 * discover this DDCB to be finished some point in
670		 * time. It will mark the req finished and free it up
671		 * in the list.
672		 */
673
674		copy_ddcb_results(req, req->num); /* for the failing case */
675		msleep(100); /* sleep for 1/10 second and try again */
676		continue;
677
678finish_ddcb:
679		copy_ddcb_results(req, req->num);
680		ddcb_requ_set_state(req, GENWQE_REQU_FINISHED);
681		queue->ddcbs_in_flight--;
682		queue->ddcb_req[req->num] = NULL; /* delete from array */
683		ddcb_mark_cleared(pddcb);
684
685		/* Move active DDCB further; Nothing to do here anymore. */
686
687		/*
688		 * We need to ensure that there is at least one free
689		 * DDCB in the queue. To do that, we must update
690		 * ddcb_act only if the COMPLETED bit is set for the
691		 * DDCB we are working on else we treat that DDCB even
692		 * if we PURGED it as occupied (hardware is supposed
693		 * to set the COMPLETED bit yet!).
694		 */
695		icrc_hsi_shi = pddcb->icrc_hsi_shi_32;
696		if ((icrc_hsi_shi & DDCB_COMPLETED_BE32) &&
697		    (queue->ddcb_act == req->num)) {
698			queue->ddcb_act = ((queue->ddcb_act + 1) %
699					   queue->ddcb_max);
700		}
701go_home:
702		spin_unlock_irqrestore(&queue->ddcb_lock, flags);
703		return 0;
704	}
705
706	/*
707	 * If the card is dead and the queue is forced to stop, we
708	 * might see this in the queue status register.
709	 */
710	queue_status = __genwqe_readq(cd, queue->IO_QUEUE_STATUS);
711
712	dev_dbg(&pci_dev->dev, "UN/FINISHED DDCB#%d\n", req->num);
713	genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb));
714
715	dev_err(&pci_dev->dev,
716		"[%s] err: DDCB#%d not purged and not completed after %d seconds QSTAT=%016llx!!\n",
717		__func__, req->num, GENWQE_DDCB_SOFTWARE_TIMEOUT,
718		queue_status);
719
720	print_ddcb_info(cd, req->queue);
721
722	return -EFAULT;
723}
724
725int genwqe_init_debug_data(struct genwqe_dev *cd, struct genwqe_debug_data *d)
726{
727	int len;
728	struct pci_dev *pci_dev = cd->pci_dev;
729
730	if (d == NULL) {
731		dev_err(&pci_dev->dev,
732			"[%s] err: invalid memory for debug data!\n",
733			__func__);
734		return -EFAULT;
735	}
736
737	len  = sizeof(d->driver_version);
738	snprintf(d->driver_version, len, "%s", DRV_VERSION);
739	d->slu_unitcfg = cd->slu_unitcfg;
740	d->app_unitcfg = cd->app_unitcfg;
741	return 0;
742}
743
744/**
745 * __genwqe_enqueue_ddcb() - Enqueue a DDCB
746 * @cd:         pointer to genwqe device descriptor
747 * @req:        pointer to DDCB execution request
748 * @f_flags:    file mode: blocking, non-blocking
749 *
750 * Return: 0 if enqueuing succeeded
751 *         -EIO if card is unusable/PCIe problems
752 *         -EBUSY if enqueuing failed
753 */
754int __genwqe_enqueue_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req,
755			  unsigned int f_flags)
756{
757	struct ddcb *pddcb;
758	unsigned long flags;
759	struct ddcb_queue *queue;
760	struct pci_dev *pci_dev = cd->pci_dev;
761	u16 icrc;
762
763 retry:
764	if (cd->card_state != GENWQE_CARD_USED) {
765		printk_ratelimited(KERN_ERR
766			"%s %s: [%s] Card is unusable/PCIe problem Req#%d\n",
767			GENWQE_DEVNAME, dev_name(&pci_dev->dev),
768			__func__, req->num);
769		return -EIO;
770	}
771
772	queue = req->queue = &cd->queue;
773
774	/* FIXME circumvention to improve performance when no irq is
775	 * there.
776	 */
777	if (GENWQE_POLLING_ENABLED)
778		genwqe_check_ddcb_queue(cd, queue);
779
780	/*
781	 * It must be ensured to process all DDCBs in successive
782	 * order. Use a lock here in order to prevent nested DDCB
783	 * enqueuing.
