1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  Driver for the Conexant CX23885/7/8 PCIe bridge
4 *
5 *  CX23888 Integrated Consumer Infrared Controller
6 *
7 *  Copyright (C) 2009  Andy Walls <awalls@md.metrocast.net>
8 */
9
10#include "cx23885.h"
11#include "cx23888-ir.h"
12
13#include <linux/kfifo.h>
14#include <linux/slab.h>
15
16#include <media/v4l2-device.h>
17#include <media/rc-core.h>
18
19static unsigned int ir_888_debug;
20module_param(ir_888_debug, int, 0644);
21MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]");
22
23#define CX23888_IR_REG_BASE	0x170000
24/*
25 * These CX23888 register offsets have a straightforward one to one mapping
26 * to the CX23885 register offsets of 0x200 through 0x218
27 */
28#define CX23888_IR_CNTRL_REG	0x170000
29#define CNTRL_WIN_3_3	0x00000000
30#define CNTRL_WIN_4_3	0x00000001
31#define CNTRL_WIN_3_4	0x00000002
32#define CNTRL_WIN_4_4	0x00000003
33#define CNTRL_WIN	0x00000003
34#define CNTRL_EDG_NONE	0x00000000
35#define CNTRL_EDG_FALL	0x00000004
36#define CNTRL_EDG_RISE	0x00000008
37#define CNTRL_EDG_BOTH	0x0000000C
38#define CNTRL_EDG	0x0000000C
39#define CNTRL_DMD	0x00000010
40#define CNTRL_MOD	0x00000020
41#define CNTRL_RFE	0x00000040
42#define CNTRL_TFE	0x00000080
43#define CNTRL_RXE	0x00000100
44#define CNTRL_TXE	0x00000200
45#define CNTRL_RIC	0x00000400
46#define CNTRL_TIC	0x00000800
47#define CNTRL_CPL	0x00001000
48#define CNTRL_LBM	0x00002000
49#define CNTRL_R		0x00004000
50/* CX23888 specific control flag */
51#define CNTRL_IVO	0x00008000
52
53#define CX23888_IR_TXCLK_REG	0x170004
54#define TXCLK_TCD	0x0000FFFF
55
56#define CX23888_IR_RXCLK_REG	0x170008
57#define RXCLK_RCD	0x0000FFFF
58
59#define CX23888_IR_CDUTY_REG	0x17000C
60#define CDUTY_CDC	0x0000000F
61
62#define CX23888_IR_STATS_REG	0x170010
63#define STATS_RTO	0x00000001
64#define STATS_ROR	0x00000002
65#define STATS_RBY	0x00000004
66#define STATS_TBY	0x00000008
67#define STATS_RSR	0x00000010
68#define STATS_TSR	0x00000020
69
70#define CX23888_IR_IRQEN_REG	0x170014
71#define IRQEN_RTE	0x00000001
72#define IRQEN_ROE	0x00000002
73#define IRQEN_RSE	0x00000010
74#define IRQEN_TSE	0x00000020
75
76#define CX23888_IR_FILTR_REG	0x170018
77#define FILTR_LPF	0x0000FFFF
78
79/* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
80#define CX23888_IR_FIFO_REG	0x170040
81#define FIFO_RXTX	0x0000FFFF
82#define FIFO_RXTX_LVL	0x00010000
83#define FIFO_RXTX_RTO	0x0001FFFF
84#define FIFO_RX_NDV	0x00020000
85#define FIFO_RX_DEPTH	8
86#define FIFO_TX_DEPTH	8
87
88/* CX23888 unique registers */
89#define CX23888_IR_SEEDP_REG	0x17001C
90#define CX23888_IR_TIMOL_REG	0x170020
91#define CX23888_IR_WAKE0_REG	0x170024
92#define CX23888_IR_WAKE1_REG	0x170028
93#define CX23888_IR_WAKE2_REG	0x17002C
94#define CX23888_IR_MASK0_REG	0x170030
95#define CX23888_IR_MASK1_REG	0x170034
96#define CX23888_IR_MAKS2_REG	0x170038
97#define CX23888_IR_DPIPG_REG	0x17003C
98#define CX23888_IR_LEARN_REG	0x170044
99
100#define CX23888_VIDCLK_FREQ	108000000 /* 108 MHz, BT.656 */
101#define CX23888_IR_REFCLK_FREQ	(CX23888_VIDCLK_FREQ / 2)
102
103/*
104 * We use this union internally for convenience, but callers to tx_write
105 * and rx_read will be expecting records of type struct ir_raw_event.
106 * Always ensure the size of this union is dictated by struct ir_raw_event.
