1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * ov534-ov7xxx gspca driver
4 *
5 * Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it>
6 * Copyright (C) 2008 Jim Paris <jim@jtan.com>
7 * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr
8 *
9 * Based on a prototype written by Mark Ferrell <majortrips@gmail.com>
10 * USB protocol reverse engineered by Jim Paris <jim@jtan.com>
11 * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/
12 *
13 * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr
14 * PS3 Eye camera - brightness, contrast, awb, agc, aec controls
15 *                  added by Max Thrun <bear24rw@gmail.com>
16 * PS3 Eye camera - FPS range extended by Joseph Howse
17 *                  <josephhowse@nummist.com> https://nummist.com
18 */
19
20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22#define MODULE_NAME "ov534"
23
24#include "gspca.h"
25
26#include <linux/fixp-arith.h>
27#include <media/v4l2-ctrls.h>
28
29#define OV534_REG_ADDRESS	0xf1	/* sensor address */
30#define OV534_REG_SUBADDR	0xf2
31#define OV534_REG_WRITE		0xf3
32#define OV534_REG_READ		0xf4
33#define OV534_REG_OPERATION	0xf5
34#define OV534_REG_STATUS	0xf6
35
36#define OV534_OP_WRITE_3	0x37
37#define OV534_OP_WRITE_2	0x33
38#define OV534_OP_READ_2		0xf9
39
40#define CTRL_TIMEOUT 500
41#define DEFAULT_FRAME_RATE 30
42
43MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>");
44MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver");
45MODULE_LICENSE("GPL");
46
47/* specific webcam descriptor */
48struct sd {
49	struct gspca_dev gspca_dev;	/* !! must be the first item */
50
51	struct v4l2_ctrl_handler ctrl_handler;
52	struct v4l2_ctrl *hue;
53	struct v4l2_ctrl *saturation;
54	struct v4l2_ctrl *brightness;
55	struct v4l2_ctrl *contrast;
56	struct { /* gain control cluster */
57		struct v4l2_ctrl *autogain;
58		struct v4l2_ctrl *gain;
59	};
60	struct v4l2_ctrl *autowhitebalance;
61	struct { /* exposure control cluster */
62		struct v4l2_ctrl *autoexposure;
63		struct v4l2_ctrl *exposure;
64	};
65	struct v4l2_ctrl *sharpness;
66	struct v4l2_ctrl *hflip;
67	struct v4l2_ctrl *vflip;
68	struct v4l2_ctrl *plfreq;
69
70	__u32 last_pts;
71	u16 last_fid;
72	u8 frame_rate;
73
74	u8 sensor;
75};
76enum sensors {
77	SENSOR_OV767x,
78	SENSOR_OV772x,
79	NSENSORS
80};
81
82static int sd_start(struct gspca_dev *gspca_dev);
83static void sd_stopN(struct gspca_dev *gspca_dev);
84
85
86static const struct v4l2_pix_format ov772x_mode[] = {
87	{320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
88	 .bytesperline = 320 * 2,
89	 .sizeimage = 320 * 240 * 2,
90	 .colorspace = V4L2_COLORSPACE_SRGB,
91	 .priv = 1},
92	{640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
93	 .bytesperline = 640 * 2,
94	 .sizeimage = 640 * 480 * 2,
95	 .colorspace = V4L2_COLORSPACE_SRGB,
96	 .priv = 0},
97	{320, 240, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE,
98	 .bytesperline = 320,
99	 .sizeimage = 320 * 240,
100	 .colorspace = V4L2_COLORSPACE_SRGB,
101	 .priv = 1},
102	{640, 480, V4L2_PIX_FMT_SGRBG8, V4L2_FIELD_NONE,
103	 .bytesperline = 640,
104	 .sizeimage = 640 * 480,
105	 .colorspace = V4L2_COLORSPACE_SRGB,
106	 .priv = 0},
107};
108static const struct v4l2_pix_format ov767x_mode[] = {
109	{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
110		.bytesperline = 320,
111		.sizeimage = 320 * 240 * 3 / 8 + 590,
112		.colorspace = V4L2_COLORSPACE_JPEG},
113	{640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
114		.bytesperline = 640,
115		.sizeimage = 640 * 480 * 3 / 8 + 590,
116		.colorspace = V4L2_COLORSPACE_JPEG},
117};
118
119static const u8 qvga_rates[] = {187, 150, 137, 125, 100, 75, 60, 50, 37, 30};
120static const u8 vga_rates[] = {60, 50, 40, 30, 15};
121
122static const struct framerates ov772x_framerates[] = {
123	{ /* 320x240 */
124		.rates = qvga_rates,
125		.nrates = ARRAY_SIZE(qvga_rates),
126	},
127	{ /* 640x480 */
128		.rates = vga_rates,
129		.nrates = ARRAY_SIZE(vga_rates),
130	},
131	{ /* 320x240 SGBRG8 */
132		.rates = qvga_rates,
133		.nrates = ARRAY_SIZE(qvga_rates),
134	},
135	{ /* 640x480 SGBRG8 */
136		.rates = vga_rates,
137		.nrates = ARRAY_SIZE(vga_rates),
138	},
139};
140
141struct reg_array {
142	const u8 (*val)[2];
143	int len;
144};
145
146static const u8 bridge_init_767x[][2] = {
147/* comments from the ms-win file apollo7670.set */
148/* str1 */
149	{0xf1, 0x42},
150	{0x88, 0xf8},
151	{0x89, 0xff},
152	{0x76, 0x03},
153	{0x92, 0x03},
154	{0x95, 0x10},
155	{0xe2, 0x00},
156	{0xe7, 0x3e},
157	{0x8d, 0x1c},
158	{0x8e, 0x00},
159	{0x8f, 0x00},
160	{0x1f, 0x00},
161	{0xc3, 0xf9},
162	{0x89, 0xff},
163	{0x88, 0xf8},
164	{0x76, 0x03},
165	{0x92, 0x01},
166	{0x93, 0x18},
167	{0x1c, 0x00},
168	{0x1d, 0x48},
169	{0x1d, 0x00},
170	{0x1d, 0xff},
171	{0x1d, 0x02},
172	{0x1d, 0x58},
173	{0x1d, 0x00},
174	{0x1c, 0x0a},
175	{0x1d, 0x0a},
176	{0x1d, 0x0e},
177	{0xc0, 0x50},	/* HSize 640 */
178	{0xc1, 0x3c},	/* VSize 480 */
179	{0x34, 0x05},	/* enable Audio Suspend mode */
180	{0xc2, 0x0c},	/* Input YUV */
181	{0xc3, 0xf9},	/* enable PRE */
182	{0x34, 0x05},	/* enable Audio Suspend mode */
183	{0xe7, 0x2e},	/* this solves failure of "SuspendResumeTest" */
184	{0x31, 0xf9},	/* enable 1.8V Suspend */
185	{0x35, 0x02},	/* turn on JPEG */
186	{0xd9, 0x10},
187	{0x25, 0x42},	/* GPIO[8]:Input */