784	 */
785	spin_lock_irqsave(&queue->ddcb_lock, flags);
786
787	pddcb = get_next_ddcb(cd, queue, &req->num);	/* get ptr and num */
788	if (pddcb == NULL) {
789		int rc;
790
791		spin_unlock_irqrestore(&queue->ddcb_lock, flags);
792
793		if (f_flags & O_NONBLOCK) {
794			queue->return_on_busy++;
795			return -EBUSY;
796		}
797
798		queue->wait_on_busy++;
799		rc = wait_event_interruptible(queue->busy_waitq,
800					      queue_free_ddcbs(queue) != 0);
801		dev_dbg(&pci_dev->dev, "[%s] waiting for free DDCB: rc=%d\n",
802			__func__, rc);
803		if (rc == -ERESTARTSYS)
804			return rc;  /* interrupted by a signal */
805
806		goto retry;
807	}
808
809	if (queue->ddcb_req[req->num] != NULL) {
810		spin_unlock_irqrestore(&queue->ddcb_lock, flags);
811
812		dev_err(&pci_dev->dev,
813			"[%s] picked DDCB %d with req=%p still in use!!\n",
814			__func__, req->num, req);
815		return -EFAULT;
816	}
817	ddcb_requ_set_state(req, GENWQE_REQU_ENQUEUED);
818	queue->ddcb_req[req->num] = req;
819
820	pddcb->cmdopts_16 = cpu_to_be16(req->cmd.cmdopts);
821	pddcb->cmd = req->cmd.cmd;
822	pddcb->acfunc = req->cmd.acfunc;	/* functional unit */
823
824	/*
825	 * We know that we can get retc 0x104 with CRC error, do not
826	 * stop the queue in those cases for this command. XDIR = 1
827	 * does not work for old SLU versions.
828	 *
829	 * Last bitstream with the old XDIR behavior had SLU_ID
830	 * 0x34199.
831	 */
832	if ((cd->slu_unitcfg & 0xFFFF0ull) > 0x34199ull)
833		pddcb->xdir = 0x1;
834	else
835		pddcb->xdir = 0x0;
836
837
838	pddcb->psp = (((req->cmd.asiv_length / 8) << 4) |
839		      ((req->cmd.asv_length  / 8)));
840	pddcb->disp_ts_64 = cpu_to_be64(req->cmd.disp_ts);
841
842	/*
843	 * If copying the whole DDCB_ASIV_LENGTH is impacting
844	 * performance we need to change it to
845	 * req->cmd.asiv_length. But simulation benefits from some
846	 * non-architectured bits behind the architectured content.
847	 *
848	 * How much data is copied depends on the availability of the
849	 * ATS field, which was introduced late. If the ATS field is
850	 * supported ASIV is 8 bytes shorter than it used to be. Since
851	 * the ATS field is copied too, the code should do exactly
852	 * what it did before, but I wanted to make copying of the ATS
853	 * field very explicit.
854	 */
855	if (genwqe_get_slu_id(cd) <= 0x2) {
856		memcpy(&pddcb->__asiv[0],	/* destination */
857		       &req->cmd.__asiv[0],	/* source */
858		       DDCB_ASIV_LENGTH);	/* req->cmd.asiv_length */
859	} else {
860		pddcb->n.ats_64 = cpu_to_be64(req->cmd.ats);
861		memcpy(&pddcb->n.asiv[0],	/* destination */
862			&req->cmd.asiv[0],	/* source */
863			DDCB_ASIV_LENGTH_ATS);	/* req->cmd.asiv_length */
864	}
865
866	pddcb->icrc_hsi_shi_32 = cpu_to_be32(0x00000000); /* for crc */
867
868	/*
869	 * Calculate CRC_16 for corresponding range PSP(7:4). Include
870	 * empty 4 bytes prior to the data.
