1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * adv7604 - Analog Devices ADV7604 video decoder driver
4 *
5 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 *
7 */
8
9/*
10 * References (c = chapter, p = page):
11 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
12 *		Revision 2.5, June 2010
13 * REF_02 - Analog devices, Register map documentation, Documentation of
14 *		the register maps, Software manual, Rev. F, June 2010
15 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
16 */
17
18#include <linux/delay.h>
19#include <linux/gpio/consumer.h>
20#include <linux/hdmi.h>
21#include <linux/i2c.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/of_graph.h>
25#include <linux/slab.h>
26#include <linux/v4l2-dv-timings.h>
27#include <linux/videodev2.h>
28#include <linux/workqueue.h>
29#include <linux/regmap.h>
30#include <linux/interrupt.h>
31
32#include <media/i2c/adv7604.h>
33#include <media/cec.h>
34#include <media/v4l2-ctrls.h>
35#include <media/v4l2-device.h>
36#include <media/v4l2-event.h>
37#include <media/v4l2-dv-timings.h>
38#include <media/v4l2-fwnode.h>
39
40static int debug;
41module_param(debug, int, 0644);
42MODULE_PARM_DESC(debug, "debug level (0-2)");
43
44MODULE_DESCRIPTION("Analog Devices ADV7604/10/11/12 video decoder driver");
45MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
46MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
47MODULE_LICENSE("GPL");
48
49/* ADV7604 system clock frequency */
50#define ADV76XX_FSC (28636360)
51
52#define ADV76XX_RGB_OUT					(1 << 1)
53
54#define ADV76XX_OP_FORMAT_SEL_8BIT			(0 << 0)
55#define ADV7604_OP_FORMAT_SEL_10BIT			(1 << 0)
56#define ADV76XX_OP_FORMAT_SEL_12BIT			(2 << 0)
57
58#define ADV76XX_OP_MODE_SEL_SDR_422			(0 << 5)
59#define ADV7604_OP_MODE_SEL_DDR_422			(1 << 5)
60#define ADV76XX_OP_MODE_SEL_SDR_444			(2 << 5)
61#define ADV7604_OP_MODE_SEL_DDR_444			(3 << 5)
62#define ADV76XX_OP_MODE_SEL_SDR_422_2X			(4 << 5)
63#define ADV7604_OP_MODE_SEL_ADI_CM			(5 << 5)
64
65#define ADV76XX_OP_CH_SEL_GBR				(0 << 5)
66#define ADV76XX_OP_CH_SEL_GRB				(1 << 5)
67#define ADV76XX_OP_CH_SEL_BGR				(2 << 5)
68#define ADV76XX_OP_CH_SEL_RGB				(3 << 5)
69#define ADV76XX_OP_CH_SEL_BRG				(4 << 5)
70#define ADV76XX_OP_CH_SEL_RBG				(5 << 5)
71
72#define ADV76XX_OP_SWAP_CB_CR				(1 << 0)
73
74#define ADV76XX_MAX_ADDRS (3)
75
76#define ADV76XX_MAX_EDID_BLOCKS 4
77
78enum adv76xx_type {
79	ADV7604,
80	ADV7611, // including ADV7610
81	ADV7612,
82};
83
84struct adv76xx_reg_seq {
85	unsigned int reg;
86	u8 val;
87};
88
89struct adv76xx_format_info {
90	u32 code;
91	u8 op_ch_sel;
92	bool rgb_out;
93	bool swap_cb_cr;
94	u8 op_format_sel;
95};
96
97struct adv76xx_cfg_read_infoframe {
98	const char *desc;
99	u8 present_mask;
100	u8 head_addr;
101	u8 payload_addr;
102};
103
104struct adv76xx_chip_info {
105	enum adv76xx_type type;
106
107	bool has_afe;
108	unsigned int max_port;
109	unsigned int num_dv_ports;
110
111	unsigned int edid_enable_reg;
112	unsigned int edid_status_reg;
113	unsigned int edid_segment_reg;
114	unsigned int edid_segment_mask;
115	unsigned int edid_spa_loc_reg;
116	unsigned int edid_spa_loc_msb_mask;
117	unsigned int edid_spa_port_b_reg;
118	unsigned int lcf_reg;
119
120	unsigned int cable_det_mask;
121	unsigned int tdms_lock_mask;
122	unsigned int fmt_change_digital_mask;
123	unsigned int cp_csc;
124
125	unsigned int cec_irq_status;
126	unsigned int cec_rx_enable;
127	unsigned int cec_rx_enable_mask;
128	bool cec_irq_swap;
129
130	const struct adv76xx_format_info *formats;
131	unsigned int nformats;
132
133	void (*set_termination)(struct v4l2_subdev *sd, bool enable);
134	void (*setup_irqs)(struct v4l2_subdev *sd);
135	unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
136	unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
137
138	/* 0 = AFE, 1 = HDMI */
139	const struct adv76xx_reg_seq *recommended_settings[2];
140	unsigned int num_recommended_settings[2];
141
142	unsigned long page_mask;
143
144	/* Masks for timings */
145	unsigned int linewidth_mask;
146	unsigned int field0_height_mask;
147	unsigned int field1_height_mask;
148	unsigned int hfrontporch_mask;
149	unsigned int hsync_mask;
150	unsigned int hbackporch_mask;
151	unsigned int field0_vfrontporch_mask;
152	unsigned int field1_vfrontporch_mask;
153	unsigned int field0_vsync_mask;
154	unsigned int field1_vsync_mask;
155	unsigned int field0_vbackporch_mask;
156	unsigned int field1_vbackporch_mask;
157};
158
159/*
160 **********************************************************************
161 *
162 *  Arrays with configuration parameters for the ADV7604
163 *
164 **********************************************************************
165 */
166
167struct adv76xx_state {
168	const struct adv76xx_chip_info *info;
169	struct adv76xx_platform_data pdata;
170
171	struct gpio_desc *hpd_gpio[4];
172	struct gpio_desc *reset_gpio;
173
174	struct v4l2_subdev sd;
175	struct media_pad pads[ADV76XX_PAD_MAX];
176	unsigned int source_pad;
177
178	struct v4l2_ctrl_handler hdl;
179
180	enum adv76xx_pad selected_input;
181
182	struct v4l2_dv_timings timings;
183	const struct adv76xx_format_info *format;
184
185	struct {
186		u8 edid[ADV76XX_MAX_EDID_BLOCKS * 128];
187		u32 present;
188		unsigned blocks;
189	} edid;
190	u16 spa_port_a[2];
191	struct v4l2_fract aspect_ratio;
192	u32 rgb_quantization_range;
193	struct delayed_work delayed_work_enable_hotplug;
194	bool restart_stdi_once;
195
196	/* CEC */
197	struct cec_adapter *cec_adap;
198	u8   cec_addr[ADV76XX_MAX_ADDRS];
199	u8   cec_valid_addrs;
200	bool cec_enabled_adap;
201
202	/* i2c clients */
203	struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
204
205	/* Regmaps */
206	struct regmap *regmap[ADV76XX_PAGE_MAX];
207
208	/* controls */
209	struct v4l2_ctrl *detect_tx_5v_ctrl;
210	struct v4l2_ctrl *analog_sampling_phase_ctrl;
211	struct v4l2_ctrl *free_run_color_manual_ctrl;
212	struct v4l2_ctrl *free_run_color_ctrl;
213	struct v4l2_ctrl *rgb_quantization_range_ctrl;
214};
215
216static bool adv76xx_has_afe(struct adv76xx_state *state)
217{
218	return state->info->has_afe;
219}
220
221/* Unsupported timings. This device cannot support 720p30. */
222static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
223	V4L2_DV_BT_CEA_1280X720P30,
224	{ }
225};
226
227static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
228{
229	int i;
230
231	for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
232		if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
233			return false;
234	return true;
235}
236
237struct adv76xx_video_standards {
238	struct v4l2_dv_timings timings;
239	u8 vid_std;
240	u8 v_freq;
241};
242
243/* sorted by number of lines */
244static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
245	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
246	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
247	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
248	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
249	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
250	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
251	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
252	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
253	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
254	/* TODO add 1920x1080P60_RB (CVT timing) */
255	{ },
256};
257
258/* sorted by number of lines */
259static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
260	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
261	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
262	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
263	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
264	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
265	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
266	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
267	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
268	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
269	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
270	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
271	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
272	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
273	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
274	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
275	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
276	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
277	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
278	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
279	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
280	/* TODO add 1600X1200P60_RB (not a DMT timing) */
281	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
282	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
283	{ },
284};
285
286/* sorted by number of lines */
287static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
288	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
289	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
290	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
291	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
292	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
293	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
294	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
295	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
296	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
297	{ },
298};
299
300/* sorted by number of lines */
301static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
302	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
303	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
304	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
305	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
306	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
307	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
308	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
309	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
310	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
311	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
312	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
313	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
314	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
315	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
316	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
317	{ },
318};
319
320static const struct v4l2_event adv76xx_ev_fmt = {
321	.type = V4L2_EVENT_SOURCE_CHANGE,
322	.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
323};
324
325/* ----------------------------------------------------------------------- */
326
327static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
328{
329	return container_of(sd, struct adv76xx_state, sd);
330}
331
332static inline unsigned htotal(const struct v4l2_bt_timings *t)
333{
334	return V4L2_DV_BT_FRAME_WIDTH(t);
335}
336
337static inline unsigned vtotal(const struct v4l2_bt_timings *t)
338{
339	return V4L2_DV_BT_FRAME_HEIGHT(t);
340}
341
342/* ----------------------------------------------------------------------- */
343
344static int adv76xx_read_check(struct adv76xx_state *state,
345			     int client_page, u8 reg)
346{
347	struct i2c_client *client = state->i2c_clients[client_page];
348	int err;
349	unsigned int val;
350
351	err = regmap_read(state->regmap[client_page], reg, &val);
352
353	if (err) {
354		v4l_err(client, "error reading %02x, %02x\n",
355				client->addr, reg);
356		return err;
357	}
358	return val;
359}
360
361/* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
362 * size to one or more registers.
363 *
364 * A value of zero will be returned on success, a negative errno will
365 * be returned in error cases.
