1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Video Capture Driver (Video for Linux 1/2)
4 * for the Matrox Marvel G200,G400 and Rainbow Runner-G series
5 *
6 * This module is an interface to the KS0127 video decoder chip.
7 *
8 * Copyright (C) 1999  Ryan Drake <stiletto@mediaone.net>
9 *
10 *****************************************************************************
11 *
12 * Modified and extended by
13 *	Mike Bernson <mike@mlb.org>
14 *	Gerard v.d. Horst
15 *	Leon van Stuivenberg <l.vanstuivenberg@chello.nl>
16 *	Gernot Ziegler <gz@lysator.liu.se>
17 *
18 * Version History:
19 * V1.0 Ryan Drake	   Initial version by Ryan Drake
20 * V1.1 Gerard v.d. Horst  Added some debugoutput, reset the video-standard
21 */
22
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/delay.h>
26#include <linux/errno.h>
27#include <linux/kernel.h>
28#include <linux/i2c.h>
29#include <linux/videodev2.h>
30#include <linux/slab.h>
31#include <media/v4l2-device.h>
32#include "ks0127.h"
33
34MODULE_DESCRIPTION("KS0127 video decoder driver");
35MODULE_AUTHOR("Ryan Drake");
36MODULE_LICENSE("GPL");
37
38/* Addresses */
39#define I2C_KS0127_ADDON   0xD8
40#define I2C_KS0127_ONBOARD 0xDA
41
42
43/* ks0127 control registers */
44#define KS_STAT     0x00
45#define KS_CMDA     0x01
46#define KS_CMDB     0x02
47#define KS_CMDC     0x03
48#define KS_CMDD     0x04
49#define KS_HAVB     0x05
50#define KS_HAVE     0x06
51#define KS_HS1B     0x07
52#define KS_HS1E     0x08
53#define KS_HS2B     0x09
54#define KS_HS2E     0x0a
55#define KS_AGC      0x0b
56#define KS_HXTRA    0x0c
57#define KS_CDEM     0x0d
58#define KS_PORTAB   0x0e
59#define KS_LUMA     0x0f
60#define KS_CON      0x10
61#define KS_BRT      0x11
62#define KS_CHROMA   0x12
63#define KS_CHROMB   0x13
64#define KS_DEMOD    0x14
65#define KS_SAT      0x15
66#define KS_HUE      0x16
67#define KS_VERTIA   0x17
68#define KS_VERTIB   0x18
69#define KS_VERTIC   0x19
70#define KS_HSCLL    0x1a
71#define KS_HSCLH    0x1b
72#define KS_VSCLL    0x1c
73#define KS_VSCLH    0x1d
74#define KS_OFMTA    0x1e
75#define KS_OFMTB    0x1f
76#define KS_VBICTL   0x20
77#define KS_CCDAT2   0x21
78#define KS_CCDAT1   0x22
79#define KS_VBIL30   0x23
80#define KS_VBIL74   0x24
81#define KS_VBIL118  0x25
82#define KS_VBIL1512 0x26
83#define KS_TTFRAM   0x27
84#define KS_TESTA    0x28
85#define KS_UVOFFH   0x29
86#define KS_UVOFFL   0x2a
87#define KS_UGAIN    0x2b
88#define KS_VGAIN    0x2c
89#define KS_VAVB     0x2d
90#define KS_VAVE     0x2e
91#define KS_CTRACK   0x2f
92#define KS_POLCTL   0x30
93#define KS_REFCOD   0x31
94#define KS_INVALY   0x32
95#define KS_INVALU   0x33
96#define KS_INVALV   0x34
97#define KS_UNUSEY   0x35
98#define KS_UNUSEU   0x36
99#define KS_UNUSEV   0x37
100#define KS_USRSAV   0x38
101#define KS_USREAV   0x39
102#define KS_SHS1A    0x3a
103#define KS_SHS1B    0x3b
104#define KS_SHS1C    0x3c
105#define KS_CMDE     0x3d
106#define KS_VSDEL    0x3e
107#define KS_CMDF     0x3f
108#define KS_GAMMA0   0x40
109#define KS_GAMMA1   0x41
110#define KS_GAMMA2   0x42
111#define KS_GAMMA3   0x43
112#define KS_GAMMA4   0x44
113#define KS_GAMMA5   0x45
114#define KS_GAMMA6   0x46
115#define KS_GAMMA7   0x47
116#define KS_GAMMA8   0x48
117#define KS_GAMMA9   0x49
