1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  cx18 ADEC audio functions
4 *
5 *  Derived from cx25840-audio.c
6 *
7 *  Copyright (C) 2007  Hans Verkuil <hverkuil@xs4all.nl>
8 *  Copyright (C) 2008  Andy Walls <awalls@md.metrocast.net>
9 */
10
11#include "cx18-driver.h"
12
13static int set_audclk_freq(struct cx18 *cx, u32 freq)
14{
15	struct cx18_av_state *state = &cx->av_state;
16
17	if (freq != 32000 && freq != 44100 && freq != 48000)
18		return -EINVAL;
19
20	/*
21	 * The PLL parameters are based on the external crystal frequency that
22	 * would ideally be:
23	 *
24	 * NTSC Color subcarrier freq * 8 =
25	 *	4.5 MHz/286 * 455/2 * 8 = 28.63636363... MHz
26	 *
27	 * The accidents of history and rationale that explain from where this
28	 * combination of magic numbers originate can be found in:
29	 *
30	 * [1] Abrahams, I. C., "Choice of Chrominance Subcarrier Frequency in
31	 * the NTSC Standards", Proceedings of the I-R-E, January 1954, pp 79-80
32	 *
33	 * [2] Abrahams, I. C., "The 'Frequency Interleaving' Principle in the
34	 * NTSC Standards", Proceedings of the I-R-E, January 1954, pp 81-83
35	 *
36	 * As Mike Bradley has rightly pointed out, it's not the exact crystal
37	 * frequency that matters, only that all parts of the driver and
38	 * firmware are using the same value (close to the ideal value).
39	 *
40	 * Since I have a strong suspicion that, if the firmware ever assumes a
41	 * crystal value at all, it will assume 28.636360 MHz, the crystal
42	 * freq used in calculations in this driver will be:
43	 *
44	 *	xtal_freq = 28.636360 MHz
45	 *
46	 * an error of less than 0.13 ppm which is way, way better than any off
47	 * the shelf crystal will have for accuracy anyway.
48	 *
49	 * Below I aim to run the PLLs' VCOs near 400 MHz to minimize error.
50	 *
51	 * Many thanks to Jeff Campbell and Mike Bradley for their extensive
52	 * investigation, experimentation, testing, and suggested solutions of
53	 * audio/video sync problems with SVideo and CVBS captures.
54	 */
55
56	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
57		switch (freq) {
58		case 32000:
59			/*
60			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
61			 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
62			 */
63			cx18_av_write4(cx, 0x108, 0x200d040f);
64
65			/* VID_PLL Fraction = 0x2be2fe */
66			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
67			cx18_av_write4(cx, 0x10c, 0x002be2fe);
68
69			/* AUX_PLL Fraction = 0x176740c */
70			/* xtal * 0xd.bb3a060/0x20 = 32000 * 384: 393 MHz p-pd*/
71			cx18_av_write4(cx, 0x110, 0x0176740c);
72
73			/* src3/4/6_ctl */
74			/* 0x1.f77f = (4 * xtal/8*2/455) / 32000 */
75			cx18_av_write4(cx, 0x900, 0x0801f77f);
76			cx18_av_write4(cx, 0x904, 0x0801f77f);
77			cx18_av_write4(cx, 0x90c, 0x0801f77f);
78
79			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
80			cx18_av_write(cx, 0x127, 0x60);
81
82			/* AUD_COUNT = 0x2fff = 8 samples * 4 * 384 - 1 */
83			cx18_av_write4(cx, 0x12c, 0x11202fff);
84
85			/*
86			 * EN_AV_LOCK = 0
87			 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
88			 *  ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
89			 */
90			cx18_av_write4(cx, 0x128, 0xa00d2ef8);
91			break;
92
93		case 44100:
94			/*
95			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
96			 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x18
97			 */
98			cx18_av_write4(cx, 0x108, 0x180e040f);
99
100			/* VID_PLL Fraction = 0x2be2fe */
101			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
102			cx18_av_write4(cx, 0x10c, 0x002be2fe);
103