107 */
108union cx23888_ir_fifo_rec {
109	u32 hw_fifo_data;
110	struct ir_raw_event ir_core_data;
111};
112
113#define CX23888_IR_RX_KFIFO_SIZE    (256 * sizeof(union cx23888_ir_fifo_rec))
114#define CX23888_IR_TX_KFIFO_SIZE    (256 * sizeof(union cx23888_ir_fifo_rec))
115
116struct cx23888_ir_state {
117	struct v4l2_subdev sd;
118	struct cx23885_dev *dev;
119
120	struct v4l2_subdev_ir_parameters rx_params;
121	struct mutex rx_params_lock;
122	atomic_t rxclk_divider;
123	atomic_t rx_invert;
124
125	struct kfifo rx_kfifo;
126	spinlock_t rx_kfifo_lock;
127
128	struct v4l2_subdev_ir_parameters tx_params;
129	struct mutex tx_params_lock;
130	atomic_t txclk_divider;
131};
132
133static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd)
134{
135	return v4l2_get_subdevdata(sd);
136}
137
138/*
139 * IR register block read and write functions
140 */
141static
142inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value)
143{
144	cx_write(addr, value);
145	return 0;
146}
147
148static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr)
149{
150	return cx_read(addr);
151}
152
153static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr,
154				     u32 and_mask, u32 or_value)
155{
156	cx_andor(addr, ~and_mask, or_value);
157	return 0;
158}
159
160/*
161 * Rx and Tx Clock Divider register computations
162 *
163 * Note the largest clock divider value of 0xffff corresponds to:
164 *	(0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
165 * which fits in 21 bits, so we'll use unsigned int for time arguments.
166 */
167static inline u16 count_to_clock_divider(unsigned int d)
168{
169	if (d > RXCLK_RCD + 1)
170		d = RXCLK_RCD;
171	else if (d < 2)
172		d = 1;
173	else
174		d--;
175	return (u16) d;
176}
177
178static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
179{
180	return count_to_clock_divider(
181			  DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16));
182}
183
184static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
185{
186	return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16);
187}
188
189static inline unsigned int clock_divider_to_freq(unsigned int divider,
190						 unsigned int rollovers)
191{
192	return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ,
193				 (divider + 1) * rollovers);
194}
195
196/*
197 * Low Pass Filter register calculations
198 *
199 * Note the largest count value of 0xffff corresponds to:
200 *	0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
201 * which fits in 21 bits, so we'll use unsigned int for time arguments.
202 */
203static inline u16 count_to_lpf_count(unsigned int d)
204{
205	if (d > FILTR_LPF)
206		d = FILTR_LPF;
207	else if (d < 4)
208		d = 0;
209	return (u16) d;
210}
211
212static inline u16 ns_to_lpf_count(unsigned int ns)
213{
214	return count_to_lpf_count(
215		DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
216}
217
218static inline unsigned int lpf_count_to_ns(unsigned int count)
219{
220	/* Duration of the Low Pass Filter rejection window in ns */
221	return DIV_ROUND_CLOSEST(count * 1000,
222				 CX23888_IR_REFCLK_FREQ / 1000000);
223}
224
225static inline unsigned int lpf_count_to_us(unsigned int count)
226{
227	/* Duration of the Low Pass Filter rejection window in us */
228	return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000);
229}
230
231/*
232 * FIFO register pulse width count computations
233 */
234static u32 clock_divider_to_resolution(u16 divider)
235{
236	/*
237	 * Resolution is the duration of 1 tick of the readable portion of
238	 * the pulse width counter as read from the FIFO.  The two lsb's are
239	 * not readable, hence the << 2.  This function returns ns.
240	 */
241	return DIV_ROUND_CLOSEST((1 << 2)  * ((u32) divider + 1) * 1000,
242				 CX23888_IR_REFCLK_FREQ / 1000000);
243}
244
245static u64 pulse_width_count_to_ns(u16 count, u16 divider)
246{
247	u64 n;
248	u32 rem;
249
250	/*
251	 * The 2 lsb's of the pulse width timer count are not readable, hence
252	 * the (count << 2) | 0x3
253	 */
254	n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
255	rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000);     /* / MHz => ns */
256	if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
257		n++;
258	return n;
259}
260
261static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
262{
263	u64 n;
264	u32 rem;
265
266	/*
267	 * The 2 lsb's of the pulse width timer count are not readable, hence
268	 * the (count << 2) | 0x3
269	 */
270	n = (((u64) count << 2) | 0x3) * (divider + 1);    /* cycles      */
271	rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
272	if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
273		n++;
274	return (unsigned int) n;
275}
276
277/*
278 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
279 *
280 * The total pulse clock count is an 18 bit pulse width timer count as the most
281 * significant part and (up to) 16 bit clock divider count as a modulus.
282 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
283 * width timer count's least significant bit.