188	{0x94, 0x11},	/* If the default setting is loaded when
189			 * system boots up, this flag is closed here */
190};
191static const u8 sensor_init_767x[][2] = {
192	{0x12, 0x80},
193	{0x11, 0x03},
194	{0x3a, 0x04},
195	{0x12, 0x00},
196	{0x17, 0x13},
197	{0x18, 0x01},
198	{0x32, 0xb6},
199	{0x19, 0x02},
200	{0x1a, 0x7a},
201	{0x03, 0x0a},
202	{0x0c, 0x00},
203	{0x3e, 0x00},
204	{0x70, 0x3a},
205	{0x71, 0x35},
206	{0x72, 0x11},
207	{0x73, 0xf0},
208	{0xa2, 0x02},
209	{0x7a, 0x2a},	/* set Gamma=1.6 below */
210	{0x7b, 0x12},
211	{0x7c, 0x1d},
212	{0x7d, 0x2d},
213	{0x7e, 0x45},
214	{0x7f, 0x50},
215	{0x80, 0x59},
216	{0x81, 0x62},
217	{0x82, 0x6b},
218	{0x83, 0x73},
219	{0x84, 0x7b},
220	{0x85, 0x8a},
221	{0x86, 0x98},
222	{0x87, 0xb2},
223	{0x88, 0xca},
224	{0x89, 0xe0},
225	{0x13, 0xe0},
226	{0x00, 0x00},
227	{0x10, 0x00},
228	{0x0d, 0x40},
229	{0x14, 0x38},	/* gain max 16x */
230	{0xa5, 0x05},
231	{0xab, 0x07},
232	{0x24, 0x95},
233	{0x25, 0x33},
234	{0x26, 0xe3},
235	{0x9f, 0x78},
236	{0xa0, 0x68},
237	{0xa1, 0x03},
238	{0xa6, 0xd8},
239	{0xa7, 0xd8},
240	{0xa8, 0xf0},
241	{0xa9, 0x90},
242	{0xaa, 0x94},
243	{0x13, 0xe5},
244	{0x0e, 0x61},
245	{0x0f, 0x4b},
246	{0x16, 0x02},
247	{0x21, 0x02},
248	{0x22, 0x91},
249	{0x29, 0x07},
250	{0x33, 0x0b},
251	{0x35, 0x0b},
252	{0x37, 0x1d},
253	{0x38, 0x71},
254	{0x39, 0x2a},
255	{0x3c, 0x78},
256	{0x4d, 0x40},
257	{0x4e, 0x20},
258	{0x69, 0x00},
259	{0x6b, 0x4a},
260	{0x74, 0x10},
261	{0x8d, 0x4f},
262	{0x8e, 0x00},
263	{0x8f, 0x00},
264	{0x90, 0x00},
265	{0x91, 0x00},
266	{0x96, 0x00},
267	{0x9a, 0x80},
268	{0xb0, 0x84},
269	{0xb1, 0x0c},
270	{0xb2, 0x0e},
271	{0xb3, 0x82},
272	{0xb8, 0x0a},
273	{0x43, 0x0a},
274	{0x44, 0xf0},
275	{0x45, 0x34},
276	{0x46, 0x58},
277	{0x47, 0x28},
278	{0x48, 0x3a},
279	{0x59, 0x88},
280	{0x5a, 0x88},
281	{0x5b, 0x44},
282	{0x5c, 0x67},
283	{0x5d, 0x49},
284	{0x5e, 0x0e},
285	{0x6c, 0x0a},
286	{0x6d, 0x55},
287	{0x6e, 0x11},
288	{0x6f, 0x9f},
289	{0x6a, 0x40},
290	{0x01, 0x40},
291	{0x02, 0x40},
292	{0x13, 0xe7},
293	{0x4f, 0x80},
294	{0x50, 0x80},
295	{0x51, 0x00},
296	{0x52, 0x22},
297	{0x53, 0x5e},
298	{0x54, 0x80},
299	{0x58, 0x9e},
300	{0x41, 0x08},
301	{0x3f, 0x00},
302	{0x75, 0x04},
303	{0x76, 0xe1},
304	{0x4c, 0x00},
305	{0x77, 0x01},
306	{0x3d, 0xc2},
307	{0x4b, 0x09},
308	{0xc9, 0x60},
309	{0x41, 0x38},	/* jfm: auto sharpness + auto de-noise  */
310	{0x56, 0x40},
311	{0x34, 0x11},
312	{0x3b, 0xc2},
313	{0xa4, 0x8a},	/* Night mode trigger point */
314	{0x96, 0x00},
315	{0x97, 0x30},
316	{0x98, 0x20},
317	{0x99, 0x20},
318	{0x9a, 0x84},
319	{0x9b, 0x29},
320	{0x9c, 0x03},
321	{0x9d, 0x4c},
322	{0x9e, 0x3f},
323	{0x78, 0x04},
324	{0x79, 0x01},
325	{0xc8, 0xf0},
326	{0x79, 0x0f},
327	{0xc8, 0x00},
328	{0x79, 0x10},
329	{0xc8, 0x7e},
330	{0x79, 0x0a},
331	{0xc8, 0x80},
332	{0x79, 0x0b},
333	{0xc8, 0x01},
334	{0x79, 0x0c},
335	{0xc8, 0x0f},
336	{0x79, 0x0d},
337	{0xc8, 0x20},
338	{0x79, 0x09},
339	{0xc8, 0x80},
340	{0x79, 0x02},
341	{0xc8, 0xc0},
342	{0x79, 0x03},
343	{0xc8, 0x20},
344	{0x79, 0x26},
345};
346static const u8 bridge_start_vga_767x[][2] = {
347/* str59 JPG */
348	{0x94, 0xaa},
349	{0xf1, 0x42},
350	{0xe5, 0x04},
351	{0xc0, 0x50},
352	{0xc1, 0x3c},
353	{0xc2, 0x0c},
354	{0x35, 0x02},	/* turn on JPEG */
355	{0xd9, 0x10},
356	{0xda, 0x00},	/* for higher clock rate(30fps) */
357	{0x34, 0x05},	/* enable Audio Suspend mode */
358	{0xc3, 0xf9},	/* enable PRE */
359	{0x8c, 0x00},	/* CIF VSize LSB[2:0] */
360	{0x8d, 0x1c},	/* output YUV */
361/*	{0x34, 0x05},	 * enable Audio Suspend mode (?) */
362	{0x50, 0x00},	/* H/V divider=0 */
363	{0x51, 0xa0},	/* input H=640/4 */
364	{0x52, 0x3c},	/* input V=480/4 */
365	{0x53, 0x00},	/* offset X=0 */
366	{0x54, 0x00},	/* offset Y=0 */
367	{0x55, 0x00},	/* H/V size[8]=0 */
368	{0x57, 0x00},	/* H-size[9]=0 */
369	{0x5c, 0x00},	/* output size[9:8]=0 */
370	{0x5a, 0xa0},	/* output H=640/4 */
371	{0x5b, 0x78},	/* output V=480/4 */
372	{0x1c, 0x0a},
373	{0x1d, 0x0a},
374	{0x94, 0x11},
375};
376static const u8 sensor_start_vga_767x[][2] = {
377	{0x11, 0x01},
378	{0x1e, 0x04},
379	{0x19, 0x02},
380	{0x1a, 0x7a},
381};
382static const u8 bridge_start_qvga_767x[][2] = {
383/* str86 JPG */
384	{0x94, 0xaa},
385	{0xf1, 0x42},
386	{0xe5, 0x04},
387	{0xc0, 0x80},
388	{0xc1, 0x60},
389	{0xc2, 0x0c},
390	{0x35, 0x02},	/* turn on JPEG */
391	{0xd9, 0x10},
392	{0xc0, 0x50},	/* CIF HSize 640 */
393	{0xc1, 0x3c},	/* CIF VSize 480 */
394	{0x8c, 0x00},	/* CIF VSize LSB[2:0] */
395	{0x8d, 0x1c},	/* output YUV */
396	{0x34, 0x05},	/* enable Audio Suspend mode */
397	{0xc2, 0x4c},	/* output YUV and Enable DCW */
398	{0xc3, 0xf9},	/* enable PRE */
399	{0x1c, 0x00},	/* indirect addressing */
400	{0x1d, 0x48},	/* output YUV422 */
401	{0x50, 0x89},	/* H/V divider=/2; plus DCW AVG */
402	{0x51, 0xa0},	/* DCW input H=640/4 */
403	{0x52, 0x78},	/* DCW input V=480/4 */
404	{0x53, 0x00},	/* offset X=0 */
405	{0x54, 0x00},	/* offset Y=0 */
406	{0x55, 0x00},	/* H/V size[8]=0 */
407	{0x57, 0x00},	/* H-size[9]=0 */
408	{0x5c, 0x00},	/* DCW output size[9:8]=0 */
409	{0x5a, 0x50},	/* DCW output H=320/4 */
410	{0x5b, 0x3c},	/* DCW output V=240/4 */
411	{0x1c, 0x0a},
412	{0x1d, 0x0a},
413	{0x94, 0x11},
414};
415static const u8 sensor_start_qvga_767x[][2] = {
416	{0x11, 0x01},
417	{0x1e, 0x04},
418	{0x19, 0x02},
419	{0x1a, 0x7a},
420};