104			/* AUX_PLL Fraction = 0x062a1f2 */
105			/* xtal * 0xe.3150f90/0x18 = 44100 * 384: 406 MHz p-pd*/
106			cx18_av_write4(cx, 0x110, 0x0062a1f2);
107
108			/* src3/4/6_ctl */
109			/* 0x1.6d59 = (4 * xtal/8*2/455) / 44100 */
110			cx18_av_write4(cx, 0x900, 0x08016d59);
111			cx18_av_write4(cx, 0x904, 0x08016d59);
112			cx18_av_write4(cx, 0x90c, 0x08016d59);
113
114			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x18 */
115			cx18_av_write(cx, 0x127, 0x58);
116
117			/* AUD_COUNT = 0x92ff = 49 samples * 2 * 384 - 1 */
118			cx18_av_write4(cx, 0x12c, 0x112092ff);
119
120			/*
121			 * EN_AV_LOCK = 0
122			 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
123			 *  ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
124			 */
125			cx18_av_write4(cx, 0x128, 0xa01d4bf8);
126			break;
127
128		case 48000:
129			/*
130			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
131			 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x16
132			 */
133			cx18_av_write4(cx, 0x108, 0x160e040f);
134
135			/* VID_PLL Fraction = 0x2be2fe */
136			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
137			cx18_av_write4(cx, 0x10c, 0x002be2fe);
138
139			/* AUX_PLL Fraction = 0x05227ad */
140			/* xtal * 0xe.2913d68/0x16 = 48000 * 384: 406 MHz p-pd*/
141			cx18_av_write4(cx, 0x110, 0x005227ad);
142
143			/* src3/4/6_ctl */
144			/* 0x1.4faa = (4 * xtal/8*2/455) / 48000 */
145			cx18_av_write4(cx, 0x900, 0x08014faa);
146			cx18_av_write4(cx, 0x904, 0x08014faa);
147			cx18_av_write4(cx, 0x90c, 0x08014faa);
148
149			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x16 */
150			cx18_av_write(cx, 0x127, 0x56);
151
152			/* AUD_COUNT = 0x5fff = 4 samples * 16 * 384 - 1 */
153			cx18_av_write4(cx, 0x12c, 0x11205fff);
154
155			/*
156			 * EN_AV_LOCK = 0
157			 * VID_COUNT = 0x1193f8 = 143999.000 * 8 =
158			 *  ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
159			 */
160			cx18_av_write4(cx, 0x128, 0xa01193f8);
161			break;
162		}
163	} else {
164		switch (freq) {
165		case 32000:
166			/*
167			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
168			 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x30
169			 */
170			cx18_av_write4(cx, 0x108, 0x300d040f);
171
172			/* VID_PLL Fraction = 0x2be2fe */
173			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
174			cx18_av_write4(cx, 0x10c, 0x002be2fe);
175
176			/* AUX_PLL Fraction = 0x176740c */
177			/* xtal * 0xd.bb3a060/0x30 = 32000 * 256: 393 MHz p-pd*/
178			cx18_av_write4(cx, 0x110, 0x0176740c);
179
180			/* src1_ctl */
181			/* 0x1.0000 = 32000/32000 */
182			cx18_av_write4(cx, 0x8f8, 0x08010000);
183
184			/* src3/4/6_ctl */
185			/* 0x2.0000 = 2 * (32000/32000) */
186			cx18_av_write4(cx, 0x900, 0x08020000);
187			cx18_av_write4(cx, 0x904, 0x08020000);
188			cx18_av_write4(cx, 0x90c, 0x08020000);
189
190			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x30 */
191			cx18_av_write(cx, 0x127, 0x70);
192
193			/* AUD_COUNT = 0x1fff = 8 samples * 4 * 256 - 1 */
194			cx18_av_write4(cx, 0x12c, 0x11201fff);
195
196			/*
197			 * EN_AV_LOCK = 0
198			 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
199			 *  ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
200			 */
201			cx18_av_write4(cx, 0x128, 0xa00d2ef8);
202			break;
203
204		case 44100:
205			/*
206			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
207			 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x24
208			 */
209			cx18_av_write4(cx, 0x108, 0x240e040f);
210
211			/* VID_PLL Fraction = 0x2be2fe */
212			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
