1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * VPDMA helper library
4 *
5 * Copyright (c) 2013 Texas Instruments Inc.
6 *
7 * David Griego, <dagriego@biglakesoftware.com>
8 * Dale Farnsworth, <dale@farnsworth.org>
9 * Archit Taneja, <archit@ti.com>
10 */
11
12#include <linux/delay.h>
13#include <linux/dma-mapping.h>
14#include <linux/err.h>
15#include <linux/firmware.h>
16#include <linux/io.h>
17#include <linux/module.h>
18#include <linux/platform_device.h>
19#include <linux/sched.h>
20#include <linux/slab.h>
21#include <linux/videodev2.h>
22
23#include "vpdma.h"
24#include "vpdma_priv.h"
25
26#define VPDMA_FIRMWARE	"vpdma-1b8.bin"
27
28const struct vpdma_data_format vpdma_yuv_fmts[] = {
29	[VPDMA_DATA_FMT_Y444] = {
30		.type		= VPDMA_DATA_FMT_TYPE_YUV,
31		.data_type	= DATA_TYPE_Y444,
32		.depth		= 8,
33	},
34	[VPDMA_DATA_FMT_Y422] = {
35		.type		= VPDMA_DATA_FMT_TYPE_YUV,
36		.data_type	= DATA_TYPE_Y422,
37		.depth		= 8,
38	},
39	[VPDMA_DATA_FMT_Y420] = {
40		.type		= VPDMA_DATA_FMT_TYPE_YUV,
41		.data_type	= DATA_TYPE_Y420,
42		.depth		= 8,
43	},
44	[VPDMA_DATA_FMT_C444] = {
45		.type		= VPDMA_DATA_FMT_TYPE_YUV,
46		.data_type	= DATA_TYPE_C444,
47		.depth		= 8,
48	},
49	[VPDMA_DATA_FMT_C422] = {
50		.type		= VPDMA_DATA_FMT_TYPE_YUV,
51		.data_type	= DATA_TYPE_C422,
52		.depth		= 8,
53	},
54	[VPDMA_DATA_FMT_C420] = {
55		.type		= VPDMA_DATA_FMT_TYPE_YUV,
56		.data_type	= DATA_TYPE_C420,
57		.depth		= 4,
58	},
59	[VPDMA_DATA_FMT_CB420] = {
60		.type		= VPDMA_DATA_FMT_TYPE_YUV,
61		.data_type	= DATA_TYPE_CB420,
62		.depth		= 4,
63	},
64	[VPDMA_DATA_FMT_YCR422] = {
65		.type		= VPDMA_DATA_FMT_TYPE_YUV,
66		.data_type	= DATA_TYPE_YCR422,
67		.depth		= 16,
68	},
69	[VPDMA_DATA_FMT_YC444] = {
70		.type		= VPDMA_DATA_FMT_TYPE_YUV,
71		.data_type	= DATA_TYPE_YC444,
72		.depth		= 24,
73	},
74	[VPDMA_DATA_FMT_CRY422] = {
75		.type		= VPDMA_DATA_FMT_TYPE_YUV,
76		.data_type	= DATA_TYPE_CRY422,
77		.depth		= 16,
78	},
79	[VPDMA_DATA_FMT_CBY422] = {
80		.type		= VPDMA_DATA_FMT_TYPE_YUV,
81		.data_type	= DATA_TYPE_CBY422,
82		.depth		= 16,
83	},
84	[VPDMA_DATA_FMT_YCB422] = {
85		.type		= VPDMA_DATA_FMT_TYPE_YUV,
86		.data_type	= DATA_TYPE_YCB422,
87		.depth		= 16,
88	},
89};
90EXPORT_SYMBOL(vpdma_yuv_fmts);
91
92const struct vpdma_data_format vpdma_rgb_fmts[] = {
93	[VPDMA_DATA_FMT_RGB565] = {
94		.type		= VPDMA_DATA_FMT_TYPE_RGB,
95		.data_type	= DATA_TYPE_RGB16_565,
96		.depth		= 16,
97	},
98	[VPDMA_DATA_FMT_ARGB16_1555] = {
99		.type		= VPDMA_DATA_FMT_TYPE_RGB,
100		.data_type	= DATA_TYPE_ARGB_1555,
101		.depth		= 16,
102	},
103	[VPDMA_DATA_FMT_ARGB16] = {
104		.type		= VPDMA_DATA_FMT_TYPE_RGB,
105		.data_type	= DATA_TYPE_ARGB_4444,
106		.depth		= 16,
107	},
108	[VPDMA_DATA_FMT_RGBA16_5551] = {
109		.type		= VPDMA_DATA_FMT_TYPE_RGB,
110		.data_type	= DATA_TYPE_RGBA_5551,
111		.depth		= 16,
112	},
113	[VPDMA_DATA_FMT_RGBA16] = {
114		.type		= VPDMA_DATA_FMT_TYPE_RGB,
115		.data_type	= DATA_TYPE_RGBA_4444,
116		.depth		= 16,
117	},
118	[VPDMA_DATA_FMT_ARGB24] = {
119		.type		= VPDMA_DATA_FMT_TYPE_RGB,
120		.data_type	= DATA_TYPE_ARGB24_6666,
121		.depth		= 24,
122	},
123	[VPDMA_DATA_FMT_RGB24] = {
124		.type		= VPDMA_DATA_FMT_TYPE_RGB,
125		.data_type	= DATA_TYPE_RGB24_888,
126		.depth		= 24,
127	},
128	[VPDMA_DATA_FMT_ARGB32] = {
129		.type		= VPDMA_DATA_FMT_TYPE_RGB,
130		.data_type	= DATA_TYPE_ARGB32_8888,
131		.depth		= 32,
132	},
133	[VPDMA_DATA_FMT_RGBA24] = {
134		.type		= VPDMA_DATA_FMT_TYPE_RGB,
135		.data_type	= DATA_TYPE_RGBA24_6666,
136		.depth		= 24,
137	},
138	[VPDMA_DATA_FMT_RGBA32] = {
139		.type		= VPDMA_DATA_FMT_TYPE_RGB,
140		.data_type	= DATA_TYPE_RGBA32_8888,
141		.depth		= 32,
142	},
143	[VPDMA_DATA_FMT_BGR565] = {
144		.type		= VPDMA_DATA_FMT_TYPE_RGB,
145		.data_type	= DATA_TYPE_BGR16_565,