421
422static const u8 bridge_init_772x[][2] = {
423	{ 0x88, 0xf8 },
424	{ 0x89, 0xff },
425	{ 0x76, 0x03 },
426	{ 0x92, 0x01 },
427	{ 0x93, 0x18 },
428	{ 0x94, 0x10 },
429	{ 0x95, 0x10 },
430	{ 0xe2, 0x00 },
431	{ 0xe7, 0x3e },
432
433	{ 0x96, 0x00 },
434
435	{ 0x97, 0x20 },
436	{ 0x97, 0x20 },
437	{ 0x97, 0x20 },
438	{ 0x97, 0x0a },
439	{ 0x97, 0x3f },
440	{ 0x97, 0x4a },
441	{ 0x97, 0x20 },
442	{ 0x97, 0x15 },
443	{ 0x97, 0x0b },
444
445	{ 0x8e, 0x40 },
446	{ 0x1f, 0x81 },
447	{ 0x34, 0x05 },
448	{ 0xe3, 0x04 },
449	{ 0x89, 0x00 },
450	{ 0x76, 0x00 },
451	{ 0xe7, 0x2e },
452	{ 0x31, 0xf9 },
453	{ 0x25, 0x42 },
454	{ 0x21, 0xf0 },
455
456	{ 0x1c, 0x0a },
457	{ 0x1d, 0x08 }, /* turn on UVC header */
458	{ 0x1d, 0x0e }, /* .. */
459};
460static const u8 sensor_init_772x[][2] = {
461	{ 0x12, 0x80 },
462	{ 0x11, 0x01 },
463/*fixme: better have a delay?*/
464	{ 0x11, 0x01 },
465	{ 0x11, 0x01 },
466	{ 0x11, 0x01 },
467	{ 0x11, 0x01 },
468	{ 0x11, 0x01 },
469	{ 0x11, 0x01 },
470	{ 0x11, 0x01 },
471	{ 0x11, 0x01 },
472	{ 0x11, 0x01 },
473	{ 0x11, 0x01 },
474
475	{ 0x3d, 0x03 },
476	{ 0x17, 0x26 },
477	{ 0x18, 0xa0 },
478	{ 0x19, 0x07 },
479	{ 0x1a, 0xf0 },
480	{ 0x32, 0x00 },
481	{ 0x29, 0xa0 },
482	{ 0x2c, 0xf0 },
483	{ 0x65, 0x20 },
484	{ 0x11, 0x01 },
485	{ 0x42, 0x7f },
486	{ 0x63, 0xaa },		/* AWB - was e0 */
487	{ 0x64, 0xff },
488	{ 0x66, 0x00 },
489	{ 0x13, 0xf0 },		/* com8 */
490	{ 0x0d, 0x41 },
491	{ 0x0f, 0xc5 },
492	{ 0x14, 0x11 },
493
494	{ 0x22, 0x7f },
495	{ 0x23, 0x03 },
496	{ 0x24, 0x40 },
497	{ 0x25, 0x30 },
498	{ 0x26, 0xa1 },
499	{ 0x2a, 0x00 },
500	{ 0x2b, 0x00 },
501	{ 0x6b, 0xaa },
502	{ 0x13, 0xff },		/* AWB */
503
504	{ 0x90, 0x05 },
505	{ 0x91, 0x01 },
506	{ 0x92, 0x03 },
507	{ 0x93, 0x00 },
508	{ 0x94, 0x60 },
509	{ 0x95, 0x3c },
510	{ 0x96, 0x24 },
511	{ 0x97, 0x1e },
512	{ 0x98, 0x62 },
513	{ 0x99, 0x80 },
514	{ 0x9a, 0x1e },
515	{ 0x9b, 0x08 },
516	{ 0x9c, 0x20 },
517	{ 0x9e, 0x81 },
518
519	{ 0xa6, 0x07 },
520	{ 0x7e, 0x0c },
521	{ 0x7f, 0x16 },
522	{ 0x80, 0x2a },
523	{ 0x81, 0x4e },
524	{ 0x82, 0x61 },
525	{ 0x83, 0x6f },
526	{ 0x84, 0x7b },
527	{ 0x85, 0x86 },
528	{ 0x86, 0x8e },
529	{ 0x87, 0x97 },
530	{ 0x88, 0xa4 },
531	{ 0x89, 0xaf },
532	{ 0x8a, 0xc5 },
533	{ 0x8b, 0xd7 },
534	{ 0x8c, 0xe8 },
535	{ 0x8d, 0x20 },
536
537	{ 0x2b, 0x00 },
538	{ 0x22, 0x7f },
539	{ 0x23, 0x03 },
540	{ 0x11, 0x01 },
541	{ 0x64, 0xff },
542	{ 0x0d, 0x41 },
543
544	{ 0x14, 0x41 },
545	{ 0x0e, 0xcd },
546	{ 0xac, 0xbf },
547	{ 0x8e, 0x00 },		/* De-noise threshold */
548};
549static const u8 bridge_start_vga_yuyv_772x[][2] = {
550	{0x88, 0x00},
551	{0x1c, 0x00},
552	{0x1d, 0x40},
553	{0x1d, 0x02},
554	{0x1d, 0x00},
555	{0x1d, 0x02},
556	{0x1d, 0x58},
557	{0x1d, 0x00},
558	{0x8d, 0x1c},
559	{0x8e, 0x80},
560	{0xc0, 0x50},
561	{0xc1, 0x3c},
562	{0xc2, 0x0c},
563	{0xc3, 0x69},
564};
565static const u8 sensor_start_vga_yuyv_772x[][2] = {
566	{0x12, 0x00},
567	{0x17, 0x26},
568	{0x18, 0xa0},
569	{0x19, 0x07},
570	{0x1a, 0xf0},
571	{0x29, 0xa0},
572	{0x2c, 0xf0},
573	{0x65, 0x20},
574	{0x67, 0x00},
575};
576static const u8 bridge_start_qvga_yuyv_772x[][2] = {
577	{0x88, 0x00},
578	{0x1c, 0x00},
579	{0x1d, 0x40},
580	{0x1d, 0x02},
581	{0x1d, 0x00},
582	{0x1d, 0x01},
583	{0x1d, 0x4b},
584	{0x1d, 0x00},
585	{0x8d, 0x1c},
586	{0x8e, 0x80},
587	{0xc0, 0x28},
588	{0xc1, 0x1e},
589	{0xc2, 0x0c},
590	{0xc3, 0x69},
591};
592static const u8 sensor_start_qvga_yuyv_772x[][2] = {
593	{0x12, 0x40},
594	{0x17, 0x3f},
595	{0x18, 0x50},
596	{0x19, 0x03},
597	{0x1a, 0x78},
598	{0x29, 0x50},
599	{0x2c, 0x78},
600	{0x65, 0x2f},
601	{0x67, 0x00},
602};
603static const u8 bridge_start_vga_gbrg_772x[][2] = {
604	{0x88, 0x08},
605	{0x1c, 0x00},
606	{0x1d, 0x00},
607	{0x1d, 0x02},
608	{0x1d, 0x00},
609	{0x1d, 0x01},
610	{0x1d, 0x2c},
611	{0x1d, 0x00},
612	{0x8d, 0x00},
613	{0x8e, 0x00},
614	{0xc0, 0x50},
615	{0xc1, 0x3c},
616	{0xc2, 0x01},
617	{0xc3, 0x01},
618};
619static const u8 sensor_start_vga_gbrg_772x[][2] = {
620	{0x12, 0x01},
621	{0x17, 0x26},
622	{0x18, 0xa0},
623	{0x19, 0x07},
624	{0x1a, 0xf0},
625	{0x29, 0xa0},
626	{0x2c, 0xf0},
627	{0x65, 0x20},
628	{0x67, 0x02},
629};
630static const u8 bridge_start_qvga_gbrg_772x[][2] = {
631	{0x88, 0x08},
632	{0x1c, 0x00},
633	{0x1d, 0x00},
634	{0x1d, 0x02},
635	{0x1d, 0x00},
636	{0x1d, 0x00},
637	{0x1d, 0x4b},
638	{0x1d, 0x00},
639	{0x8d, 0x00},
640	{0x8e, 0x00},
641	{0xc0, 0x28},
642	{0xc1, 0x1e},
643	{0xc2, 0x01},
644	{0xc3, 0x01},
645};
646static const u8 sensor_start_qvga_gbrg_772x[][2] = {
647	{0x12, 0x41},
648	{0x17, 0x3f},
649	{0x18, 0x50},
650	{0x19, 0x03},
651	{0x1a, 0x78},
652	{0x29, 0x50},
653	{0x2c, 0x78},
654	{0x65, 0x2f},
655	{0x67, 0x02},
656};
657
658static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val)
659{
660	struct usb_device *udev = gspca_dev->dev;
661	int ret;
662
663	if (gspca_dev->usb_err < 0)
664		return;
665
666	gspca_dbg(gspca_dev, D_USBO, "SET 01 0000 %04x %02x\n", reg, val);
667	gspca_dev->usb_buf[0] = val;
668	ret = usb_control_msg(udev,
669			      usb_sndctrlpipe(udev, 0),
670			      0x01,
671			      USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
672			      0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
673	if (ret < 0) {
674		pr_err("write failed %d\n", ret);
675		gspca_dev->usb_err = ret;
676	}
677}
678