871	 */
872	icrc = genwqe_crc16((const u8 *)pddcb,
873			   ICRC_LENGTH(req->cmd.asiv_length), 0xffff);
874	pddcb->icrc_hsi_shi_32 = cpu_to_be32((u32)icrc << 16);
875
876	/* enable DDCB completion irq */
877	if (!GENWQE_POLLING_ENABLED)
878		pddcb->icrc_hsi_shi_32 |= DDCB_INTR_BE32;
879
880	dev_dbg(&pci_dev->dev, "INPUT DDCB#%d\n", req->num);
881	genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb));
882
883	if (ddcb_requ_collect_debug_data(req)) {
884		/* use the kernel copy of debug data. copying back to
885		   user buffer happens later */
886
887		genwqe_init_debug_data(cd, &req->debug_data);
888		memcpy(&req->debug_data.ddcb_before, pddcb,
889		       sizeof(req->debug_data.ddcb_before));
890	}
891
892	enqueue_ddcb(cd, queue, pddcb, req->num);
893	queue->ddcbs_in_flight++;
894
895	if (queue->ddcbs_in_flight > queue->ddcbs_max_in_flight)
896		queue->ddcbs_max_in_flight = queue->ddcbs_in_flight;
897
898	ddcb_requ_set_state(req, GENWQE_REQU_TAPPED);
899	spin_unlock_irqrestore(&queue->ddcb_lock, flags);
900	wake_up_interruptible(&cd->queue_waitq);
901
902	return 0;
903}
904
905/**
906 * __genwqe_execute_raw_ddcb() - Setup and execute DDCB
907 * @cd:         pointer to genwqe device descriptor
908 * @cmd:        user provided DDCB command
909 * @f_flags:    file mode: blocking, non-blocking
910 */
911int __genwqe_execute_raw_ddcb(struct genwqe_dev *cd,
912			      struct genwqe_ddcb_cmd *cmd,
913			      unsigned int f_flags)
914{
915	int rc = 0;
916	struct pci_dev *pci_dev = cd->pci_dev;
917	struct ddcb_requ *req = container_of(cmd, struct ddcb_requ, cmd);
918
919	if (cmd->asiv_length > DDCB_ASIV_LENGTH) {
920		dev_err(&pci_dev->dev, "[%s] err: wrong asiv_length of %d\n",
921			__func__, cmd->asiv_length);
922		return -EINVAL;
923	}
924	if (cmd->asv_length > DDCB_ASV_LENGTH) {
925		dev_err(&pci_dev->dev, "[%s] err: wrong asv_length of %d\n",
926			__func__, cmd->asiv_length);
927		return -EINVAL;
928	}
929	rc = __genwqe_enqueue_ddcb(cd, req, f_flags);
930	if (rc != 0)
931		return rc;
932
933	rc = __genwqe_wait_ddcb(cd, req);
934	if (rc < 0)		/* error or signal interrupt */
935		goto err_exit;
936
937	if (ddcb_requ_collect_debug_data(req)) {
938		if (copy_to_user((struct genwqe_debug_data __user *)
939				 (unsigned long)cmd->ddata_addr,
940				 &req->debug_data,
941				 sizeof(struct genwqe_debug_data)))
942			return -EFAULT;
943	}
944
945	/*
946	 * Higher values than 0x102 indicate completion with faults,
947	 * lower values than 0x102 indicate processing faults. Note
948	 * that DDCB might have been purged. E.g. Cntl+C.
949	 */
950	if (cmd->retc != DDCB_RETC_COMPLETE) {
951		/* This might happen e.g. flash read, and needs to be
952		   handled by the upper layer code. */
953		rc = -EBADMSG;	/* not processed/error retc */
954	}
955
956	return rc;
957
958 err_exit:
959	__genwqe_purge_ddcb(cd, req);
960
961	if (ddcb_requ_collect_debug_data(req)) {
962		if (copy_to_user((struct genwqe_debug_data __user *)
963				 (unsigned long)cmd->ddata_addr,
964				 &req->debug_data,
965				 sizeof(struct genwqe_debug_data)))
966			return -EFAULT;
967	}
968	return rc;
969}
970
971/**
972 * genwqe_next_ddcb_ready() - Figure out if the next DDCB is already finished
973 * @cd:         pointer to genwqe device descriptor
974 *
975 * We use this as condition for our wait-queue code.