118#define KS_GAMMA10  0x4a
119#define KS_GAMMA11  0x4b
120#define KS_GAMMA12  0x4c
121#define KS_GAMMA13  0x4d
122#define KS_GAMMA14  0x4e
123#define KS_GAMMA15  0x4f
124#define KS_GAMMA16  0x50
125#define KS_GAMMA17  0x51
126#define KS_GAMMA18  0x52
127#define KS_GAMMA19  0x53
128#define KS_GAMMA20  0x54
129#define KS_GAMMA21  0x55
130#define KS_GAMMA22  0x56
131#define KS_GAMMA23  0x57
132#define KS_GAMMA24  0x58
133#define KS_GAMMA25  0x59
134#define KS_GAMMA26  0x5a
135#define KS_GAMMA27  0x5b
136#define KS_GAMMA28  0x5c
137#define KS_GAMMA29  0x5d
138#define KS_GAMMA30  0x5e
139#define KS_GAMMA31  0x5f
140#define KS_GAMMAD0  0x60
141#define KS_GAMMAD1  0x61
142#define KS_GAMMAD2  0x62
143#define KS_GAMMAD3  0x63
144#define KS_GAMMAD4  0x64
145#define KS_GAMMAD5  0x65
146#define KS_GAMMAD6  0x66
147#define KS_GAMMAD7  0x67
148#define KS_GAMMAD8  0x68
149#define KS_GAMMAD9  0x69
150#define KS_GAMMAD10 0x6a
151#define KS_GAMMAD11 0x6b
152#define KS_GAMMAD12 0x6c
153#define KS_GAMMAD13 0x6d
154#define KS_GAMMAD14 0x6e
155#define KS_GAMMAD15 0x6f
156#define KS_GAMMAD16 0x70
157#define KS_GAMMAD17 0x71
158#define KS_GAMMAD18 0x72
159#define KS_GAMMAD19 0x73
160#define KS_GAMMAD20 0x74
161#define KS_GAMMAD21 0x75
162#define KS_GAMMAD22 0x76
163#define KS_GAMMAD23 0x77
164#define KS_GAMMAD24 0x78
165#define KS_GAMMAD25 0x79
166#define KS_GAMMAD26 0x7a
167#define KS_GAMMAD27 0x7b
168#define KS_GAMMAD28 0x7c
169#define KS_GAMMAD29 0x7d
170#define KS_GAMMAD30 0x7e
171#define KS_GAMMAD31 0x7f
172
173
174/****************************************************************************
175* mga_dev : represents one ks0127 chip.
176****************************************************************************/
177
178struct adjust {
179	int	contrast;
180	int	bright;
181	int	hue;
182	int	ugain;
183	int	vgain;
184};
185
186struct ks0127 {
187	struct v4l2_subdev sd;
188	v4l2_std_id	norm;
189	u8		regs[256];
190};
191
192static inline struct ks0127 *to_ks0127(struct v4l2_subdev *sd)
193{
194	return container_of(sd, struct ks0127, sd);
195}
196
197
198static int debug; /* insmod parameter */
199
200module_param(debug, int, 0);
201MODULE_PARM_DESC(debug, "Debug output");
202
203static u8 reg_defaults[64];
204
205static void init_reg_defaults(void)
206{
207	static int initialized;
208	u8 *table = reg_defaults;
209
210	if (initialized)
211		return;
212	initialized = 1;
213
214	table[KS_CMDA]     = 0x2c;  /* VSE=0, CCIR 601, autodetect standard */
215	table[KS_CMDB]     = 0x12;  /* VALIGN=0, AGC control and input */
216	table[KS_CMDC]     = 0x00;  /* Test options */
217	/* clock & input select, write 1 to PORTA */
218	table[KS_CMDD]     = 0x01;
219	table[KS_HAVB]     = 0x00;  /* HAV Start Control */
220	table[KS_HAVE]     = 0x00;  /* HAV End Control */
221	table[KS_HS1B]     = 0x10;  /* HS1 Start Control */
222	table[KS_HS1E]     = 0x00;  /* HS1 End Control */
223	table[KS_HS2B]     = 0x00;  /* HS2 Start Control */
224	table[KS_HS2E]     = 0x00;  /* HS2 End Control */
225	table[KS_AGC]      = 0x53;  /* Manual setting for AGC */
226	table[KS_HXTRA]    = 0x00;  /* Extra Bits for HAV and HS1/2 */
227	table[KS_CDEM]     = 0x00;  /* Chroma Demodulation Control */