284 */
285static u64 ns_to_pulse_clocks(u32 ns)
286{
287	u64 clocks;
288	u32 rem;
289	clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles  */
290	rem = do_div(clocks, 1000);                         /* /1000 = cycles */
291	if (rem >= 1000 / 2)
292		clocks++;
293	return clocks;
294}
295
296static u16 pulse_clocks_to_clock_divider(u64 count)
297{
298	do_div(count, (FIFO_RXTX << 2) | 0x3);
299
300	/* net result needs to be rounded down and decremented by 1 */
301	if (count > RXCLK_RCD + 1)
302		count = RXCLK_RCD;
303	else if (count < 2)
304		count = 1;
305	else
306		count--;
307	return (u16) count;
308}
309
310/*
311 * IR Control Register helpers
312 */
313enum tx_fifo_watermark {
314	TX_FIFO_HALF_EMPTY = 0,
315	TX_FIFO_EMPTY      = CNTRL_TIC,
316};
317
318enum rx_fifo_watermark {
319	RX_FIFO_HALF_FULL = 0,
320	RX_FIFO_NOT_EMPTY = CNTRL_RIC,
321};
322
323static inline void control_tx_irq_watermark(struct cx23885_dev *dev,
324					    enum tx_fifo_watermark level)
325{
326	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level);
327}
328
329static inline void control_rx_irq_watermark(struct cx23885_dev *dev,
330					    enum rx_fifo_watermark level)
331{
332	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level);
333}
334
335static inline void control_tx_enable(struct cx23885_dev *dev, bool enable)
336{
337	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
338			   enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
339}
340
341static inline void control_rx_enable(struct cx23885_dev *dev, bool enable)
342{
343	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
344			   enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
345}
346
347static inline void control_tx_modulation_enable(struct cx23885_dev *dev,
348						bool enable)
349{
350	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD,
351			   enable ? CNTRL_MOD : 0);
352}
353
354static inline void control_rx_demodulation_enable(struct cx23885_dev *dev,
355						  bool enable)
356{
357	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD,
358			   enable ? CNTRL_DMD : 0);
359}
360
361static inline void control_rx_s_edge_detection(struct cx23885_dev *dev,
362					       u32 edge_types)
363{
364	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
365			   edge_types & CNTRL_EDG_BOTH);
366}
367
368static void control_rx_s_carrier_window(struct cx23885_dev *dev,
369					unsigned int carrier,
370					unsigned int *carrier_range_low,
371					unsigned int *carrier_range_high)
372{
373	u32 v;
374	unsigned int c16 = carrier * 16;
375
376	if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
377		v = CNTRL_WIN_3_4;
378		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
379	} else {
380		v = CNTRL_WIN_3_3;
381		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
382	}
383
384	if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
385		v |= CNTRL_WIN_4_3;
386		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
387	} else {
388		v |= CNTRL_WIN_3_3;
389		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
390	}
391	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v);
392}
393
394static inline void control_tx_polarity_invert(struct cx23885_dev *dev,
395					      bool invert)
396{
397	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL,
398			   invert ? CNTRL_CPL : 0);
399}
400
401static inline void control_tx_level_invert(struct cx23885_dev *dev,
402					  bool invert)
403{
404	cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_IVO,
405			   invert ? CNTRL_IVO : 0);
406}
407
408/*
409 * IR Rx & Tx Clock Register helpers
410 */
411static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev,
412				       unsigned int freq,
413				       u16 *divider)
414{
415	*divider = carrier_freq_to_clock_divider(freq);
416	cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
417	return clock_divider_to_carrier_freq(*divider);
418}
419
420static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev,
421				       unsigned int freq,
422				       u16 *divider)
423{
424	*divider = carrier_freq_to_clock_divider(freq);
425	cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
426	return clock_divider_to_carrier_freq(*divider);
427}
428
429static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
430				      u16 *divider)
431{
432	u64 pulse_clocks;
433
434	if (ns > IR_MAX_DURATION)
435		ns = IR_MAX_DURATION;
436	pulse_clocks = ns_to_pulse_clocks(ns);
437	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
438	cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
439	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
440}
441
442static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
443				      u16 *divider)
444{
445	u64 pulse_clocks;
446
447	if (ns > IR_MAX_DURATION)
448		ns = IR_MAX_DURATION;
449	pulse_clocks = ns_to_pulse_clocks(ns);
450	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
451	cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
452	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
