1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * TI Camera Access Layer (CAL) - CAMERARX
4 *
5 * Copyright (c) 2015-2020 Texas Instruments Inc.
6 *
7 * Authors:
8 *	Benoit Parrot <bparrot@ti.com>
9 *	Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10 */
11
12#include <linux/clk.h>
13#include <linux/delay.h>
14#include <linux/mfd/syscon.h>
15#include <linux/module.h>
16#include <linux/of_graph.h>
17#include <linux/platform_device.h>
18#include <linux/regmap.h>
19#include <linux/slab.h>
20
21#include <media/v4l2-ctrls.h>
22#include <media/v4l2-fwnode.h>
23#include <media/v4l2-subdev.h>
24
25#include "cal.h"
26#include "cal_regs.h"
27
28/* ------------------------------------------------------------------
29 *	I/O Register Accessors
30 * ------------------------------------------------------------------
31 */
32
33static inline u32 camerarx_read(struct cal_camerarx *phy, u32 offset)
34{
35	return ioread32(phy->base + offset);
36}
37
38static inline void camerarx_write(struct cal_camerarx *phy, u32 offset, u32 val)
39{
40	iowrite32(val, phy->base + offset);
41}
42
43/* ------------------------------------------------------------------
44 *	CAMERARX Management
45 * ------------------------------------------------------------------
46 */
47
48static s64 cal_camerarx_get_ext_link_freq(struct cal_camerarx *phy)
49{
50	struct v4l2_mbus_config_mipi_csi2 *mipi_csi2 = &phy->endpoint.bus.mipi_csi2;
51	u32 num_lanes = mipi_csi2->num_data_lanes;
52	const struct cal_format_info *fmtinfo;
53	struct v4l2_subdev_state *state;
54	struct v4l2_mbus_framefmt *fmt;
55	u32 bpp;
56	s64 freq;
57
58	state = v4l2_subdev_get_locked_active_state(&phy->subdev);
59
60	fmt = v4l2_subdev_state_get_format(state, CAL_CAMERARX_PAD_SINK);
61
62	fmtinfo = cal_format_by_code(fmt->code);
63	if (!fmtinfo)
64		return -EINVAL;
65
66	bpp = fmtinfo->bpp;
67
68	freq = v4l2_get_link_freq(phy->source->ctrl_handler, bpp, 2 * num_lanes);
69	if (freq < 0) {
70		phy_err(phy, "failed to get link freq for subdev '%s'\n",
71			phy->source->name);
72		return freq;
73	}
74
75	phy_dbg(3, phy, "Source Link Freq: %llu\n", freq);
76
77	return freq;
78}
79
80static void cal_camerarx_lane_config(struct cal_camerarx *phy)
81{
82	u32 val = cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance));
83	u32 lane_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POSITION_MASK;
84	u32 polarity_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POL_MASK;
85	struct v4l2_mbus_config_mipi_csi2 *mipi_csi2 =
86		&phy->endpoint.bus.mipi_csi2;
87	int lane;
88
89	cal_set_field(&val, mipi_csi2->clock_lane + 1, lane_mask);
90	cal_set_field(&val, mipi_csi2->lane_polarities[0], polarity_mask);
91	for (lane = 0; lane < mipi_csi2->num_data_lanes; lane++) {
92		/*
93		 * Every lane are one nibble apart starting with the
94		 * clock followed by the data lanes so shift masks by 4.