366 */
367static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
368			      unsigned int init_reg, const void *val,
369			      size_t val_len)
370{
371	struct regmap *regmap = state->regmap[client_page];
372
373	if (val_len > I2C_SMBUS_BLOCK_MAX)
374		val_len = I2C_SMBUS_BLOCK_MAX;
375
376	return regmap_raw_write(regmap, init_reg, val, val_len);
377}
378
379/* ----------------------------------------------------------------------- */
380
381static inline int io_read(struct v4l2_subdev *sd, u8 reg)
382{
383	struct adv76xx_state *state = to_state(sd);
384
385	return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
386}
387
388static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
389{
390	struct adv76xx_state *state = to_state(sd);
391
392	return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
393}
394
395static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
396				   u8 val)
397{
398	return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
399}
400
401static inline int __always_unused avlink_read(struct v4l2_subdev *sd, u8 reg)
402{
403	struct adv76xx_state *state = to_state(sd);
404
405	return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
406}
407
408static inline int __always_unused avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
409{
410	struct adv76xx_state *state = to_state(sd);
411
412	return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
413}
414
415static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
416{
417	struct adv76xx_state *state = to_state(sd);
418
419	return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
420}
421
422static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
423{
424	struct adv76xx_state *state = to_state(sd);
425
426	return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
427}
428
429static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
430				   u8 val)
431{
432	return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val);
433}
434
435static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
436{
437	struct adv76xx_state *state = to_state(sd);
438
439	return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
440}
441
442static inline int __always_unused infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
443{
444	struct adv76xx_state *state = to_state(sd);
445
446	return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
447}
448
449static inline int __always_unused afe_read(struct v4l2_subdev *sd, u8 reg)
450{
451	struct adv76xx_state *state = to_state(sd);
452
453	return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
454}
455
456static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
457{
458	struct adv76xx_state *state = to_state(sd);
459
460	return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
461}
462
463static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
464{
465	struct adv76xx_state *state = to_state(sd);
466
467	return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
468}
469
470static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
471{
472	struct adv76xx_state *state = to_state(sd);
473
474	return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
475}
476
477static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
478{
479	return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
480}
481
482static inline int __always_unused edid_read(struct v4l2_subdev *sd, u8 reg)
483{
484	struct adv76xx_state *state = to_state(sd);
485
486	return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
487}
488
489static inline int __always_unused edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
490{
491	struct adv76xx_state *state = to_state(sd);
492
493	return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
494}
495
496static inline int edid_write_block(struct v4l2_subdev *sd,
497					unsigned int total_len, const u8 *val)
498{
499	struct adv76xx_state *state = to_state(sd);
500	int err = 0;
501	int i = 0;
502	int len = 0;
503
504	v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
505				__func__, total_len);
506
507	while (!err && i < total_len) {
508		len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
509				I2C_SMBUS_BLOCK_MAX :
510				(total_len - i);
511
512		err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
513				i, val + i, len);
514		i += len;
515	}
516
517	return err;
518}
519
520static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
521{
522	const struct adv76xx_chip_info *info = state->info;
523	unsigned int i;
524
525	if (info->type == ADV7604) {
526		for (i = 0; i < state->info->num_dv_ports; ++i)
527			gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
528	} else {
529		for (i = 0; i < state->info->num_dv_ports; ++i)
530			io_write_clr_set(&state->sd, 0x20, 0x80 >> i,
531					 (!!(hpd & BIT(i))) << (7 - i));
532	}
533
534	v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
535}
536
537static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
538{
539	struct delayed_work *dwork = to_delayed_work(work);
540	struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
541						delayed_work_enable_hotplug);
542	struct v4l2_subdev *sd = &state->sd;
543
544	v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
545
546	adv76xx_set_hpd(state, state->edid.present);
547}
548
549static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
550{
551	struct adv76xx_state *state = to_state(sd);
552
553	return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
554}
555
556static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
557{
558	return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
559}
560
561static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
562{
563	struct adv76xx_state *state = to_state(sd);
564
565	return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
566}
567
568static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
569{
570	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
571}
572
573static inline int __always_unused test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
574{
575	struct adv76xx_state *state = to_state(sd);
576
577	return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
578}
579
580static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
581{
582	struct adv76xx_state *state = to_state(sd);
583
584	return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
585}
586
587static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
588{
589	return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
590}
591
592static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
593{
594	struct adv76xx_state *state = to_state(sd);
595
596	return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
597}
598
599static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
600{
601	return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
602}
603
604static inline int __always_unused vdp_read(struct v4l2_subdev *sd, u8 reg)
605{
606	struct adv76xx_state *state = to_state(sd);
607
608	return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
609}
610
611static inline int __always_unused vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
612{
613	struct adv76xx_state *state = to_state(sd);
614
615	return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
616}
617
618#define ADV76XX_REG(page, offset)	(((page) << 8) | (offset))
619#define ADV76XX_REG_SEQ_TERM		0xffff
620
621#ifdef CONFIG_VIDEO_ADV_DEBUG
622static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
623{
624	struct adv76xx_state *state = to_state(sd);
625	unsigned int page = reg >> 8;
626	unsigned int val;
627	int err;
628
629	if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
630		return -EINVAL;
631
632	reg &= 0xff;
633	err = regmap_read(state->regmap[page], reg, &val);
634
635	return err ? err : val;
636}
637#endif
638
639static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
640{
641	struct adv76xx_state *state = to_state(sd);
642	unsigned int page = reg >> 8;
643
644	if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
645		return -EINVAL;
646
647	reg &= 0xff;
648
649	return regmap_write(state->regmap[page], reg, val);
650}
651
652static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
653				  const struct adv76xx_reg_seq *reg_seq)
654{
655	unsigned int i;
656
657	for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
658		adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
659}
660
661/* -----------------------------------------------------------------------------
662 * Format helpers
663 */
664
665static const struct adv76xx_format_info adv7604_formats[] = {
666	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
667	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
668	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
669	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
670	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
671	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
672	{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
673	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
674	{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
675	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
676	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
677	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
678	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
679	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
680	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
681	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
682	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
683	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
684	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
685	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
686	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
687	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
688	{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
689	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
690	{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
691	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
692	{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
693	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
694	{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
695	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
696	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
697	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
698	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
699	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
700	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
701	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
702	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
703	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
704};
705
706static const struct adv76xx_format_info adv7611_formats[] = {
707	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
708	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
709	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
710	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
711	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
712	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
713	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
714	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
715	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
716	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
717	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
718	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
719	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
720	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
721	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
722	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
723	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
724	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
725	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
726	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
727	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
728	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
729	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
730	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
731	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
732	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
733};
734
735static const struct adv76xx_format_info adv7612_formats[] = {
736	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
737	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
738	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
739	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
740	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
741	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
742	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
743	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
744	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
745	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
746	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
747	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
748	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
749	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
750};
751
752static const struct adv76xx_format_info *
753adv76xx_format_info(struct adv76xx_state *state, u32 code)
754{
755	unsigned int i;
756
757	for (i = 0; i < state->info->nformats; ++i) {
758		if (state->info->formats[i].code == code)
759			return &state->info->formats[i];
760	}
761
762	return NULL;
763}
764
765/* ----------------------------------------------------------------------- */
766
767static inline bool is_analog_input(struct v4l2_subdev *sd)
768{
769	struct adv76xx_state *state = to_state(sd);
770
771	return state->selected_input == ADV7604_PAD_VGA_RGB ||
772	       state->selected_input == ADV7604_PAD_VGA_COMP;
773}
774
775static inline bool is_digital_input(struct v4l2_subdev *sd)
776{
777	struct adv76xx_state *state = to_state(sd);
778
779	return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
780	       state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
781	       state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
782	       state->selected_input == ADV7604_PAD_HDMI_PORT_D;
783}
784
785static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
786	.type = V4L2_DV_BT_656_1120,
787	/* keep this initialization for compatibility with GCC < 4.4.6 */
788	.reserved = { 0 },
789	V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 170000000,
790		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
791			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
792		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
793			V4L2_DV_BT_CAP_CUSTOM)
794};
795
796static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
797	.type = V4L2_DV_BT_656_1120,
798	/* keep this initialization for compatibility with GCC < 4.4.6 */
799	.reserved = { 0 },
800	V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 225000000,
801		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
802			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
803		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
804			V4L2_DV_BT_CAP_CUSTOM)
805};
806
807/*
808 * Return the DV timings capabilities for the requested sink pad. As a special
809 * case, pad value -1 returns the capabilities for the currently selected input.
810 */
811static const struct v4l2_dv_timings_cap *
812adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad)
813{
814	if (pad == -1) {
815		struct adv76xx_state *state = to_state(sd);
816
817		pad = state->selected_input;
818	}
819
820	switch (pad) {
821	case ADV76XX_PAD_HDMI_PORT_A:
822	case ADV7604_PAD_HDMI_PORT_B:
823	case ADV7604_PAD_HDMI_PORT_C:
824	case ADV7604_PAD_HDMI_PORT_D:
825		return &adv76xx_timings_cap_digital;
826
827	case ADV7604_PAD_VGA_RGB:
828	case ADV7604_PAD_VGA_COMP:
829	default:
830		return &adv7604_timings_cap_analog;
831	}
832}
833
834
835/* ----------------------------------------------------------------------- */
836
837#ifdef CONFIG_VIDEO_ADV_DEBUG
838static void adv76xx_inv_register(struct v4l2_subdev *sd)
839{
840	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
841	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
842	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
843	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
844	v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
845	v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
846	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
847	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
848	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
849	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
850	v4l2_info(sd, "0xa00-0xaff: Test Map\n");
851	v4l2_info(sd, "0xb00-0xbff: CP Map\n");
852	v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
853}
854
855static int adv76xx_g_register(struct v4l2_subdev *sd,
856					struct v4l2_dbg_register *reg)
857{
858	int ret;
859
860	ret = adv76xx_read_reg(sd, reg->reg);
861	if (ret < 0) {
862		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
863		adv76xx_inv_register(sd);
864		return ret;
865	}
866
867	reg->size = 1;
868	reg->val = ret;
869
870	return 0;
871}
872
873static int adv76xx_s_register(struct v4l2_subdev *sd,
874					const struct v4l2_dbg_register *reg)
875{
876	int ret;
877
878	ret = adv76xx_write_reg(sd, reg->reg, reg->val);
879	if (ret < 0) {
880		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
881		adv76xx_inv_register(sd);
882		return ret;
883	}
884
885	return 0;
886}
887#endif
888
889static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
890{
891	u8 value = io_read(sd, 0x6f);
892
893	return ((value & 0x10) >> 4)
894	     | ((value & 0x08) >> 2)
895	     | ((value & 0x04) << 0)
896	     | ((value & 0x02) << 2);
897}
898
899static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
900{
901	u8 value = io_read(sd, 0x6f);
902
903	return value & 1;
904}
905
906static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
907{
908	/*  Reads CABLE_DET_A_RAW. For input B support, need to
909	 *  account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
910	 */
911	u8 value = io_read(sd, 0x6f);
912
913	return value & 1;
914}
915
916static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
917{
918	struct adv76xx_state *state = to_state(sd);
919	const struct adv76xx_chip_info *info = state->info;
920	u16 cable_det = info->read_cable_det(sd);
921
922	return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det);
923}
924
925static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
926		u8 prim_mode,
927		const struct adv76xx_video_standards *predef_vid_timings,
928		const struct v4l2_dv_timings *timings)
929{
930	int i;
931
932	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
933		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
934				is_digital_input(sd) ? 250000 : 1000000, false))
935			continue;
936		io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
937		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
938				prim_mode); /* v_freq and prim mode */
939		return 0;
940	}
941
942	return -1;
943}
944
945static int configure_predefined_video_timings(struct v4l2_subdev *sd,
946		struct v4l2_dv_timings *timings)
947{
948	struct adv76xx_state *state = to_state(sd);
949	int err;
950
951	v4l2_dbg(1, debug, sd, "%s", __func__);
952
953	if (adv76xx_has_afe(state)) {
954		/* reset to default values */
955		io_write(sd, 0x16, 0x43);
956		io_write(sd, 0x17, 0x5a);
957	}
958	/* disable embedded syncs for auto graphics mode */
959	cp_write_clr_set(sd, 0x81, 0x10, 0x00);
960	cp_write(sd, 0x8f, 0x00);
961	cp_write(sd, 0x90, 0x00);