453}
454
455/*
456 * IR Tx Carrier Duty Cycle register helpers
457 */
458static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev,
459					  unsigned int duty_cycle)
460{
461	u32 n;
462	n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
463	if (n != 0)
464		n--;
465	if (n > 15)
466		n = 15;
467	cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n);
468	return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
469}
470
471/*
472 * IR Filter Register helpers
473 */
474static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns)
475{
476	u32 count = ns_to_lpf_count(min_width_ns);
477	cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count);
478	return lpf_count_to_ns(count);
479}
480
481/*
482 * IR IRQ Enable Register helpers
483 */
484static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask)
485{
486	mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
487	cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG,
488			   ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
489}
490
491static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask)
492{
493	mask &= IRQEN_TSE;
494	cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask);
495}
496
497/*
498 * V4L2 Subdevice IR Ops
499 */
500static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status,
501				  bool *handled)
502{
503	struct cx23888_ir_state *state = to_state(sd);
504	struct cx23885_dev *dev = state->dev;
505	unsigned long flags;
506
507	u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
508	u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
509	u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
510
511	union cx23888_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
512	unsigned int i, j, k;
513	u32 events, v;
514	int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
515
516	tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
517	rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
518	rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
519	ror = stats & STATS_ROR; /* Rx FIFO Over Run */
520
521	tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
522	rse = irqen & IRQEN_RSE; /* Rx FIFO Service Request IRQ Enable */
523	rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
524	roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
525
526	*handled = false;
527	v4l2_dbg(2, ir_888_debug, sd, "IRQ Status:  %s %s %s %s %s %s\n",
528		 tsr ? "tsr" : "   ", rsr ? "rsr" : "   ",
529		 rto ? "rto" : "   ", ror ? "ror" : "   ",
530		 stats & STATS_TBY ? "tby" : "   ",
531		 stats & STATS_RBY ? "rby" : "   ");
532
533	v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n",
534		 tse ? "tse" : "   ", rse ? "rse" : "   ",
535		 rte ? "rte" : "   ", roe ? "roe" : "   ");
536
537	/*
538	 * Transmitter interrupt service
539	 */
540	if (tse && tsr) {
541		/*
542		 * TODO:
543		 * Check the watermark threshold setting
544		 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
545		 * Push the data to the hardware FIFO.
546		 * If there was nothing more to send in the tx_kfifo, disable
547		 *	the TSR IRQ and notify the v4l2_device.
548		 * If there was something in the tx_kfifo, check the tx_kfifo
549		 *      level and notify the v4l2_device, if it is low.
550		 */
551		/* For now, inhibit TSR interrupt until Tx is implemented */
552		irqenable_tx(dev, 0);
553		events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
554		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
555		*handled = true;
556	}
557
558	/*
559	 * Receiver interrupt service
560	 */
561	kror = 0;
562	if ((rse && rsr) || (rte && rto)) {
563		/*
564		 * Receive data on RSR to clear the STATS_RSR.
565		 * Receive data on RTO, since we may not have yet hit the RSR
566		 * watermark when we receive the RTO.
567		 */
568		for (i = 0, v = FIFO_RX_NDV;
569		     (v & FIFO_RX_NDV) && !kror; i = 0) {
570			for (j = 0;
571			     (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
572				v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG);
573				rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
574				i++;
575			}
576			if (i == 0)
577				break;
578			j = i * sizeof(union cx23888_ir_fifo_rec);
579			k = kfifo_in_locked(&state->rx_kfifo,
580				      (unsigned char *) rx_data, j,
581				      &state->rx_kfifo_lock);
582			if (k != j)
583				kror++; /* rx_kfifo over run */
584		}
585		*handled = true;
586	}
587
588	events = 0;
589	v = 0;
590	if (kror) {
591		events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
592		v4l2_err(sd, "IR receiver software FIFO overrun\n");
593	}
594	if (roe && ror) {
595		/*
596		 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
597		 * the Rx FIFO Over Run status (STATS_ROR)
598		 */
599		v |= CNTRL_RFE;
600		events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
601		v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
602	}
603	if (rte && rto) {
604		/*
605		 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