95		 */
96		lane_mask <<= 4;
97		polarity_mask <<= 4;
98		cal_set_field(&val, mipi_csi2->data_lanes[lane] + 1, lane_mask);
99		cal_set_field(&val, mipi_csi2->lane_polarities[lane + 1],
100			      polarity_mask);
101	}
102
103	cal_write(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), val);
104	phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x\n",
105		phy->instance, val);
106}
107
108static void cal_camerarx_enable(struct cal_camerarx *phy)
109{
110	u32 num_lanes = phy->cal->data->camerarx[phy->instance].num_lanes;
111
112	regmap_field_write(phy->fields[F_CAMMODE], 0);
113	/* Always enable all lanes at the phy control level */
114	regmap_field_write(phy->fields[F_LANEENABLE], (1 << num_lanes) - 1);
115	/* F_CSI_MODE is not present on every architecture */
116	if (phy->fields[F_CSI_MODE])
117		regmap_field_write(phy->fields[F_CSI_MODE], 1);
118	regmap_field_write(phy->fields[F_CTRLCLKEN], 1);
119}
120
121void cal_camerarx_disable(struct cal_camerarx *phy)
122{
123	regmap_field_write(phy->fields[F_CTRLCLKEN], 0);
124}
125
126/*
127 * TCLK values are OK at their reset values
128 */
129#define TCLK_TERM	0
130#define TCLK_MISS	1
131#define TCLK_SETTLE	14
132
133static void cal_camerarx_config(struct cal_camerarx *phy, s64 link_freq)
134{
135	unsigned int reg0, reg1;
136	unsigned int ths_term, ths_settle;
137
138	/* DPHY timing configuration */
139
140	/* THS_TERM: Programmed value = floor(20 ns/DDRClk period) */
141	ths_term = div_s64(20 * link_freq, 1000 * 1000 * 1000);
142	phy_dbg(1, phy, "ths_term: %d (0x%02x)\n", ths_term, ths_term);
143
144	/* THS_SETTLE: Programmed value = floor(105 ns/DDRClk period) + 4 */
145	ths_settle = div_s64(105 * link_freq, 1000 * 1000 * 1000) + 4;
146	phy_dbg(1, phy, "ths_settle: %d (0x%02x)\n", ths_settle, ths_settle);
147
148	reg0 = camerarx_read(phy, CAL_CSI2_PHY_REG0);
149	cal_set_field(&reg0, CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_DISABLE,
150		      CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_MASK);
151	cal_set_field(&reg0, ths_term, CAL_CSI2_PHY_REG0_THS_TERM_MASK);
152	cal_set_field(&reg0, ths_settle, CAL_CSI2_PHY_REG0_THS_SETTLE_MASK);
153
154	phy_dbg(1, phy, "CSI2_%d_REG0 = 0x%08x\n", phy->instance, reg0);
155	camerarx_write(phy, CAL_CSI2_PHY_REG0, reg0);
156
157	reg1 = camerarx_read(phy, CAL_CSI2_PHY_REG1);
158	cal_set_field(&reg1, TCLK_TERM, CAL_CSI2_PHY_REG1_TCLK_TERM_MASK);
159	cal_set_field(&reg1, 0xb8, CAL_CSI2_PHY_REG1_DPHY_HS_SYNC_PATTERN_MASK);
160	cal_set_field(&reg1, TCLK_MISS,
161		      CAL_CSI2_PHY_REG1_CTRLCLK_DIV_FACTOR_MASK);
162	cal_set_field(&reg1, TCLK_SETTLE, CAL_CSI2_PHY_REG1_TCLK_SETTLE_MASK);
163
164	phy_dbg(1, phy, "CSI2_%d_REG1 = 0x%08x\n", phy->instance, reg1);
165	camerarx_write(phy, CAL_CSI2_PHY_REG1, reg1);
166}
167
168static void cal_camerarx_power(struct cal_camerarx *phy, bool enable)
169{
170	u32 target_state;
171	unsigned int i;
172
173	target_state = enable ? CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_ON :
174		       CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_OFF;
175
176	cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
177			target_state, CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_MASK);
178
179	for (i = 0; i < 10; i++) {
180		u32 current_state;
181
182		current_state = cal_read_field(phy->cal,
183					       CAL_CSI2_COMPLEXIO_CFG(phy->instance),
184					       CAL_CSI2_COMPLEXIO_CFG_PWR_STATUS_MASK);
185
186		if (current_state == target_state)
187			break;
188
189		usleep_range(1000, 1100);
190	}
191
192	if (i == 10)
193		phy_err(phy, "Failed to power %s complexio\n",
194			enable ? "up" : "down");
195}
196
197static void cal_camerarx_wait_reset(struct cal_camerarx *phy)
198{
199	unsigned long timeout;
200
201	timeout = jiffies + msecs_to_jiffies(750);
202	while (time_before(jiffies, timeout)) {
203		if (cal_read_field(phy->cal,
204				   CAL_CSI2_COMPLEXIO_CFG(phy->instance),
205				   CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) ==
206		    CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED)