146		.depth		= 16,
147	},
148	[VPDMA_DATA_FMT_ABGR16_1555] = {
149		.type		= VPDMA_DATA_FMT_TYPE_RGB,
150		.data_type	= DATA_TYPE_ABGR_1555,
151		.depth		= 16,
152	},
153	[VPDMA_DATA_FMT_ABGR16] = {
154		.type		= VPDMA_DATA_FMT_TYPE_RGB,
155		.data_type	= DATA_TYPE_ABGR_4444,
156		.depth		= 16,
157	},
158	[VPDMA_DATA_FMT_BGRA16_5551] = {
159		.type		= VPDMA_DATA_FMT_TYPE_RGB,
160		.data_type	= DATA_TYPE_BGRA_5551,
161		.depth		= 16,
162	},
163	[VPDMA_DATA_FMT_BGRA16] = {
164		.type		= VPDMA_DATA_FMT_TYPE_RGB,
165		.data_type	= DATA_TYPE_BGRA_4444,
166		.depth		= 16,
167	},
168	[VPDMA_DATA_FMT_ABGR24] = {
169		.type		= VPDMA_DATA_FMT_TYPE_RGB,
170		.data_type	= DATA_TYPE_ABGR24_6666,
171		.depth		= 24,
172	},
173	[VPDMA_DATA_FMT_BGR24] = {
174		.type		= VPDMA_DATA_FMT_TYPE_RGB,
175		.data_type	= DATA_TYPE_BGR24_888,
176		.depth		= 24,
177	},
178	[VPDMA_DATA_FMT_ABGR32] = {
179		.type		= VPDMA_DATA_FMT_TYPE_RGB,
180		.data_type	= DATA_TYPE_ABGR32_8888,
181		.depth		= 32,
182	},
183	[VPDMA_DATA_FMT_BGRA24] = {
184		.type		= VPDMA_DATA_FMT_TYPE_RGB,
185		.data_type	= DATA_TYPE_BGRA24_6666,
186		.depth		= 24,
187	},
188	[VPDMA_DATA_FMT_BGRA32] = {
189		.type		= VPDMA_DATA_FMT_TYPE_RGB,
190		.data_type	= DATA_TYPE_BGRA32_8888,
191		.depth		= 32,
192	},
193};
194EXPORT_SYMBOL(vpdma_rgb_fmts);
195
196/*
197 * To handle RAW format we are re-using the CBY422
198 * vpdma data type so that we use the vpdma to re-order
199 * the incoming bytes, as the parser assumes that the
200 * first byte presented on the bus is the MSB of a 2
201 * bytes value.
202 * RAW8 handles from 1 to 8 bits
203 * RAW16 handles from 9 to 16 bits
204 */
205const struct vpdma_data_format vpdma_raw_fmts[] = {
206	[VPDMA_DATA_FMT_RAW8] = {
207		.type		= VPDMA_DATA_FMT_TYPE_YUV,
208		.data_type	= DATA_TYPE_CBY422,
209		.depth		= 8,
210	},
211	[VPDMA_DATA_FMT_RAW16] = {
212		.type		= VPDMA_DATA_FMT_TYPE_YUV,
213		.data_type	= DATA_TYPE_CBY422,
214		.depth		= 16,
215	},
216};
217EXPORT_SYMBOL(vpdma_raw_fmts);
218
219const struct vpdma_data_format vpdma_misc_fmts[] = {
220	[VPDMA_DATA_FMT_MV] = {
221		.type		= VPDMA_DATA_FMT_TYPE_MISC,
222		.data_type	= DATA_TYPE_MV,
223		.depth		= 4,
224	},
225};
226EXPORT_SYMBOL(vpdma_misc_fmts);
227
228struct vpdma_channel_info {
229	int num;		/* VPDMA channel number */
230	int cstat_offset;	/* client CSTAT register offset */
231};
232
233static const struct vpdma_channel_info chan_info[] = {
234	[VPE_CHAN_LUMA1_IN] = {
235		.num		= VPE_CHAN_NUM_LUMA1_IN,
236		.cstat_offset	= VPDMA_DEI_LUMA1_CSTAT,
237	},
238	[VPE_CHAN_CHROMA1_IN] = {
239		.num		= VPE_CHAN_NUM_CHROMA1_IN,
240		.cstat_offset	= VPDMA_DEI_CHROMA1_CSTAT,
241	},
242	[VPE_CHAN_LUMA2_IN] = {
243		.num		= VPE_CHAN_NUM_LUMA2_IN,
244		.cstat_offset	= VPDMA_DEI_LUMA2_CSTAT,
245	},
246	[VPE_CHAN_CHROMA2_IN] = {
247		.num		= VPE_CHAN_NUM_CHROMA2_IN,
248		.cstat_offset	= VPDMA_DEI_CHROMA2_CSTAT,
249	},
250	[VPE_CHAN_LUMA3_IN] = {
251		.num		= VPE_CHAN_NUM_LUMA3_IN,
252		.cstat_offset	= VPDMA_DEI_LUMA3_CSTAT,
253	},
254	[VPE_CHAN_CHROMA3_IN] = {
255		.num		= VPE_CHAN_NUM_CHROMA3_IN,
256		.cstat_offset	= VPDMA_DEI_CHROMA3_CSTAT,
257	},
258	[VPE_CHAN_MV_IN] = {
259		.num		= VPE_CHAN_NUM_MV_IN,
260		.cstat_offset	= VPDMA_DEI_MV_IN_CSTAT,
261	},
262	[VPE_CHAN_MV_OUT] = {
263		.num		= VPE_CHAN_NUM_MV_OUT,
264		.cstat_offset	= VPDMA_DEI_MV_OUT_CSTAT,
265	},
266	[VPE_CHAN_LUMA_OUT] = {
267		.num		= VPE_CHAN_NUM_LUMA_OUT,
268		.cstat_offset	= VPDMA_VIP_UP_Y_CSTAT,
269	},
270	[VPE_CHAN_CHROMA_OUT] = {
271		.num		= VPE_CHAN_NUM_CHROMA_OUT,
272		.cstat_offset	= VPDMA_VIP_UP_UV_CSTAT,
273	},
274	[VPE_CHAN_RGB_OUT] = {
275		.num		= VPE_CHAN_NUM_RGB_OUT,
276		.cstat_offset	= VPDMA_VIP_UP_Y_CSTAT,
277	},
278};
279
280static u32 read_reg(struct vpdma_data *vpdma, int offset)