606		 * the Rx Pulse Width Timer Time Out (STATS_RTO)
607		 */
608		v |= CNTRL_RXE;
609		events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
610	}
611	if (v) {
612		/* Clear STATS_ROR & STATS_RTO as needed by resetting hardware */
613		cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v);
614		cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl);
615		*handled = true;
616	}
617
618	spin_lock_irqsave(&state->rx_kfifo_lock, flags);
619	if (kfifo_len(&state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2)
620		events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
621	spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
622
623	if (events)
624		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
625	return 0;
626}
627
628/* Receiver */
629static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
630			      ssize_t *num)
631{
632	struct cx23888_ir_state *state = to_state(sd);
633	bool invert = (bool) atomic_read(&state->rx_invert);
634	u16 divider = (u16) atomic_read(&state->rxclk_divider);
635
636	unsigned int i, n;
637	union cx23888_ir_fifo_rec *p;
638	unsigned u, v, w;
639
640	n = count / sizeof(union cx23888_ir_fifo_rec)
641		* sizeof(union cx23888_ir_fifo_rec);
642	if (n == 0) {
643		*num = 0;
644		return 0;
645	}
646
647	n = kfifo_out_locked(&state->rx_kfifo, buf, n, &state->rx_kfifo_lock);
648
649	n /= sizeof(union cx23888_ir_fifo_rec);
650	*num = n * sizeof(union cx23888_ir_fifo_rec);
651
652	for (p = (union cx23888_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
653
654		if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
655			/* Assume RTO was because of no IR light input */
656			u = 0;
657			w = 1;
658		} else {
659			u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
660			if (invert)
661				u = u ? 0 : 1;
662			w = 0;
663		}
664
665		v = (unsigned) pulse_width_count_to_ns(
666				  (u16)(p->hw_fifo_data & FIFO_RXTX), divider) / 1000;
667		if (v > IR_MAX_DURATION)
668			v = IR_MAX_DURATION;
669
670		p->ir_core_data = (struct ir_raw_event)
671			{ .pulse = u, .duration = v, .timeout = w };
672
673		v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns  %s  %s\n",
674			 v, u ? "mark" : "space", w ? "(timed out)" : "");
675		if (w)
676			v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n");
677	}
678	return 0;
679}
680
681static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd,
682				      struct v4l2_subdev_ir_parameters *p)
683{
684	struct cx23888_ir_state *state = to_state(sd);
685	mutex_lock(&state->rx_params_lock);
686	memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters));
687	mutex_unlock(&state->rx_params_lock);
688	return 0;
689}
690
691static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd)
692{
693	struct cx23888_ir_state *state = to_state(sd);
694	struct cx23885_dev *dev = state->dev;
695
696	mutex_lock(&state->rx_params_lock);
697
698	/* Disable or slow down all IR Rx circuits and counters */
699	irqenable_rx(dev, 0);
700	control_rx_enable(dev, false);
701	control_rx_demodulation_enable(dev, false);
702	control_rx_s_edge_detection(dev, CNTRL_EDG_NONE);
703	filter_rx_s_min_width(dev, 0);
704	cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD);
705
706	state->rx_params.shutdown = true;
707
708	mutex_unlock(&state->rx_params_lock);
709	return 0;
710}
711
712static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd,
713				      struct v4l2_subdev_ir_parameters *p)
714{
715	struct cx23888_ir_state *state = to_state(sd);
716	struct cx23885_dev *dev = state->dev;
717	struct v4l2_subdev_ir_parameters *o = &state->rx_params;
718	u16 rxclk_divider;
719
720	if (p->shutdown)
721		return cx23888_ir_rx_shutdown(sd);
722
723	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
724		return -ENOSYS;
725
726	mutex_lock(&state->rx_params_lock);
727
728	o->shutdown = p->shutdown;
729
730	o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
731
732	o->bytes_per_data_element = p->bytes_per_data_element
733				  = sizeof(union cx23888_ir_fifo_rec);
734
735	/* Before we tweak the hardware, we have to disable the receiver */
736	irqenable_rx(dev, 0);
737	control_rx_enable(dev, false);
738
739	control_rx_demodulation_enable(dev, p->modulation);
740	o->modulation = p->modulation;
741
742	if (p->modulation) {
743		p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq,
744						     &rxclk_divider);
745
746		o->carrier_freq = p->carrier_freq;
747
748		o->duty_cycle = p->duty_cycle = 50;
749
750		control_rx_s_carrier_window(dev, p->carrier_freq,
751					    &p->carrier_range_lower,
752					    &p->carrier_range_upper);
753		o->carrier_range_lower = p->carrier_range_lower;
754		o->carrier_range_upper = p->carrier_range_upper;
755
756		p->max_pulse_width =
757			(u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
758	} else {
759		p->max_pulse_width =
760			    rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width,
761						       &rxclk_divider);
762	}
763	o->max_pulse_width = p->max_pulse_width;