228	table[KS_PORTAB]   = 0x0f;  /* port B is input, port A output GPPORT */
229	table[KS_LUMA]     = 0x01;  /* Luma control */
230	table[KS_CON]      = 0x00;  /* Contrast Control */
231	table[KS_BRT]      = 0x00;  /* Brightness Control */
232	table[KS_CHROMA]   = 0x2a;  /* Chroma control A */
233	table[KS_CHROMB]   = 0x90;  /* Chroma control B */
234	table[KS_DEMOD]    = 0x00;  /* Chroma Demodulation Control & Status */
235	table[KS_SAT]      = 0x00;  /* Color Saturation Control*/
236	table[KS_HUE]      = 0x00;  /* Hue Control */
237	table[KS_VERTIA]   = 0x00;  /* Vertical Processing Control A */
238	/* Vertical Processing Control B, luma 1 line delayed */
239	table[KS_VERTIB]   = 0x12;
240	table[KS_VERTIC]   = 0x0b;  /* Vertical Processing Control C */
241	table[KS_HSCLL]    = 0x00;  /* Horizontal Scaling Ratio Low */
242	table[KS_HSCLH]    = 0x00;  /* Horizontal Scaling Ratio High */
243	table[KS_VSCLL]    = 0x00;  /* Vertical Scaling Ratio Low */
244	table[KS_VSCLH]    = 0x00;  /* Vertical Scaling Ratio High */
245	/* 16 bit YCbCr 4:2:2 output; I can't make the bt866 like 8 bit /Sam */
246	table[KS_OFMTA]    = 0x30;
247	table[KS_OFMTB]    = 0x00;  /* Output Control B */
248	/* VBI Decoder Control; 4bit fmt: avoid Y overflow */
249	table[KS_VBICTL]   = 0x5d;
250	table[KS_CCDAT2]   = 0x00;  /* Read Only register */
251	table[KS_CCDAT1]   = 0x00;  /* Read Only register */
252	table[KS_VBIL30]   = 0xa8;  /* VBI data decoding options */
253	table[KS_VBIL74]   = 0xaa;  /* VBI data decoding options */
254	table[KS_VBIL118]  = 0x2a;  /* VBI data decoding options */
255	table[KS_VBIL1512] = 0x00;  /* VBI data decoding options */
256	table[KS_TTFRAM]   = 0x00;  /* Teletext frame alignment pattern */
257	table[KS_TESTA]    = 0x00;  /* test register, shouldn't be written */
258	table[KS_UVOFFH]   = 0x00;  /* UV Offset Adjustment High */
259	table[KS_UVOFFL]   = 0x00;  /* UV Offset Adjustment Low */
260	table[KS_UGAIN]    = 0x00;  /* U Component Gain Adjustment */
261	table[KS_VGAIN]    = 0x00;  /* V Component Gain Adjustment */
262	table[KS_VAVB]     = 0x07;  /* VAV Begin */
263	table[KS_VAVE]     = 0x00;  /* VAV End */
264	table[KS_CTRACK]   = 0x00;  /* Chroma Tracking Control */
265	table[KS_POLCTL]   = 0x41;  /* Timing Signal Polarity Control */
266	table[KS_REFCOD]   = 0x80;  /* Reference Code Insertion Control */
267	table[KS_INVALY]   = 0x10;  /* Invalid Y Code */
268	table[KS_INVALU]   = 0x80;  /* Invalid U Code */
269	table[KS_INVALV]   = 0x80;  /* Invalid V Code */
270	table[KS_UNUSEY]   = 0x10;  /* Unused Y Code */
271	table[KS_UNUSEU]   = 0x80;  /* Unused U Code */
272	table[KS_UNUSEV]   = 0x80;  /* Unused V Code */
273	table[KS_USRSAV]   = 0x00;  /* reserved */
274	table[KS_USREAV]   = 0x00;  /* reserved */
275	table[KS_SHS1A]    = 0x00;  /* User Defined SHS1 A */
276	/* User Defined SHS1 B, ALT656=1 on 0127B */
277	table[KS_SHS1B]    = 0x80;
278	table[KS_SHS1C]    = 0x00;  /* User Defined SHS1 C */
279	table[KS_CMDE]     = 0x00;  /* Command Register E */
280	table[KS_VSDEL]    = 0x00;  /* VS Delay Control */
281	/* Command Register F, update -immediately- */
282	/* (there might come no vsync)*/
283	table[KS_CMDF]     = 0x02;
284}
285
286
287/* We need to manually read because of a bug in the KS0127 chip.
