1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Driver for the ST STV0910 DVB-S/S2 demodulator.
4 *
5 * Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de>
6 *                         Marcus Metzler <mocm@metzlerbros.de>
7 *                         developed for Digital Devices GmbH
8 */
9
10#include <linux/kernel.h>
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/delay.h>
15#include <linux/firmware.h>
16#include <linux/i2c.h>
17#include <asm/div64.h>
18
19#include <media/dvb_frontend.h>
20#include "stv0910.h"
21#include "stv0910_regs.h"
22
23#define EXT_CLOCK    30000000
24#define TUNING_DELAY 200
25#define BER_SRC_S    0x20
26#define BER_SRC_S2   0x20
27
28static LIST_HEAD(stvlist);
29
30enum receive_mode { RCVMODE_NONE, RCVMODE_DVBS, RCVMODE_DVBS2, RCVMODE_AUTO };
31
32enum dvbs2_fectype { DVBS2_64K, DVBS2_16K };
33
34enum dvbs2_mod_cod {
35	DVBS2_DUMMY_PLF, DVBS2_QPSK_1_4, DVBS2_QPSK_1_3, DVBS2_QPSK_2_5,
36	DVBS2_QPSK_1_2, DVBS2_QPSK_3_5, DVBS2_QPSK_2_3,	DVBS2_QPSK_3_4,
37	DVBS2_QPSK_4_5,	DVBS2_QPSK_5_6,	DVBS2_QPSK_8_9,	DVBS2_QPSK_9_10,
38	DVBS2_8PSK_3_5,	DVBS2_8PSK_2_3,	DVBS2_8PSK_3_4,	DVBS2_8PSK_5_6,
39	DVBS2_8PSK_8_9,	DVBS2_8PSK_9_10, DVBS2_16APSK_2_3, DVBS2_16APSK_3_4,
40	DVBS2_16APSK_4_5, DVBS2_16APSK_5_6, DVBS2_16APSK_8_9, DVBS2_16APSK_9_10,
41	DVBS2_32APSK_3_4, DVBS2_32APSK_4_5, DVBS2_32APSK_5_6, DVBS2_32APSK_8_9,
42	DVBS2_32APSK_9_10
43};
44
45enum fe_stv0910_mod_cod {
46	FE_DUMMY_PLF, FE_QPSK_14, FE_QPSK_13, FE_QPSK_25,
47	FE_QPSK_12, FE_QPSK_35, FE_QPSK_23, FE_QPSK_34,
48	FE_QPSK_45, FE_QPSK_56, FE_QPSK_89, FE_QPSK_910,
49	FE_8PSK_35, FE_8PSK_23, FE_8PSK_34, FE_8PSK_56,
50	FE_8PSK_89, FE_8PSK_910, FE_16APSK_23, FE_16APSK_34,
51	FE_16APSK_45, FE_16APSK_56, FE_16APSK_89, FE_16APSK_910,
52	FE_32APSK_34, FE_32APSK_45, FE_32APSK_56, FE_32APSK_89,
53	FE_32APSK_910
54};
55
56enum fe_stv0910_roll_off { FE_SAT_35, FE_SAT_25, FE_SAT_20, FE_SAT_15 };
57
58static inline u32 muldiv32(u32 a, u32 b, u32 c)
59{
60	u64 tmp64;
61
62	tmp64 = (u64)a * (u64)b;
63	do_div(tmp64, c);
64
65	return (u32)tmp64;
66}
67
68struct stv_base {
69	struct list_head     stvlist;
70
71	u8                   adr;
72	struct i2c_adapter  *i2c;
73	struct mutex         i2c_lock; /* shared I2C access protect */
74	struct mutex         reg_lock; /* shared register write protect */
75	int                  count;
76
77	u32                  extclk;
78	u32                  mclk;
79};
80
81struct stv {
82	struct stv_base     *base;
83	struct dvb_frontend  fe;
84	int                  nr;
85	u16                  regoff;
86	u8                   i2crpt;
87	u8                   tscfgh;
88	u8                   tsgeneral;
89	u8                   tsspeed;
90	u8                   single;
91	unsigned long        tune_time;
92
93	s32                  search_range;
94	u32                  started;
95	u32                  demod_lock_time;
96	enum receive_mode    receive_mode;
97	u32                  demod_timeout;
98	u32                  fec_timeout;
99	u32                  first_time_lock;
100	u8                   demod_bits;
101	u32                  symbol_rate;
102
103	u8                       last_viterbi_rate;
104	enum fe_code_rate        puncture_rate;
105	enum fe_stv0910_mod_cod  mod_cod;
106	enum dvbs2_fectype       fectype;
107	u32                      pilots;
108	enum fe_stv0910_roll_off feroll_off;
109
110	int   is_standard_broadcast;
111	int   is_vcm;
112
113	u32   cur_scrambling_code;
114
115	u32   last_bernumerator;
116	u32   last_berdenominator;