679static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg)
680{
681	struct usb_device *udev = gspca_dev->dev;
682	int ret;
683
684	if (gspca_dev->usb_err < 0)
685		return 0;
686	ret = usb_control_msg(udev,
687			      usb_rcvctrlpipe(udev, 0),
688			      0x01,
689			      USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
690			      0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
691	gspca_dbg(gspca_dev, D_USBI, "GET 01 0000 %04x %02x\n",
692		  reg, gspca_dev->usb_buf[0]);
693	if (ret < 0) {
694		pr_err("read failed %d\n", ret);
695		gspca_dev->usb_err = ret;
696		/*
697		 * Make sure the result is zeroed to avoid uninitialized
698		 * values.
699		 */
700		gspca_dev->usb_buf[0] = 0;
701	}
702	return gspca_dev->usb_buf[0];
703}
704
705/* Two bits control LED: 0x21 bit 7 and 0x23 bit 7.
706 * (direction and output)? */
707static void ov534_set_led(struct gspca_dev *gspca_dev, int status)
708{
709	u8 data;
710
711	gspca_dbg(gspca_dev, D_CONF, "led status: %d\n", status);
712
713	data = ov534_reg_read(gspca_dev, 0x21);
714	data |= 0x80;
715	ov534_reg_write(gspca_dev, 0x21, data);
716
717	data = ov534_reg_read(gspca_dev, 0x23);
718	if (status)
719		data |= 0x80;
720	else
721		data &= ~0x80;
722
723	ov534_reg_write(gspca_dev, 0x23, data);
724
725	if (!status) {
726		data = ov534_reg_read(gspca_dev, 0x21);
727		data &= ~0x80;
728		ov534_reg_write(gspca_dev, 0x21, data);
729	}
730}
731
732static int sccb_check_status(struct gspca_dev *gspca_dev)
733{
734	u8 data;
735	int i;
736
737	for (i = 0; i < 5; i++) {
738		usleep_range(10000, 20000);
739		data = ov534_reg_read(gspca_dev, OV534_REG_STATUS);
740
741		switch (data) {
742		case 0x00:
743			return 1;
744		case 0x04:
745			return 0;
746		case 0x03:
747			break;
748		default:
749			gspca_err(gspca_dev, "sccb status 0x%02x, attempt %d/5\n",
750				  data, i + 1);
751		}
752	}
753	return 0;
754}
755
756static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val)
757{
758	gspca_dbg(gspca_dev, D_USBO, "sccb write: %02x %02x\n", reg, val);
759	ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
760	ov534_reg_write(gspca_dev, OV534_REG_WRITE, val);
761	ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3);
762
763	if (!sccb_check_status(gspca_dev)) {
764		pr_err("sccb_reg_write failed\n");
765		gspca_dev->usb_err = -EIO;
766	}
767}
768
769static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg)
770{
771	ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
772	ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2);
773	if (!sccb_check_status(gspca_dev))
774		pr_err("sccb_reg_read failed 1\n");
775
776	ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2);
777	if (!sccb_check_status(gspca_dev))
778		pr_err("sccb_reg_read failed 2\n");
779
780	return ov534_reg_read(gspca_dev, OV534_REG_READ);
781}
782
783/* output a bridge sequence (reg - val) */
784static void reg_w_array(struct gspca_dev *gspca_dev,
785			const u8 (*data)[2], int len)
786{
787	while (--len >= 0) {
788		ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]);
789		data++;
790	}
791}
792
793/* output a sensor sequence (reg - val) */
794static void sccb_w_array(struct gspca_dev *gspca_dev,
795			const u8 (*data)[2], int len)
796{
797	while (--len >= 0) {
798		if ((*data)[0] != 0xff) {
799			sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]);
800		} else {
801			sccb_reg_read(gspca_dev, (*data)[1]);
802			sccb_reg_write(gspca_dev, 0xff, 0x00);
803		}
804		data++;
805	}
806}
807
808/* ov772x specific controls */
809static void set_frame_rate(struct gspca_dev *gspca_dev)
810{
811	struct sd *sd = (struct sd *) gspca_dev;
812	int i;
813	struct rate_s {
814		u8 fps;
815		u8 r11;
816		u8 r0d;
817		u8 re5;
818	};
819	const struct rate_s *r;
820	static const struct rate_s rate_0[] = {	/* 640x480 */
821		{60, 0x01, 0xc1, 0x04},
822		{50, 0x01, 0x41, 0x02},
823		{40, 0x02, 0xc1, 0x04},
824		{30, 0x04, 0x81, 0x02},
825		{15, 0x03, 0x41, 0x04},
826	};
827	static const struct rate_s rate_1[] = {	/* 320x240 */
828/*		{205, 0x01, 0xc1, 0x02},  * 205 FPS: video is partly corrupt */
829		{187, 0x01, 0x81, 0x02}, /* 187 FPS or below: video is valid */
830		{150, 0x01, 0xc1, 0x04},
831		{137, 0x02, 0xc1, 0x02},
832		{125, 0x02, 0x81, 0x02},
833		{100, 0x02, 0xc1, 0x04},
834		{75, 0x03, 0xc1, 0x04},
835		{60, 0x04, 0xc1, 0x04},
836		{50, 0x02, 0x41, 0x04},
837		{37, 0x03, 0x41, 0x04},
838		{30, 0x04, 0x41, 0x04},
839	};
840
841	if (sd->sensor != SENSOR_OV772x)
842		return;
843	if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) {
844		r = rate_0;
845		i = ARRAY_SIZE(rate_0);
846	} else {
847		r = rate_1;
848		i = ARRAY_SIZE(rate_1);
849	}
850	while (--i > 0) {
851		if (sd->frame_rate >= r->fps)
852			break;
853		r++;
854	}
855
856	sccb_reg_write(gspca_dev, 0x11, r->r11);
857	sccb_reg_write(gspca_dev, 0x0d, r->r0d);
858	ov534_reg_write(gspca_dev, 0xe5, r->re5);
859
860	gspca_dbg(gspca_dev, D_PROBE, "frame_rate: %d\n", r->fps);
861}
862
863static void sethue(struct gspca_dev *gspca_dev, s32 val)
864{
865	struct sd *sd = (struct sd *) gspca_dev;
866
867	if (sd->sensor == SENSOR_OV767x) {
868		/* TBD */
869	} else {
870		s16 huesin;
871		s16 huecos;
872
873		/* According to the datasheet the registers expect HUESIN and
874		 * HUECOS to be the result of the trigonometric functions,
875		 * scaled by 0x80.