281{
282	return ioread32(vpdma->base + offset);
283}
284
285static void write_reg(struct vpdma_data *vpdma, int offset, u32 value)
286{
287	iowrite32(value, vpdma->base + offset);
288}
289
290static int read_field_reg(struct vpdma_data *vpdma, int offset,
291		u32 mask, int shift)
292{
293	return (read_reg(vpdma, offset) & (mask << shift)) >> shift;
294}
295
296static void write_field_reg(struct vpdma_data *vpdma, int offset, u32 field,
297		u32 mask, int shift)
298{
299	u32 val = read_reg(vpdma, offset);
300
301	val &= ~(mask << shift);
302	val |= (field & mask) << shift;
303
304	write_reg(vpdma, offset, val);
305}
306
307void vpdma_dump_regs(struct vpdma_data *vpdma)
308{
309	struct device *dev = &vpdma->pdev->dev;
310
311#define DUMPREG(r) dev_dbg(dev, "%-35s %08x\n", #r, read_reg(vpdma, VPDMA_##r))
312
313	dev_dbg(dev, "VPDMA Registers:\n");
314
315	DUMPREG(PID);
316	DUMPREG(LIST_ADDR);
317	DUMPREG(LIST_ATTR);
318	DUMPREG(LIST_STAT_SYNC);
319	DUMPREG(BG_RGB);
320	DUMPREG(BG_YUV);
321	DUMPREG(SETUP);
322	DUMPREG(MAX_SIZE1);
323	DUMPREG(MAX_SIZE2);
324	DUMPREG(MAX_SIZE3);
325
326	/*
327	 * dumping registers of only group0 and group3, because VPE channels
328	 * lie within group0 and group3 registers
329	 */
330	DUMPREG(INT_CHAN_STAT(0));
331	DUMPREG(INT_CHAN_MASK(0));
332	DUMPREG(INT_CHAN_STAT(3));
333	DUMPREG(INT_CHAN_MASK(3));
334	DUMPREG(INT_CLIENT0_STAT);
335	DUMPREG(INT_CLIENT0_MASK);
336	DUMPREG(INT_CLIENT1_STAT);
337	DUMPREG(INT_CLIENT1_MASK);
338	DUMPREG(INT_LIST0_STAT);
339	DUMPREG(INT_LIST0_MASK);
340
341	/*
342	 * these are registers specific to VPE clients, we can make this
343	 * function dump client registers specific to VPE or VIP based on
344	 * who is using it
345	 */
346	DUMPREG(DEI_CHROMA1_CSTAT);
347	DUMPREG(DEI_LUMA1_CSTAT);
348	DUMPREG(DEI_CHROMA2_CSTAT);
349	DUMPREG(DEI_LUMA2_CSTAT);
350	DUMPREG(DEI_CHROMA3_CSTAT);
351	DUMPREG(DEI_LUMA3_CSTAT);
352	DUMPREG(DEI_MV_IN_CSTAT);
353	DUMPREG(DEI_MV_OUT_CSTAT);
354	DUMPREG(VIP_UP_Y_CSTAT);
355	DUMPREG(VIP_UP_UV_CSTAT);
356	DUMPREG(VPI_CTL_CSTAT);
357}
358EXPORT_SYMBOL(vpdma_dump_regs);
359
360/*
361 * Allocate a DMA buffer
362 */
363int vpdma_alloc_desc_buf(struct vpdma_buf *buf, size_t size)
364{
365	buf->size = size;
366	buf->mapped = false;
367	buf->addr = kzalloc(size, GFP_KERNEL);
368	if (!buf->addr)
369		return -ENOMEM;
370
371	WARN_ON(((unsigned long)buf->addr & VPDMA_DESC_ALIGN) != 0);
372
373	return 0;
374}
375EXPORT_SYMBOL(vpdma_alloc_desc_buf);
376
377void vpdma_free_desc_buf(struct vpdma_buf *buf)
378{
379	WARN_ON(buf->mapped);
380	kfree(buf->addr);
381	buf->addr = NULL;
382	buf->size = 0;
383}
384EXPORT_SYMBOL(vpdma_free_desc_buf);
385
386/*
387 * map descriptor/payload DMA buffer, enabling DMA access
388 */
389int vpdma_map_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf)
390{
391	struct device *dev = &vpdma->pdev->dev;
392
393	WARN_ON(buf->mapped);
394	buf->dma_addr = dma_map_single(dev, buf->addr, buf->size,
395				DMA_BIDIRECTIONAL);
396	if (dma_mapping_error(dev, buf->dma_addr)) {
397		dev_err(dev, "failed to map buffer\n");
398		return -EINVAL;
399	}
400
401	buf->mapped = true;
402
403	return 0;
404}
405EXPORT_SYMBOL(vpdma_map_desc_buf);
406
407/*
408 * unmap descriptor/payload DMA buffer, disabling DMA access and
409 * allowing the main processor to access the data
410 */
411void vpdma_unmap_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf)
412{
413	struct device *dev = &vpdma->pdev->dev;
414
415	if (buf->mapped)
416		dma_unmap_single(dev, buf->dma_addr, buf->size,
417				DMA_BIDIRECTIONAL);
418
419	buf->mapped = false;
420}
421EXPORT_SYMBOL(vpdma_unmap_desc_buf);
422
423/*
424 * Cleanup all pending descriptors of a list
425 * First, stop the current list being processed.