207			break;
208		usleep_range(500, 5000);
209	}
210
211	if (cal_read_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
212			   CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) !=
213			   CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED)
214		phy_err(phy, "Timeout waiting for Complex IO reset done\n");
215}
216
217static void cal_camerarx_wait_stop_state(struct cal_camerarx *phy)
218{
219	unsigned long timeout;
220
221	timeout = jiffies + msecs_to_jiffies(750);
222	while (time_before(jiffies, timeout)) {
223		if (cal_read_field(phy->cal,
224				   CAL_CSI2_TIMING(phy->instance),
225				   CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) == 0)
226			break;
227		usleep_range(500, 5000);
228	}
229
230	if (cal_read_field(phy->cal, CAL_CSI2_TIMING(phy->instance),
231			   CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) != 0)
232		phy_err(phy, "Timeout waiting for stop state\n");
233}
234
235static void cal_camerarx_enable_irqs(struct cal_camerarx *phy)
236{
237	const u32 cio_err_mask =
238		CAL_CSI2_COMPLEXIO_IRQ_LANE_ERRORS_MASK |
239		CAL_CSI2_COMPLEXIO_IRQ_FIFO_OVR_MASK |
240		CAL_CSI2_COMPLEXIO_IRQ_SHORT_PACKET_MASK |
241		CAL_CSI2_COMPLEXIO_IRQ_ECC_NO_CORRECTION_MASK;
242	const u32 vc_err_mask =
243		CAL_CSI2_VC_IRQ_CS_IRQ_MASK(0) |
244		CAL_CSI2_VC_IRQ_CS_IRQ_MASK(1) |
245		CAL_CSI2_VC_IRQ_CS_IRQ_MASK(2) |
246		CAL_CSI2_VC_IRQ_CS_IRQ_MASK(3) |
247		CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(0) |
248		CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(1) |
249		CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(2) |
250		CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(3);
251
252	/* Enable CIO & VC error IRQs. */
253	cal_write(phy->cal, CAL_HL_IRQENABLE_SET(0),
254		  CAL_HL_IRQ_CIO_MASK(phy->instance) |
255		  CAL_HL_IRQ_VC_MASK(phy->instance));
256	cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance),
257		  cio_err_mask);
258	cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(phy->instance),
259		  vc_err_mask);
260}
261
262static void cal_camerarx_disable_irqs(struct cal_camerarx *phy)
263{
264	/* Disable CIO error irqs */
265	cal_write(phy->cal, CAL_HL_IRQENABLE_CLR(0),
266		  CAL_HL_IRQ_CIO_MASK(phy->instance) |
267		  CAL_HL_IRQ_VC_MASK(phy->instance));
268	cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance), 0);
269	cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(phy->instance), 0);
270}
271
272static void cal_camerarx_ppi_enable(struct cal_camerarx *phy)
273{
274	cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
275			1, CAL_CSI2_PPI_CTRL_ECC_EN_MASK);
276
277	cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
278			1, CAL_CSI2_PPI_CTRL_IF_EN_MASK);
279}
280
281static void cal_camerarx_ppi_disable(struct cal_camerarx *phy)
282{
283	cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
284			0, CAL_CSI2_PPI_CTRL_IF_EN_MASK);
285}
286
287static int cal_camerarx_start(struct cal_camerarx *phy)
288{
289	s64 link_freq;
290	u32 sscounter;
291	u32 val;
292	int ret;
293
294	if (phy->enable_count > 0) {
295		phy->enable_count++;
296		return 0;
297	}
298
299	link_freq = cal_camerarx_get_ext_link_freq(phy);
300	if (link_freq < 0)
301		return link_freq;
302
303	ret = v4l2_subdev_call(phy->source, core, s_power, 1);
304	if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV) {
305		phy_err(phy, "power on failed in subdev\n");
306		return ret;
307	}
308
309	cal_camerarx_enable_irqs(phy);
310
311	/*
312	 * CSI-2 PHY Link Initialization Sequence, according to the DRA74xP /
313	 * DRA75xP / DRA76xP / DRA77xP TRM. The DRA71x / DRA72x and the AM65x /
314	 * DRA80xM TRMs have a slightly simplified sequence.
315	 */
316
317	/*
318	 * 1. Configure all CSI-2 low level protocol registers to be ready to
319	 *    receive signals/data from the CSI-2 PHY.
320	 *
321	 *    i.-v. Configure the lanes position and polarity.
322	 */
323	cal_camerarx_lane_config(phy);
324
325	/*
326	 *    vi.-vii. Configure D-PHY mode, enable the required lanes and
327	 *             enable the CAMERARX clock.