962	cp_write(sd, 0xa2, 0x00);
963	cp_write(sd, 0xa3, 0x00);
964	cp_write(sd, 0xa4, 0x00);
965	cp_write(sd, 0xa5, 0x00);
966	cp_write(sd, 0xa6, 0x00);
967	cp_write(sd, 0xa7, 0x00);
968	cp_write(sd, 0xab, 0x00);
969	cp_write(sd, 0xac, 0x00);
970
971	if (is_analog_input(sd)) {
972		err = find_and_set_predefined_video_timings(sd,
973				0x01, adv7604_prim_mode_comp, timings);
974		if (err)
975			err = find_and_set_predefined_video_timings(sd,
976					0x02, adv7604_prim_mode_gr, timings);
977	} else if (is_digital_input(sd)) {
978		err = find_and_set_predefined_video_timings(sd,
979				0x05, adv76xx_prim_mode_hdmi_comp, timings);
980		if (err)
981			err = find_and_set_predefined_video_timings(sd,
982					0x06, adv76xx_prim_mode_hdmi_gr, timings);
983	} else {
984		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
985				__func__, state->selected_input);
986		err = -1;
987	}
988
989
990	return err;
991}
992
993static void configure_custom_video_timings(struct v4l2_subdev *sd,
994		const struct v4l2_bt_timings *bt)
995{
996	struct adv76xx_state *state = to_state(sd);
997	u32 width = htotal(bt);
998	u32 height = vtotal(bt);
999	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
1000	u16 cp_start_eav = width - bt->hfrontporch;
1001	u16 cp_start_vbi = height - bt->vfrontporch;
1002	u16 cp_end_vbi = bt->vsync + bt->vbackporch;
1003	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
1004		((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
1005	const u8 pll[2] = {
1006		0xc0 | ((width >> 8) & 0x1f),
1007		width & 0xff
1008	};
1009
1010	v4l2_dbg(2, debug, sd, "%s\n", __func__);
1011
1012	if (is_analog_input(sd)) {
1013		/* auto graphics */
1014		io_write(sd, 0x00, 0x07); /* video std */
1015		io_write(sd, 0x01, 0x02); /* prim mode */
1016		/* enable embedded syncs for auto graphics mode */
1017		cp_write_clr_set(sd, 0x81, 0x10, 0x10);
1018
1019		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
1020		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
1021		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
1022		if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
1023					0x16, pll, 2))
1024			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
1025
1026		/* active video - horizontal timing */
1027		cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1028		cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1029				   ((cp_start_eav >> 8) & 0x0f));
1030		cp_write(sd, 0xa4, cp_start_eav & 0xff);
1031
1032		/* active video - vertical timing */
1033		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1034		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1035				   ((cp_end_vbi >> 8) & 0xf));
1036		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1037	} else if (is_digital_input(sd)) {
1038		/* set default prim_mode/vid_std for HDMI
1039		   according to [REF_03, c. 4.2] */
1040		io_write(sd, 0x00, 0x02); /* video std */
1041		io_write(sd, 0x01, 0x06); /* prim mode */
1042	} else {
1043		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1044				__func__, state->selected_input);
1045	}
1046
1047	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1048	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1049	cp_write(sd, 0xab, (height >> 4) & 0xff);
1050	cp_write(sd, 0xac, (height & 0x0f) << 4);
1051}
1052
1053static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1054{
1055	struct adv76xx_state *state = to_state(sd);
1056	u8 offset_buf[4];
1057
1058	if (auto_offset) {
1059		offset_a = 0x3ff;
1060		offset_b = 0x3ff;
1061		offset_c = 0x3ff;
1062	}
1063
1064	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1065			__func__, auto_offset ? "Auto" : "Manual",
1066			offset_a, offset_b, offset_c);
1067
1068	offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1069	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1070	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1071	offset_buf[3] = offset_c & 0x0ff;
1072
1073	/* Registers must be written in this order with no i2c access in between */
1074	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1075			0x77, offset_buf, 4))
1076		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1077}
1078
1079static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1080{
1081	struct adv76xx_state *state = to_state(sd);
1082	u8 gain_buf[4];
1083	u8 gain_man = 1;
1084	u8 agc_mode_man = 1;
1085
1086	if (auto_gain) {
1087		gain_man = 0;
1088		agc_mode_man = 0;
1089		gain_a = 0x100;
1090		gain_b = 0x100;
1091		gain_c = 0x100;
1092	}
1093
1094	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1095			__func__, auto_gain ? "Auto" : "Manual",
1096			gain_a, gain_b, gain_c);
1097
1098	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1099	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1100	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1101	gain_buf[3] = ((gain_c & 0x0ff));
1102
1103	/* Registers must be written in this order with no i2c access in between */
1104	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1105			     0x73, gain_buf, 4))
1106		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1107}
1108
1109static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1110{
1111	struct adv76xx_state *state = to_state(sd);
1112	bool rgb_output = io_read(sd, 0x02) & 0x02;
1113	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1114	u8 y = HDMI_COLORSPACE_RGB;
1115
1116	if (hdmi_signal && (io_read(sd, 0x60) & 1))
1117		y = infoframe_read(sd, 0x01) >> 5;
1118
1119	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1120			__func__, state->rgb_quantization_range,
1121			rgb_output, hdmi_signal);
1122
1123	adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1124	adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1125	io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4);
1126
1127	switch (state->rgb_quantization_range) {
1128	case V4L2_DV_RGB_RANGE_AUTO:
1129		if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1130			/* Receiving analog RGB signal
1131			 * Set RGB full range (0-255) */
1132			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1133			break;
1134		}
1135
1136		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1137			/* Receiving analog YPbPr signal
1138			 * Set automode */
1139			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1140			break;
1141		}
1142
1143		if (hdmi_signal) {
1144			/* Receiving HDMI signal
1145			 * Set automode */
1146			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1147			break;
1148		}
1149
1150		/* Receiving DVI-D signal
1151		 * ADV7604 selects RGB limited range regardless of
1152		 * input format (CE/IT) in automatic mode */
1153		if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1154			/* RGB limited range (16-235) */
1155			io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1156		} else {
1157			/* RGB full range (0-255) */
1158			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1159
1160			if (is_digital_input(sd) && rgb_output) {
1161				adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1162			} else {
1163				adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1164				adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1165			}
1166		}
1167		break;
1168	case V4L2_DV_RGB_RANGE_LIMITED:
1169		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1170			/* YCrCb limited range (16-235) */
1171			io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1172			break;
1173		}
1174
1175		if (y != HDMI_COLORSPACE_RGB)
1176			break;
1177
1178		/* RGB limited range (16-235) */
1179		io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1180
1181		break;
1182	case V4L2_DV_RGB_RANGE_FULL:
1183		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1184			/* YCrCb full range (0-255) */
1185			io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1186			break;
1187		}
1188
1189		if (y != HDMI_COLORSPACE_RGB)
1190			break;
1191
1192		/* RGB full range (0-255) */
1193		io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1194
1195		if (is_analog_input(sd) || hdmi_signal)
1196			break;
1197
1198		/* Adjust gain/offset for DVI-D signals only */
1199		if (rgb_output) {
1200			adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1201		} else {
1202			adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1203			adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1204		}
1205		break;
1206	}
1207}
1208
1209static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1210{
1211	struct v4l2_subdev *sd =
1212		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1213
1214	struct adv76xx_state *state = to_state(sd);
1215
1216	switch (ctrl->id) {
1217	case V4L2_CID_BRIGHTNESS:
1218		cp_write(sd, 0x3c, ctrl->val);
1219		return 0;
1220	case V4L2_CID_CONTRAST:
1221		cp_write(sd, 0x3a, ctrl->val);
1222		return 0;
1223	case V4L2_CID_SATURATION:
1224		cp_write(sd, 0x3b, ctrl->val);
1225		return 0;
1226	case V4L2_CID_HUE:
1227		cp_write(sd, 0x3d, ctrl->val);
1228		return 0;
1229	case  V4L2_CID_DV_RX_RGB_RANGE:
1230		state->rgb_quantization_range = ctrl->val;
1231		set_rgb_quantization_range(sd);
1232		return 0;
1233	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1234		if (!adv76xx_has_afe(state))
1235			return -EINVAL;
1236		/* Set the analog sampling phase. This is needed to find the
1237		   best sampling phase for analog video: an application or
1238		   driver has to try a number of phases and analyze the picture
1239		   quality before settling on the best performing phase. */
1240		afe_write(sd, 0xc8, ctrl->val);
1241		return 0;
1242	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1243		/* Use the default blue color for free running mode,
1244		   or supply your own. */
1245		cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1246		return 0;
1247	case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1248		cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1249		cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1250		cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1251		return 0;
1252	}
1253	return -EINVAL;
1254}
1255
1256static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1257{
1258	struct v4l2_subdev *sd =
1259		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1260
1261	if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
1262		ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
1263		if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
1264			ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
1265		return 0;
1266	}
1267	return -EINVAL;
1268}
1269
1270/* ----------------------------------------------------------------------- */
1271
1272static inline bool no_power(struct v4l2_subdev *sd)
1273{
1274	/* Entire chip or CP powered off */
1275	return io_read(sd, 0x0c) & 0x24;
1276}
1277
1278static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1279{
1280	struct adv76xx_state *state = to_state(sd);
1281
1282	return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1283}
1284
1285static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1286{
1287	struct adv76xx_state *state = to_state(sd);
1288	const struct adv76xx_chip_info *info = state->info;
1289
1290	return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1291}
1292
1293static inline bool is_hdmi(struct v4l2_subdev *sd)
1294{
1295	return hdmi_read(sd, 0x05) & 0x80;
1296}
1297
1298static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1299{
1300	struct adv76xx_state *state = to_state(sd);
1301
1302	/*
1303	 * Chips without a AFE don't expose registers for the SSPD, so just assume
1304	 * that we have a lock.
1305	 */
1306	if (adv76xx_has_afe(state))
1307		return false;
1308
1309	/* TODO channel 2 */
1310	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1311}
1312
1313static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1314{
1315	/* TODO channel 2 */
1316	return !(cp_read(sd, 0xb1) & 0x80);
1317}
1318
1319static inline bool no_signal(struct v4l2_subdev *sd)
1320{
1321	bool ret;
1322
1323	ret = no_power(sd);
1324
1325	ret |= no_lock_stdi(sd);
1326	ret |= no_lock_sspd(sd);
1327
1328	if (is_digital_input(sd)) {
1329		ret |= no_lock_tmds(sd);
1330		ret |= no_signal_tmds(sd);
1331	}
1332
1333	return ret;
1334}
1335
1336static inline bool no_lock_cp(struct v4l2_subdev *sd)
1337{
1338	struct adv76xx_state *state = to_state(sd);
1339
1340	if (!adv76xx_has_afe(state))
1341		return false;
1342
1343	/* CP has detected a non standard number of lines on the incoming
1344	   video compared to what it is configured to receive by s_dv_timings */
1345	return io_read(sd, 0x12) & 0x01;
1346}
1347
1348static inline bool in_free_run(struct v4l2_subdev *sd)
1349{
1350	return cp_read(sd, 0xff) & 0x10;
1351}
1352
1353static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1354{
1355	*status = 0;
1356	*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1357	*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1358	if (!in_free_run(sd) && no_lock_cp(sd))
1359		*status |= is_digital_input(sd) ?
1360			   V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1361
1362	v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1363
1364	return 0;
1365}
1366
1367/* ----------------------------------------------------------------------- */
1368
1369struct stdi_readback {
1370	u16 bl, lcf, lcvs;
1371	u8 hs_pol, vs_pol;
1372	bool interlaced;
1373};
1374
1375static int stdi2dv_timings(struct v4l2_subdev *sd,
1376		struct stdi_readback *stdi,
1377		struct v4l2_dv_timings *timings)
1378{
1379	struct adv76xx_state *state = to_state(sd);
1380	u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1381	u32 pix_clk;
1382	int i;
1383
1384	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1385		const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;
1386
1387		if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1388					   adv76xx_get_dv_timings_cap(sd, -1),
1389					   adv76xx_check_dv_timings, NULL))
1390			continue;
1391		if (vtotal(bt) != stdi->lcf + 1)
1392			continue;
1393		if (bt->vsync != stdi->lcvs)
1394			continue;
1395
1396		pix_clk = hfreq * htotal(bt);
1397
1398		if ((pix_clk < bt->pixelclock + 1000000) &&
1399		    (pix_clk > bt->pixelclock - 1000000)) {
1400			*timings = v4l2_dv_timings_presets[i];
1401			return 0;
1402		}
1403	}
1404
1405	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1406			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1407			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1408			false, timings))
1409		return 0;
1410	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1411			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1412			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1413			false, state->aspect_ratio, timings))
1414		return 0;
1415
1416	v4l2_dbg(2, debug, sd,
1417		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1418		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
1419		stdi->hs_pol, stdi->vs_pol);
1420	return -1;
1421}
1422
1423
1424static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1425{
1426	struct adv76xx_state *state = to_state(sd);
1427	const struct adv76xx_chip_info *info = state->info;
1428	u8 polarity;
1429
1430	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1431		v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1432		return -1;
1433	}
1434
1435	/* read STDI */
1436	stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1437	stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1438	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1439	stdi->interlaced = io_read(sd, 0x12) & 0x10;
1440
1441	if (adv76xx_has_afe(state)) {
1442		/* read SSPD */
1443		polarity = cp_read(sd, 0xb5);
1444		if ((polarity & 0x03) == 0x01) {
1445			stdi->hs_pol = polarity & 0x10
1446				     ? (polarity & 0x08 ? '+' : '-') : 'x';
1447			stdi->vs_pol = polarity & 0x40
1448				     ? (polarity & 0x20 ? '+' : '-') : 'x';
1449		} else {
1450			stdi->hs_pol = 'x';
1451			stdi->vs_pol = 'x';
1452		}
1453	} else {
1454		polarity = hdmi_read(sd, 0x05);
1455		stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1456		stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1457	}
1458
1459	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1460		v4l2_dbg(2, debug, sd,
1461			"%s: signal lost during readout of STDI/SSPD\n", __func__);
1462		return -1;
1463	}
1464
1465	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1466		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1467		memset(stdi, 0, sizeof(struct stdi_readback));
1468		return -1;
1469	}
1470
1471	v4l2_dbg(2, debug, sd,
1472		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1473		__func__, stdi->lcf, stdi->bl, stdi->lcvs,
1474		stdi->hs_pol, stdi->vs_pol,
1475		stdi->interlaced ? "interlaced" : "progressive");
1476
1477	return 0;
1478}
1479
1480static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1481			struct v4l2_enum_dv_timings *timings)
1482{
1483	struct adv76xx_state *state = to_state(sd);
1484
1485	if (timings->pad >= state->source_pad)
1486		return -EINVAL;
1487
1488	return v4l2_enum_dv_timings_cap(timings,
1489		adv76xx_get_dv_timings_cap(sd, timings->pad),
1490		adv76xx_check_dv_timings, NULL);
1491}
1492
1493static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1494			struct v4l2_dv_timings_cap *cap)
1495{
1496	struct adv76xx_state *state = to_state(sd);
1497	unsigned int pad = cap->pad;
1498
1499	if (cap->pad >= state->source_pad)
1500		return -EINVAL;
1501
1502	*cap = *adv76xx_get_dv_timings_cap(sd, pad);
1503	cap->pad = pad;
1504
1505	return 0;
1506}
1507
1508/* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1509   if the format is listed in adv76xx_timings[] */
1510static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1511		struct v4l2_dv_timings *timings)
1512{
1513	v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1),
1514				 is_digital_input(sd) ? 250000 : 1000000,
1515				 adv76xx_check_dv_timings, NULL);
1516}
1517
1518static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1519{
1520	int a, b;
1521
1522	a = hdmi_read(sd, 0x06);
1523	b = hdmi_read(sd, 0x3b);
1524	if (a < 0 || b < 0)
1525		return 0;
1526
1527	return a * 1000000 + ((b & 0x30) >> 4) * 250000;
1528}
1529
1530static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1531{
1532	int a, b;
1533
1534	a = hdmi_read(sd, 0x51);
1535	b = hdmi_read(sd, 0x52);
1536	if (a < 0 || b < 0)
1537		return 0;
1538
1539	return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1540}
1541
1542static unsigned int adv76xx_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1543{
1544	struct adv76xx_state *state = to_state(sd);
1545	const struct adv76xx_chip_info *info = state->info;
1546	unsigned int freq, bits_per_channel, pixelrepetition;
1547
1548	freq = info->read_hdmi_pixelclock(sd);
1549	if (is_hdmi(sd)) {
1550		/* adjust for deep color mode and pixel repetition */
1551		bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1552		pixelrepetition = (hdmi_read(sd, 0x05) & 0x0f) + 1;
1553
1554		freq = freq * 8 / bits_per_channel / pixelrepetition;
1555	}
1556
1557	return freq;
1558}
1559
1560static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1561			struct v4l2_dv_timings *timings)
1562{
1563	struct adv76xx_state *state = to_state(sd);
1564	const struct adv76xx_chip_info *info = state->info;
1565	struct v4l2_bt_timings *bt = &timings->bt;
1566	struct stdi_readback stdi;
1567
1568	if (!timings)
1569		return -EINVAL;
1570
1571	memset(timings, 0, sizeof(struct v4l2_dv_timings));
1572
1573	if (no_signal(sd)) {
1574		state->restart_stdi_once = true;
1575		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1576		return -ENOLINK;
1577	}
1578
1579	/* read STDI */
1580	if (read_stdi(sd, &stdi)) {
1581		v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1582		return -ENOLINK;
1583	}
1584	bt->interlaced = stdi.interlaced ?