876		 *
877		 * The 0x7fff here represents the maximum absolute value
878		 * returned byt fixp_sin and fixp_cos, so the scaling will
879		 * consider the result like in the interval [-1.0, 1.0].
880		 */
881		huesin = fixp_sin16(val) * 0x80 / 0x7fff;
882		huecos = fixp_cos16(val) * 0x80 / 0x7fff;
883
884		if (huesin < 0) {
885			sccb_reg_write(gspca_dev, 0xab,
886				sccb_reg_read(gspca_dev, 0xab) | 0x2);
887			huesin = -huesin;
888		} else {
889			sccb_reg_write(gspca_dev, 0xab,
890				sccb_reg_read(gspca_dev, 0xab) & ~0x2);
891
892		}
893		sccb_reg_write(gspca_dev, 0xa9, (u8)huecos);
894		sccb_reg_write(gspca_dev, 0xaa, (u8)huesin);
895	}
896}
897
898static void setsaturation(struct gspca_dev *gspca_dev, s32 val)
899{
900	struct sd *sd = (struct sd *) gspca_dev;
901
902	if (sd->sensor == SENSOR_OV767x) {
903		int i;
904		static u8 color_tb[][6] = {
905			{0x42, 0x42, 0x00, 0x11, 0x30, 0x41},
906			{0x52, 0x52, 0x00, 0x16, 0x3c, 0x52},
907			{0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66},
908			{0x80, 0x80, 0x00, 0x22, 0x5e, 0x80},
909			{0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a},
910			{0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8},
911			{0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd},
912		};
913
914		for (i = 0; i < ARRAY_SIZE(color_tb[0]); i++)
915			sccb_reg_write(gspca_dev, 0x4f + i, color_tb[val][i]);
916	} else {
917		sccb_reg_write(gspca_dev, 0xa7, val); /* U saturation */
918		sccb_reg_write(gspca_dev, 0xa8, val); /* V saturation */
919	}
920}
921
922static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
923{
924	struct sd *sd = (struct sd *) gspca_dev;
925
926	if (sd->sensor == SENSOR_OV767x) {
927		if (val < 0)
928			val = 0x80 - val;
929		sccb_reg_write(gspca_dev, 0x55, val);	/* bright */
930	} else {
931		sccb_reg_write(gspca_dev, 0x9b, val);
932	}
933}
934
935static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
936{
937	struct sd *sd = (struct sd *) gspca_dev;
938
939	if (sd->sensor == SENSOR_OV767x)
940		sccb_reg_write(gspca_dev, 0x56, val);	/* contras */
941	else
942		sccb_reg_write(gspca_dev, 0x9c, val);
943}
944
945static void setgain(struct gspca_dev *gspca_dev, s32 val)
946{
947	switch (val & 0x30) {
948	case 0x00:
949		val &= 0x0f;
950		break;
951	case 0x10:
952		val &= 0x0f;
953		val |= 0x30;
954		break;
955	case 0x20:
956		val &= 0x0f;
957		val |= 0x70;
958		break;
959	default:
960/*	case 0x30: */
961		val &= 0x0f;
962		val |= 0xf0;
963		break;
964	}
965	sccb_reg_write(gspca_dev, 0x00, val);
966}
967
968static s32 getgain(struct gspca_dev *gspca_dev)
969{
970	return sccb_reg_read(gspca_dev, 0x00);
971}
972
973static void setexposure(struct gspca_dev *gspca_dev, s32 val)
974{
975	struct sd *sd = (struct sd *) gspca_dev;
976
977	if (sd->sensor == SENSOR_OV767x) {
978
979		/* set only aec[9:2] */
980		sccb_reg_write(gspca_dev, 0x10, val);	/* aech */
981	} else {
982
983		/* 'val' is one byte and represents half of the exposure value
984		 * we are going to set into registers, a two bytes value:
985		 *
986		 *    MSB: ((u16) val << 1) >> 8   == val >> 7
987		 *    LSB: ((u16) val << 1) & 0xff == val << 1
988		 */
989		sccb_reg_write(gspca_dev, 0x08, val >> 7);
990		sccb_reg_write(gspca_dev, 0x10, val << 1);
991	}
992}
993
994static s32 getexposure(struct gspca_dev *gspca_dev)
995{
996	struct sd *sd = (struct sd *) gspca_dev;
997
998	if (sd->sensor == SENSOR_OV767x) {
999		/* get only aec[9:2] */
1000		return sccb_reg_read(gspca_dev, 0x10);	/* aech */
1001	} else {
1002		u8 hi = sccb_reg_read(gspca_dev, 0x08);
1003		u8 lo = sccb_reg_read(gspca_dev, 0x10);
1004		return (hi << 8 | lo) >> 1;
1005	}
1006}
1007
1008static void setagc(struct gspca_dev *gspca_dev, s32 val)
1009{
1010	if (val) {
1011		sccb_reg_write(gspca_dev, 0x13,
1012				sccb_reg_read(gspca_dev, 0x13) | 0x04);
1013		sccb_reg_write(gspca_dev, 0x64,
1014				sccb_reg_read(gspca_dev, 0x64) | 0x03);
1015	} else {
1016		sccb_reg_write(gspca_dev, 0x13,
1017				sccb_reg_read(gspca_dev, 0x13) & ~0x04);
1018		sccb_reg_write(gspca_dev, 0x64,
1019				sccb_reg_read(gspca_dev, 0x64) & ~0x03);
1020	}
1021}
1022
1023static void setawb(struct gspca_dev *gspca_dev, s32 val)
1024{
1025	struct sd *sd = (struct sd *) gspca_dev;
1026
1027	if (val) {
1028		sccb_reg_write(gspca_dev, 0x13,
1029				sccb_reg_read(gspca_dev, 0x13) | 0x02);
1030		if (sd->sensor == SENSOR_OV772x)
1031			sccb_reg_write(gspca_dev, 0x63,
1032				sccb_reg_read(gspca_dev, 0x63) | 0xc0);
1033	} else {
1034		sccb_reg_write(gspca_dev, 0x13,
1035				sccb_reg_read(gspca_dev, 0x13) & ~0x02);
1036		if (sd->sensor == SENSOR_OV772x)
1037			sccb_reg_write(gspca_dev, 0x63,
1038				sccb_reg_read(gspca_dev, 0x63) & ~0xc0);
1039	}
1040}
1041
1042static void setaec(struct gspca_dev *gspca_dev, s32 val)
1043{
1044	struct sd *sd = (struct sd *) gspca_dev;
1045	u8 data;
1046
1047	data = sd->sensor == SENSOR_OV767x ?