764	atomic_set(&state->rxclk_divider, rxclk_divider);
765
766	p->noise_filter_min_width =
767			  filter_rx_s_min_width(dev, p->noise_filter_min_width);
768	o->noise_filter_min_width = p->noise_filter_min_width;
769
770	p->resolution = clock_divider_to_resolution(rxclk_divider);
771	o->resolution = p->resolution;
772
773	/* FIXME - make this dependent on resolution for better performance */
774	control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL);
775
776	control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH);
777
778	o->invert_level = p->invert_level;
779	atomic_set(&state->rx_invert, p->invert_level);
780
781	o->interrupt_enable = p->interrupt_enable;
782	o->enable = p->enable;
783	if (p->enable) {
784		unsigned long flags;
785
786		spin_lock_irqsave(&state->rx_kfifo_lock, flags);
787		kfifo_reset(&state->rx_kfifo);
788		/* reset tx_fifo too if there is one... */
789		spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
790		if (p->interrupt_enable)
791			irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
792		control_rx_enable(dev, p->enable);
793	}
794
795	mutex_unlock(&state->rx_params_lock);
796	return 0;
797}
798
799/* Transmitter */
800static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
801			       ssize_t *num)
802{
803	struct cx23888_ir_state *state = to_state(sd);
804	struct cx23885_dev *dev = state->dev;
805	/* For now enable the Tx FIFO Service interrupt & pretend we did work */
806	irqenable_tx(dev, IRQEN_TSE);
807	*num = count;
808	return 0;
809}
810
811static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd,
812				      struct v4l2_subdev_ir_parameters *p)
813{
814	struct cx23888_ir_state *state = to_state(sd);
815	mutex_lock(&state->tx_params_lock);
816	memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters));
817	mutex_unlock(&state->tx_params_lock);
818	return 0;
819}
820
821static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd)
822{
823	struct cx23888_ir_state *state = to_state(sd);
824	struct cx23885_dev *dev = state->dev;
825
826	mutex_lock(&state->tx_params_lock);
827
828	/* Disable or slow down all IR Tx circuits and counters */
829	irqenable_tx(dev, 0);
830	control_tx_enable(dev, false);
831	control_tx_modulation_enable(dev, false);
832	cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD);
833
834	state->tx_params.shutdown = true;
835
836	mutex_unlock(&state->tx_params_lock);
837	return 0;
838}
839
840static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd,
841				      struct v4l2_subdev_ir_parameters *p)
842{
843	struct cx23888_ir_state *state = to_state(sd);
844	struct cx23885_dev *dev = state->dev;
845	struct v4l2_subdev_ir_parameters *o = &state->tx_params;
846	u16 txclk_divider;
847
848	if (p->shutdown)
849		return cx23888_ir_tx_shutdown(sd);
850
851	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
852		return -ENOSYS;
853
854	mutex_lock(&state->tx_params_lock);
855
856	o->shutdown = p->shutdown;
857
858	o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
859
860	o->bytes_per_data_element = p->bytes_per_data_element
861				  = sizeof(union cx23888_ir_fifo_rec);
862
863	/* Before we tweak the hardware, we have to disable the transmitter */
864	irqenable_tx(dev, 0);
865	control_tx_enable(dev, false);
866
867	control_tx_modulation_enable(dev, p->modulation);
868	o->modulation = p->modulation;
869
870	if (p->modulation) {
871		p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq,
872						     &txclk_divider);
873		o->carrier_freq = p->carrier_freq;
874
875		p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle);
876		o->duty_cycle = p->duty_cycle;
877
878		p->max_pulse_width =
879			(u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
880	} else {
881		p->max_pulse_width =
882			    txclk_tx_s_max_pulse_width(dev, p->max_pulse_width,
883						       &txclk_divider);
884	}
885	o->max_pulse_width = p->max_pulse_width;
886	atomic_set(&state->txclk_divider, txclk_divider);
887
888	p->resolution = clock_divider_to_resolution(txclk_divider);
889	o->resolution = p->resolution;
890
891	/* FIXME - make this dependent on resolution for better performance */
892	control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY);
893
894	control_tx_polarity_invert(dev, p->invert_carrier_sense);
895	o->invert_carrier_sense = p->invert_carrier_sense;
896
897	control_tx_level_invert(dev, p->invert_level);
898	o->invert_level = p->invert_level;
899
900	o->interrupt_enable = p->interrupt_enable;
901	o->enable = p->enable;
902	if (p->enable) {
903		if (p->interrupt_enable)
904			irqenable_tx(dev, IRQEN_TSE);
905		control_tx_enable(dev, p->enable);
906	}
907
908	mutex_unlock(&state->tx_params_lock);
909	return 0;
910}
911
912
913/*
914 * V4L2 Subdevice Core Ops
915 */
916static int cx23888_ir_log_status(struct v4l2_subdev *sd)
917{
918	struct cx23888_ir_state *state = to_state(sd);
919	struct cx23885_dev *dev = state->dev;
920	char *s;
921	int i, j;
922
923	u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