426 * If the VPDMA was busy, this step makes vpdma to accept post lists.
427 * To cleanup the internal FSM, post abort list descriptor for all the
428 * channels from @channels array of size @size.
429 */
430int vpdma_list_cleanup(struct vpdma_data *vpdma, int list_num,
431		int *channels, int size)
432{
433	struct vpdma_desc_list abort_list;
434	int i, ret, timeout = 500;
435
436	write_reg(vpdma, VPDMA_LIST_ATTR,
437			(list_num << VPDMA_LIST_NUM_SHFT) |
438			(1 << VPDMA_LIST_STOP_SHFT));
439
440	if (size <= 0 || !channels)
441		return 0;
442
443	ret = vpdma_create_desc_list(&abort_list,
444		size * sizeof(struct vpdma_dtd), VPDMA_LIST_TYPE_NORMAL);
445	if (ret)
446		return ret;
447
448	for (i = 0; i < size; i++)
449		vpdma_add_abort_channel_ctd(&abort_list, channels[i]);
450
451	ret = vpdma_map_desc_buf(vpdma, &abort_list.buf);
452	if (ret)
453		goto free_desc;
454	ret = vpdma_submit_descs(vpdma, &abort_list, list_num);
455	if (ret)
456		goto unmap_desc;
457
458	while (vpdma_list_busy(vpdma, list_num) && --timeout)
459		;
460
461	if (timeout == 0) {
462		dev_err(&vpdma->pdev->dev, "Timed out cleaning up VPDMA list\n");
463		ret = -EBUSY;
464	}
465
466unmap_desc:
467	vpdma_unmap_desc_buf(vpdma, &abort_list.buf);
468free_desc:
469	vpdma_free_desc_buf(&abort_list.buf);
470
471	return ret;
472}
473EXPORT_SYMBOL(vpdma_list_cleanup);
474
475/*
476 * create a descriptor list, the user of this list will append configuration,
477 * control and data descriptors to this list, this list will be submitted to
478 * VPDMA. VPDMA's list parser will go through each descriptor and perform the
479 * required DMA operations
480 */
481int vpdma_create_desc_list(struct vpdma_desc_list *list, size_t size, int type)
482{
483	int r;
484
485	r = vpdma_alloc_desc_buf(&list->buf, size);
486	if (r)
487		return r;
488
489	list->next = list->buf.addr;
490
491	list->type = type;
492
493	return 0;
494}
495EXPORT_SYMBOL(vpdma_create_desc_list);
496
497/*
498 * once a descriptor list is parsed by VPDMA, we reset the list by emptying it,
499 * to allow new descriptors to be added to the list.
500 */
501void vpdma_reset_desc_list(struct vpdma_desc_list *list)
502{
503	list->next = list->buf.addr;
504}
505EXPORT_SYMBOL(vpdma_reset_desc_list);
506
507/*
508 * free the buffer allocated for the VPDMA descriptor list, this should be
509 * called when the user doesn't want to use VPDMA any more.
510 */
511void vpdma_free_desc_list(struct vpdma_desc_list *list)
512{
513	vpdma_free_desc_buf(&list->buf);
514
515	list->next = NULL;
516}
517EXPORT_SYMBOL(vpdma_free_desc_list);
518
519bool vpdma_list_busy(struct vpdma_data *vpdma, int list_num)
520{
521	return read_reg(vpdma, VPDMA_LIST_STAT_SYNC) & BIT(list_num + 16);
522}
523EXPORT_SYMBOL(vpdma_list_busy);
524
525/*
526 * submit a list of DMA descriptors to the VPE VPDMA, do not wait for completion
527 */
528int vpdma_submit_descs(struct vpdma_data *vpdma,
529			struct vpdma_desc_list *list, int list_num)
530{
531	int list_size;
532	unsigned long flags;
533
534	if (vpdma_list_busy(vpdma, list_num))
535		return -EBUSY;
536
537	/* 16-byte granularity */
538	list_size = (list->next - list->buf.addr) >> 4;
539
540	spin_lock_irqsave(&vpdma->lock, flags);
541	write_reg(vpdma, VPDMA_LIST_ADDR, (u32) list->buf.dma_addr);
542
543	write_reg(vpdma, VPDMA_LIST_ATTR,
544			(list_num << VPDMA_LIST_NUM_SHFT) |
545			(list->type << VPDMA_LIST_TYPE_SHFT) |
546			list_size);
547	spin_unlock_irqrestore(&vpdma->lock, flags);
548
549	return 0;
550}
551EXPORT_SYMBOL(vpdma_submit_descs);
552
553static void dump_dtd(struct vpdma_dtd *dtd);
554
555void vpdma_update_dma_addr(struct vpdma_data *vpdma,
556	struct vpdma_desc_list *list, dma_addr_t dma_addr,
557	void *write_dtd, int drop, int idx)
558{
559	struct vpdma_dtd *dtd = list->buf.addr;
560	dma_addr_t write_desc_addr;
561	int offset;
562
563	dtd += idx;
564	vpdma_unmap_desc_buf(vpdma, &list->buf);
565
566	dtd->start_addr = dma_addr;
567
568	/* Calculate write address from the offset of write_dtd from start
569	 * of the list->buf
570	 */
571	offset = (void *)write_dtd - list->buf.addr;
572	write_desc_addr = list->buf.dma_addr + offset;
573
574	if (drop)
575		dtd->desc_write_addr = dtd_desc_write_addr(write_desc_addr,
576							   1, 1, 0);
577	else
578		dtd->desc_write_addr = dtd_desc_write_addr(write_desc_addr,
579							   1, 0, 0);
580
581	vpdma_map_desc_buf(vpdma, &list->buf);
582
583	dump_dtd(dtd);
584}
585EXPORT_SYMBOL(vpdma_update_dma_addr);
586
587void vpdma_set_max_size(struct vpdma_data *vpdma, int reg_addr,
588			u32 width, u32 height)
589{
590	if (reg_addr != VPDMA_MAX_SIZE1 && reg_addr != VPDMA_MAX_SIZE2 &&