1585		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1586
1587	if (is_digital_input(sd)) {
1588		bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1589		u8 vic = 0;
1590		u32 w, h;
1591
1592		w = hdmi_read16(sd, 0x07, info->linewidth_mask);
1593		h = hdmi_read16(sd, 0x09, info->field0_height_mask);
1594
1595		if (hdmi_signal && (io_read(sd, 0x60) & 1))
1596			vic = infoframe_read(sd, 0x04);
1597
1598		if (vic && v4l2_find_dv_timings_cea861_vic(timings, vic) &&
1599		    bt->width == w && bt->height == h)
1600			goto found;
1601
1602		timings->type = V4L2_DV_BT_656_1120;
1603
1604		bt->width = w;
1605		bt->height = h;
1606		bt->pixelclock = adv76xx_read_hdmi_pixelclock(sd);
1607		bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
1608		bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
1609		bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
1610		bt->vfrontporch = hdmi_read16(sd, 0x2a,
1611			info->field0_vfrontporch_mask) / 2;
1612		bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
1613		bt->vbackporch = hdmi_read16(sd, 0x32,
1614			info->field0_vbackporch_mask) / 2;
1615		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1616			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1617		if (bt->interlaced == V4L2_DV_INTERLACED) {
1618			bt->height += hdmi_read16(sd, 0x0b,
1619				info->field1_height_mask);
1620			bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
1621				info->field1_vfrontporch_mask) / 2;
1622			bt->il_vsync = hdmi_read16(sd, 0x30,
1623				info->field1_vsync_mask) / 2;
1624			bt->il_vbackporch = hdmi_read16(sd, 0x34,
1625				info->field1_vbackporch_mask) / 2;
1626		}
1627		adv76xx_fill_optional_dv_timings_fields(sd, timings);
1628	} else {
1629		/* find format
1630		 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1631		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1632		 */
1633		if (!stdi2dv_timings(sd, &stdi, timings))
1634			goto found;
1635		stdi.lcvs += 1;
1636		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1637		if (!stdi2dv_timings(sd, &stdi, timings))
1638			goto found;
1639		stdi.lcvs -= 2;
1640		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1641		if (stdi2dv_timings(sd, &stdi, timings)) {
1642			/*
1643			 * The STDI block may measure wrong values, especially
1644			 * for lcvs and lcf. If the driver can not find any
1645			 * valid timing, the STDI block is restarted to measure
1646			 * the video timings again. The function will return an
1647			 * error, but the restart of STDI will generate a new
1648			 * STDI interrupt and the format detection process will
1649			 * restart.
1650			 */
1651			if (state->restart_stdi_once) {
1652				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1653				/* TODO restart STDI for Sync Channel 2 */
1654				/* enter one-shot mode */
1655				cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1656				/* trigger STDI restart */
1657				cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1658				/* reset to continuous mode */
1659				cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1660				state->restart_stdi_once = false;
1661				return -ENOLINK;
1662			}
1663			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1664			return -ERANGE;
1665		}
1666		state->restart_stdi_once = true;
1667	}
1668found:
1669
1670	if (no_signal(sd)) {
1671		v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1672		memset(timings, 0, sizeof(struct v4l2_dv_timings));
1673		return -ENOLINK;
1674	}
1675
1676	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1677			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1678		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1679				__func__, (u32)bt->pixelclock);
1680		return -ERANGE;
1681	}
1682
1683	if (debug > 1)
1684		v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1685				      timings, true);
1686
1687	return 0;
1688}
1689
1690static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1691		struct v4l2_dv_timings *timings)
1692{
1693	struct adv76xx_state *state = to_state(sd);
1694	struct v4l2_bt_timings *bt;
1695	int err;
1696
1697	if (!timings)
1698		return -EINVAL;
1699
1700	if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1701		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1702		return 0;
1703	}
1704
1705	bt = &timings->bt;
1706
1707	if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1),
1708				   adv76xx_check_dv_timings, NULL))
1709		return -ERANGE;
1710
1711	adv76xx_fill_optional_dv_timings_fields(sd, timings);
1712
1713	state->timings = *timings;
1714
1715	cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1716
1717	/* Use prim_mode and vid_std when available */
1718	err = configure_predefined_video_timings(sd, timings);
1719	if (err) {
1720		/* custom settings when the video format
1721		 does not have prim_mode/vid_std */
1722		configure_custom_video_timings(sd, bt);
1723	}
1724
1725	set_rgb_quantization_range(sd);
1726
1727	if (debug > 1)
1728		v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1729				      timings, true);
1730	return 0;
1731}
1732
1733static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1734		struct v4l2_dv_timings *timings)
1735{
1736	struct adv76xx_state *state = to_state(sd);
1737
1738	*timings = state->timings;
1739	return 0;
1740}
1741
1742static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1743{
1744	hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1745}
1746
1747static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1748{
1749	hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1750}
1751
1752static void enable_input(struct v4l2_subdev *sd)
1753{
1754	struct adv76xx_state *state = to_state(sd);
1755
1756	if (is_analog_input(sd)) {
1757		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1758	} else if (is_digital_input(sd)) {
1759		hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1760		state->info->set_termination(sd, true);
1761		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1762		hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1763	} else {
1764		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1765				__func__, state->selected_input);
1766	}
1767}
1768
1769static void disable_input(struct v4l2_subdev *sd)
1770{
1771	struct adv76xx_state *state = to_state(sd);
1772
1773	hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1774	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1775	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1776	state->info->set_termination(sd, false);
1777}
1778
1779static void select_input(struct v4l2_subdev *sd)
1780{
1781	struct adv76xx_state *state = to_state(sd);
1782	const struct adv76xx_chip_info *info = state->info;
1783
1784	if (is_analog_input(sd)) {
1785		adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1786
1787		afe_write(sd, 0x00, 0x08); /* power up ADC */
1788		afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1789		afe_write(sd, 0xc8, 0x00); /* phase control */
1790	} else if (is_digital_input(sd)) {
1791		hdmi_write(sd, 0x00, state->selected_input & 0x03);
1792
1793		adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1794
1795		if (adv76xx_has_afe(state)) {
1796			afe_write(sd, 0x00, 0xff); /* power down ADC */
1797			afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1798			afe_write(sd, 0xc8, 0x40); /* phase control */
1799		}
1800
1801		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1802		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1803		cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1804	} else {
1805		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1806				__func__, state->selected_input);
1807	}
1808
1809	/* Enable video adjustment (contrast, saturation, brightness and hue) */
1810	cp_write_clr_set(sd, 0x3e, 0x80, 0x80);
1811}
1812
1813static int adv76xx_s_routing(struct v4l2_subdev *sd,
1814		u32 input, u32 output, u32 config)
1815{
1816	struct adv76xx_state *state = to_state(sd);
1817
1818	v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1819			__func__, input, state->selected_input);
1820
1821	if (input == state->selected_input)
1822		return 0;
1823
1824	if (input > state->info->max_port)
1825		return -EINVAL;
1826
1827	state->selected_input = input;
1828
1829	disable_input(sd);
1830	select_input(sd);
1831	enable_input(sd);
1832
1833	v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1834
1835	return 0;
1836}
1837
1838static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1839				  struct v4l2_subdev_state *sd_state,
1840				  struct v4l2_subdev_mbus_code_enum *code)
1841{
1842	struct adv76xx_state *state = to_state(sd);
1843
1844	if (code->index >= state->info->nformats)
1845		return -EINVAL;
1846
1847	code->code = state->info->formats[code->index].code;
1848
1849	return 0;
1850}
1851
1852static void adv76xx_fill_format(struct adv76xx_state *state,
1853				struct v4l2_mbus_framefmt *format)
1854{
1855	memset(format, 0, sizeof(*format));
1856
1857	format->width = state->timings.bt.width;
1858	format->height = state->timings.bt.height;
1859	format->field = V4L2_FIELD_NONE;
1860	format->colorspace = V4L2_COLORSPACE_SRGB;
1861
1862	if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1863		format->colorspace = (state->timings.bt.height <= 576) ?
1864			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1865}
1866
1867/*
1868 * Compute the op_ch_sel value required to obtain on the bus the component order
1869 * corresponding to the selected format taking into account bus reordering
1870 * applied by the board at the output of the device.
1871 *
1872 * The following table gives the op_ch_value from the format component order
1873 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1874 * adv76xx_bus_order value in row).
1875 *
1876 *           |	GBR(0)	GRB(1)	BGR(2)	RGB(3)	BRG(4)	RBG(5)
1877 * ----------+-------------------------------------------------
1878 * RGB (NOP) |	GBR	GRB	BGR	RGB	BRG	RBG
1879 * GRB (1-2) |	BGR	RGB	GBR	GRB	RBG	BRG
1880 * RBG (2-3) |	GRB	GBR	BRG	RBG	BGR	RGB
1881 * BGR (1-3) |	RBG	BRG	RGB	BGR	GRB	GBR
1882 * BRG (ROR) |	BRG	RBG	GRB	GBR	RGB	BGR
1883 * GBR (ROL) |	RGB	BGR	RBG	BRG	GBR	GRB
1884 */
1885static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1886{
1887#define _SEL(a,b,c,d,e,f)	{ \
1888	ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1889	ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1890#define _BUS(x)			[ADV7604_BUS_ORDER_##x]
1891
1892	static const unsigned int op_ch_sel[6][6] = {
1893		_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1894		_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1895		_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1896		_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1897		_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1898		_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1899	};
1900
1901	return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1902}
1903
1904static void adv76xx_setup_format(struct adv76xx_state *state)
1905{
1906	struct v4l2_subdev *sd = &state->sd;
1907
1908	io_write_clr_set(sd, 0x02, 0x02,
1909			state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1910	io_write(sd, 0x03, state->format->op_format_sel |
1911		 state->pdata.op_format_mode_sel);
1912	io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1913	io_write_clr_set(sd, 0x05, 0x01,
1914			state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1915	set_rgb_quantization_range(sd);
1916}
1917
1918static int adv76xx_get_format(struct v4l2_subdev *sd,
1919			      struct v4l2_subdev_state *sd_state,
1920			      struct v4l2_subdev_format *format)
1921{
1922	struct adv76xx_state *state = to_state(sd);
1923
1924	if (format->pad != state->source_pad)
1925		return -EINVAL;
1926
1927	adv76xx_fill_format(state, &format->format);
1928
1929	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1930		struct v4l2_mbus_framefmt *fmt;
1931
1932		fmt = v4l2_subdev_state_get_format(sd_state, format->pad);
1933		format->format.code = fmt->code;
1934	} else {
1935		format->format.code = state->format->code;
1936	}
1937
1938	return 0;
1939}
1940
1941static int adv76xx_get_selection(struct v4l2_subdev *sd,
1942				 struct v4l2_subdev_state *sd_state,
1943				 struct v4l2_subdev_selection *sel)
1944{
1945	struct adv76xx_state *state = to_state(sd);
1946
1947	if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1948		return -EINVAL;
1949	/* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
1950	if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
1951		return -EINVAL;
1952
1953	sel->r.left	= 0;
1954	sel->r.top	= 0;
1955	sel->r.width	= state->timings.bt.width;
1956	sel->r.height	= state->timings.bt.height;
1957
1958	return 0;
1959}
1960
1961static int adv76xx_set_format(struct v4l2_subdev *sd,
1962			      struct v4l2_subdev_state *sd_state,
1963			      struct v4l2_subdev_format *format)
1964{
1965	struct adv76xx_state *state = to_state(sd);
1966	const struct adv76xx_format_info *info;
1967
1968	if (format->pad != state->source_pad)
1969		return -EINVAL;
1970
1971	info = adv76xx_format_info(state, format->format.code);
1972	if (!info)
1973		info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1974
1975	adv76xx_fill_format(state, &format->format);
1976	format->format.code = info->code;
1977
1978	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1979		struct v4l2_mbus_framefmt *fmt;
1980
1981		fmt = v4l2_subdev_state_get_format(sd_state, format->pad);
1982		fmt->code = format->format.code;
1983	} else {
1984		state->format = info;
1985		adv76xx_setup_format(state);
1986	}
1987
1988	return 0;
1989}
1990
1991#if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
1992static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status)
1993{
1994	struct adv76xx_state *state = to_state(sd);
1995
1996	if ((cec_read(sd, 0x11) & 0x01) == 0) {
1997		v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__);
1998		return;
1999	}
2000
2001	if (tx_raw_status & 0x02) {
2002		v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n",
2003			 __func__);
2004		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST,
2005				  1, 0, 0, 0);
2006		return;
2007	}
2008	if (tx_raw_status & 0x04) {
2009		u8 status;
2010		u8 nack_cnt;
2011		u8 low_drive_cnt;
2012
2013		v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__);
2014		/*
2015		 * We set this status bit since this hardware performs
2016		 * retransmissions.