976 */
977static int genwqe_next_ddcb_ready(struct genwqe_dev *cd)
978{
979	unsigned long flags;
980	struct ddcb *pddcb;
981	struct ddcb_queue *queue = &cd->queue;
982
983	spin_lock_irqsave(&queue->ddcb_lock, flags);
984
985	if (queue_empty(queue)) { /* empty queue */
986		spin_unlock_irqrestore(&queue->ddcb_lock, flags);
987		return 0;
988	}
989
990	pddcb = &queue->ddcb_vaddr[queue->ddcb_act];
991	if (pddcb->icrc_hsi_shi_32 & DDCB_COMPLETED_BE32) { /* ddcb ready */
992		spin_unlock_irqrestore(&queue->ddcb_lock, flags);
993		return 1;
994	}
995
996	spin_unlock_irqrestore(&queue->ddcb_lock, flags);
997	return 0;
998}
999
1000/**
1001 * genwqe_ddcbs_in_flight() - Check how many DDCBs are in flight
1002 * @cd:         pointer to genwqe device descriptor
1003 *
1004 * Keep track on the number of DDCBs which ware currently in the
1005 * queue. This is needed for statistics as well as condition if we want
1006 * to wait or better do polling in case of no interrupts available.
1007 */
1008int genwqe_ddcbs_in_flight(struct genwqe_dev *cd)
1009{
1010	unsigned long flags;
1011	int ddcbs_in_flight = 0;
1012	struct ddcb_queue *queue = &cd->queue;
1013
1014	spin_lock_irqsave(&queue->ddcb_lock, flags);
1015	ddcbs_in_flight += queue->ddcbs_in_flight;
1016	spin_unlock_irqrestore(&queue->ddcb_lock, flags);
1017
1018	return ddcbs_in_flight;
1019}
1020
1021static int setup_ddcb_queue(struct genwqe_dev *cd, struct ddcb_queue *queue)
1022{
1023	int rc, i;
1024	struct ddcb *pddcb;
1025	u64 val64;
1026	unsigned int queue_size;
1027	struct pci_dev *pci_dev = cd->pci_dev;
1028
1029	if (GENWQE_DDCB_MAX < 2)
1030		return -EINVAL;
1031
1032	queue_size = roundup(GENWQE_DDCB_MAX * sizeof(struct ddcb), PAGE_SIZE);
1033
1034	queue->ddcbs_in_flight = 0;  /* statistics */
1035	queue->ddcbs_max_in_flight = 0;
1036	queue->ddcbs_completed = 0;
1037	queue->return_on_busy = 0;
1038	queue->wait_on_busy = 0;
1039
1040	queue->ddcb_seq	  = 0x100; /* start sequence number */
1041	queue->ddcb_max	  = GENWQE_DDCB_MAX;
1042	queue->ddcb_vaddr = __genwqe_alloc_consistent(cd, queue_size,
1043						&queue->ddcb_daddr);
1044	if (queue->ddcb_vaddr == NULL) {
1045		dev_err(&pci_dev->dev,
1046			"[%s] **err: could not allocate DDCB **\n", __func__);
1047		return -ENOMEM;
1048	}
1049	queue->ddcb_req = kcalloc(queue->ddcb_max, sizeof(struct ddcb_requ *),
1050				  GFP_KERNEL);
1051	if (!queue->ddcb_req) {
1052		rc = -ENOMEM;
1053		goto free_ddcbs;
1054	}
1055
1056	queue->ddcb_waitqs = kcalloc(queue->ddcb_max,
1057				     sizeof(wait_queue_head_t),
1058				     GFP_KERNEL);
1059	if (!queue->ddcb_waitqs) {
1060		rc = -ENOMEM;
1061		goto free_requs;
1062	}
1063
1064	for (i = 0; i < queue->ddcb_max; i++) {
1065		pddcb = &queue->ddcb_vaddr[i];		     /* DDCBs */
1066		pddcb->icrc_hsi_shi_32 = DDCB_COMPLETED_BE32;
1067		pddcb->retc_16 = cpu_to_be16(0xfff);
1068
1069		queue->ddcb_req[i] = NULL;		     /* requests */
1070		init_waitqueue_head(&queue->ddcb_waitqs[i]); /* waitqueues */
1071	}
1072
1073	queue->ddcb_act  = 0;
1074	queue->ddcb_next = 0;	/* queue is empty */
1075
1076	spin_lock_init(&queue->ddcb_lock);
1077	init_waitqueue_head(&queue->busy_waitq);
1078
1079	val64 = ((u64)(queue->ddcb_max - 1) <<  8); /* lastptr */