328	 */
329	cal_camerarx_enable(phy);
330
331	/*
332	 * 2. CSI PHY and link initialization sequence.
333	 *
334	 *    a. Deassert the CSI-2 PHY reset. Do not wait for reset completion
335	 *       at this point, as it requires the external source to send the
336	 *       CSI-2 HS clock.
337	 */
338	cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
339			CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_OPERATIONAL,
340			CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK);
341	phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x De-assert Complex IO Reset\n",
342		phy->instance,
343		cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance)));
344
345	/* Dummy read to allow SCP reset to complete. */
346	camerarx_read(phy, CAL_CSI2_PHY_REG0);
347
348	/* Program the PHY timing parameters. */
349	cal_camerarx_config(phy, link_freq);
350
351	/*
352	 *    b. Assert the FORCERXMODE signal.
353	 *
354	 * The stop-state-counter is based on fclk cycles, and we always use
355	 * the x16 and x4 settings, so stop-state-timeout =
356	 * fclk-cycle * 16 * 4 * counter.
357	 *
358	 * Stop-state-timeout must be more than 100us as per CSI-2 spec, so we
359	 * calculate a timeout that's 100us (rounding up).
360	 */
361	sscounter = DIV_ROUND_UP(clk_get_rate(phy->cal->fclk), 10000 *  16 * 4);
362
363	val = cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance));
364	cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X16_IO1_MASK);
365	cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X4_IO1_MASK);
366	cal_set_field(&val, sscounter,
367		      CAL_CSI2_TIMING_STOP_STATE_COUNTER_IO1_MASK);
368	cal_write(phy->cal, CAL_CSI2_TIMING(phy->instance), val);
369	phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Stop States\n",
370		phy->instance,
371		cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance)));
372
373	/* Assert the FORCERXMODE signal. */
374	cal_write_field(phy->cal, CAL_CSI2_TIMING(phy->instance),
375			1, CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK);
376	phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Force RXMODE\n",
377		phy->instance,
378		cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance)));
379
380	/*
381	 * c. Connect pull-down on CSI-2 PHY link (using pad control).
382	 *
383	 * This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not
384	 * implemented.
385	 */
386
387	/*
388	 * d. Power up the CSI-2 PHY.
389	 * e. Check whether the state status reaches the ON state.
390	 */
391	cal_camerarx_power(phy, true);
392
393	/*
394	 * Start the source to enable the CSI-2 HS clock. We can now wait for
395	 * CSI-2 PHY reset to complete.
396	 */
397	ret = v4l2_subdev_call(phy->source, video, s_stream, 1);
398	if (ret) {
399		v4l2_subdev_call(phy->source, core, s_power, 0);
400		cal_camerarx_disable_irqs(phy);
401		phy_err(phy, "stream on failed in subdev\n");
402		return ret;
403	}
404
405	cal_camerarx_wait_reset(phy);
406
407	/* f. Wait for STOPSTATE=1 for all enabled lane modules. */
408	cal_camerarx_wait_stop_state(phy);
409
410	phy_dbg(1, phy, "CSI2_%u_REG1 = 0x%08x (bits 31-28 should be set)\n",
411		phy->instance, camerarx_read(phy, CAL_CSI2_PHY_REG1));
412
413	/*
414	 * g. Disable pull-down on CSI-2 PHY link (using pad control).
415	 *
416	 * This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not
417	 * implemented.
418	 */
419
420	/* Finally, enable the PHY Protocol Interface (PPI). */
421	cal_camerarx_ppi_enable(phy);
422
423	phy->enable_count++;
424
425	return 0;
426}
427
428static void cal_camerarx_stop(struct cal_camerarx *phy)
429{
430	int ret;
431
432	if (--phy->enable_count > 0)
433		return;
434
435	cal_camerarx_ppi_disable(phy);
436
437	cal_camerarx_disable_irqs(phy);
438
439	cal_camerarx_power(phy, false);
440
441	/* Assert Complex IO Reset */
442	cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
443			CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL,
444			CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK);
445
446	phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x Complex IO in Reset\n",
447		phy->instance,
448		cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance)));
449
450	/* Disable the phy */
451	cal_camerarx_disable(phy);
452
453	if (v4l2_subdev_call(phy->source, video, s_stream, 0))
454		phy_err(phy, "stream off failed in subdev\n");
455
456	ret = v4l2_subdev_call(phy->source, core, s_power, 0);
457	if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV)
458		phy_err(phy, "power off failed in subdev\n");
459}
460
461/*
462 *   Errata i913: CSI2 LDO Needs to be disabled when module is powered on
463 *
464 *   Enabling CSI2 LDO shorts it to core supply. It is crucial the 2 CSI2
465 *   LDOs on the device are disabled if CSI-2 module is powered on
466 *   (0x4845 B304 | 0x4845 B384 [28:27] = 0x1) or in ULPS (0x4845 B304
467 *   | 0x4845 B384 [28:27] = 0x2) mode. Common concerns include: high
468 *   current draw on the module supply in active mode.