2017		 */
2018		status = CEC_TX_STATUS_MAX_RETRIES;
2019		nack_cnt = cec_read(sd, 0x14) & 0xf;
2020		if (nack_cnt)
2021			status |= CEC_TX_STATUS_NACK;
2022		low_drive_cnt = cec_read(sd, 0x14) >> 4;
2023		if (low_drive_cnt)
2024			status |= CEC_TX_STATUS_LOW_DRIVE;
2025		cec_transmit_done(state->cec_adap, status,
2026				  0, nack_cnt, low_drive_cnt, 0);
2027		return;
2028	}
2029	if (tx_raw_status & 0x01) {
2030		v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__);
2031		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0);
2032		return;
2033	}
2034}
2035
2036static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled)
2037{
2038	struct adv76xx_state *state = to_state(sd);
2039	const struct adv76xx_chip_info *info = state->info;
2040	u8 cec_irq;
2041
2042	/* cec controller */
2043	cec_irq = io_read(sd, info->cec_irq_status) & 0x0f;
2044	if (!cec_irq)
2045		return;
2046
2047	v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq);
2048	adv76xx_cec_tx_raw_status(sd, cec_irq);
2049	if (cec_irq & 0x08) {
2050		struct cec_msg msg;
2051
2052		msg.len = cec_read(sd, 0x25) & 0x1f;
2053		if (msg.len > CEC_MAX_MSG_SIZE)
2054			msg.len = CEC_MAX_MSG_SIZE;
2055
2056		if (msg.len) {
2057			u8 i;
2058
2059			for (i = 0; i < msg.len; i++)
2060				msg.msg[i] = cec_read(sd, i + 0x15);
2061			cec_write(sd, info->cec_rx_enable,
2062				  info->cec_rx_enable_mask); /* re-enable rx */
2063			cec_received_msg(state->cec_adap, &msg);
2064		}
2065	}
2066
2067	if (info->cec_irq_swap) {
2068		/*
2069		 * Note: the bit order is swapped between 0x4d and 0x4e
2070		 * on adv7604
2071		 */
2072		cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) |
2073			  ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3);
2074	}
2075	io_write(sd, info->cec_irq_status + 1, cec_irq);
2076
2077	if (handled)
2078		*handled = true;
2079}
2080
2081static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable)
2082{
2083	struct adv76xx_state *state = cec_get_drvdata(adap);
2084	const struct adv76xx_chip_info *info = state->info;
2085	struct v4l2_subdev *sd = &state->sd;
2086
2087	if (!state->cec_enabled_adap && enable) {
2088		cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */
2089		cec_write(sd, 0x2c, 0x01);	/* cec soft reset */
2090		cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */
2091		/* enabled irqs: */
2092		/* tx: ready */
2093		/* tx: arbitration lost */
2094		/* tx: retry timeout */
2095		/* rx: ready */
2096		io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x0f);
2097		cec_write(sd, info->cec_rx_enable, info->cec_rx_enable_mask);
2098	} else if (state->cec_enabled_adap && !enable) {
2099		/* disable cec interrupts */
2100		io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x00);
2101		/* disable address mask 1-3 */
2102		cec_write_clr_set(sd, 0x27, 0x70, 0x00);
2103		/* power down cec section */
2104		cec_write_clr_set(sd, 0x2a, 0x01, 0x00);
2105		state->cec_valid_addrs = 0;
2106	}
2107	state->cec_enabled_adap = enable;
2108	adv76xx_s_detect_tx_5v_ctrl(sd);
2109	return 0;
2110}
2111
2112static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr)
2113{
2114	struct adv76xx_state *state = cec_get_drvdata(adap);
2115	struct v4l2_subdev *sd = &state->sd;
2116	unsigned int i, free_idx = ADV76XX_MAX_ADDRS;
2117
2118	if (!state->cec_enabled_adap)
2119		return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO;
2120
2121	if (addr == CEC_LOG_ADDR_INVALID) {
2122		cec_write_clr_set(sd, 0x27, 0x70, 0);
2123		state->cec_valid_addrs = 0;
2124		return 0;
2125	}
2126
2127	for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2128		bool is_valid = state->cec_valid_addrs & (1 << i);
2129
2130		if (free_idx == ADV76XX_MAX_ADDRS && !is_valid)
2131			free_idx = i;
2132		if (is_valid && state->cec_addr[i] == addr)
2133			return 0;
2134	}
2135	if (i == ADV76XX_MAX_ADDRS) {
2136		i = free_idx;
2137		if (i == ADV76XX_MAX_ADDRS)
2138			return -ENXIO;
2139	}
2140	state->cec_addr[i] = addr;
2141	state->cec_valid_addrs |= 1 << i;
2142
2143	switch (i) {
2144	case 0:
2145		/* enable address mask 0 */
2146		cec_write_clr_set(sd, 0x27, 0x10, 0x10);
2147		/* set address for mask 0 */
2148		cec_write_clr_set(sd, 0x28, 0x0f, addr);
2149		break;
2150	case 1:
2151		/* enable address mask 1 */
2152		cec_write_clr_set(sd, 0x27, 0x20, 0x20);
2153		/* set address for mask 1 */
2154		cec_write_clr_set(sd, 0x28, 0xf0, addr << 4);
2155		break;
2156	case 2:
2157		/* enable address mask 2 */
2158		cec_write_clr_set(sd, 0x27, 0x40, 0x40);
2159		/* set address for mask 1 */
2160		cec_write_clr_set(sd, 0x29, 0x0f, addr);
2161		break;
2162	}
2163	return 0;
2164}
2165
2166static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
2167				     u32 signal_free_time, struct cec_msg *msg)
2168{
2169	struct adv76xx_state *state = cec_get_drvdata(adap);
2170	struct v4l2_subdev *sd = &state->sd;
2171	u8 len = msg->len;
2172	unsigned int i;
2173
2174	/*
2175	 * The number of retries is the number of attempts - 1, but retry
2176	 * at least once. It's not clear if a value of 0 is allowed, so
2177	 * let's do at least one retry.
2178	 */
2179	cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4);
2180
2181	if (len > 16) {
2182		v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len);
2183		return -EINVAL;
2184	}
2185
2186	/* write data */
2187	for (i = 0; i < len; i++)
2188		cec_write(sd, i, msg->msg[i]);
2189
2190	/* set length (data + header) */
2191	cec_write(sd, 0x10, len);
2192	/* start transmit, enable tx */
2193	cec_write(sd, 0x11, 0x01);
2194	return 0;
2195}
2196
2197static const struct cec_adap_ops adv76xx_cec_adap_ops = {
2198	.adap_enable = adv76xx_cec_adap_enable,
2199	.adap_log_addr = adv76xx_cec_adap_log_addr,
2200	.adap_transmit = adv76xx_cec_adap_transmit,
2201};
2202#endif
2203
2204static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
2205{
2206	struct adv76xx_state *state = to_state(sd);
2207	const struct adv76xx_chip_info *info = state->info;
2208	const u8 irq_reg_0x43 = io_read(sd, 0x43);
2209	const u8 irq_reg_0x6b = io_read(sd, 0x6b);
2210	const u8 irq_reg_0x70 = io_read(sd, 0x70);
2211	u8 fmt_change_digital;
2212	u8 fmt_change;
2213	u8 tx_5v;
2214
2215	if (irq_reg_0x43)
2216		io_write(sd, 0x44, irq_reg_0x43);
2217	if (irq_reg_0x70)
2218		io_write(sd, 0x71, irq_reg_0x70);
2219	if (irq_reg_0x6b)
2220		io_write(sd, 0x6c, irq_reg_0x6b);
2221
2222	v4l2_dbg(2, debug, sd, "%s: ", __func__);
2223
2224	/* format change */
2225	fmt_change = irq_reg_0x43 & 0x98;
2226	fmt_change_digital = is_digital_input(sd)
2227			   ? irq_reg_0x6b & info->fmt_change_digital_mask
2228			   : 0;
2229
2230	if (fmt_change || fmt_change_digital) {
2231		v4l2_dbg(1, debug, sd,
2232			"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
2233			__func__, fmt_change, fmt_change_digital);
2234
2235		v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
2236
2237		if (handled)
2238			*handled = true;
2239	}
2240	/* HDMI/DVI mode */
2241	if (irq_reg_0x6b & 0x01) {
2242		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
2243			(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
2244		set_rgb_quantization_range(sd);
2245		if (handled)
2246			*handled = true;
2247	}
2248
2249#if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
2250	/* cec */
2251	adv76xx_cec_isr(sd, handled);
2252#endif
2253
2254	/* tx 5v detect */
2255	tx_5v = irq_reg_0x70 & info->cable_det_mask;
2256	if (tx_5v) {
2257		v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
2258		adv76xx_s_detect_tx_5v_ctrl(sd);
2259		if (handled)
2260			*handled = true;
2261	}
2262	return 0;
2263}
2264
2265static irqreturn_t adv76xx_irq_handler(int irq, void *dev_id)
2266{
2267	struct adv76xx_state *state = dev_id;
2268	bool handled = false;
2269
2270	adv76xx_isr(&state->sd, 0, &handled);
2271
2272	return handled ? IRQ_HANDLED : IRQ_NONE;
2273}
2274
2275static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2276{
2277	struct adv76xx_state *state = to_state(sd);
2278	u8 *data = NULL;
2279
2280	memset(edid->reserved, 0, sizeof(edid->reserved));
2281
2282	switch (edid->pad) {
2283	case ADV76XX_PAD_HDMI_PORT_A:
2284	case ADV7604_PAD_HDMI_PORT_B:
2285	case ADV7604_PAD_HDMI_PORT_C:
2286	case ADV7604_PAD_HDMI_PORT_D:
2287		if (state->edid.present & (1 << edid->pad))
2288			data = state->edid.edid;
2289		break;
2290	default:
2291		return -EINVAL;
2292	}
2293
2294	if (edid->start_block == 0 && edid->blocks == 0) {
2295		edid->blocks = data ? state->edid.blocks : 0;
2296		return 0;
2297	}
2298
2299	if (!data)
2300		return -ENODATA;
2301
2302	if (edid->start_block >= state->edid.blocks)
2303		return -EINVAL;
2304
2305	if (edid->start_block + edid->blocks > state->edid.blocks)
2306		edid->blocks = state->edid.blocks - edid->start_block;
2307
2308	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
2309
2310	return 0;
2311}
2312
2313static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2314{
2315	struct adv76xx_state *state = to_state(sd);
2316	const struct adv76xx_chip_info *info = state->info;
2317	unsigned int spa_loc;
2318	u16 pa, parent_pa;
2319	int err;
2320	int i;
2321
2322	memset(edid->reserved, 0, sizeof(edid->reserved));
2323
2324	if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2325		return -EINVAL;
2326	if (edid->start_block != 0)
2327		return -EINVAL;
2328	if (edid->blocks == 0) {
2329		/* Disable hotplug and I2C access to EDID RAM from DDC port */
2330		state->edid.present &= ~(1 << edid->pad);
2331		adv76xx_set_hpd(state, state->edid.present);
2332		rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2333
2334		/* Fall back to a 16:9 aspect ratio */
2335		state->aspect_ratio.numerator = 16;
2336		state->aspect_ratio.denominator = 9;
2337
2338		if (!state->edid.present) {
2339			state->edid.blocks = 0;
2340			cec_phys_addr_invalidate(state->cec_adap);
2341		}
2342
2343		v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2344				__func__, edid->pad, state->edid.present);
2345		return 0;
2346	}
2347	if (edid->blocks > ADV76XX_MAX_EDID_BLOCKS) {
2348		edid->blocks = ADV76XX_MAX_EDID_BLOCKS;
2349		return -E2BIG;
2350	}
2351
2352	pa = v4l2_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc);
2353	err = v4l2_phys_addr_validate(pa, &parent_pa, NULL);
2354	if (err)
2355		return err;
2356
2357	if (!spa_loc) {
2358		/*
2359		 * There is no SPA, so just set spa_loc to 128 and pa to whatever
2360		 * data is there.