591	    reg_addr != VPDMA_MAX_SIZE3)
592		reg_addr = VPDMA_MAX_SIZE1;
593
594	write_field_reg(vpdma, reg_addr, width - 1,
595			VPDMA_MAX_SIZE_WIDTH_MASK, VPDMA_MAX_SIZE_WIDTH_SHFT);
596
597	write_field_reg(vpdma, reg_addr, height - 1,
598			VPDMA_MAX_SIZE_HEIGHT_MASK, VPDMA_MAX_SIZE_HEIGHT_SHFT);
599
600}
601EXPORT_SYMBOL(vpdma_set_max_size);
602
603static void dump_cfd(struct vpdma_cfd *cfd)
604{
605	int class;
606
607	class = cfd_get_class(cfd);
608
609	pr_debug("config descriptor of payload class: %s\n",
610		class == CFD_CLS_BLOCK ? "simple block" :
611		"address data block");
612
613	if (class == CFD_CLS_BLOCK)
614		pr_debug("word0: dst_addr_offset = 0x%08x\n",
615			cfd->dest_addr_offset);
616
617	if (class == CFD_CLS_BLOCK)
618		pr_debug("word1: num_data_wrds = %d\n", cfd->block_len);
619
620	pr_debug("word2: payload_addr = 0x%08x\n", cfd->payload_addr);
621
622	pr_debug("word3: pkt_type = %d, direct = %d, class = %d, dest = %d, payload_len = %d\n",
623		 cfd_get_pkt_type(cfd),
624		 cfd_get_direct(cfd), class, cfd_get_dest(cfd),
625		 cfd_get_payload_len(cfd));
626}
627
628/*
629 * append a configuration descriptor to the given descriptor list, where the
630 * payload is in the form of a simple data block specified in the descriptor
631 * header, this is used to upload scaler coefficients to the scaler module
632 */
633void vpdma_add_cfd_block(struct vpdma_desc_list *list, int client,
634		struct vpdma_buf *blk, u32 dest_offset)
635{
636	struct vpdma_cfd *cfd;
637	int len = blk->size;
638
639	WARN_ON(blk->dma_addr & VPDMA_DESC_ALIGN);
640
641	cfd = list->next;
642	WARN_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size));
643
644	cfd->dest_addr_offset = dest_offset;
645	cfd->block_len = len;
646	cfd->payload_addr = (u32) blk->dma_addr;
647	cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_BLOCK,
648				client, len >> 4);
649
650	list->next = cfd + 1;
651
652	dump_cfd(cfd);
653}
654EXPORT_SYMBOL(vpdma_add_cfd_block);
655
656/*
657 * append a configuration descriptor to the given descriptor list, where the
658 * payload is in the address data block format, this is used to a configure a
659 * discontiguous set of MMRs
660 */
661void vpdma_add_cfd_adb(struct vpdma_desc_list *list, int client,
662		struct vpdma_buf *adb)
663{
664	struct vpdma_cfd *cfd;
665	unsigned int len = adb->size;
666
667	WARN_ON(len & VPDMA_ADB_SIZE_ALIGN);
668	WARN_ON(adb->dma_addr & VPDMA_DESC_ALIGN);
669
670	cfd = list->next;
671	BUG_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size));
672
673	cfd->w0 = 0;
674	cfd->w1 = 0;
675	cfd->payload_addr = (u32) adb->dma_addr;
676	cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_ADB,
677				client, len >> 4);
678
679	list->next = cfd + 1;
680
681	dump_cfd(cfd);
682};
683EXPORT_SYMBOL(vpdma_add_cfd_adb);
684
685/*
686 * control descriptor format change based on what type of control descriptor it
687 * is, we only use 'sync on channel' control descriptors for now, so assume it's
688 * that
689 */
690static void dump_ctd(struct vpdma_ctd *ctd)
691{
692	pr_debug("control descriptor\n");
693
694	pr_debug("word3: pkt_type = %d, source = %d, ctl_type = %d\n",
695		ctd_get_pkt_type(ctd), ctd_get_source(ctd), ctd_get_ctl(ctd));
696}
697
698/*
699 * append a 'sync on channel' type control descriptor to the given descriptor
700 * list, this descriptor stalls the VPDMA list till the time DMA is completed
701 * on the specified channel
702 */
703void vpdma_add_sync_on_channel_ctd(struct vpdma_desc_list *list,
704		enum vpdma_channel chan)
705{
706	struct vpdma_ctd *ctd;
707
708	ctd = list->next;
709	WARN_ON((void *)(ctd + 1) > (list->buf.addr + list->buf.size));
710
711	ctd->w0 = 0;
712	ctd->w1 = 0;
713	ctd->w2 = 0;
714	ctd->type_source_ctl = ctd_type_source_ctl(chan_info[chan].num,
715				CTD_TYPE_SYNC_ON_CHANNEL);
716
717	list->next = ctd + 1;
718
719	dump_ctd(ctd);
720}
721EXPORT_SYMBOL(vpdma_add_sync_on_channel_ctd);
722
723/*
724 * append an 'abort_channel' type control descriptor to the given descriptor
725 * list, this descriptor aborts any DMA transaction happening using the
726 * specified channel
727 */
728void vpdma_add_abort_channel_ctd(struct vpdma_desc_list *list,
729		int chan_num)
730{
731	struct vpdma_ctd *ctd;
732
733	ctd = list->next;
734	WARN_ON((void *)(ctd + 1) > (list->buf.addr + list->buf.size));
735
736	ctd->w0 = 0;
737	ctd->w1 = 0;
738	ctd->w2 = 0;
739	ctd->type_source_ctl = ctd_type_source_ctl(chan_num,
740				CTD_TYPE_ABORT_CHANNEL);
741
742	list->next = ctd + 1;
743
744	dump_ctd(ctd);
745}
746EXPORT_SYMBOL(vpdma_add_abort_channel_ctd);
747