288 *
289 * An explanation from kayork@mail.utexas.edu:
290 *
291 * During I2C reads, the KS0127 only samples for a stop condition
292 * during the place where the acknowledge bit should be. Any standard
293 * I2C implementation (correctly) throws in another clock transition
294 * at the 9th bit, and the KS0127 will not recognize the stop condition
295 * and will continue to clock out data.
296 *
297 * So we have to do the read ourself.  Big deal.
298 *	   workaround in i2c-algo-bit
299 */
300
301
302static u8 ks0127_read(struct v4l2_subdev *sd, u8 reg)
303{
304	struct i2c_client *client = v4l2_get_subdevdata(sd);
305	char val = 0;
306	struct i2c_msg msgs[] = {
307		{
308			.addr = client->addr,
309			.len = sizeof(reg),
310			.buf = &reg
311		},
312		{
313			.addr = client->addr,
314			.flags = I2C_M_RD | I2C_M_NO_RD_ACK,
315			.len = sizeof(val),
316			.buf = &val
317		}
318	};
319	int ret;
320
321	ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
322	if (ret != ARRAY_SIZE(msgs))
323		v4l2_dbg(1, debug, sd, "read error\n");
324
325	return val;
326}
327
328
329static void ks0127_write(struct v4l2_subdev *sd, u8 reg, u8 val)
330{
331	struct i2c_client *client = v4l2_get_subdevdata(sd);
332	struct ks0127 *ks = to_ks0127(sd);
333	char msg[] = { reg, val };
334
335	if (i2c_master_send(client, msg, sizeof(msg)) != sizeof(msg))
336		v4l2_dbg(1, debug, sd, "write error\n");
337
338	ks->regs[reg] = val;
339}
340
341
342/* generic bit-twiddling */
343static void ks0127_and_or(struct v4l2_subdev *sd, u8 reg, u8 and_v, u8 or_v)
344{
345	struct ks0127 *ks = to_ks0127(sd);
346
347	u8 val = ks->regs[reg];
348	val = (val & and_v) | or_v;
349	ks0127_write(sd, reg, val);
350}
351
352
353
354/****************************************************************************
355* ks0127 private api
356****************************************************************************/
357static void ks0127_init(struct v4l2_subdev *sd)
358{
359	u8 *table = reg_defaults;
360	int i;
361
362	v4l2_dbg(1, debug, sd, "reset\n");
363	msleep(1);
364
365	/* initialize all registers to known values */
366	/* (except STAT, 0x21, 0x22, TEST and 0x38,0x39) */
367
368	for (i = 1; i < 33; i++)
369		ks0127_write(sd, i, table[i]);
370
371	for (i = 35; i < 40; i++)
372		ks0127_write(sd, i, table[i]);
373
374	for (i = 41; i < 56; i++)
375		ks0127_write(sd, i, table[i]);
376
377	for (i = 58; i < 64; i++)
378		ks0127_write(sd, i, table[i]);
379
380
381	if ((ks0127_read(sd, KS_STAT) & 0x80) == 0) {
382		v4l2_dbg(1, debug, sd, "ks0122s found\n");
383		return;
384	}
385
386	switch (ks0127_read(sd, KS_CMDE) & 0x0f) {
387	case 0:
388		v4l2_dbg(1, debug, sd, "ks0127 found\n");
389		break;
390
391	case 9:
392		v4l2_dbg(1, debug, sd, "ks0127B Revision A found\n");
393		break;
394
395	default:
396		v4l2_dbg(1, debug, sd, "unknown revision\n");
397		break;
398	}
399}
400
401static int ks0127_s_routing(struct v4l2_subdev *sd,
402			    u32 input, u32 output, u32 config)
403{
404	struct ks0127 *ks = to_ks0127(sd);
405
406	switch (input) {
407	case KS_INPUT_COMPOSITE_1:
408	case KS_INPUT_COMPOSITE_2:
409	case KS_INPUT_COMPOSITE_3:
410	case KS_INPUT_COMPOSITE_4:
411	case KS_INPUT_COMPOSITE_5:
412	case KS_INPUT_COMPOSITE_6:
413		v4l2_dbg(1, debug, sd,
414			"s_routing %d: Composite\n", input);
415		/* autodetect 50/60 Hz */
416		ks0127_and_or(sd, KS_CMDA,   0xfc, 0x00);
417		/* VSE=0 */
418		ks0127_and_or(sd, KS_CMDA,   ~0x40, 0x00);
419		/* set input line */
420		ks0127_and_or(sd, KS_CMDB,   0xb0, input);
421		/* non-freerunning mode */
422		ks0127_and_or(sd, KS_CMDC,   0x70, 0x0a);
423		/* analog input */
424		ks0127_and_or(sd, KS_CMDD,   0x03, 0x00);
425		/* enable chroma demodulation */
426		ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00);
427		/* chroma trap, HYBWR=1 */
428		ks0127_and_or(sd, KS_LUMA,   0x00,
429			       (reg_defaults[KS_LUMA])|0x0c);
430		/* scaler fullbw, luma comb off */
431		ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81);
432		/* manual chroma comb .25 .5 .25 */
433		ks0127_and_or(sd, KS_VERTIC, 0x0f, 0x90);
434
435		/* chroma path delay */
436		ks0127_and_or(sd, KS_CHROMB, 0x0f, 0x90);
437
438		ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]);
439		ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]);
440		ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]);
441		ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]);
442		break;
443
444	case KS_INPUT_SVIDEO_1:
445	case KS_INPUT_SVIDEO_2:
446	case KS_INPUT_SVIDEO_3:
447		v4l2_dbg(1, debug, sd,
448			"s_routing %d: S-Video\n", input);
449		/* autodetect 50/60 Hz */
450		ks0127_and_or(sd, KS_CMDA,   0xfc, 0x00);
451		/* VSE=0 */
452		ks0127_and_or(sd, KS_CMDA,   ~0x40, 0x00);
453		/* set input line */
454		ks0127_and_or(sd, KS_CMDB,   0xb0, input);
455		/* non-freerunning mode */
456		ks0127_and_or(sd, KS_CMDC,   0x70, 0x0a);
457		/* analog input */
458		ks0127_and_or(sd, KS_CMDD,   0x03, 0x00);
459		/* enable chroma demodulation */
460		ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00);
461		ks0127_and_or(sd, KS_LUMA, 0x00,
462			       reg_defaults[KS_LUMA]);
463		/* disable luma comb */
464		ks0127_and_or(sd, KS_VERTIA, 0x08,
465			       (reg_defaults[KS_VERTIA]&0xf0)|0x01);
466		ks0127_and_or(sd, KS_VERTIC, 0x0f,
467			       reg_defaults[KS_VERTIC]&0xf0);
468
469		ks0127_and_or(sd, KS_CHROMB, 0x0f,
470			       reg_defaults[KS_CHROMB]&0xf0);
471
472		ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]);
473		ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]);
474		ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]);
475		ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]);
476		break;
477
478	case KS_INPUT_YUV656:
479		v4l2_dbg(1, debug, sd, "s_routing 15: YUV656\n");
480		if (ks->norm & V4L2_STD_525_60)
481			/* force 60 Hz */
482			ks0127_and_or(sd, KS_CMDA,   0xfc, 0x03);
483		else
484			/* force 50 Hz */
485			ks0127_and_or(sd, KS_CMDA,   0xfc, 0x02);
486
487		ks0127_and_or(sd, KS_CMDA,   0xff, 0x40); /* VSE=1 */
488		/* set input line and VALIGN */
489		ks0127_and_or(sd, KS_CMDB,   0xb0, (input | 0x40));
490		/* freerunning mode, */
491		/* TSTGEN = 1 TSTGFR=11 TSTGPH=0 TSTGPK=0  VMEM=1*/
492		ks0127_and_or(sd, KS_CMDC,   0x70, 0x87);