2361		 */
2362		spa_loc = 128;
2363		pa = (edid->edid[spa_loc] << 8) | edid->edid[spa_loc + 1];
2364	}
2365
2366	v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2367			__func__, edid->pad, state->edid.present);
2368
2369	/* Disable hotplug and I2C access to EDID RAM from DDC port */
2370	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2371	adv76xx_set_hpd(state, 0);
2372	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2373
2374	switch (edid->pad) {
2375	case ADV76XX_PAD_HDMI_PORT_A:
2376		state->spa_port_a[0] = pa >> 8;
2377		state->spa_port_a[1] = pa & 0xff;
2378		break;
2379	case ADV7604_PAD_HDMI_PORT_B:
2380		rep_write(sd, info->edid_spa_port_b_reg, pa >> 8);
2381		rep_write(sd, info->edid_spa_port_b_reg + 1, pa & 0xff);
2382		break;
2383	case ADV7604_PAD_HDMI_PORT_C:
2384		rep_write(sd, info->edid_spa_port_b_reg + 2, pa >> 8);
2385		rep_write(sd, info->edid_spa_port_b_reg + 3, pa & 0xff);
2386		break;
2387	case ADV7604_PAD_HDMI_PORT_D:
2388		rep_write(sd, info->edid_spa_port_b_reg + 4, pa >> 8);
2389		rep_write(sd, info->edid_spa_port_b_reg + 5, pa & 0xff);
2390		break;
2391	default:
2392		return -EINVAL;
2393	}
2394
2395	if (info->edid_spa_loc_reg) {
2396		u8 mask = info->edid_spa_loc_msb_mask;
2397
2398		rep_write(sd, info->edid_spa_loc_reg, spa_loc & 0xff);
2399		rep_write_clr_set(sd, info->edid_spa_loc_reg + 1,
2400				  mask, (spa_loc & 0x100) ? mask : 0);
2401	}
2402
2403	edid->edid[spa_loc] = state->spa_port_a[0];
2404	edid->edid[spa_loc + 1] = state->spa_port_a[1];
2405
2406	memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2407	state->edid.blocks = edid->blocks;
2408	state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2409			edid->edid[0x16]);
2410	state->edid.present |= 1 << edid->pad;
2411
2412	rep_write_clr_set(sd, info->edid_segment_reg,
2413			  info->edid_segment_mask, 0);
2414	err = edid_write_block(sd, 128 * min(edid->blocks, 2U), state->edid.edid);
2415	if (err < 0) {
2416		v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2417		return err;
2418	}
2419	if (edid->blocks > 2) {
2420		rep_write_clr_set(sd, info->edid_segment_reg,
2421				  info->edid_segment_mask,
2422				  info->edid_segment_mask);
2423		err = edid_write_block(sd, 128 * (edid->blocks - 2),
2424				       state->edid.edid + 256);
2425		if (err < 0) {
2426			v4l2_err(sd, "error %d writing edid pad %d\n",
2427				 err, edid->pad);
2428			return err;
2429		}
2430	}
2431
2432	/* adv76xx calculates the checksums and enables I2C access to internal
2433	   EDID RAM from DDC port. */
2434	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2435
2436	for (i = 0; i < 1000; i++) {
2437		if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2438			break;
2439		mdelay(1);
2440	}
2441	if (i == 1000) {
2442		v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2443		return -EIO;
2444	}
2445	cec_s_phys_addr(state->cec_adap, parent_pa, false);
2446
2447	/* enable hotplug after 100 ms */
2448	schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10);
2449	return 0;
2450}
2451
2452/*********** avi info frame CEA-861-E **************/
2453
2454static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
2455	{ "AVI", 0x01, 0xe0, 0x00 },
2456	{ "Audio", 0x02, 0xe3, 0x1c },
2457	{ "SDP", 0x04, 0xe6, 0x2a },
2458	{ "Vendor", 0x10, 0xec, 0x54 }
2459};
2460
2461static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
2462				  union hdmi_infoframe *frame)
2463{
2464	uint8_t buffer[32];
2465	u8 len;
2466	int i;
2467
2468	if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
2469		v4l2_info(sd, "%s infoframe not received\n",
2470			  adv76xx_cri[index].desc);
2471		return -ENOENT;
2472	}
2473
2474	for (i = 0; i < 3; i++)
2475		buffer[i] = infoframe_read(sd,
2476					   adv76xx_cri[index].head_addr + i);
2477
2478	len = buffer[2] + 1;
2479
2480	if (len + 3 > sizeof(buffer)) {
2481		v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
2482			 adv76xx_cri[index].desc, len);
2483		return -ENOENT;
2484	}
2485
2486	for (i = 0; i < len; i++)
2487		buffer[i + 3] = infoframe_read(sd,
2488				       adv76xx_cri[index].payload_addr + i);
2489
2490	if (hdmi_infoframe_unpack(frame, buffer, len + 3) < 0) {
2491		v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
2492			 adv76xx_cri[index].desc);
2493		return -ENOENT;
2494	}
2495	return 0;
2496}
2497
2498static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
2499{
2500	int i;
2501
2502	if (!is_hdmi(sd)) {
2503		v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2504		return;
2505	}
2506
2507	for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
2508		union hdmi_infoframe frame;
2509		struct i2c_client *client = v4l2_get_subdevdata(sd);
2510
2511		if (!adv76xx_read_infoframe(sd, i, &frame))
2512			hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
2513	}
2514}
2515
2516static int adv76xx_log_status(struct v4l2_subdev *sd)
2517{
2518	struct adv76xx_state *state = to_state(sd);
2519	const struct adv76xx_chip_info *info = state->info;
2520	struct v4l2_dv_timings timings;
2521	struct stdi_readback stdi;
2522	u8 reg_io_0x02 = io_read(sd, 0x02);
2523	u8 edid_enabled;
2524	u8 cable_det;
2525
2526	static const char * const csc_coeff_sel_rb[16] = {
2527		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2528		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2529		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2530		"reserved", "reserved", "reserved", "reserved", "manual"
2531	};
2532	static const char * const input_color_space_txt[16] = {
2533		"RGB limited range (16-235)", "RGB full range (0-255)",
2534		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2535		"xvYCC Bt.601", "xvYCC Bt.709",
2536		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2537		"invalid", "invalid", "invalid", "invalid", "invalid",
2538		"invalid", "invalid", "automatic"
2539	};
2540	static const char * const hdmi_color_space_txt[16] = {
2541		"RGB limited range (16-235)", "RGB full range (0-255)",
2542		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2543		"xvYCC Bt.601", "xvYCC Bt.709",
2544		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2545		"sYCC", "opYCC 601", "opRGB", "invalid", "invalid",
2546		"invalid", "invalid", "invalid"
2547	};
2548	static const char * const rgb_quantization_range_txt[] = {
2549		"Automatic",
2550		"RGB limited range (16-235)",
2551		"RGB full range (0-255)",
2552	};
2553	static const char * const deep_color_mode_txt[4] = {
2554		"8-bits per channel",
2555		"10-bits per channel",
2556		"12-bits per channel",
2557		"16-bits per channel (not supported)"
2558	};
2559
2560	v4l2_info(sd, "-----Chip status-----\n");
2561	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2562	edid_enabled = rep_read(sd, info->edid_status_reg);
2563	v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2564			((edid_enabled & 0x01) ? "Yes" : "No"),
2565			((edid_enabled & 0x02) ? "Yes" : "No"),
2566			((edid_enabled & 0x04) ? "Yes" : "No"),
2567			((edid_enabled & 0x08) ? "Yes" : "No"));
2568	v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ?
2569			"enabled" : "disabled");
2570	if (state->cec_enabled_adap) {
2571		int i;
2572
2573		for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2574			bool is_valid = state->cec_valid_addrs & (1 << i);
2575
2576			if (is_valid)
2577				v4l2_info(sd, "CEC Logical Address: 0x%x\n",
2578					  state->cec_addr[i]);
2579		}
2580	}
2581
2582	v4l2_info(sd, "-----Signal status-----\n");
2583	cable_det = info->read_cable_det(sd);
2584	v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2585			((cable_det & 0x01) ? "Yes" : "No"),
2586			((cable_det & 0x02) ? "Yes" : "No"),
2587			((cable_det & 0x04) ? "Yes" : "No"),
2588			((cable_det & 0x08) ? "Yes" : "No"));
2589	v4l2_info(sd, "TMDS signal detected: %s\n",
2590			no_signal_tmds(sd) ? "false" : "true");
2591	v4l2_info(sd, "TMDS signal locked: %s\n",
2592			no_lock_tmds(sd) ? "false" : "true");
2593	v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2594	v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2595	v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2596	v4l2_info(sd, "CP free run: %s\n",
2597			(in_free_run(sd)) ? "on" : "off");
2598	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2599			io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2600			(io_read(sd, 0x01) & 0x70) >> 4);
2601
2602	v4l2_info(sd, "-----Video Timings-----\n");
2603	if (read_stdi(sd, &stdi))
2604		v4l2_info(sd, "STDI: not locked\n");
2605	else
2606		v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2607				stdi.lcf, stdi.bl, stdi.lcvs,
2608				stdi.interlaced ? "interlaced" : "progressive",
2609				stdi.hs_pol, stdi.vs_pol);
2610	if (adv76xx_query_dv_timings(sd, &timings))
2611		v4l2_info(sd, "No video detected\n");
2612	else
2613		v4l2_print_dv_timings(sd->name, "Detected format: ",
2614				      &timings, true);
2615	v4l2_print_dv_timings(sd->name, "Configured format: ",
2616			      &state->timings, true);
2617
2618	if (no_signal(sd))
2619		return 0;
2620
2621	v4l2_info(sd, "-----Color space-----\n");
2622	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2623			rgb_quantization_range_txt[state->rgb_quantization_range]);
2624	v4l2_info(sd, "Input color space: %s\n",
2625			input_color_space_txt[reg_io_0x02 >> 4]);
2626	v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n",
2627			(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2628			(((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2629				"(16-235)" : "(0-255)",
2630			(reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2631	v4l2_info(sd, "Color space conversion: %s\n",
2632			csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2633
2634	if (!is_digital_input(sd))
2635		return 0;
2636
2637	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2638	v4l2_info(sd, "Digital video port selected: %c\n",
2639			(hdmi_read(sd, 0x00) & 0x03) + 'A');
2640	v4l2_info(sd, "HDCP encrypted content: %s\n",
2641			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2642	v4l2_info(sd, "HDCP keys read: %s%s\n",
2643			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2644			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2645	if (is_hdmi(sd)) {
2646		bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2647		bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2648		bool audio_mute = io_read(sd, 0x65) & 0x40;
2649
2650		v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2651				audio_pll_locked ? "locked" : "not locked",
2652				audio_sample_packet_detect ? "detected" : "not detected",
2653				audio_mute ? "muted" : "enabled");
2654		if (audio_pll_locked && audio_sample_packet_detect) {
2655			v4l2_info(sd, "Audio format: %s\n",
2656					(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2657		}
2658		v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2659				(hdmi_read(sd, 0x5c) << 8) +
2660				(hdmi_read(sd, 0x5d) & 0xf0));
2661		v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2662				(hdmi_read(sd, 0x5e) << 8) +
2663				hdmi_read(sd, 0x5f));
2664		v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2665
2666		v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2667		v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2668
2669		adv76xx_log_infoframes(sd);
2670	}
2671
2672	return 0;
2673}
2674
2675static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
2676				   struct v4l2_fh *fh,
2677				   struct v4l2_event_subscription *sub)
2678{
2679	switch (sub->type) {
2680	case V4L2_EVENT_SOURCE_CHANGE:
2681		return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2682	case V4L2_EVENT_CTRL:
2683		return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2684	default:
2685		return -EINVAL;
2686	}
2687}
2688
2689static int adv76xx_registered(struct v4l2_subdev *sd)
2690{
2691	struct adv76xx_state *state = to_state(sd);
2692	struct i2c_client *client = v4l2_get_subdevdata(sd);
2693	int err;
2694
2695	err = cec_register_adapter(state->cec_adap, &client->dev);
2696	if (err)
2697		cec_delete_adapter(state->cec_adap);
2698	return err;
2699}
2700
2701static void adv76xx_unregistered(struct v4l2_subdev *sd)
2702{
2703	struct adv76xx_state *state = to_state(sd);
2704
2705	cec_unregister_adapter(state->cec_adap);
2706}
2707
2708/* ----------------------------------------------------------------------- */
2709
2710static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2711	.s_ctrl = adv76xx_s_ctrl,
2712	.g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2713};
2714
2715static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2716	.log_status = adv76xx_log_status,
2717	.interrupt_service_routine = adv76xx_isr,
2718	.subscribe_event = adv76xx_subscribe_event,
2719	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2720#ifdef CONFIG_VIDEO_ADV_DEBUG
2721	.g_register = adv76xx_g_register,
2722	.s_register = adv76xx_s_register,
2723#endif
2724};
2725
2726static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2727	.s_routing = adv76xx_s_routing,
2728	.g_input_status = adv76xx_g_input_status,
2729	.s_dv_timings = adv76xx_s_dv_timings,
2730	.g_dv_timings = adv76xx_g_dv_timings,
2731	.query_dv_timings = adv76xx_query_dv_timings,
2732};
2733
2734static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2735	.enum_mbus_code = adv76xx_enum_mbus_code,
2736	.get_selection = adv76xx_get_selection,
2737	.get_fmt = adv76xx_get_format,
2738	.set_fmt = adv76xx_set_format,
2739	.get_edid = adv76xx_get_edid,
2740	.set_edid = adv76xx_set_edid,
2741	.dv_timings_cap = adv76xx_dv_timings_cap,
2742	.enum_dv_timings = adv76xx_enum_dv_timings,
2743};
2744
2745static const struct v4l2_subdev_ops adv76xx_ops = {
2746	.core = &adv76xx_core_ops,
2747	.video = &adv76xx_video_ops,
2748	.pad = &adv76xx_pad_ops,
2749};
2750
2751static const struct v4l2_subdev_internal_ops adv76xx_int_ops = {
2752	.registered = adv76xx_registered,
2753	.unregistered = adv76xx_unregistered,
2754};
2755
2756/* -------------------------- custom ctrls ---------------------------------- */
2757
2758static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2759	.ops = &adv76xx_ctrl_ops,
2760	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2761	.name = "Analog Sampling Phase",
2762	.type = V4L2_CTRL_TYPE_INTEGER,
2763	.min = 0,
2764	.max = 0x1f,
2765	.step = 1,
2766	.def = 0,
2767};
2768
2769static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2770	.ops = &adv76xx_ctrl_ops,
2771	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2772	.name = "Free Running Color, Manual",
2773	.type = V4L2_CTRL_TYPE_BOOLEAN,
2774	.min = false,
2775	.max = true,
2776	.step = 1,
2777	.def = false,
2778};
2779
2780static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2781	.ops = &adv76xx_ctrl_ops,
2782	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2783	.name = "Free Running Color",
2784	.type = V4L2_CTRL_TYPE_INTEGER,
2785	.min = 0x0,
2786	.max = 0xffffff,
2787	.step = 0x1,
2788	.def = 0x0,
2789};
2790
2791/* ----------------------------------------------------------------------- */
2792
2793struct adv76xx_register_map {
2794	const char *name;
2795	u8 default_addr;
2796};
2797
2798static const struct adv76xx_register_map adv76xx_default_addresses[] = {
2799	[ADV76XX_PAGE_IO] = { "main", 0x4c },
2800	[ADV7604_PAGE_AVLINK] = { "avlink", 0x42 },
2801	[ADV76XX_PAGE_CEC] = { "cec", 0x40 },
2802	[ADV76XX_PAGE_INFOFRAME] = { "infoframe", 0x3e },
2803	[ADV7604_PAGE_ESDP] = { "esdp", 0x38 },
2804	[ADV7604_PAGE_DPP] = { "dpp", 0x3c },
2805	[ADV76XX_PAGE_AFE] = { "afe", 0x26 },
2806	[ADV76XX_PAGE_REP] = { "rep", 0x32 },
2807	[ADV76XX_PAGE_EDID] = { "edid", 0x36 },
2808	[ADV76XX_PAGE_HDMI] = { "hdmi", 0x34 },
2809	[ADV76XX_PAGE_TEST] = { "test", 0x30 },
2810	[ADV76XX_PAGE_CP] = { "cp", 0x22 },
2811	[ADV7604_PAGE_VDP] = { "vdp", 0x24 },
2812};
2813
2814static int adv76xx_core_init(struct v4l2_subdev *sd)
2815{
2816	struct adv76xx_state *state = to_state(sd);
2817	const struct adv76xx_chip_info *info = state->info;
2818	struct adv76xx_platform_data *pdata = &state->pdata;
2819
2820	hdmi_write(sd, 0x48,
2821		(pdata->disable_pwrdnb ? 0x80 : 0) |
2822		(pdata->disable_cable_det_rst ? 0x40 : 0));
2823
2824	disable_input(sd);
2825
2826	if (pdata->default_input >= 0 &&
2827	    pdata->default_input < state->source_pad) {
2828		state->selected_input = pdata->default_input;
2829		select_input(sd);
2830		enable_input(sd);
2831	}
2832
2833	/* power */
2834	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
2835	io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
2836	cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */
2837
2838	/* HPD */
2839	if (info->type != ADV7604) {
2840		/* Set manual HPD values to 0 */
2841		io_write_clr_set(sd, 0x20, 0xc0, 0);
2842		/*
2843		 * Set HPA_DELAY to 200 ms and set automatic HPD control
2844		 * to: internal EDID is active AND a cable is detected
2845		 * AND the manual HPD control is set to 1.