748static void dump_dtd(struct vpdma_dtd *dtd)
749{
750	int dir, chan;
751
752	dir = dtd_get_dir(dtd);
753	chan = dtd_get_chan(dtd);
754
755	pr_debug("%s data transfer descriptor for channel %d\n",
756		dir == DTD_DIR_OUT ? "outbound" : "inbound", chan);
757
758	pr_debug("word0: data_type = %d, notify = %d, field = %d, 1D = %d, even_ln_skp = %d, odd_ln_skp = %d, line_stride = %d\n",
759		dtd_get_data_type(dtd), dtd_get_notify(dtd), dtd_get_field(dtd),
760		dtd_get_1d(dtd), dtd_get_even_line_skip(dtd),
761		dtd_get_odd_line_skip(dtd), dtd_get_line_stride(dtd));
762
763	if (dir == DTD_DIR_IN)
764		pr_debug("word1: line_length = %d, xfer_height = %d\n",
765			dtd_get_line_length(dtd), dtd_get_xfer_height(dtd));
766
767	pr_debug("word2: start_addr = %x\n", dtd->start_addr);
768
769	pr_debug("word3: pkt_type = %d, mode = %d, dir = %d, chan = %d, pri = %d, next_chan = %d\n",
770		 dtd_get_pkt_type(dtd),
771		 dtd_get_mode(dtd), dir, chan, dtd_get_priority(dtd),
772		 dtd_get_next_chan(dtd));
773
774	if (dir == DTD_DIR_IN)
775		pr_debug("word4: frame_width = %d, frame_height = %d\n",
776			dtd_get_frame_width(dtd), dtd_get_frame_height(dtd));
777	else
778		pr_debug("word4: desc_write_addr = 0x%08x, write_desc = %d, drp_data = %d, use_desc_reg = %d\n",
779			dtd_get_desc_write_addr(dtd), dtd_get_write_desc(dtd),
780			dtd_get_drop_data(dtd), dtd_get_use_desc(dtd));
781
782	if (dir == DTD_DIR_IN)
783		pr_debug("word5: hor_start = %d, ver_start = %d\n",
784			dtd_get_h_start(dtd), dtd_get_v_start(dtd));
785	else
786		pr_debug("word5: max_width %d, max_height %d\n",
787			dtd_get_max_width(dtd), dtd_get_max_height(dtd));
788
789	pr_debug("word6: client specific attr0 = 0x%08x\n", dtd->client_attr0);
790	pr_debug("word7: client specific attr1 = 0x%08x\n", dtd->client_attr1);
791}
792
793/*
794 * append an outbound data transfer descriptor to the given descriptor list,
795 * this sets up a 'client to memory' VPDMA transfer for the given VPDMA channel
796 *
797 * @list: vpdma desc list to which we add this descriptor
798 * @width: width of the image in pixels in memory
799 * @c_rect: compose params of output image
800 * @fmt: vpdma data format of the buffer
801 * dma_addr: dma address as seen by VPDMA
802 * max_width: enum for maximum width of data transfer
803 * max_height: enum for maximum height of data transfer
804 * chan: VPDMA channel
805 * flags: VPDMA flags to configure some descriptor fields
806 */
807void vpdma_add_out_dtd(struct vpdma_desc_list *list, int width,
808		int stride, const struct v4l2_rect *c_rect,
809		const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
810		int max_w, int max_h, enum vpdma_channel chan, u32 flags)
811{
812	vpdma_rawchan_add_out_dtd(list, width, stride, c_rect, fmt, dma_addr,
813				  max_w, max_h, chan_info[chan].num, flags);
814}
815EXPORT_SYMBOL(vpdma_add_out_dtd);
816
817void vpdma_rawchan_add_out_dtd(struct vpdma_desc_list *list, int width,
818		int stride, const struct v4l2_rect *c_rect,
819		const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
820		int max_w, int max_h, int raw_vpdma_chan, u32 flags)
821{
822	int priority = 0;
823	int field = 0;
824	int notify = 1;
825	int channel, next_chan;
826	struct v4l2_rect rect = *c_rect;
827	int depth = fmt->depth;
828	struct vpdma_dtd *dtd;
829
830	channel = next_chan = raw_vpdma_chan;
831
832	if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV &&
833	    (fmt->data_type == DATA_TYPE_C420 ||
834	     fmt->data_type == DATA_TYPE_CB420)) {
835		rect.height >>= 1;
836		rect.top >>= 1;
837		depth = 8;
838	}
839
840	dma_addr += rect.top * stride + (rect.left * depth >> 3);
841
842	dtd = list->next;
843	WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size));
844
845	dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type,
846					notify,
847					field,
848					!!(flags & VPDMA_DATA_FRAME_1D),
849					!!(flags & VPDMA_DATA_EVEN_LINE_SKIP),
850					!!(flags & VPDMA_DATA_ODD_LINE_SKIP),
851					stride);
852	dtd->w1 = 0;
853	dtd->start_addr = (u32) dma_addr;
854	dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED),
855				DTD_DIR_OUT, channel, priority, next_chan);
856	dtd->desc_write_addr = dtd_desc_write_addr(0, 0, 0, 0);
857	dtd->max_width_height = dtd_max_width_height(max_w, max_h);
858	dtd->client_attr0 = 0;
859	dtd->client_attr1 = 0;
860
861	list->next = dtd + 1;
862
863	dump_dtd(dtd);
864}
865EXPORT_SYMBOL(vpdma_rawchan_add_out_dtd);
866
867/*
868 * append an inbound data transfer descriptor to the given descriptor list,
869 * this sets up a 'memory to client' VPDMA transfer for the given VPDMA channel
870 *
871 * @list: vpdma desc list to which we add this descriptor