493		/* digital input, SYNDIR = 0 INPSL=01 CLKDIR=0 EAV=0 */
494		ks0127_and_or(sd, KS_CMDD,   0x03, 0x08);
495		/* disable chroma demodulation */
496		ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x30);
497		/* HYPK =01 CTRAP = 0 HYBWR=0 PED=1 RGBH=1 UNIT=1 */
498		ks0127_and_or(sd, KS_LUMA,   0x00, 0x71);
499		ks0127_and_or(sd, KS_VERTIC, 0x0f,
500			       reg_defaults[KS_VERTIC]&0xf0);
501
502		/* scaler fullbw, luma comb off */
503		ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81);
504
505		ks0127_and_or(sd, KS_CHROMB, 0x0f,
506			       reg_defaults[KS_CHROMB]&0xf0);
507
508		ks0127_and_or(sd, KS_CON, 0x00, 0x00);
509		ks0127_and_or(sd, KS_BRT, 0x00, 32);	/* spec: 34 */
510			/* spec: 229 (e5) */
511		ks0127_and_or(sd, KS_SAT, 0x00, 0xe8);
512		ks0127_and_or(sd, KS_HUE, 0x00, 0);
513
514		ks0127_and_or(sd, KS_UGAIN, 0x00, 238);
515		ks0127_and_or(sd, KS_VGAIN, 0x00, 0x00);
516
517		/*UOFF:0x30, VOFF:0x30, TSTCGN=1 */
518		ks0127_and_or(sd, KS_UVOFFH, 0x00, 0x4f);
519		ks0127_and_or(sd, KS_UVOFFL, 0x00, 0x00);
520		break;
521
522	default:
523		v4l2_dbg(1, debug, sd,
524			"s_routing: Unknown input %d\n", input);
525		break;
526	}
527
528	/* hack: CDMLPF sometimes spontaneously switches on; */
529	/* force back off */
530	ks0127_write(sd, KS_DEMOD, reg_defaults[KS_DEMOD]);
531	return 0;
532}
533
534static int ks0127_s_std(struct v4l2_subdev *sd, v4l2_std_id std)
535{
536	struct ks0127 *ks = to_ks0127(sd);
537
538	/* Set to automatic SECAM/Fsc mode */
539	ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00);
540
541	ks->norm = std;
542	if (std & V4L2_STD_NTSC) {
543		v4l2_dbg(1, debug, sd,
544			"s_std: NTSC_M\n");
545		ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20);
546	} else if (std & V4L2_STD_PAL_N) {
547		v4l2_dbg(1, debug, sd,
548			"s_std: NTSC_N (fixme)\n");
549		ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40);
550	} else if (std & V4L2_STD_PAL) {
551		v4l2_dbg(1, debug, sd,
552			"s_std: PAL_N\n");
553		ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20);
554	} else if (std & V4L2_STD_PAL_M) {
555		v4l2_dbg(1, debug, sd,
556			"s_std: PAL_M (fixme)\n");
557		ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40);
558	} else if (std & V4L2_STD_SECAM) {
559		v4l2_dbg(1, debug, sd,
560			"s_std: SECAM\n");
561
562		/* set to secam autodetection */
563		ks0127_and_or(sd, KS_CHROMA, 0xdf, 0x20);
564		ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00);
565		schedule_timeout_interruptible(HZ/10+1);
566
567		/* did it autodetect? */
568		if (!(ks0127_read(sd, KS_DEMOD) & 0x40))
569			/* force to secam mode */
570			ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x0f);
571	} else {
572		v4l2_dbg(1, debug, sd, "s_std: Unknown norm %llx\n",
573			       (unsigned long long)std);
574	}
575	return 0;
576}
577
578static int ks0127_s_stream(struct v4l2_subdev *sd, int enable)
579{
580	v4l2_dbg(1, debug, sd, "s_stream(%d)\n", enable);
581	if (enable) {
582		/* All output pins on */
583		ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x30);
584		/* Obey the OEN pin */
585		ks0127_and_or(sd, KS_CDEM, 0x7f, 0x00);
586	} else {