2846		 */
2847		hdmi_write_clr_set(sd, 0x6c, 0xf6, 0x26);
2848	}
2849
2850	/* video format */
2851	io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3);
2852	io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2853			pdata->insert_av_codes << 2 |
2854			pdata->replicate_av_codes << 1);
2855	adv76xx_setup_format(state);
2856
2857	cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2858
2859	/* VS, HS polarities */
2860	io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2861		 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2862
2863	/* Adjust drive strength */
2864	io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2865				pdata->dr_str_clk << 2 |
2866				pdata->dr_str_sync);
2867
2868	cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2869	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2870	cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
2871				      ADI recommended setting [REF_01, c. 2.3.3] */
2872	cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
2873				      ADI recommended setting [REF_01, c. 2.3.3] */
2874	cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2875				     for digital formats */
2876
2877	/* HDMI audio */
2878	hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2879	hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2880	hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2881
2882	/* TODO from platform data */
2883	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */
2884
2885	if (adv76xx_has_afe(state)) {
2886		afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2887		io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2888	}
2889
2890	/* interrupts */
2891	io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2892	io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2893	io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2894	io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2895	info->setup_irqs(sd);
2896
2897	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2898}
2899
2900static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2901{
2902	io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2903}
2904
2905static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2906{
2907	io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2908}
2909
2910static void adv7612_setup_irqs(struct v4l2_subdev *sd)
2911{
2912	io_write(sd, 0x41, 0xd0); /* disable INT2 */
2913}
2914
2915static void adv76xx_unregister_clients(struct adv76xx_state *state)
2916{
2917	unsigned int i;
2918
2919	for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i)
2920		i2c_unregister_device(state->i2c_clients[i]);
2921}
2922
2923static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2924					       unsigned int page)
2925{
2926	struct i2c_client *client = v4l2_get_subdevdata(sd);
2927	struct adv76xx_state *state = to_state(sd);
2928	struct adv76xx_platform_data *pdata = &state->pdata;
2929	unsigned int io_reg = 0xf2 + page;
2930	struct i2c_client *new_client;
2931
2932	if (pdata && pdata->i2c_addresses[page])
2933		new_client = i2c_new_dummy_device(client->adapter,
2934					   pdata->i2c_addresses[page]);
2935	else
2936		new_client = i2c_new_ancillary_device(client,
2937				adv76xx_default_addresses[page].name,
2938				adv76xx_default_addresses[page].default_addr);
2939
2940	if (!IS_ERR(new_client))
2941		io_write(sd, io_reg, new_client->addr << 1);
2942
2943	return new_client;
2944}
2945
2946static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2947	/* reset ADI recommended settings for HDMI: */
2948	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2949	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2950	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2951	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2952	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
2953	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2954	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
2955	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
2956	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2957	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2958	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
2959	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
2960	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2961
2962	/* set ADI recommended settings for digitizer */
2963	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2964	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2965	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
2966	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
2967	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2968	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2969
2970	{ ADV76XX_REG_SEQ_TERM, 0 },
2971};
2972
2973static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2974	/* set ADI recommended settings for HDMI: */
2975	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2976	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
2977	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2978	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
2979	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2980	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
2981	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
2982	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2983	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2984	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
2985	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
2986	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2987
2988	/* reset ADI recommended settings for digitizer */
2989	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2990	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2991	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2992
2993	{ ADV76XX_REG_SEQ_TERM, 0 },
2994};
2995
2996static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2997	/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2998	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2999	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
3000	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
3001	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
3002	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
3003	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
3004	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
3005	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
3006	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
3007	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
3008	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
3009
3010	{ ADV76XX_REG_SEQ_TERM, 0 },
3011};
3012
3013static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
3014	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
3015	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
3016	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
3017	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
3018	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
3019	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
3020	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
3021	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
3022	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
3023	{ ADV76XX_REG_SEQ_TERM, 0 },
3024};
3025
3026static const struct adv76xx_chip_info adv76xx_chip_info[] = {
3027	[ADV7604] = {
3028		.type = ADV7604,
3029		.has_afe = true,
3030		.max_port = ADV7604_PAD_VGA_COMP,
3031		.num_dv_ports = 4,
3032		.edid_enable_reg = 0x77,
3033		.edid_status_reg = 0x7d,
3034		.edid_segment_reg = 0x77,
3035		.edid_segment_mask = 0x10,
3036		.edid_spa_loc_reg = 0x76,
3037		.edid_spa_loc_msb_mask = 0x40,
3038		.edid_spa_port_b_reg = 0x70,
3039		.lcf_reg = 0xb3,
3040		.tdms_lock_mask = 0xe0,
3041		.cable_det_mask = 0x1e,
3042		.fmt_change_digital_mask = 0xc1,
3043		.cp_csc = 0xfc,
3044		.cec_irq_status = 0x4d,
3045		.cec_rx_enable = 0x26,
3046		.cec_rx_enable_mask = 0x01,
3047		.cec_irq_swap = true,
3048		.formats = adv7604_formats,
3049		.nformats = ARRAY_SIZE(adv7604_formats),
3050		.set_termination = adv7604_set_termination,
3051		.setup_irqs = adv7604_setup_irqs,
3052		.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
3053		.read_cable_det = adv7604_read_cable_det,
3054		.recommended_settings = {
3055		    [0] = adv7604_recommended_settings_afe,
3056		    [1] = adv7604_recommended_settings_hdmi,
3057		},
3058		.num_recommended_settings = {
3059		    [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
3060		    [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
3061		},
3062		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
3063			BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
3064			BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
3065			BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
3066			BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
3067			BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
3068			BIT(ADV7604_PAGE_VDP),
3069		.linewidth_mask = 0xfff,
3070		.field0_height_mask = 0xfff,
3071		.field1_height_mask = 0xfff,
3072		.hfrontporch_mask = 0x3ff,
3073		.hsync_mask = 0x3ff,
3074		.hbackporch_mask = 0x3ff,
3075		.field0_vfrontporch_mask = 0x1fff,
3076		.field0_vsync_mask = 0x1fff,
3077		.field0_vbackporch_mask = 0x1fff,
3078		.field1_vfrontporch_mask = 0x1fff,
3079		.field1_vsync_mask = 0x1fff,
3080		.field1_vbackporch_mask = 0x1fff,
3081	},
3082	[ADV7611] = {
3083		.type = ADV7611,
3084		.has_afe = false,
3085		.max_port = ADV76XX_PAD_HDMI_PORT_A,
3086		.num_dv_ports = 1,
3087		.edid_enable_reg = 0x74,
3088		.edid_status_reg = 0x76,
3089		.edid_segment_reg = 0x7a,
3090		.edid_segment_mask = 0x01,
3091		.lcf_reg = 0xa3,
3092		.tdms_lock_mask = 0x43,
3093		.cable_det_mask = 0x01,
3094		.fmt_change_digital_mask = 0x03,
3095		.cp_csc = 0xf4,
3096		.cec_irq_status = 0x93,
3097		.cec_rx_enable = 0x2c,
3098		.cec_rx_enable_mask = 0x02,
3099		.formats = adv7611_formats,
3100		.nformats = ARRAY_SIZE(adv7611_formats),
3101		.set_termination = adv7611_set_termination,
3102		.setup_irqs = adv7611_setup_irqs,
3103		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3104		.read_cable_det = adv7611_read_cable_det,
3105		.recommended_settings = {
3106		    [1] = adv7611_recommended_settings_hdmi,
3107		},
3108		.num_recommended_settings = {
3109		    [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
3110		},
3111		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3112			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3113			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3114			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3115		.linewidth_mask = 0x1fff,
3116		.field0_height_mask = 0x1fff,
3117		.field1_height_mask = 0x1fff,
3118		.hfrontporch_mask = 0x1fff,
3119		.hsync_mask = 0x1fff,
3120		.hbackporch_mask = 0x1fff,
3121		.field0_vfrontporch_mask = 0x3fff,
3122		.field0_vsync_mask = 0x3fff,
3123		.field0_vbackporch_mask = 0x3fff,
3124		.field1_vfrontporch_mask = 0x3fff,
3125		.field1_vsync_mask = 0x3fff,
3126		.field1_vbackporch_mask = 0x3fff,
3127	},
3128	[ADV7612] = {
3129		.type = ADV7612,
3130		.has_afe = false,
3131		.max_port = ADV76XX_PAD_HDMI_PORT_A,	/* B not supported */
3132		.num_dv_ports = 1,			/* normally 2 */
3133		.edid_enable_reg = 0x74,
3134		.edid_status_reg = 0x76,
3135		.edid_segment_reg = 0x7a,
3136		.edid_segment_mask = 0x01,
3137		.edid_spa_loc_reg = 0x70,
3138		.edid_spa_loc_msb_mask = 0x01,
3139		.edid_spa_port_b_reg = 0x52,
3140		.lcf_reg = 0xa3,
3141		.tdms_lock_mask = 0x43,
3142		.cable_det_mask = 0x01,
3143		.fmt_change_digital_mask = 0x03,
3144		.cp_csc = 0xf4,
3145		.cec_irq_status = 0x93,
3146		.cec_rx_enable = 0x2c,
3147		.cec_rx_enable_mask = 0x02,
3148		.formats = adv7612_formats,
3149		.nformats = ARRAY_SIZE(adv7612_formats),
3150		.set_termination = adv7611_set_termination,
3151		.setup_irqs = adv7612_setup_irqs,
3152		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3153		.read_cable_det = adv7612_read_cable_det,
3154		.recommended_settings = {
3155		    [1] = adv7612_recommended_settings_hdmi,
3156		},
3157		.num_recommended_settings = {
3158		    [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
3159		},
3160		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3161			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3162			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3163			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3164		.linewidth_mask = 0x1fff,
3165		.field0_height_mask = 0x1fff,
3166		.field1_height_mask = 0x1fff,
3167		.hfrontporch_mask = 0x1fff,
3168		.hsync_mask = 0x1fff,
3169		.hbackporch_mask = 0x1fff,
3170		.field0_vfrontporch_mask = 0x3fff,
3171		.field0_vsync_mask = 0x3fff,
3172		.field0_vbackporch_mask = 0x3fff,
3173		.field1_vfrontporch_mask = 0x3fff,
3174		.field1_vsync_mask = 0x3fff,
3175		.field1_vbackporch_mask = 0x3fff,
3176	},
3177};
3178
3179static const struct i2c_device_id adv76xx_i2c_id[] = {
3180	{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
3181	{ "adv7610", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3182	{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3183	{ "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
3184	{ }
3185};
3186MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
3187
3188static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
3189	{ .compatible = "adi,adv7610", .data = &adv76xx_chip_info[ADV7611] },
3190	{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
3191	{ .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
3192	{ }
3193};
3194MODULE_DEVICE_TABLE(of, adv76xx_of_id);
3195
3196static int adv76xx_parse_dt(struct adv76xx_state *state)
3197{
3198	struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
3199	struct device_node *endpoint;
3200	struct device_node *np;
3201	unsigned int flags;
3202	int ret;
3203	u32 v;
3204
3205	np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
3206
3207	/* FIXME: Parse the endpoint. */
3208	endpoint = of_graph_get_endpoint_by_regs(np, -1, -1);