1048			0x05 :		/* agc + aec */
1049			0x01;		/* agc */
1050	switch (val) {
1051	case V4L2_EXPOSURE_AUTO:
1052		sccb_reg_write(gspca_dev, 0x13,
1053				sccb_reg_read(gspca_dev, 0x13) | data);
1054		break;
1055	case V4L2_EXPOSURE_MANUAL:
1056		sccb_reg_write(gspca_dev, 0x13,
1057				sccb_reg_read(gspca_dev, 0x13) & ~data);
1058		break;
1059	}
1060}
1061
1062static void setsharpness(struct gspca_dev *gspca_dev, s32 val)
1063{
1064	sccb_reg_write(gspca_dev, 0x91, val);	/* Auto de-noise threshold */
1065	sccb_reg_write(gspca_dev, 0x8e, val);	/* De-noise threshold */
1066}
1067
1068static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
1069{
1070	struct sd *sd = (struct sd *) gspca_dev;
1071	u8 val;
1072
1073	if (sd->sensor == SENSOR_OV767x) {
1074		val = sccb_reg_read(gspca_dev, 0x1e);	/* mvfp */
1075		val &= ~0x30;
1076		if (hflip)
1077			val |= 0x20;
1078		if (vflip)
1079			val |= 0x10;
1080		sccb_reg_write(gspca_dev, 0x1e, val);
1081	} else {
1082		val = sccb_reg_read(gspca_dev, 0x0c);
1083		val &= ~0xc0;
1084		if (hflip == 0)
1085			val |= 0x40;
1086		if (vflip == 0)
1087			val |= 0x80;
1088		sccb_reg_write(gspca_dev, 0x0c, val);
1089	}
1090}
1091
1092static void setlightfreq(struct gspca_dev *gspca_dev, s32 val)
1093{
1094	struct sd *sd = (struct sd *) gspca_dev;
1095
1096	val = val ? 0x9e : 0x00;
1097	if (sd->sensor == SENSOR_OV767x) {
1098		sccb_reg_write(gspca_dev, 0x2a, 0x00);
1099		if (val)
1100			val = 0x9d;	/* insert dummy to 25fps for 50Hz */
1101	}
1102	sccb_reg_write(gspca_dev, 0x2b, val);
1103}
1104
1105
1106/* this function is called at probe time */
1107static int sd_config(struct gspca_dev *gspca_dev,
1108		     const struct usb_device_id *id)
1109{
1110	struct sd *sd = (struct sd *) gspca_dev;
1111	struct cam *cam;
1112
1113	cam = &gspca_dev->cam;
1114
1115	cam->cam_mode = ov772x_mode;
1116	cam->nmodes = ARRAY_SIZE(ov772x_mode);
1117
1118	sd->frame_rate = DEFAULT_FRAME_RATE;
1119
1120	return 0;
1121}
1122
1123static int ov534_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1124{
1125	struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1126	struct gspca_dev *gspca_dev = &sd->gspca_dev;
1127
1128	switch (ctrl->id) {
1129	case V4L2_CID_AUTOGAIN:
1130		gspca_dev->usb_err = 0;
1131		if (ctrl->val && sd->gain && gspca_dev->streaming)
1132			sd->gain->val = getgain(gspca_dev);
1133		return gspca_dev->usb_err;
1134
1135	case V4L2_CID_EXPOSURE_AUTO:
1136		gspca_dev->usb_err = 0;
1137		if (ctrl->val == V4L2_EXPOSURE_AUTO && sd->exposure &&
1138		    gspca_dev->streaming)
1139			sd->exposure->val = getexposure(gspca_dev);
1140		return gspca_dev->usb_err;
1141	}
1142	return -EINVAL;
1143}
1144
1145static int ov534_s_ctrl(struct v4l2_ctrl *ctrl)
1146{
1147	struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1148	struct gspca_dev *gspca_dev = &sd->gspca_dev;
1149
1150	gspca_dev->usb_err = 0;
1151	if (!gspca_dev->streaming)
1152		return 0;
1153
1154	switch (ctrl->id) {
1155	case V4L2_CID_HUE:
1156		sethue(gspca_dev, ctrl->val);
1157		break;
1158	case V4L2_CID_SATURATION:
1159		setsaturation(gspca_dev, ctrl->val);
1160		break;
1161	case V4L2_CID_BRIGHTNESS:
1162		setbrightness(gspca_dev, ctrl->val);
1163		break;
1164	case V4L2_CID_CONTRAST:
1165		setcontrast(gspca_dev, ctrl->val);
1166		break;
1167	case V4L2_CID_AUTOGAIN:
1168	/* case V4L2_CID_GAIN: */
1169		setagc(gspca_dev, ctrl->val);
1170		if (!gspca_dev->usb_err && !ctrl->val && sd->gain)
1171			setgain(gspca_dev, sd->gain->val);
1172		break;
1173	case V4L2_CID_AUTO_WHITE_BALANCE:
1174		setawb(gspca_dev, ctrl->val);
1175		break;
1176	case V4L2_CID_EXPOSURE_AUTO:
1177	/* case V4L2_CID_EXPOSURE: */
1178		setaec(gspca_dev, ctrl->val);
1179		if (!gspca_dev->usb_err && ctrl->val == V4L2_EXPOSURE_MANUAL &&
1180		    sd->exposure)
1181			setexposure(gspca_dev, sd->exposure->val);
1182		break;
1183	case V4L2_CID_SHARPNESS:
1184		setsharpness(gspca_dev, ctrl->val);
1185		break;
1186	case V4L2_CID_HFLIP:
1187		sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
1188		break;
1189	case V4L2_CID_VFLIP:
1190		sethvflip(gspca_dev, sd->hflip->val, ctrl->val);
1191		break;
1192	case V4L2_CID_POWER_LINE_FREQUENCY:
1193		setlightfreq(gspca_dev, ctrl->val);
1194		break;
1195	}
1196	return gspca_dev->usb_err;
1197}
1198
1199static const struct v4l2_ctrl_ops ov534_ctrl_ops = {
1200	.g_volatile_ctrl = ov534_g_volatile_ctrl,
1201	.s_ctrl = ov534_s_ctrl,
1202};
1203
1204static int sd_init_controls(struct gspca_dev *gspca_dev)
1205{
1206	struct sd *sd = (struct sd *) gspca_dev;
1207	struct v4l2_ctrl_handler *hdl = &sd->ctrl_handler;
1208	/* parameters with different values between the supported sensors */
1209	int saturation_min;
1210	int saturation_max;
1211	int saturation_def;
1212	int brightness_min;
1213	int brightness_max;
1214	int brightness_def;
1215	int contrast_max;
1216	int contrast_def;
1217	int exposure_min;
1218	int exposure_max;
1219	int exposure_def;
1220	int hflip_def;
1221
1222	if (sd->sensor == SENSOR_OV767x) {
1223		saturation_min = 0;
1224		saturation_max = 6;
1225		saturation_def = 3;
1226		brightness_min = -127;
1227		brightness_max = 127;
1228		brightness_def = 0;
1229		contrast_max = 0x80;
1230		contrast_def = 0x40;
1231		exposure_min = 0x08;
1232		exposure_max = 0x60;
1233		exposure_def = 0x13;
1234		hflip_def = 1;
1235	} else {
1236		saturation_min = 0;
1237		saturation_max = 255;
1238		saturation_def = 64;
1239		brightness_min = 0;
1240		brightness_max = 255;
1241		brightness_def = 0;
1242		contrast_max = 255;
1243		contrast_def = 32;
1244		exposure_min = 0;
1245		exposure_max = 255;
1246		exposure_def = 120;
1247		hflip_def = 0;
1248	}
1249
1250	gspca_dev->vdev.ctrl_handler = hdl;
1251
1252	v4l2_ctrl_handler_init(hdl, 13);
1253
1254	if (sd->sensor == SENSOR_OV772x)
1255		sd->hue = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1256				V4L2_CID_HUE, -90, 90, 1, 0);
1257
1258	sd->saturation = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1259			V4L2_CID_SATURATION, saturation_min, saturation_max, 1,
1260			saturation_def);