587		/* Video output pins off */
588		ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x00);
589		/* Ignore the OEN pin */
590		ks0127_and_or(sd, KS_CDEM, 0x7f, 0x80);
591	}
592	return 0;
593}
594
595static int ks0127_status(struct v4l2_subdev *sd, u32 *pstatus, v4l2_std_id *pstd)
596{
597	int stat = V4L2_IN_ST_NO_SIGNAL;
598	u8 status;
599	v4l2_std_id std = pstd ? *pstd : V4L2_STD_ALL;
600
601	status = ks0127_read(sd, KS_STAT);
602	if (!(status & 0x20))		 /* NOVID not set */
603		stat = 0;
604	if (!(status & 0x01)) {		      /* CLOCK set */
605		stat |= V4L2_IN_ST_NO_COLOR;
606		std = V4L2_STD_UNKNOWN;
607	} else {
608		if ((status & 0x08))		   /* PALDET set */
609			std &= V4L2_STD_PAL;
610		else
611			std &= V4L2_STD_NTSC;
612	}
613	if ((status & 0x10))		   /* PALDET set */
614		std &= V4L2_STD_525_60;
615	else
616		std &= V4L2_STD_625_50;
617	if (pstd)
618		*pstd = std;
619	if (pstatus)
620		*pstatus = stat;
621	return 0;
622}
623
624static int ks0127_querystd(struct v4l2_subdev *sd, v4l2_std_id *std)
625{
626	v4l2_dbg(1, debug, sd, "querystd\n");
627	return ks0127_status(sd, NULL, std);
628}
629
630static int ks0127_g_input_status(struct v4l2_subdev *sd, u32 *status)
631{
632	v4l2_dbg(1, debug, sd, "g_input_status\n");
633	return ks0127_status(sd, status, NULL);
634}
635
636/* ----------------------------------------------------------------------- */
637
638static const struct v4l2_subdev_video_ops ks0127_video_ops = {
639	.s_std = ks0127_s_std,
640	.s_routing = ks0127_s_routing,
641	.s_stream = ks0127_s_stream,
642	.querystd = ks0127_querystd,
643	.g_input_status = ks0127_g_input_status,
644};
645
646static const struct v4l2_subdev_ops ks0127_ops = {
647	.video = &ks0127_video_ops,
648};
649
650/* ----------------------------------------------------------------------- */
651
652
653static int ks0127_probe(struct i2c_client *client)
654{
655	struct ks0127 *ks;
656	struct v4l2_subdev *sd;
657
658	v4l_info(client, "%s chip found @ 0x%x (%s)\n",
659		client->addr == (I2C_KS0127_ADDON >> 1) ? "addon" : "on-board",
660		client->addr << 1, client->adapter->name);
661
662	ks = devm_kzalloc(&client->dev, sizeof(*ks), GFP_KERNEL);
663	if (ks == NULL)
664		return -ENOMEM;
665	sd = &ks->sd;
666	v4l2_i2c_subdev_init(sd, client, &ks0127_ops);
667
668	/* power up */
669	init_reg_defaults();
670	ks0127_write(sd, KS_CMDA, 0x2c);
671	mdelay(10);
672
673	/* reset the device */
674	ks0127_init(sd);
675	return 0;
676}
677
678static void ks0127_remove(struct i2c_client *client)
679{
680	struct v4l2_subdev *sd = i2c_get_clientdata(client);
681
682	v4l2_device_unregister_subdev(sd);
683	ks0127_write(sd, KS_OFMTA, 0x20); /* tristate */
684	ks0127_write(sd, KS_CMDA, 0x2c | 0x80); /* power down */
685}
686
687static const struct i2c_device_id ks0127_id[] = {
688	{ "ks0127", 0 },
689	{ "ks0127b", 0 },
690	{ "ks0122s", 0 },
691	{ }
692};
693MODULE_DEVICE_TABLE(i2c, ks0127_id);
694
695static struct i2c_driver ks0127_driver = {
696	.driver = {
697		.name	= "ks0127",
698	},
699	.probe		= ks0127_probe,
700	.remove		= ks0127_remove,
701	.id_table	= ks0127_id,
702};
703
704module_i2c_driver(ks0127_driver);
705