1080	__genwqe_writeq(cd, queue->IO_QUEUE_CONFIG,  0x07);  /* iCRC/vCRC */
1081	__genwqe_writeq(cd, queue->IO_QUEUE_SEGMENT, queue->ddcb_daddr);
1082	__genwqe_writeq(cd, queue->IO_QUEUE_INITSQN, queue->ddcb_seq);
1083	__genwqe_writeq(cd, queue->IO_QUEUE_WRAP,    val64);
1084	return 0;
1085
1086 free_requs:
1087	kfree(queue->ddcb_req);
1088	queue->ddcb_req = NULL;
1089 free_ddcbs:
1090	__genwqe_free_consistent(cd, queue_size, queue->ddcb_vaddr,
1091				queue->ddcb_daddr);
1092	queue->ddcb_vaddr = NULL;
1093	queue->ddcb_daddr = 0ull;
1094	return rc;
1095
1096}
1097
1098static int ddcb_queue_initialized(struct ddcb_queue *queue)
1099{
1100	return queue->ddcb_vaddr != NULL;
1101}
1102
1103static void free_ddcb_queue(struct genwqe_dev *cd, struct ddcb_queue *queue)
1104{
1105	unsigned int queue_size;
1106
1107	queue_size = roundup(queue->ddcb_max * sizeof(struct ddcb), PAGE_SIZE);
1108
1109	kfree(queue->ddcb_req);
1110	queue->ddcb_req = NULL;
1111
1112	if (queue->ddcb_vaddr) {
1113		__genwqe_free_consistent(cd, queue_size, queue->ddcb_vaddr,
1114					queue->ddcb_daddr);
1115		queue->ddcb_vaddr = NULL;
1116		queue->ddcb_daddr = 0ull;
1117	}
1118}
1119
1120static irqreturn_t genwqe_pf_isr(int irq, void *dev_id)
1121{
1122	u64 gfir;
1123	struct genwqe_dev *cd = (struct genwqe_dev *)dev_id;
1124	struct pci_dev *pci_dev = cd->pci_dev;
1125
1126	/*
1127	 * In case of fatal FIR error the queue is stopped, such that
1128	 * we can safely check it without risking anything.
1129	 */
1130	cd->irqs_processed++;
1131	wake_up_interruptible(&cd->queue_waitq);
1132
1133	/*
1134	 * Checking for errors before kicking the queue might be
1135	 * safer, but slower for the good-case ... See above.
1136	 */
1137	gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
1138	if (((gfir & GFIR_ERR_TRIGGER) != 0x0) &&
1139	    !pci_channel_offline(pci_dev)) {
1140
1141		if (cd->use_platform_recovery) {
1142			/*
1143			 * Since we use raw accessors, EEH errors won't be
1144			 * detected by the platform until we do a non-raw
1145			 * MMIO or config space read
1146			 */
1147			readq(cd->mmio + IO_SLC_CFGREG_GFIR);
1148
1149			/* Don't do anything if the PCI channel is frozen */
1150			if (pci_channel_offline(pci_dev))
1151				goto exit;
1152		}
1153
1154		wake_up_interruptible(&cd->health_waitq);
1155
1156		/*
1157		 * By default GFIRs causes recovery actions. This
1158		 * count is just for debug when recovery is masked.
1159		 */
1160		dev_err_ratelimited(&pci_dev->dev,
1161				    "[%s] GFIR=%016llx\n",
1162				    __func__, gfir);
1163	}
1164
1165 exit:
1166	return IRQ_HANDLED;
1167}
1168
1169static irqreturn_t genwqe_vf_isr(int irq, void *dev_id)
1170{
1171	struct genwqe_dev *cd = (struct genwqe_dev *)dev_id;
1172
1173	cd->irqs_processed++;
1174	wake_up_interruptible(&cd->queue_waitq);
1175
1176	return IRQ_HANDLED;
1177}
1178
1179/**
1180 * genwqe_card_thread() - Work thread for the DDCB queue
1181 * @data:         pointer to genwqe device descriptor
1182 *
1183 * The idea is to check if there are DDCBs in processing. If there are
1184 * some finished DDCBs, we process them and wakeup the
1185 * requestors. Otherwise we give other processes time using
1186 * cond_resched().