1261	sd->brightness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1262			V4L2_CID_BRIGHTNESS, brightness_min, brightness_max, 1,
1263			brightness_def);
1264	sd->contrast = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1265			V4L2_CID_CONTRAST, 0, contrast_max, 1, contrast_def);
1266
1267	if (sd->sensor == SENSOR_OV772x) {
1268		sd->autogain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1269				V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
1270		sd->gain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1271				V4L2_CID_GAIN, 0, 63, 1, 20);
1272	}
1273
1274	sd->autoexposure = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1275			V4L2_CID_EXPOSURE_AUTO,
1276			V4L2_EXPOSURE_MANUAL, 0,
1277			V4L2_EXPOSURE_AUTO);
1278	sd->exposure = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1279			V4L2_CID_EXPOSURE, exposure_min, exposure_max, 1,
1280			exposure_def);
1281
1282	sd->autowhitebalance = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1283			V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1);
1284
1285	if (sd->sensor == SENSOR_OV772x)
1286		sd->sharpness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1287				V4L2_CID_SHARPNESS, 0, 63, 1, 0);
1288
1289	sd->hflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1290			V4L2_CID_HFLIP, 0, 1, 1, hflip_def);
1291	sd->vflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1292			V4L2_CID_VFLIP, 0, 1, 1, 0);
1293	sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1294			V4L2_CID_POWER_LINE_FREQUENCY,
1295			V4L2_CID_POWER_LINE_FREQUENCY_50HZ, 0,
1296			V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);
1297
1298	if (hdl->error) {
1299		pr_err("Could not initialize controls\n");
1300		return hdl->error;
1301	}
1302
1303	if (sd->sensor == SENSOR_OV772x)
1304		v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, true);
1305
1306	v4l2_ctrl_auto_cluster(2, &sd->autoexposure, V4L2_EXPOSURE_MANUAL,
1307			       true);
1308
1309	return 0;
1310}
1311
1312/* this function is called at probe and resume time */
1313static int sd_init(struct gspca_dev *gspca_dev)
1314{
1315	struct sd *sd = (struct sd *) gspca_dev;
1316	u16 sensor_id;
1317	static const struct reg_array bridge_init[NSENSORS] = {
1318	[SENSOR_OV767x] = {bridge_init_767x, ARRAY_SIZE(bridge_init_767x)},
1319	[SENSOR_OV772x] = {bridge_init_772x, ARRAY_SIZE(bridge_init_772x)},
1320	};
1321	static const struct reg_array sensor_init[NSENSORS] = {
1322	[SENSOR_OV767x] = {sensor_init_767x, ARRAY_SIZE(sensor_init_767x)},
1323	[SENSOR_OV772x] = {sensor_init_772x, ARRAY_SIZE(sensor_init_772x)},
1324	};
1325
1326	/* reset bridge */
1327	ov534_reg_write(gspca_dev, 0xe7, 0x3a);
1328	ov534_reg_write(gspca_dev, 0xe0, 0x08);
1329	msleep(100);
1330
1331	/* initialize the sensor address */
1332	ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42);
1333
1334	/* reset sensor */
1335	sccb_reg_write(gspca_dev, 0x12, 0x80);
1336	usleep_range(10000, 20000);
1337
1338	/* probe the sensor */
1339	sccb_reg_read(gspca_dev, 0x0a);
1340	sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8;
1341	sccb_reg_read(gspca_dev, 0x0b);
1342	sensor_id |= sccb_reg_read(gspca_dev, 0x0b);
1343	gspca_dbg(gspca_dev, D_PROBE, "Sensor ID: %04x\n", sensor_id);
1344
1345	if ((sensor_id & 0xfff0) == 0x7670) {
1346		sd->sensor = SENSOR_OV767x;
1347		gspca_dev->cam.cam_mode = ov767x_mode;
1348		gspca_dev->cam.nmodes = ARRAY_SIZE(ov767x_mode);
1349	} else {
1350		sd->sensor = SENSOR_OV772x;
1351		gspca_dev->cam.bulk = 1;
1352		gspca_dev->cam.bulk_size = 16384;
1353		gspca_dev->cam.bulk_nurbs = 2;
1354		gspca_dev->cam.mode_framerates = ov772x_framerates;
1355	}
1356
1357	/* initialize */
1358	reg_w_array(gspca_dev, bridge_init[sd->sensor].val,
1359			bridge_init[sd->sensor].len);
1360	ov534_set_led(gspca_dev, 1);
1361	sccb_w_array(gspca_dev, sensor_init[sd->sensor].val,
1362			sensor_init[sd->sensor].len);
1363
1364	sd_stopN(gspca_dev);
1365/*	set_frame_rate(gspca_dev);	*/
1366
1367	return gspca_dev->usb_err;
1368}
1369
1370static int sd_start(struct gspca_dev *gspca_dev)
1371{
1372	struct sd *sd = (struct sd *) gspca_dev;
1373	int mode;
1374	static const struct reg_array bridge_start[NSENSORS][4] = {
1375	[SENSOR_OV767x] = {{bridge_start_qvga_767x,
1376					ARRAY_SIZE(bridge_start_qvga_767x)},
1377			{bridge_start_vga_767x,
1378					ARRAY_SIZE(bridge_start_vga_767x)}},
1379	[SENSOR_OV772x] = {{bridge_start_qvga_yuyv_772x,
1380				ARRAY_SIZE(bridge_start_qvga_yuyv_772x)},
1381			{bridge_start_vga_yuyv_772x,
1382				ARRAY_SIZE(bridge_start_vga_yuyv_772x)},
1383			{bridge_start_qvga_gbrg_772x,
1384				ARRAY_SIZE(bridge_start_qvga_gbrg_772x)},
1385			{bridge_start_vga_gbrg_772x,
1386				ARRAY_SIZE(bridge_start_vga_gbrg_772x)} },
1387	};
1388	static const struct reg_array sensor_start[NSENSORS][4] = {
1389	[SENSOR_OV767x] = {{sensor_start_qvga_767x,
1390					ARRAY_SIZE(sensor_start_qvga_767x)},
1391			{sensor_start_vga_767x,
1392					ARRAY_SIZE(sensor_start_vga_767x)}},
1393	[SENSOR_OV772x] = {{sensor_start_qvga_yuyv_772x,
1394				ARRAY_SIZE(sensor_start_qvga_yuyv_772x)},
1395			{sensor_start_vga_yuyv_772x,
1396				ARRAY_SIZE(sensor_start_vga_yuyv_772x)},
1397			{sensor_start_qvga_gbrg_772x,
1398				ARRAY_SIZE(sensor_start_qvga_gbrg_772x)},
1399			{sensor_start_vga_gbrg_772x,
1400				ARRAY_SIZE(sensor_start_vga_gbrg_772x)} },
1401	};
1402
1403	/* (from ms-win trace) */
1404	if (sd->sensor == SENSOR_OV767x)
1405		sccb_reg_write(gspca_dev, 0x1e, 0x04);
1406					/* black sun enable ? */
1407
1408	mode = gspca_dev->curr_mode;	/* 0: 320x240, 1: 640x480 */
1409	reg_w_array(gspca_dev, bridge_start[sd->sensor][mode].val,
1410				bridge_start[sd->sensor][mode].len);
1411	sccb_w_array(gspca_dev, sensor_start[sd->sensor][mode].val,
1412				sensor_start[sd->sensor][mode].len);
1413
1414	set_frame_rate(gspca_dev);
1415
1416	if (sd->hue)
1417		sethue(gspca_dev, v4l2_ctrl_g_ctrl(sd->hue));
1418	setsaturation(gspca_dev, v4l2_ctrl_g_ctrl(sd->saturation));
1419	if (sd->autogain)
1420		setagc(gspca_dev, v4l2_ctrl_g_ctrl(sd->autogain));