469 *
470 *   Errata does not apply when CSI-2 module is powered off
471 *   (0x4845 B304 | 0x4845 B384 [28:27] = 0x0).
472 *
473 * SW Workaround:
474 *	Set the following register bits to disable the LDO,
475 *	which is essentially CSI2 REG10 bit 6:
476 *
477 *		Core 0:  0x4845 B828 = 0x0000 0040
478 *		Core 1:  0x4845 B928 = 0x0000 0040
479 */
480void cal_camerarx_i913_errata(struct cal_camerarx *phy)
481{
482	u32 reg10 = camerarx_read(phy, CAL_CSI2_PHY_REG10);
483
484	cal_set_field(&reg10, 1, CAL_CSI2_PHY_REG10_I933_LDO_DISABLE_MASK);
485
486	phy_dbg(1, phy, "CSI2_%d_REG10 = 0x%08x\n", phy->instance, reg10);
487	camerarx_write(phy, CAL_CSI2_PHY_REG10, reg10);
488}
489
490static int cal_camerarx_regmap_init(struct cal_dev *cal,
491				    struct cal_camerarx *phy)
492{
493	const struct cal_camerarx_data *phy_data;
494	unsigned int i;
495
496	if (!cal->data)
497		return -EINVAL;
498
499	phy_data = &cal->data->camerarx[phy->instance];
500
501	for (i = 0; i < F_MAX_FIELDS; i++) {
502		struct reg_field field = {
503			.reg = cal->syscon_camerrx_offset,
504			.lsb = phy_data->fields[i].lsb,
505			.msb = phy_data->fields[i].msb,
506		};
507
508		/*
509		 * Here we update the reg offset with the
510		 * value found in DT
511		 */
512		phy->fields[i] = devm_regmap_field_alloc(cal->dev,
513							 cal->syscon_camerrx,
514							 field);
515		if (IS_ERR(phy->fields[i])) {
516			cal_err(cal, "Unable to allocate regmap fields\n");
517			return PTR_ERR(phy->fields[i]);
518		}
519	}
520
521	return 0;
522}
523
524static int cal_camerarx_parse_dt(struct cal_camerarx *phy)
525{
526	struct v4l2_fwnode_endpoint *endpoint = &phy->endpoint;
527	char data_lanes[V4L2_MBUS_CSI2_MAX_DATA_LANES * 2];
528	struct device_node *ep_node;
529	unsigned int i;
530	int ret;
531
532	/*
533	 * Find the endpoint node for the port corresponding to the PHY
534	 * instance, and parse its CSI-2-related properties.
535	 */
536	ep_node = of_graph_get_endpoint_by_regs(phy->cal->dev->of_node,
537						phy->instance, 0);
538	if (!ep_node) {
539		/*
540		 * The endpoint is not mandatory, not all PHY instances need to
541		 * be connected in DT.