1187 */
1188static int genwqe_card_thread(void *data)
1189{
1190	int should_stop = 0;
1191	struct genwqe_dev *cd = (struct genwqe_dev *)data;
1192
1193	while (!kthread_should_stop()) {
1194
1195		genwqe_check_ddcb_queue(cd, &cd->queue);
1196
1197		if (GENWQE_POLLING_ENABLED) {
1198			wait_event_interruptible_timeout(
1199				cd->queue_waitq,
1200				genwqe_ddcbs_in_flight(cd) ||
1201				(should_stop = kthread_should_stop()), 1);
1202		} else {
1203			wait_event_interruptible_timeout(
1204				cd->queue_waitq,
1205				genwqe_next_ddcb_ready(cd) ||
1206				(should_stop = kthread_should_stop()), HZ);
1207		}
1208		if (should_stop)
1209			break;
1210
1211		/*
1212		 * Avoid soft lockups on heavy loads; we do not want
1213		 * to disable our interrupts.
1214		 */
1215		cond_resched();
1216	}
1217	return 0;
1218}
1219
1220/**
1221 * genwqe_setup_service_layer() - Setup DDCB queue
1222 * @cd:         pointer to genwqe device descriptor
1223 *
1224 * Allocate DDCBs. Configure Service Layer Controller (SLC).
1225 *
1226 * Return: 0 success
1227 */
1228int genwqe_setup_service_layer(struct genwqe_dev *cd)
1229{
1230	int rc;
1231	struct ddcb_queue *queue;
1232	struct pci_dev *pci_dev = cd->pci_dev;
1233
1234	if (genwqe_is_privileged(cd)) {
1235		rc = genwqe_card_reset(cd);
1236		if (rc < 0) {
1237			dev_err(&pci_dev->dev,
1238				"[%s] err: reset failed.\n", __func__);
1239			return rc;
1240		}
1241		genwqe_read_softreset(cd);
1242	}
1243
1244	queue = &cd->queue;
1245	queue->IO_QUEUE_CONFIG  = IO_SLC_QUEUE_CONFIG;
1246	queue->IO_QUEUE_STATUS  = IO_SLC_QUEUE_STATUS;
1247	queue->IO_QUEUE_SEGMENT = IO_SLC_QUEUE_SEGMENT;
1248	queue->IO_QUEUE_INITSQN = IO_SLC_QUEUE_INITSQN;
1249	queue->IO_QUEUE_OFFSET  = IO_SLC_QUEUE_OFFSET;
1250	queue->IO_QUEUE_WRAP    = IO_SLC_QUEUE_WRAP;
1251	queue->IO_QUEUE_WTIME   = IO_SLC_QUEUE_WTIME;
1252	queue->IO_QUEUE_ERRCNTS = IO_SLC_QUEUE_ERRCNTS;
1253	queue->IO_QUEUE_LRW     = IO_SLC_QUEUE_LRW;
1254
1255	rc = setup_ddcb_queue(cd, queue);
1256	if (rc != 0) {
1257		rc = -ENODEV;
1258		goto err_out;
1259	}
1260
1261	init_waitqueue_head(&cd->queue_waitq);
1262	cd->card_thread = kthread_run(genwqe_card_thread, cd,
1263				      GENWQE_DEVNAME "%d_thread",
1264				      cd->card_idx);
1265	if (IS_ERR(cd->card_thread)) {
1266		rc = PTR_ERR(cd->card_thread);
1267		cd->card_thread = NULL;
1268		goto stop_free_queue;
1269	}
1270
1271	rc = genwqe_set_interrupt_capability(cd, GENWQE_MSI_IRQS);
1272	if (rc)
1273		goto stop_kthread;
1274
1275	/*
1276	 * We must have all wait-queues initialized when we enable the
1277	 * interrupts. Otherwise we might crash if we get an early
1278	 * irq.
1279	 */
1280	init_waitqueue_head(&cd->health_waitq);
1281
1282	if (genwqe_is_privileged(cd)) {
1283		rc = request_irq(pci_dev->irq, genwqe_pf_isr, IRQF_SHARED,
1284				 GENWQE_DEVNAME, cd);
1285	} else {
1286		rc = request_irq(pci_dev->irq, genwqe_vf_isr, IRQF_SHARED,
1287				 GENWQE_DEVNAME, cd);
1288	}
1289	if (rc < 0) {
1290		dev_err(&pci_dev->dev, "irq %d not free.\n", pci_dev->irq);
1291		goto stop_irq_cap;
1292	}
1293
1294	cd->card_state = GENWQE_CARD_USED;
1295	return 0;
1296
1297 stop_irq_cap:
1298	genwqe_reset_interrupt_capability(cd);
1299 stop_kthread:
1300	kthread_stop(cd->card_thread);
1301	cd->card_thread = NULL;
1302 stop_free_queue:
1303	free_ddcb_queue(cd, queue);
1304 err_out:
1305	return rc;
1306}
1307
1308/**
1309 * queue_wake_up_all() - Handles fatal error case
1310 * @cd:         pointer to genwqe device descriptor
1311 *
1312 * The PCI device got unusable and we have to stop all pending
1313 * requests as fast as we can. The code after this must purge the
1314 * DDCBs in question and ensure that all mappings are freed.