1421	setawb(gspca_dev, v4l2_ctrl_g_ctrl(sd->autowhitebalance));
1422	setaec(gspca_dev, v4l2_ctrl_g_ctrl(sd->autoexposure));
1423	if (sd->gain)
1424		setgain(gspca_dev, v4l2_ctrl_g_ctrl(sd->gain));
1425	setexposure(gspca_dev, v4l2_ctrl_g_ctrl(sd->exposure));
1426	setbrightness(gspca_dev, v4l2_ctrl_g_ctrl(sd->brightness));
1427	setcontrast(gspca_dev, v4l2_ctrl_g_ctrl(sd->contrast));
1428	if (sd->sharpness)
1429		setsharpness(gspca_dev, v4l2_ctrl_g_ctrl(sd->sharpness));
1430	sethvflip(gspca_dev, v4l2_ctrl_g_ctrl(sd->hflip),
1431		  v4l2_ctrl_g_ctrl(sd->vflip));
1432	setlightfreq(gspca_dev, v4l2_ctrl_g_ctrl(sd->plfreq));
1433
1434	ov534_set_led(gspca_dev, 1);
1435	ov534_reg_write(gspca_dev, 0xe0, 0x00);
1436	return gspca_dev->usb_err;
1437}
1438
1439static void sd_stopN(struct gspca_dev *gspca_dev)
1440{
1441	ov534_reg_write(gspca_dev, 0xe0, 0x09);
1442	ov534_set_led(gspca_dev, 0);
1443}
1444
1445/* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */
1446#define UVC_STREAM_EOH	(1 << 7)
1447#define UVC_STREAM_ERR	(1 << 6)
1448#define UVC_STREAM_STI	(1 << 5)
1449#define UVC_STREAM_RES	(1 << 4)
1450#define UVC_STREAM_SCR	(1 << 3)
1451#define UVC_STREAM_PTS	(1 << 2)
1452#define UVC_STREAM_EOF	(1 << 1)
1453#define UVC_STREAM_FID	(1 << 0)
1454
1455static void sd_pkt_scan(struct gspca_dev *gspca_dev,
1456			u8 *data, int len)
1457{
1458	struct sd *sd = (struct sd *) gspca_dev;
1459	__u32 this_pts;
1460	u16 this_fid;
1461	int remaining_len = len;
1462	int payload_len;
1463
1464	payload_len = gspca_dev->cam.bulk ? 2048 : 2040;
1465	do {
1466		len = min(remaining_len, payload_len);
1467
1468		/* Payloads are prefixed with a UVC-style header.  We
1469		   consider a frame to start when the FID toggles, or the PTS
1470		   changes.  A frame ends when EOF is set, and we've received
1471		   the correct number of bytes. */
1472
1473		/* Verify UVC header.  Header length is always 12 */
1474		if (data[0] != 12 || len < 12) {
1475			gspca_dbg(gspca_dev, D_PACK, "bad header\n");
1476			goto discard;
1477		}
1478
1479		/* Check errors */
1480		if (data[1] & UVC_STREAM_ERR) {
1481			gspca_dbg(gspca_dev, D_PACK, "payload error\n");
1482			goto discard;
1483		}
1484
1485		/* Extract PTS and FID */
1486		if (!(data[1] & UVC_STREAM_PTS)) {
1487			gspca_dbg(gspca_dev, D_PACK, "PTS not present\n");
1488			goto discard;
1489		}
1490		this_pts = (data[5] << 24) | (data[4] << 16)
1491						| (data[3] << 8) | data[2];
1492		this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0;
1493
1494		/* If PTS or FID has changed, start a new frame. */
1495		if (this_pts != sd->last_pts || this_fid != sd->last_fid) {
1496			if (gspca_dev->last_packet_type == INTER_PACKET)
1497				gspca_frame_add(gspca_dev, LAST_PACKET,
1498						NULL, 0);
1499			sd->last_pts = this_pts;
1500			sd->last_fid = this_fid;
1501			gspca_frame_add(gspca_dev, FIRST_PACKET,
1502					data + 12, len - 12);
1503		/* If this packet is marked as EOF, end the frame */
1504		} else if (data[1] & UVC_STREAM_EOF) {
1505			sd->last_pts = 0;
1506			if (gspca_dev->pixfmt.pixelformat != V4L2_PIX_FMT_JPEG
1507			 && gspca_dev->image_len + len - 12 !=
1508			    gspca_dev->pixfmt.sizeimage) {
1509				gspca_dbg(gspca_dev, D_PACK, "wrong sized frame\n");
1510				goto discard;
1511			}
1512			gspca_frame_add(gspca_dev, LAST_PACKET,
1513					data + 12, len - 12);
1514		} else {
1515
1516			/* Add the data from this payload */
1517			gspca_frame_add(gspca_dev, INTER_PACKET,
1518					data + 12, len - 12);
1519		}
1520
1521		/* Done this payload */
1522		goto scan_next;
1523
1524discard:
1525		/* Discard data until a new frame starts. */
1526		gspca_dev->last_packet_type = DISCARD_PACKET;
1527
1528scan_next:
1529		remaining_len -= len;
1530		data += len;
1531	} while (remaining_len > 0);
1532}
1533
1534/* get stream parameters (framerate) */
1535static void sd_get_streamparm(struct gspca_dev *gspca_dev,
1536			     struct v4l2_streamparm *parm)
1537{
1538	struct v4l2_captureparm *cp = &parm->parm.capture;
1539	struct v4l2_fract *tpf = &cp->timeperframe;
1540	struct sd *sd = (struct sd *) gspca_dev;
1541
1542	tpf->numerator = 1;
1543	tpf->denominator = sd->frame_rate;
1544}
1545
1546/* set stream parameters (framerate) */
1547static void sd_set_streamparm(struct gspca_dev *gspca_dev,
1548			     struct v4l2_streamparm *parm)
1549{
1550	struct v4l2_captureparm *cp = &parm->parm.capture;
1551	struct v4l2_fract *tpf = &cp->timeperframe;
1552	struct sd *sd = (struct sd *) gspca_dev;
1553
1554	if (tpf->numerator == 0 || tpf->denominator == 0)
1555		sd->frame_rate = DEFAULT_FRAME_RATE;
1556	else
1557		sd->frame_rate = tpf->denominator / tpf->numerator;
1558
1559	if (gspca_dev->streaming)
1560		set_frame_rate(gspca_dev);
1561
1562	/* Return the actual framerate */
1563	tpf->numerator = 1;
1564	tpf->denominator = sd->frame_rate;
1565}
1566
1567/* sub-driver description */
1568static const struct sd_desc sd_desc = {
1569	.name     = MODULE_NAME,
1570	.config   = sd_config,
1571	.init     = sd_init,
1572	.init_controls = sd_init_controls,
1573	.start    = sd_start,
1574	.stopN    = sd_stopN,
1575	.pkt_scan = sd_pkt_scan,
1576	.get_streamparm = sd_get_streamparm,
1577	.set_streamparm = sd_set_streamparm,
1578};
1579
1580/* -- module initialisation -- */
1581static const struct usb_device_id device_table[] = {
1582	{USB_DEVICE(0x1415, 0x2000)},
1583	{USB_DEVICE(0x06f8, 0x3002)},
1584	{}
1585};
1586
1587MODULE_DEVICE_TABLE(usb, device_table);
1588
1589/* -- device connect -- */
1590static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id)
1591{
1592	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1593				THIS_MODULE);
1594}
1595
1596static struct usb_driver sd_driver = {
1597	.name       = MODULE_NAME,
1598	.id_table   = device_table,
1599	.probe      = sd_probe,
1600	.disconnect = gspca_disconnect,
1601#ifdef CONFIG_PM
1602	.suspend    = gspca_suspend,
1603	.resume     = gspca_resume,
1604	.reset_resume = gspca_resume,
1605#endif
1606};
1607
1608module_usb_driver(sd_driver);
1609