3209	if (!endpoint)
3210		return -EINVAL;
3211
3212	ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint), &bus_cfg);
3213	of_node_put(endpoint);
3214	if (ret)
3215		return ret;
3216
3217	if (!of_property_read_u32(np, "default-input", &v))
3218		state->pdata.default_input = v;
3219	else
3220		state->pdata.default_input = -1;
3221
3222	flags = bus_cfg.bus.parallel.flags;
3223
3224	if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
3225		state->pdata.inv_hs_pol = 1;
3226
3227	if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
3228		state->pdata.inv_vs_pol = 1;
3229
3230	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
3231		state->pdata.inv_llc_pol = 1;
3232
3233	if (bus_cfg.bus_type == V4L2_MBUS_BT656)
3234		state->pdata.insert_av_codes = 1;
3235
3236	/* Disable the interrupt for now as no DT-based board uses it. */
3237	state->pdata.int1_config = ADV76XX_INT1_CONFIG_ACTIVE_HIGH;
3238
3239	/* Hardcode the remaining platform data fields. */
3240	state->pdata.disable_pwrdnb = 0;
3241	state->pdata.disable_cable_det_rst = 0;
3242	state->pdata.blank_data = 1;
3243	state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
3244	state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
3245	state->pdata.dr_str_data = ADV76XX_DR_STR_MEDIUM_HIGH;
3246	state->pdata.dr_str_clk = ADV76XX_DR_STR_MEDIUM_HIGH;
3247	state->pdata.dr_str_sync = ADV76XX_DR_STR_MEDIUM_HIGH;
3248
3249	return 0;
3250}
3251
3252static const struct regmap_config adv76xx_regmap_cnf[] = {
3253	{
3254		.name			= "io",
3255		.reg_bits		= 8,
3256		.val_bits		= 8,
3257
3258		.max_register		= 0xff,
3259		.cache_type		= REGCACHE_NONE,
3260	},
3261	{
3262		.name			= "avlink",
3263		.reg_bits		= 8,
3264		.val_bits		= 8,
3265
3266		.max_register		= 0xff,
3267		.cache_type		= REGCACHE_NONE,
3268	},
3269	{
3270		.name			= "cec",
3271		.reg_bits		= 8,
3272		.val_bits		= 8,
3273
3274		.max_register		= 0xff,
3275		.cache_type		= REGCACHE_NONE,
3276	},
3277	{
3278		.name			= "infoframe",
3279		.reg_bits		= 8,
3280		.val_bits		= 8,
3281
3282		.max_register		= 0xff,
3283		.cache_type		= REGCACHE_NONE,
3284	},
3285	{
3286		.name			= "esdp",
3287		.reg_bits		= 8,
3288		.val_bits		= 8,
3289
3290		.max_register		= 0xff,
3291		.cache_type		= REGCACHE_NONE,
3292	},
3293	{
3294		.name			= "epp",
3295		.reg_bits		= 8,
3296		.val_bits		= 8,
3297
3298		.max_register		= 0xff,
3299		.cache_type		= REGCACHE_NONE,
3300	},
3301	{
3302		.name			= "afe",
3303		.reg_bits		= 8,
3304		.val_bits		= 8,
3305
3306		.max_register		= 0xff,
3307		.cache_type		= REGCACHE_NONE,
3308	},
3309	{
3310		.name			= "rep",
3311		.reg_bits		= 8,
3312		.val_bits		= 8,
3313
3314		.max_register		= 0xff,
3315		.cache_type		= REGCACHE_NONE,
3316	},
3317	{
3318		.name			= "edid",
3319		.reg_bits		= 8,
3320		.val_bits		= 8,
3321
3322		.max_register		= 0xff,
3323		.cache_type		= REGCACHE_NONE,
3324	},
3325
3326	{
3327		.name			= "hdmi",
3328		.reg_bits		= 8,
3329		.val_bits		= 8,
3330
3331		.max_register		= 0xff,
3332		.cache_type		= REGCACHE_NONE,
3333	},
3334	{
3335		.name			= "test",
3336		.reg_bits		= 8,
3337		.val_bits		= 8,
3338
3339		.max_register		= 0xff,
3340		.cache_type		= REGCACHE_NONE,
3341	},
3342	{
3343		.name			= "cp",
3344		.reg_bits		= 8,
3345		.val_bits		= 8,
3346
3347		.max_register		= 0xff,
3348		.cache_type		= REGCACHE_NONE,
3349	},
3350	{
3351		.name			= "vdp",
3352		.reg_bits		= 8,
3353		.val_bits		= 8,
3354
3355		.max_register		= 0xff,
3356		.cache_type		= REGCACHE_NONE,
3357	},
3358};
3359
3360static int configure_regmap(struct adv76xx_state *state, int region)
3361{
3362	int err;
3363
3364	if (!state->i2c_clients[region])
3365		return -ENODEV;
3366
3367	state->regmap[region] =
3368		devm_regmap_init_i2c(state->i2c_clients[region],
3369				     &adv76xx_regmap_cnf[region]);
3370
3371	if (IS_ERR(state->regmap[region])) {
3372		err = PTR_ERR(state->regmap[region]);
3373		v4l_err(state->i2c_clients[region],
3374			"Error initializing regmap %d with error %d\n",
3375			region, err);
3376		return -EINVAL;
3377	}
3378
3379	return 0;
3380}
3381
3382static int configure_regmaps(struct adv76xx_state *state)
3383{
3384	int i, err;
3385
3386	for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
3387		err = configure_regmap(state, i);
3388		if (err && (err != -ENODEV))
3389			return err;
3390	}
3391	return 0;
3392}
3393
3394static void adv76xx_reset(struct adv76xx_state *state)
3395{
3396	if (state->reset_gpio) {
3397		/* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
3398		gpiod_set_value_cansleep(state->reset_gpio, 0);
3399		usleep_range(5000, 10000);
3400		gpiod_set_value_cansleep(state->reset_gpio, 1);
3401		/* It is recommended to wait 5 ms after the low pulse before */
3402		/* an I2C write is performed to the ADV76XX. */
3403		usleep_range(5000, 10000);
3404	}
3405}
3406
3407static int adv76xx_probe(struct i2c_client *client)
3408{
3409	const struct i2c_device_id *id = i2c_client_get_device_id(client);
3410	static const struct v4l2_dv_timings cea640x480 =
3411		V4L2_DV_BT_CEA_640X480P59_94;
3412	struct adv76xx_state *state;
3413	struct v4l2_ctrl_handler *hdl;
3414	struct v4l2_ctrl *ctrl;
3415	struct v4l2_subdev *sd;
3416	unsigned int i;
3417	unsigned int val, val2;
3418	int err;
3419
3420	/* Check if the adapter supports the needed features */
3421	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
3422		return -EIO;
3423	v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3424			client->addr << 1);
3425
3426	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3427	if (!state)
3428		return -ENOMEM;
3429
3430	state->i2c_clients[ADV76XX_PAGE_IO] = client;
3431
3432	/* initialize variables */
3433	state->restart_stdi_once = true;
3434	state->selected_input = ~0;
3435
3436	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
3437		const struct of_device_id *oid;
3438
3439		oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3440		state->info = oid->data;
3441
3442		err = adv76xx_parse_dt(state);
3443		if (err < 0) {
3444			v4l_err(client, "DT parsing error\n");
3445			return err;
3446		}
3447	} else if (client->dev.platform_data) {
3448		struct adv76xx_platform_data *pdata = client->dev.platform_data;
3449
3450		state->info = (const struct adv76xx_chip_info *)id->driver_data;
3451		state->pdata = *pdata;
3452	} else {
3453		v4l_err(client, "No platform data!\n");
3454		return -ENODEV;
3455	}
3456
3457	/* Request GPIOs. */
3458	for (i = 0; i < state->info->num_dv_ports; ++i) {
3459		state->hpd_gpio[i] =
3460			devm_gpiod_get_index_optional(&client->dev, "hpd", i,
3461						      GPIOD_OUT_LOW);
3462		if (IS_ERR(state->hpd_gpio[i]))
3463			return PTR_ERR(state->hpd_gpio[i]);
3464
3465		if (state->hpd_gpio[i])
3466			v4l_info(client, "Handling HPD %u GPIO\n", i);
3467	}
3468	state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
3469								GPIOD_OUT_HIGH);
3470	if (IS_ERR(state->reset_gpio))
3471		return PTR_ERR(state->reset_gpio);
3472
3473	adv76xx_reset(state);
3474
3475	state->timings = cea640x480;
3476	state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3477
3478	sd = &state->sd;
3479	v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3480	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
3481		id->name, i2c_adapter_id(client->adapter),
3482		client->addr);
3483	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3484	sd->internal_ops = &adv76xx_int_ops;
3485
3486	/* Configure IO Regmap region */
3487	err = configure_regmap(state, ADV76XX_PAGE_IO);
3488
3489	if (err) {
3490		v4l2_err(sd, "Error configuring IO regmap region\n");
3491		return -ENODEV;
3492	}
3493
3494	/*
3495	 * Verify that the chip is present. On ADV7604 the RD_INFO register only
3496	 * identifies the revision, while on ADV7611 it identifies the model as
3497	 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3498	 */
3499	switch (state->info->type) {
3500	case ADV7604:
3501		err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
3502		if (err) {
3503			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3504			return -ENODEV;
3505		}
3506		if (val != 0x68) {
3507			v4l2_err(sd, "not an ADV7604 on address 0x%x\n",
3508				 client->addr << 1);
3509			return -ENODEV;
3510		}
3511		break;
3512	case ADV7611:
3513	case ADV7612:
3514		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3515				0xea,
3516				&val);
3517		if (err) {
3518			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3519			return -ENODEV;
3520		}
3521		val2 = val << 8;
3522		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3523			    0xeb,
3524			    &val);
3525		if (err) {
3526			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3527			return -ENODEV;
3528		}
3529		val |= val2;
3530		if ((state->info->type == ADV7611 && val != 0x2051) ||
3531			(state->info->type == ADV7612 && val != 0x2041)) {
3532			v4l2_err(sd, "not an %s on address 0x%x\n",
3533				 state->info->type == ADV7611 ? "ADV7610/11" : "ADV7612",
3534				 client->addr << 1);
3535			return -ENODEV;
3536		}
3537		break;
3538	}
3539
3540	/* control handlers */
3541	hdl = &state->hdl;
3542	v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3543
3544	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3545			V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3546	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3547			V4L2_CID_CONTRAST, 0, 255, 1, 128);
3548	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3549			V4L2_CID_SATURATION, 0, 255, 1, 128);
3550	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3551			V4L2_CID_HUE, 0, 255, 1, 0);
3552	ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3553			V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
3554			0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
3555	if (ctrl)
3556		ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3557
3558	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3559			V4L2_CID_DV_RX_POWER_PRESENT, 0,
3560			(1 << state->info->num_dv_ports) - 1, 0, 0);
3561	state->rgb_quantization_range_ctrl =
3562		v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3563			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
3564			0, V4L2_DV_RGB_RANGE_AUTO);
3565
3566	/* custom controls */
3567	if (adv76xx_has_afe(state))
3568		state->analog_sampling_phase_ctrl =
3569			v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3570	state->free_run_color_manual_ctrl =
3571		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3572	state->free_run_color_ctrl =
3573		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3574
3575	sd->ctrl_handler = hdl;
3576	if (hdl->error) {
3577		err = hdl->error;
3578		goto err_hdl;
3579	}
3580	if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3581		err = -ENODEV;
3582		goto err_hdl;
3583	}
3584
3585	for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3586		struct i2c_client *dummy_client;
3587
3588		if (!(BIT(i) & state->info->page_mask))
3589			continue;
3590
3591		dummy_client = adv76xx_dummy_client(sd, i);
3592		if (IS_ERR(dummy_client)) {
3593			err = PTR_ERR(dummy_client);
3594			v4l2_err(sd, "failed to create i2c client %u\n", i);
3595			goto err_i2c;
3596		}
3597
3598		state->i2c_clients[i] = dummy_client;
3599	}
3600
3601	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3602			adv76xx_delayed_work_enable_hotplug);
3603
3604	state->source_pad = state->info->num_dv_ports
3605			  + (state->info->has_afe ? 2 : 0);
3606	for (i = 0; i < state->source_pad; ++i)
3607		state->pads[i].flags = MEDIA_PAD_FL_SINK;
3608	state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3609	sd->entity.function = MEDIA_ENT_F_DV_DECODER;
3610
3611	err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3612				state->pads);
3613	if (err)
3614		goto err_work_queues;
3615
3616	/* Configure regmaps */
3617	err = configure_regmaps(state);
3618	if (err)
3619		goto err_entity;
3620
3621	err = adv76xx_core_init(sd);
3622	if (err)
3623		goto err_entity;
3624
3625	if (client->irq) {
3626		err = devm_request_threaded_irq(&client->dev,
3627						client->irq,
3628						NULL, adv76xx_irq_handler,
3629						IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
3630						client->name, state);
3631		if (err)
3632			goto err_entity;
3633	}
3634
3635#if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
3636	state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops,
3637		state, dev_name(&client->dev),
3638		CEC_CAP_DEFAULTS, ADV76XX_MAX_ADDRS);
3639	err = PTR_ERR_OR_ZERO(state->cec_adap);
3640	if (err)
3641		goto err_entity;
3642#endif
3643
3644	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
3645			client->addr << 1, client->adapter->name);
3646
3647	err = v4l2_async_register_subdev(sd);
3648	if (err)
3649		goto err_entity;
3650
3651	return 0;
3652
3653err_entity:
3654	media_entity_cleanup(&sd->entity);
3655err_work_queues:
3656	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3657err_i2c:
3658	adv76xx_unregister_clients(state);
3659err_hdl:
3660	v4l2_ctrl_handler_free(hdl);
3661	return err;
3662}
3663
3664/* ----------------------------------------------------------------------- */
3665
3666static void adv76xx_remove(struct i2c_client *client)
3667{
3668	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3669	struct adv76xx_state *state = to_state(sd);
3670
3671	/* disable interrupts */
3672	io_write(sd, 0x40, 0);
3673	io_write(sd, 0x41, 0);
3674	io_write(sd, 0x46, 0);
3675	io_write(sd, 0x6e, 0);
3676	io_write(sd, 0x73, 0);
3677
3678	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
3679	v4l2_async_unregister_subdev(sd);
3680	media_entity_cleanup(&sd->entity);
3681	adv76xx_unregister_clients(to_state(sd));
3682	v4l2_ctrl_handler_free(sd->ctrl_handler);
3683}
3684
3685/* ----------------------------------------------------------------------- */
3686
3687static struct i2c_driver adv76xx_driver = {
3688	.driver = {
3689		.name = "adv7604",
3690		.of_match_table = of_match_ptr(adv76xx_of_id),
3691	},
3692	.probe = adv76xx_probe,
3693	.remove = adv76xx_remove,
3694	.id_table = adv76xx_i2c_id,
3695};
3696
3697module_i2c_driver(adv76xx_driver);
3698