542		 */
543		phy_dbg(3, phy, "Port has no endpoint\n");
544		return 0;
545	}
546
547	endpoint->bus_type = V4L2_MBUS_CSI2_DPHY;
548	ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), endpoint);
549	if (ret < 0) {
550		phy_err(phy, "Failed to parse endpoint\n");
551		goto done;
552	}
553
554	for (i = 0; i < endpoint->bus.mipi_csi2.num_data_lanes; i++) {
555		unsigned int lane = endpoint->bus.mipi_csi2.data_lanes[i];
556
557		if (lane > 4) {
558			phy_err(phy, "Invalid position %u for data lane %u\n",
559				lane, i);
560			ret = -EINVAL;
561			goto done;
562		}
563
564		data_lanes[i*2] = '0' + lane;
565		data_lanes[i*2+1] = ' ';
566	}
567
568	data_lanes[i*2-1] = '\0';
569
570	phy_dbg(3, phy,
571		"CSI-2 bus: clock lane <%u>, data lanes <%s>, flags 0x%08x\n",
572		endpoint->bus.mipi_csi2.clock_lane, data_lanes,
573		endpoint->bus.mipi_csi2.flags);
574
575	/* Retrieve the connected device and store it for later use. */
576	phy->source_ep_node = of_graph_get_remote_endpoint(ep_node);
577	phy->source_node = of_graph_get_port_parent(phy->source_ep_node);
578	if (!phy->source_node) {
579		phy_dbg(3, phy, "Can't get remote parent\n");
580		of_node_put(phy->source_ep_node);
581		ret = -EINVAL;
582		goto done;
583	}
584
585	phy_dbg(1, phy, "Found connected device %pOFn\n", phy->source_node);
586
587done:
588	of_node_put(ep_node);
589	return ret;
590}
591
592/* ------------------------------------------------------------------
593 *	V4L2 Subdev Operations
594 * ------------------------------------------------------------------
595 */
596
597static inline struct cal_camerarx *to_cal_camerarx(struct v4l2_subdev *sd)
598{
599	return container_of(sd, struct cal_camerarx, subdev);
600}
601
602static int cal_camerarx_sd_s_stream(struct v4l2_subdev *sd, int enable)
603{
604	struct cal_camerarx *phy = to_cal_camerarx(sd);
605	struct v4l2_subdev_state *state;
606	int ret = 0;
607
608	state = v4l2_subdev_lock_and_get_active_state(sd);
609
610	if (enable)
611		ret = cal_camerarx_start(phy);
612	else
613		cal_camerarx_stop(phy);
614
615	v4l2_subdev_unlock_state(state);
616
617	return ret;
618}
619
620static int cal_camerarx_sd_enum_mbus_code(struct v4l2_subdev *sd,
621					  struct v4l2_subdev_state *state,
622					  struct v4l2_subdev_mbus_code_enum *code)
623{
624	/* No transcoding, source and sink codes must match. */
625	if (cal_rx_pad_is_source(code->pad)) {
626		struct v4l2_mbus_framefmt *fmt;
627
628		if (code->index > 0)
629			return -EINVAL;
630
631		fmt = v4l2_subdev_state_get_format(state,
632						   CAL_CAMERARX_PAD_SINK);
633		code->code = fmt->code;
634	} else {
635		if (code->index >= cal_num_formats)
636			return -EINVAL;
637
638		code->code = cal_formats[code->index].code;
639	}
640
641	return 0;
642}
643
644static int cal_camerarx_sd_enum_frame_size(struct v4l2_subdev *sd,
645					   struct v4l2_subdev_state *state,
646					   struct v4l2_subdev_frame_size_enum *fse)
647{
648	const struct cal_format_info *fmtinfo;
649
650	if (fse->index > 0)
651		return -EINVAL;
652
653	/* No transcoding, source and sink formats must match. */
654	if (cal_rx_pad_is_source(fse->pad)) {
655		struct v4l2_mbus_framefmt *fmt;
656
657		fmt = v4l2_subdev_state_get_format(state,
658						   CAL_CAMERARX_PAD_SINK);
659		if (fse->code != fmt->code)
660			return -EINVAL;
661
662		fse->min_width = fmt->width;
663		fse->max_width = fmt->width;
664		fse->min_height = fmt->height;
665		fse->max_height = fmt->height;
666	} else {
667		fmtinfo = cal_format_by_code(fse->code);
668		if (!fmtinfo)
669			return -EINVAL;
670
671		fse->min_width = CAL_MIN_WIDTH_BYTES * 8 / ALIGN(fmtinfo->bpp, 8);
672		fse->max_width = CAL_MAX_WIDTH_BYTES * 8 / ALIGN(fmtinfo->bpp, 8);
673		fse->min_height = CAL_MIN_HEIGHT_LINES;
674		fse->max_height = CAL_MAX_HEIGHT_LINES;
675	}
676
677	return 0;
678}
679
680static int cal_camerarx_sd_set_fmt(struct v4l2_subdev *sd,
681				   struct v4l2_subdev_state *state,
682				   struct v4l2_subdev_format *format)
683{
684	const struct cal_format_info *fmtinfo;
685	struct v4l2_mbus_framefmt *fmt;
686	unsigned int bpp;
687
688	/* No transcoding, source and sink formats must match. */
689	if (cal_rx_pad_is_source(format->pad))
690		return v4l2_subdev_get_fmt(sd, state, format);
691
692	/*
693	 * Default to the first format if the requested media bus code isn't
694	 * supported.