924	u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD;
925	u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD;
926	u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC;
927	u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
928	u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
929	u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF;
930
931	v4l2_info(sd, "IR Receiver:\n");
932	v4l2_info(sd, "\tEnabled:                           %s\n",
933		  cntrl & CNTRL_RXE ? "yes" : "no");
934	v4l2_info(sd, "\tDemodulation from a carrier:       %s\n",
935		  cntrl & CNTRL_DMD ? "enabled" : "disabled");
936	v4l2_info(sd, "\tFIFO:                              %s\n",
937		  cntrl & CNTRL_RFE ? "enabled" : "disabled");
938	switch (cntrl & CNTRL_EDG) {
939	case CNTRL_EDG_NONE:
940		s = "disabled";
941		break;
942	case CNTRL_EDG_FALL:
943		s = "falling edge";
944		break;
945	case CNTRL_EDG_RISE:
946		s = "rising edge";
947		break;
948	case CNTRL_EDG_BOTH:
949		s = "rising & falling edges";
950		break;
951	default:
952		s = "??? edge";
953		break;
954	}
955	v4l2_info(sd, "\tPulse timers' start/stop trigger:  %s\n", s);
956	v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
957		  cntrl & CNTRL_R ? "not loaded" : "overflow marker");
958	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
959		  cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
960	v4l2_info(sd, "\tLoopback mode:                     %s\n",
961		  cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
962	if (cntrl & CNTRL_DMD) {
963		v4l2_info(sd, "\tExpected carrier (16 clocks):      %u Hz\n",
964			  clock_divider_to_carrier_freq(rxclk));
965		switch (cntrl & CNTRL_WIN) {
966		case CNTRL_WIN_3_3:
967			i = 3;
968			j = 3;
969			break;
970		case CNTRL_WIN_4_3:
971			i = 4;
972			j = 3;
973			break;
974		case CNTRL_WIN_3_4:
975			i = 3;
976			j = 4;
977			break;
978		case CNTRL_WIN_4_4:
979			i = 4;
980			j = 4;
981			break;
982		default:
983			i = 0;
984			j = 0;
985			break;
986		}
987		v4l2_info(sd, "\tNext carrier edge window:	    16 clocks -%1d/+%1d, %u to %u Hz\n",
988			  i, j,
989			  clock_divider_to_freq(rxclk, 16 + j),
990			  clock_divider_to_freq(rxclk, 16 - i));
991	}
992	v4l2_info(sd, "\tMax measurable pulse width:        %u us, %llu ns\n",
993		  pulse_width_count_to_us(FIFO_RXTX, rxclk),
994		  pulse_width_count_to_ns(FIFO_RXTX, rxclk));
995	v4l2_info(sd, "\tLow pass filter:                   %s\n",
996		  filtr ? "enabled" : "disabled");
997	if (filtr)
998		v4l2_info(sd, "\tMin acceptable pulse width (LPF):  %u us, %u ns\n",
999			  lpf_count_to_us(filtr),
1000			  lpf_count_to_ns(filtr));
1001	v4l2_info(sd, "\tPulse width timer timed-out:       %s\n",
1002		  stats & STATS_RTO ? "yes" : "no");
1003	v4l2_info(sd, "\tPulse width timer time-out intr:   %s\n",
1004		  irqen & IRQEN_RTE ? "enabled" : "disabled");
1005	v4l2_info(sd, "\tFIFO overrun:                      %s\n",
1006		  stats & STATS_ROR ? "yes" : "no");
1007	v4l2_info(sd, "\tFIFO overrun interrupt:            %s\n",
1008		  irqen & IRQEN_ROE ? "enabled" : "disabled");
1009	v4l2_info(sd, "\tBusy:                              %s\n",
1010		  stats & STATS_RBY ? "yes" : "no");
1011	v4l2_info(sd, "\tFIFO service requested:            %s\n",
1012		  stats & STATS_RSR ? "yes" : "no");
1013	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1014		  irqen & IRQEN_RSE ? "enabled" : "disabled");
1015
1016	v4l2_info(sd, "IR Transmitter:\n");
1017	v4l2_info(sd, "\tEnabled:                           %s\n",
1018		  cntrl & CNTRL_TXE ? "yes" : "no");
1019	v4l2_info(sd, "\tModulation onto a carrier:         %s\n",
1020		  cntrl & CNTRL_MOD ? "enabled" : "disabled");
1021	v4l2_info(sd, "\tFIFO:                              %s\n",
1022		  cntrl & CNTRL_TFE ? "enabled" : "disabled");
1023	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
1024		  cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1025	v4l2_info(sd, "\tOutput pin level inversion         %s\n",
1026		  cntrl & CNTRL_IVO ? "yes" : "no");
1027	v4l2_info(sd, "\tCarrier polarity:                  %s\n",
1028		  cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1029				    : "space:noburst mark:burst");
1030	if (cntrl & CNTRL_MOD) {
1031		v4l2_info(sd, "\tCarrier (16 clocks):               %u Hz\n",
1032			  clock_divider_to_carrier_freq(txclk));
1033		v4l2_info(sd, "\tCarrier duty cycle:                %2u/16\n",
1034			  cduty + 1);
1035	}
1036	v4l2_info(sd, "\tMax pulse width:                   %u us, %llu ns\n",
1037		  pulse_width_count_to_us(FIFO_RXTX, txclk),
1038		  pulse_width_count_to_ns(FIFO_RXTX, txclk));
1039	v4l2_info(sd, "\tBusy:                              %s\n",
1040		  stats & STATS_TBY ? "yes" : "no");
1041	v4l2_info(sd, "\tFIFO service requested:            %s\n",
1042		  stats & STATS_TSR ? "yes" : "no");
1043	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1044		  irqen & IRQEN_TSE ? "enabled" : "disabled");
1045
1046	return 0;
1047}
1048