1315 */
1316static int queue_wake_up_all(struct genwqe_dev *cd)
1317{
1318	unsigned int i;
1319	unsigned long flags;
1320	struct ddcb_queue *queue = &cd->queue;
1321
1322	spin_lock_irqsave(&queue->ddcb_lock, flags);
1323
1324	for (i = 0; i < queue->ddcb_max; i++)
1325		wake_up_interruptible(&queue->ddcb_waitqs[queue->ddcb_act]);
1326
1327	wake_up_interruptible(&queue->busy_waitq);
1328	spin_unlock_irqrestore(&queue->ddcb_lock, flags);
1329
1330	return 0;
1331}
1332
1333/**
1334 * genwqe_finish_queue() - Remove any genwqe devices and user-interfaces
1335 * @cd:         pointer to genwqe device descriptor
1336 *
1337 * Relies on the pre-condition that there are no users of the card
1338 * device anymore e.g. with open file-descriptors.
1339 *
1340 * This function must be robust enough to be called twice.
1341 */
1342int genwqe_finish_queue(struct genwqe_dev *cd)
1343{
1344	int i, rc = 0, in_flight;
1345	int waitmax = GENWQE_DDCB_SOFTWARE_TIMEOUT;
1346	struct pci_dev *pci_dev = cd->pci_dev;
1347	struct ddcb_queue *queue = &cd->queue;
1348
1349	if (!ddcb_queue_initialized(queue))
1350		return 0;
1351
1352	/* Do not wipe out the error state. */
1353	if (cd->card_state == GENWQE_CARD_USED)
1354		cd->card_state = GENWQE_CARD_UNUSED;
1355
1356	/* Wake up all requests in the DDCB queue such that they
1357	   should be removed nicely. */
1358	queue_wake_up_all(cd);
1359
1360	/* We must wait to get rid of the DDCBs in flight */
1361	for (i = 0; i < waitmax; i++) {
1362		in_flight = genwqe_ddcbs_in_flight(cd);
1363
1364		if (in_flight == 0)
1365			break;
1366
1367		dev_dbg(&pci_dev->dev,
1368			"  DEBUG [%d/%d] waiting for queue to get empty: %d requests!\n",
1369			i, waitmax, in_flight);
1370
1371		/*
1372		 * Severe severe error situation: The card itself has
1373		 * 16 DDCB queues, each queue has e.g. 32 entries,
1374		 * each DDBC has a hardware timeout of currently 250
1375		 * msec but the PFs have a hardware timeout of 8 sec
1376		 * ... so I take something large.
1377		 */
1378		msleep(1000);
1379	}
1380	if (i == waitmax) {
1381		dev_err(&pci_dev->dev, "  [%s] err: queue is not empty!!\n",
1382			__func__);
1383		rc = -EIO;
1384	}
1385	return rc;
1386}
1387
1388/**
1389 * genwqe_release_service_layer() - Shutdown DDCB queue
1390 * @cd:       genwqe device descriptor
1391 *
1392 * This function must be robust enough to be called twice.
1393 */
1394int genwqe_release_service_layer(struct genwqe_dev *cd)
1395{
1396	struct pci_dev *pci_dev = cd->pci_dev;
1397
1398	if (!ddcb_queue_initialized(&cd->queue))
1399		return 1;
1400
1401	free_irq(pci_dev->irq, cd);
1402	genwqe_reset_interrupt_capability(cd);
1403
1404	if (cd->card_thread != NULL) {
1405		kthread_stop(cd->card_thread);
1406		cd->card_thread = NULL;
1407	}
1408
1409	free_ddcb_queue(cd, &cd->queue);
1410	return 0;
1411}
1412