695	 */
696	fmtinfo = cal_format_by_code(format->format.code);
697	if (!fmtinfo)
698		fmtinfo = &cal_formats[0];
699
700	/* Clamp the size, update the code. The colorspace is accepted as-is. */
701	bpp = ALIGN(fmtinfo->bpp, 8);
702
703	format->format.width = clamp_t(unsigned int, format->format.width,
704				       CAL_MIN_WIDTH_BYTES * 8 / bpp,
705				       CAL_MAX_WIDTH_BYTES * 8 / bpp);
706	format->format.height = clamp_t(unsigned int, format->format.height,
707					CAL_MIN_HEIGHT_LINES,
708					CAL_MAX_HEIGHT_LINES);
709	format->format.code = fmtinfo->code;
710	format->format.field = V4L2_FIELD_NONE;
711
712	/* Store the format and propagate it to the source pad. */
713
714	fmt = v4l2_subdev_state_get_format(state, CAL_CAMERARX_PAD_SINK);
715	*fmt = format->format;
716
717	fmt = v4l2_subdev_state_get_format(state,
718					   CAL_CAMERARX_PAD_FIRST_SOURCE);
719	*fmt = format->format;
720
721	return 0;
722}
723
724static int cal_camerarx_sd_init_state(struct v4l2_subdev *sd,
725				      struct v4l2_subdev_state *state)
726{
727	struct v4l2_subdev_format format = {
728		.which = state ? V4L2_SUBDEV_FORMAT_TRY
729		: V4L2_SUBDEV_FORMAT_ACTIVE,
730		.pad = CAL_CAMERARX_PAD_SINK,
731		.format = {
732			.width = 640,
733			.height = 480,
734			.code = MEDIA_BUS_FMT_UYVY8_1X16,
735			.field = V4L2_FIELD_NONE,
736			.colorspace = V4L2_COLORSPACE_SRGB,
737			.ycbcr_enc = V4L2_YCBCR_ENC_601,
738			.quantization = V4L2_QUANTIZATION_LIM_RANGE,
739			.xfer_func = V4L2_XFER_FUNC_SRGB,
740		},
741	};
742
743	return cal_camerarx_sd_set_fmt(sd, state, &format);
744}
745
746static int cal_camerarx_get_frame_desc(struct v4l2_subdev *sd, unsigned int pad,
747				       struct v4l2_mbus_frame_desc *fd)
748{
749	struct cal_camerarx *phy = to_cal_camerarx(sd);
750	struct v4l2_mbus_frame_desc remote_desc;
751	const struct media_pad *remote_pad;
752	int ret;
753
754	remote_pad = media_pad_remote_pad_first(&phy->pads[CAL_CAMERARX_PAD_SINK]);
755	if (!remote_pad)
756		return -EPIPE;
757
758	ret = v4l2_subdev_call(phy->source, pad, get_frame_desc,
759			       remote_pad->index, &remote_desc);
760	if (ret)
761		return ret;
762
763	if (remote_desc.type != V4L2_MBUS_FRAME_DESC_TYPE_CSI2) {
764		cal_err(phy->cal,
765			"Frame descriptor does not describe CSI-2 link");
766		return -EINVAL;
767	}
768
769	if (remote_desc.num_entries > 1)
770		cal_err(phy->cal,
771			"Multiple streams not supported in remote frame descriptor, using the first one\n");
772
773	fd->type = V4L2_MBUS_FRAME_DESC_TYPE_CSI2;
774	fd->num_entries = 1;
775	fd->entry[0] = remote_desc.entry[0];
776
777	return 0;
778}
779
780static const struct v4l2_subdev_video_ops cal_camerarx_video_ops = {
781	.s_stream = cal_camerarx_sd_s_stream,
782};
783
784static const struct v4l2_subdev_pad_ops cal_camerarx_pad_ops = {
785	.enum_mbus_code = cal_camerarx_sd_enum_mbus_code,
786	.enum_frame_size = cal_camerarx_sd_enum_frame_size,
787	.get_fmt = v4l2_subdev_get_fmt,
788	.set_fmt = cal_camerarx_sd_set_fmt,
789	.get_frame_desc = cal_camerarx_get_frame_desc,
790};
791
792static const struct v4l2_subdev_ops cal_camerarx_subdev_ops = {