1049#ifdef CONFIG_VIDEO_ADV_DEBUG
1050static int cx23888_ir_g_register(struct v4l2_subdev *sd,
1051				 struct v4l2_dbg_register *reg)
1052{
1053	struct cx23888_ir_state *state = to_state(sd);
1054	u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1055
1056	if ((addr & 0x3) != 0)
1057		return -EINVAL;
1058	if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1059		return -EINVAL;
1060	reg->size = 4;
1061	reg->val = cx23888_ir_read4(state->dev, addr);
1062	return 0;
1063}
1064
1065static int cx23888_ir_s_register(struct v4l2_subdev *sd,
1066				 const struct v4l2_dbg_register *reg)
1067{
1068	struct cx23888_ir_state *state = to_state(sd);
1069	u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1070
1071	if ((addr & 0x3) != 0)
1072		return -EINVAL;
1073	if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1074		return -EINVAL;
1075	cx23888_ir_write4(state->dev, addr, reg->val);
1076	return 0;
1077}
1078#endif
1079
1080static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = {
1081	.log_status = cx23888_ir_log_status,
1082#ifdef CONFIG_VIDEO_ADV_DEBUG
1083	.g_register = cx23888_ir_g_register,
1084	.s_register = cx23888_ir_s_register,
1085#endif
1086	.interrupt_service_routine = cx23888_ir_irq_handler,
1087};
1088
1089static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = {
1090	.rx_read = cx23888_ir_rx_read,
1091	.rx_g_parameters = cx23888_ir_rx_g_parameters,
1092	.rx_s_parameters = cx23888_ir_rx_s_parameters,
1093
1094	.tx_write = cx23888_ir_tx_write,
1095	.tx_g_parameters = cx23888_ir_tx_g_parameters,
1096	.tx_s_parameters = cx23888_ir_tx_s_parameters,
1097};
1098
1099static const struct v4l2_subdev_ops cx23888_ir_controller_ops = {
1100	.core = &cx23888_ir_core_ops,
1101	.ir = &cx23888_ir_ir_ops,
1102};
1103
1104static const struct v4l2_subdev_ir_parameters default_rx_params = {
1105	.bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1106	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1107
1108	.enable = false,
1109	.interrupt_enable = false,
1110	.shutdown = true,
1111
1112	.modulation = true,
1113	.carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1114
1115	/* RC-5:    666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1116	/* RC-6A:   333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1117	.noise_filter_min_width = 333333, /* ns */
1118	.carrier_range_lower = 35000,
1119	.carrier_range_upper = 37000,
1120	.invert_level = false,
1121};
1122
1123static const struct v4l2_subdev_ir_parameters default_tx_params = {
1124	.bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1125	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1126
1127	.enable = false,
1128	.interrupt_enable = false,
1129	.shutdown = true,
1130
1131	.modulation = true,
1132	.carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1133	.duty_cycle = 25,      /* 25 %   - RC-5 carrier */
1134	.invert_level = false,
1135	.invert_carrier_sense = false,
1136};
1137
1138int cx23888_ir_probe(struct cx23885_dev *dev)
1139{
1140	struct cx23888_ir_state *state;
1141	struct v4l2_subdev *sd;
1142	struct v4l2_subdev_ir_parameters default_params;
1143	int ret;
1144
1145	state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL);
1146	if (state == NULL)
1147		return -ENOMEM;
1148
1149	spin_lock_init(&state->rx_kfifo_lock);
1150	if (kfifo_alloc(&state->rx_kfifo, CX23888_IR_RX_KFIFO_SIZE,
1151			GFP_KERNEL)) {
1152		kfree(state);
1153		return -ENOMEM;
1154	}
1155
1156	state->dev = dev;
1157	sd = &state->sd;
1158
1159	v4l2_subdev_init(sd, &cx23888_ir_controller_ops);
1160	v4l2_set_subdevdata(sd, state);
1161	/* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
1162	snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name);
1163	sd->grp_id = CX23885_HW_888_IR;
1164
1165	ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd);
1166	if (ret == 0) {
1167		/*
1168		 * Ensure no interrupts arrive from '888 specific conditions,
1169		 * since we ignore them in this driver to have commonality with
1170		 * similar IR controller cores.
1171		 */
1172		cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0);
1173
1174		mutex_init(&state->rx_params_lock);
1175		default_params = default_rx_params;
1176		v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1177
1178		mutex_init(&state->tx_params_lock);
1179		default_params = default_tx_params;
1180		v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1181	} else {
1182		kfifo_free(&state->rx_kfifo);
1183	}
1184	return ret;
1185}
1186
1187int cx23888_ir_remove(struct cx23885_dev *dev)
1188{
1189	struct v4l2_subdev *sd;
1190	struct cx23888_ir_state *state;
1191
1192	sd = cx23885_find_hw(dev, CX23885_HW_888_IR);
1193	if (sd == NULL)
1194		return -ENODEV;
1195
1196	cx23888_ir_rx_shutdown(sd);
1197	cx23888_ir_tx_shutdown(sd);
1198
1199	state = to_state(sd);
1200	v4l2_device_unregister_subdev(sd);
1201	kfifo_free(&state->rx_kfifo);
1202	kfree(state);
1203	/* Nothing more to free() as state held the actual v4l2_subdev object */
1204	return 0;
1205}
1206