872 * @width: width of the image in pixels in memory(not the cropped width)
873 * @c_rect: crop params of input image
874 * @fmt: vpdma data format of the buffer
875 * dma_addr: dma address as seen by VPDMA
876 * chan: VPDMA channel
877 * field: top or bottom field info of the input image
878 * flags: VPDMA flags to configure some descriptor fields
879 * frame_width/height: the complete width/height of the image presented to the
880 *			client (this makes sense when multiple channels are
881 *			connected to the same client, forming a larger frame)
882 * start_h, start_v: position where the given channel starts providing pixel
883 *			data to the client (makes sense when multiple channels
884 *			contribute to the client)
885 */
886void vpdma_add_in_dtd(struct vpdma_desc_list *list, int width,
887		int stride, const struct v4l2_rect *c_rect,
888		const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
889		enum vpdma_channel chan, int field, u32 flags, int frame_width,
890		int frame_height, int start_h, int start_v)
891{
892	int priority = 0;
893	int notify = 1;
894	int depth = fmt->depth;
895	int channel, next_chan;
896	struct v4l2_rect rect = *c_rect;
897	struct vpdma_dtd *dtd;
898
899	channel = next_chan = chan_info[chan].num;
900
901	if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV &&
902	    (fmt->data_type == DATA_TYPE_C420 ||
903	     fmt->data_type == DATA_TYPE_CB420)) {
904		rect.height >>= 1;
905		rect.top >>= 1;
906		depth = 8;
907	}
908
909	dma_addr += rect.top * stride + (rect.left * depth >> 3);
910
911	dtd = list->next;
912	WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size));
913
914	dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type,
915					notify,
916					field,
917					!!(flags & VPDMA_DATA_FRAME_1D),
918					!!(flags & VPDMA_DATA_EVEN_LINE_SKIP),
919					!!(flags & VPDMA_DATA_ODD_LINE_SKIP),
920					stride);
921
922	dtd->xfer_length_height = dtd_xfer_length_height(rect.width,
923					rect.height);
924	dtd->start_addr = (u32) dma_addr;
925	dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED),
926				DTD_DIR_IN, channel, priority, next_chan);
927	dtd->frame_width_height = dtd_frame_width_height(frame_width,
928					frame_height);
929	dtd->start_h_v = dtd_start_h_v(start_h, start_v);
930	dtd->client_attr0 = 0;
931	dtd->client_attr1 = 0;
932
933	list->next = dtd + 1;
934
935	dump_dtd(dtd);
936}
937EXPORT_SYMBOL(vpdma_add_in_dtd);
938
939int vpdma_hwlist_alloc(struct vpdma_data *vpdma, void *priv)
940{
941	int i, list_num = -1;
942	unsigned long flags;
943
944	spin_lock_irqsave(&vpdma->lock, flags);
945	for (i = 0; i < VPDMA_MAX_NUM_LIST && vpdma->hwlist_used[i]; i++)
946		;
947
948	if (i < VPDMA_MAX_NUM_LIST) {
949		list_num = i;
950		vpdma->hwlist_used[i] = true;
951		vpdma->hwlist_priv[i] = priv;
952	}
953	spin_unlock_irqrestore(&vpdma->lock, flags);
954
955	return list_num;
956}
957EXPORT_SYMBOL(vpdma_hwlist_alloc);
958
959void *vpdma_hwlist_get_priv(struct vpdma_data *vpdma, int list_num)
960{
961	if (!vpdma || list_num >= VPDMA_MAX_NUM_LIST)
962		return NULL;
963
964	return vpdma->hwlist_priv[list_num];
965}
966EXPORT_SYMBOL(vpdma_hwlist_get_priv);
967
968void *vpdma_hwlist_release(struct vpdma_data *vpdma, int list_num)
969{
970	void *priv;
971	unsigned long flags;
972
973	spin_lock_irqsave(&vpdma->lock, flags);
974	vpdma->hwlist_used[list_num] = false;
975	priv = vpdma->hwlist_priv;
976	spin_unlock_irqrestore(&vpdma->lock, flags);
977
978	return priv;
979}
980EXPORT_SYMBOL(vpdma_hwlist_release);
981
982/* set or clear the mask for list complete interrupt */
983void vpdma_enable_list_complete_irq(struct vpdma_data *vpdma, int irq_num,
984		int list_num, bool enable)
985{
986	u32 reg_addr = VPDMA_INT_LIST0_MASK + VPDMA_INTX_OFFSET * irq_num;
987	u32 val;
988
989	val = read_reg(vpdma, reg_addr);
990	if (enable)
991		val |= (1 << (list_num * 2));
992	else
993		val &= ~(1 << (list_num * 2));
994	write_reg(vpdma, reg_addr, val);
995}
996EXPORT_SYMBOL(vpdma_enable_list_complete_irq);
997
998/* get the LIST_STAT register */
999unsigned int vpdma_get_list_stat(struct vpdma_data *vpdma, int irq_num)
1000{
1001	u32 reg_addr = VPDMA_INT_LIST0_STAT + VPDMA_INTX_OFFSET * irq_num;
1002
1003	return read_reg(vpdma, reg_addr);
1004}
1005EXPORT_SYMBOL(vpdma_get_list_stat);
1006
1007/* get the LIST_MASK register */
1008unsigned int vpdma_get_list_mask(struct vpdma_data *vpdma, int irq_num)
1009{
1010	u32 reg_addr = VPDMA_INT_LIST0_MASK + VPDMA_INTX_OFFSET * irq_num;
1011
1012	return read_reg(vpdma, reg_addr);
1013}
1014EXPORT_SYMBOL(vpdma_get_list_mask);
1015