213			cx18_av_write4(cx, 0x10c, 0x002be2fe);
214
215			/* AUX_PLL Fraction = 0x062a1f2 */
216			/* xtal * 0xe.3150f90/0x24 = 44100 * 256: 406 MHz p-pd*/
217			cx18_av_write4(cx, 0x110, 0x0062a1f2);
218
219			/* src1_ctl */
220			/* 0x1.60cd = 44100/32000 */
221			cx18_av_write4(cx, 0x8f8, 0x080160cd);
222
223			/* src3/4/6_ctl */
224			/* 0x1.7385 = 2 * (32000/44100) */
225			cx18_av_write4(cx, 0x900, 0x08017385);
226			cx18_av_write4(cx, 0x904, 0x08017385);
227			cx18_av_write4(cx, 0x90c, 0x08017385);
228
229			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x24 */
230			cx18_av_write(cx, 0x127, 0x64);
231
232			/* AUD_COUNT = 0x61ff = 49 samples * 2 * 256 - 1 */
233			cx18_av_write4(cx, 0x12c, 0x112061ff);
234
235			/*
236			 * EN_AV_LOCK = 0
237			 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
238			 *  ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
239			 */
240			cx18_av_write4(cx, 0x128, 0xa01d4bf8);
241			break;
242
243		case 48000:
244			/*
245			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
246			 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
247			 */
248			cx18_av_write4(cx, 0x108, 0x200d040f);
249
250			/* VID_PLL Fraction = 0x2be2fe */
251			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
252			cx18_av_write4(cx, 0x10c, 0x002be2fe);
253
254			/* AUX_PLL Fraction = 0x176740c */
255			/* xtal * 0xd.bb3a060/0x20 = 48000 * 256: 393 MHz p-pd*/
256			cx18_av_write4(cx, 0x110, 0x0176740c);
257
258			/* src1_ctl */
259			/* 0x1.8000 = 48000/32000 */
260			cx18_av_write4(cx, 0x8f8, 0x08018000);
261
262			/* src3/4/6_ctl */
263			/* 0x1.5555 = 2 * (32000/48000) */
264			cx18_av_write4(cx, 0x900, 0x08015555);
265			cx18_av_write4(cx, 0x904, 0x08015555);
266			cx18_av_write4(cx, 0x90c, 0x08015555);
267
268			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
269			cx18_av_write(cx, 0x127, 0x60);
270
271			/* AUD_COUNT = 0x3fff = 4 samples * 16 * 256 - 1 */
272			cx18_av_write4(cx, 0x12c, 0x11203fff);
273
274			/*
275			 * EN_AV_LOCK = 0
276			 * VID_COUNT = 0x1193f8 = 143999.000 * 8 =
277			 *  ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
278			 */
279			cx18_av_write4(cx, 0x128, 0xa01193f8);
280			break;
281		}
282	}
283
284	state->audclk_freq = freq;
285
286	return 0;
287}
288
289void cx18_av_audio_set_path(struct cx18 *cx)
290{
291	struct cx18_av_state *state = &cx->av_state;
292	u8 v;
293
294	/* stop microcontroller */
295	v = cx18_av_read(cx, 0x803) & ~0x10;
296	cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
297
298	/* assert soft reset */
299	v = cx18_av_read(cx, 0x810) | 0x01;
300	cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
301
302	/* Mute everything to prevent the PFFT! */
303	cx18_av_write(cx, 0x8d3, 0x1f);
304
305	if (state->aud_input <= CX18_AV_AUDIO_SERIAL2) {
306		/* Set Path1 to Serial Audio Input */
307		cx18_av_write4(cx, 0x8d0, 0x01011012);
308
309		/* The microcontroller should not be started for the
310		 * non-tuner inputs: autodetection is specific for
311		 * TV audio. */
312	} else {
313		/* Set Path1 to Analog Demod Main Channel */
314		cx18_av_write4(cx, 0x8d0, 0x1f063870);
315	}
316
317	set_audclk_freq(cx, state->audclk_freq);
318
319	/* deassert soft reset */
320	v = cx18_av_read(cx, 0x810) & ~0x01;
321	cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
322
323	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
324		/* When the microcontroller detects the
325		 * audio format, it will unmute the lines */
326		v = cx18_av_read(cx, 0x803) | 0x10;
327		cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
328	}
329}
330