793	.video = &cal_camerarx_video_ops,
794	.pad = &cal_camerarx_pad_ops,
795};
796
797static const struct v4l2_subdev_internal_ops cal_camerarx_internal_ops = {
798	.init_state = cal_camerarx_sd_init_state,
799};
800
801static struct media_entity_operations cal_camerarx_media_ops = {
802	.link_validate = v4l2_subdev_link_validate,
803};
804
805/* ------------------------------------------------------------------
806 *	Create and Destroy
807 * ------------------------------------------------------------------
808 */
809
810struct cal_camerarx *cal_camerarx_create(struct cal_dev *cal,
811					 unsigned int instance)
812{
813	struct platform_device *pdev = to_platform_device(cal->dev);
814	struct cal_camerarx *phy;
815	struct v4l2_subdev *sd;
816	unsigned int i;
817	int ret;
818
819	phy = devm_kzalloc(cal->dev, sizeof(*phy), GFP_KERNEL);
820	if (!phy)
821		return ERR_PTR(-ENOMEM);
822
823	phy->cal = cal;
824	phy->instance = instance;
825
826	spin_lock_init(&phy->vc_lock);
827
828	phy->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
829						(instance == 0) ?
830						"cal_rx_core0" :
831						"cal_rx_core1");
832	phy->base = devm_ioremap_resource(cal->dev, phy->res);
833	if (IS_ERR(phy->base)) {
834		cal_err(cal, "failed to ioremap\n");
835		return ERR_CAST(phy->base);
836	}
837
838	cal_dbg(1, cal, "ioresource %s at %pa - %pa\n",
839		phy->res->name, &phy->res->start, &phy->res->end);
840
841	ret = cal_camerarx_regmap_init(cal, phy);
842	if (ret)
843		return ERR_PTR(ret);
844
845	ret = cal_camerarx_parse_dt(phy);
846	if (ret)
847		return ERR_PTR(ret);
848
849	/* Initialize the V4L2 subdev and media entity. */
850	sd = &phy->subdev;
851	v4l2_subdev_init(sd, &cal_camerarx_subdev_ops);
852	sd->internal_ops = &cal_camerarx_internal_ops;
853	sd->entity.function = MEDIA_ENT_F_VID_IF_BRIDGE;
854	sd->flags = V4L2_SUBDEV_FL_HAS_DEVNODE;
855	snprintf(sd->name, sizeof(sd->name), "CAMERARX%u", instance);
856	sd->dev = cal->dev;
857
858	phy->pads[CAL_CAMERARX_PAD_SINK].flags = MEDIA_PAD_FL_SINK;
859	for (i = CAL_CAMERARX_PAD_FIRST_SOURCE; i < CAL_CAMERARX_NUM_PADS; ++i)
860		phy->pads[i].flags = MEDIA_PAD_FL_SOURCE;
861	sd->entity.ops = &cal_camerarx_media_ops;
862	ret = media_entity_pads_init(&sd->entity, ARRAY_SIZE(phy->pads),
863				     phy->pads);
864	if (ret)
865		goto err_node_put;
866
867	ret = v4l2_subdev_init_finalize(sd);
868	if (ret)
869		goto err_entity_cleanup;
870
871	ret = v4l2_device_register_subdev(&cal->v4l2_dev, sd);
872	if (ret)
873		goto err_free_state;
874
875	return phy;
876
877err_free_state:
878	v4l2_subdev_cleanup(sd);
879err_entity_cleanup:
880	media_entity_cleanup(&phy->subdev.entity);
881err_node_put:
882	of_node_put(phy->source_ep_node);
883	of_node_put(phy->source_node);
884	return ERR_PTR(ret);
885}
886
887void cal_camerarx_destroy(struct cal_camerarx *phy)
888{
889	if (!phy)
890		return;
891
892	v4l2_device_unregister_subdev(&phy->subdev);
893	v4l2_subdev_cleanup(&phy->subdev);
894	media_entity_cleanup(&phy->subdev.entity);
895	of_node_put(phy->source_ep_node);
896	of_node_put(phy->source_node);
897}
898