1016/* clear previously occurred list interrupts in the LIST_STAT register */
1017void vpdma_clear_list_stat(struct vpdma_data *vpdma, int irq_num,
1018			   int list_num)
1019{
1020	u32 reg_addr = VPDMA_INT_LIST0_STAT + VPDMA_INTX_OFFSET * irq_num;
1021
1022	write_reg(vpdma, reg_addr, 3 << (list_num * 2));
1023}
1024EXPORT_SYMBOL(vpdma_clear_list_stat);
1025
1026void vpdma_set_bg_color(struct vpdma_data *vpdma,
1027		struct vpdma_data_format *fmt, u32 color)
1028{
1029	if (fmt->type == VPDMA_DATA_FMT_TYPE_RGB)
1030		write_reg(vpdma, VPDMA_BG_RGB, color);
1031	else if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV)
1032		write_reg(vpdma, VPDMA_BG_YUV, color);
1033}
1034EXPORT_SYMBOL(vpdma_set_bg_color);
1035
1036/*
1037 * configures the output mode of the line buffer for the given client, the
1038 * line buffer content can either be mirrored(each line repeated twice) or
1039 * passed to the client as is
1040 */
1041void vpdma_set_line_mode(struct vpdma_data *vpdma, int line_mode,
1042		enum vpdma_channel chan)
1043{
1044	int client_cstat = chan_info[chan].cstat_offset;
1045
1046	write_field_reg(vpdma, client_cstat, line_mode,
1047		VPDMA_CSTAT_LINE_MODE_MASK, VPDMA_CSTAT_LINE_MODE_SHIFT);
1048}
1049EXPORT_SYMBOL(vpdma_set_line_mode);
1050
1051/*
1052 * configures the event which should trigger VPDMA transfer for the given
1053 * client
1054 */
1055void vpdma_set_frame_start_event(struct vpdma_data *vpdma,
1056		enum vpdma_frame_start_event fs_event,
1057		enum vpdma_channel chan)
1058{
1059	int client_cstat = chan_info[chan].cstat_offset;
1060
1061	write_field_reg(vpdma, client_cstat, fs_event,
1062		VPDMA_CSTAT_FRAME_START_MASK, VPDMA_CSTAT_FRAME_START_SHIFT);
1063}
1064EXPORT_SYMBOL(vpdma_set_frame_start_event);
1065
1066static void vpdma_firmware_cb(const struct firmware *f, void *context)
1067{
1068	struct vpdma_data *vpdma = context;
1069	struct vpdma_buf fw_dma_buf;
1070	int i, r;
1071
1072	dev_dbg(&vpdma->pdev->dev, "firmware callback\n");
1073
1074	if (!f || !f->data) {
1075		dev_err(&vpdma->pdev->dev, "couldn't get firmware\n");
1076		return;
1077	}
1078
1079	/* already initialized */
1080	if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK,
1081			VPDMA_LIST_RDY_SHFT)) {
1082		vpdma->cb(vpdma->pdev);
1083		return;
1084	}
1085
1086	r = vpdma_alloc_desc_buf(&fw_dma_buf, f->size);
1087	if (r) {
1088		dev_err(&vpdma->pdev->dev,
1089			"failed to allocate dma buffer for firmware\n");
1090		goto rel_fw;
1091	}
1092
1093	memcpy(fw_dma_buf.addr, f->data, f->size);
1094
1095	vpdma_map_desc_buf(vpdma, &fw_dma_buf);
1096
1097	write_reg(vpdma, VPDMA_LIST_ADDR, (u32) fw_dma_buf.dma_addr);
1098
1099	for (i = 0; i < 100; i++) {		/* max 1 second */
1100		msleep_interruptible(10);
1101
1102		if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK,
1103				VPDMA_LIST_RDY_SHFT))
1104			break;
1105	}
1106
1107	if (i == 100) {
1108		dev_err(&vpdma->pdev->dev, "firmware upload failed\n");
1109		goto free_buf;
1110	}
1111
1112	vpdma->cb(vpdma->pdev);
1113
1114free_buf:
1115	vpdma_unmap_desc_buf(vpdma, &fw_dma_buf);
1116
1117	vpdma_free_desc_buf(&fw_dma_buf);
1118rel_fw:
1119	release_firmware(f);
1120}
1121
1122static int vpdma_load_firmware(struct vpdma_data *vpdma)
1123{
1124	int r;
1125	struct device *dev = &vpdma->pdev->dev;
1126
1127	r = request_firmware_nowait(THIS_MODULE, 1,
1128		(const char *) VPDMA_FIRMWARE, dev, GFP_KERNEL, vpdma,
1129		vpdma_firmware_cb);
1130	if (r) {
1131		dev_err(dev, "firmware not available %s\n", VPDMA_FIRMWARE);
1132		return r;
1133	} else {
1134		dev_info(dev, "loading firmware %s\n", VPDMA_FIRMWARE);
1135	}
1136
1137	return 0;
1138}
1139
1140int vpdma_create(struct platform_device *pdev, struct vpdma_data *vpdma,
1141		void (*cb)(struct platform_device *pdev))
1142{
1143	struct resource *res;
1144	int r;
1145
1146	dev_dbg(&pdev->dev, "vpdma_create\n");
1147
1148	vpdma->pdev = pdev;
1149	vpdma->cb = cb;
1150	spin_lock_init(&vpdma->lock);
1151
1152	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "vpdma");
1153	if (res == NULL) {
1154		dev_err(&pdev->dev, "missing platform resources data\n");
1155		return -ENODEV;
1156	}
1157
1158	vpdma->base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
1159	if (!vpdma->base) {
1160		dev_err(&pdev->dev, "failed to ioremap\n");
1161		return -ENOMEM;
1162	}
1163
1164	r = vpdma_load_firmware(vpdma);
1165	if (r) {
1166		pr_err("failed to load firmware %s\n", VPDMA_FIRMWARE);
1167		return r;
1168	}
1169
1170	return 0;
1171}
1172EXPORT_SYMBOL(vpdma_create);
1173
1174MODULE_AUTHOR("Texas Instruments Inc.");
1175MODULE_FIRMWARE(VPDMA_FIRMWARE);
1176MODULE_LICENSE("GPL v2");
1177