331static void set_volume(struct cx18 *cx, int volume)
332{
333	/* First convert the volume to msp3400 values (0-127) */
334	int vol = volume >> 9;
335	/* now scale it up to cx18_av values
336	 * -114dB to -96dB maps to 0
337	 * this should be 19, but in my testing that was 4dB too loud */
338	if (vol <= 23)
339		vol = 0;
340	else
341		vol -= 23;
342
343	/* PATH1_VOLUME */
344	cx18_av_write(cx, 0x8d4, 228 - (vol * 2));
345}
346
347static void set_bass(struct cx18 *cx, int bass)
348{
349	/* PATH1_EQ_BASS_VOL */
350	cx18_av_and_or(cx, 0x8d9, ~0x3f, 48 - (bass * 48 / 0xffff));
351}
352
353static void set_treble(struct cx18 *cx, int treble)
354{
355	/* PATH1_EQ_TREBLE_VOL */
356	cx18_av_and_or(cx, 0x8db, ~0x3f, 48 - (treble * 48 / 0xffff));
357}
358
359static void set_balance(struct cx18 *cx, int balance)
360{
361	int bal = balance >> 8;
362	if (bal > 0x80) {
363		/* PATH1_BAL_LEFT */
364		cx18_av_and_or(cx, 0x8d5, 0x7f, 0x80);
365		/* PATH1_BAL_LEVEL */
366		cx18_av_and_or(cx, 0x8d5, ~0x7f, bal & 0x7f);
367	} else {
368		/* PATH1_BAL_LEFT */
369		cx18_av_and_or(cx, 0x8d5, 0x7f, 0x00);
370		/* PATH1_BAL_LEVEL */
371		cx18_av_and_or(cx, 0x8d5, ~0x7f, 0x80 - bal);
372	}
373}
374
375static void set_mute(struct cx18 *cx, int mute)
376{
377	struct cx18_av_state *state = &cx->av_state;
378	u8 v;
379
380	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
381		/* Must turn off microcontroller in order to mute sound.
382		 * Not sure if this is the best method, but it does work.
383		 * If the microcontroller is running, then it will undo any
384		 * changes to the mute register. */
385		v = cx18_av_read(cx, 0x803);
386		if (mute) {
387			/* disable microcontroller */
388			v &= ~0x10;
389			cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
390			cx18_av_write(cx, 0x8d3, 0x1f);
391		} else {
392			/* enable microcontroller */
393			v |= 0x10;
394			cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
395		}
396	} else {
397		/* SRC1_MUTE_EN */
398		cx18_av_and_or(cx, 0x8d3, ~0x2, mute ? 0x02 : 0x00);
399	}
400}
401
402int cx18_av_s_clock_freq(struct v4l2_subdev *sd, u32 freq)
403{
404	struct cx18 *cx = v4l2_get_subdevdata(sd);
405	struct cx18_av_state *state = &cx->av_state;
406	int retval;
407	u8 v;
408
409	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
410		v = cx18_av_read(cx, 0x803) & ~0x10;
411		cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
412		cx18_av_write(cx, 0x8d3, 0x1f);
413	}
414	v = cx18_av_read(cx, 0x810) | 0x1;
415	cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
416
417	retval = set_audclk_freq(cx, freq);
418
419	v = cx18_av_read(cx, 0x810) & ~0x1;
420	cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
421	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
422		v = cx18_av_read(cx, 0x803) | 0x10;
423		cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
424	}
425	return retval;
426}
427
428static int cx18_av_audio_s_ctrl(struct v4l2_ctrl *ctrl)
429{
430	struct v4l2_subdev *sd = to_sd(ctrl);
431	struct cx18 *cx = v4l2_get_subdevdata(sd);
432
433	switch (ctrl->id) {
434	case V4L2_CID_AUDIO_VOLUME:
435		set_volume(cx, ctrl->val);
436		break;
437	case V4L2_CID_AUDIO_BASS:
438		set_bass(cx, ctrl->val);
439		break;
440	case V4L2_CID_AUDIO_TREBLE:
441		set_treble(cx, ctrl->val);
442		break;
443	case V4L2_CID_AUDIO_BALANCE:
444		set_balance(cx, ctrl->val);
445		break;
446	case V4L2_CID_AUDIO_MUTE:
447		set_mute(cx, ctrl->val);
448		break;
449	default:
450		return -EINVAL;
451	}
452	return 0;
453}
454
455const struct v4l2_ctrl_ops cx18_av_audio_ctrl_ops = {
456	.s_ctrl = cx18_av_audio_s_ctrl,
457};
458