117	u8    berscale;
118
119	u8    vth[6];
120};
121
122struct sinit_table {
123	u16  address;
124	u8   data;
125};
126
127struct slookup {
128	s16  value;
129	u32  reg_value;
130};
131
132static int write_reg(struct stv *state, u16 reg, u8 val)
133{
134	struct i2c_adapter *adap = state->base->i2c;
135	u8 data[3] = {reg >> 8, reg & 0xff, val};
136	struct i2c_msg msg = {.addr = state->base->adr, .flags = 0,
137			      .buf = data, .len = 3};
138
139	if (i2c_transfer(adap, &msg, 1) != 1) {
140		dev_warn(&adap->dev, "i2c write error ([%02x] %04x: %02x)\n",
141			 state->base->adr, reg, val);
142		return -EIO;
143	}
144	return 0;
145}
146
147static inline int i2c_read_regs16(struct i2c_adapter *adapter, u8 adr,
148				  u16 reg, u8 *val, int count)
149{
150	u8 msg[2] = {reg >> 8, reg & 0xff};
151	struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
152				   .buf  = msg, .len   = 2},
153				  {.addr = adr, .flags = I2C_M_RD,
154				   .buf  = val, .len   = count } };
155
156	if (i2c_transfer(adapter, msgs, 2) != 2) {
157		dev_warn(&adapter->dev, "i2c read error ([%02x] %04x)\n",
158			 adr, reg);
159		return -EIO;
160	}
161	return 0;
162}
163
164static int read_reg(struct stv *state, u16 reg, u8 *val)
165{
166	return i2c_read_regs16(state->base->i2c, state->base->adr,
167			       reg, val, 1);
168}
169
170static int read_regs(struct stv *state, u16 reg, u8 *val, int len)
171{
172	return i2c_read_regs16(state->base->i2c, state->base->adr,
173			       reg, val, len);
174}
175
176static int write_shared_reg(struct stv *state, u16 reg, u8 mask, u8 val)
177{
178	int status;
179	u8 tmp;
180
181	mutex_lock(&state->base->reg_lock);
182	status = read_reg(state, reg, &tmp);
183	if (!status)
184		status = write_reg(state, reg, (tmp & ~mask) | (val & mask));
185	mutex_unlock(&state->base->reg_lock);
186	return status;
187}
188
189static int write_field(struct stv *state, u32 field, u8 val)
190{
191	int status;
192	u8 shift, mask, old, new;
193
194	status = read_reg(state, field >> 16, &old);
195	if (status)
196		return status;
197	mask = field & 0xff;
198	shift = (field >> 12) & 0xf;
199	new = ((val << shift) & mask) | (old & ~mask);
200	if (new == old)
201		return 0;
202	return write_reg(state, field >> 16, new);
203}
204
205#define SET_FIELD(_reg, _val)					\
206	write_field(state, state->nr ? FSTV0910_P2_##_reg :	\
207		    FSTV0910_P1_##_reg, _val)
208
209#define SET_REG(_reg, _val)					\
210	write_reg(state, state->nr ? RSTV0910_P2_##_reg :	\
211		  RSTV0910_P1_##_reg, _val)
212
213#define GET_REG(_reg, _val)					\
214	read_reg(state, state->nr ? RSTV0910_P2_##_reg :	\
215		 RSTV0910_P1_##_reg, _val)
216
217static const struct slookup s1_sn_lookup[] = {
218	{   0,    9242  }, /* C/N=   0dB */
219	{   5,    9105  }, /* C/N= 0.5dB */
220	{  10,    8950  }, /* C/N= 1.0dB */
221	{  15,    8780  }, /* C/N= 1.5dB */
222	{  20,    8566  }, /* C/N= 2.0dB */
223	{  25,    8366  }, /* C/N= 2.5dB */
224	{  30,    8146  }, /* C/N= 3.0dB */
225	{  35,    7908  }, /* C/N= 3.5dB */
226	{  40,    7666  }, /* C/N= 4.0dB */
227	{  45,    7405  }, /* C/N= 4.5dB */
228	{  50,    7136  }, /* C/N= 5.0dB */
229	{  55,    6861  }, /* C/N= 5.5dB */
230	{  60,    6576  }, /* C/N= 6.0dB */
231	{  65,    6330  }, /* C/N= 6.5dB */
232	{  70,    6048  }, /* C/N= 7.0dB */
233	{  75,    5768  }, /* C/N= 7.5dB */
234	{  80,    5492  }, /* C/N= 8.0dB */
235	{  85,    5224  }, /* C/N= 8.5dB */
236	{  90,    4959  }, /* C/N= 9.0dB */
237	{  95,    4709  }, /* C/N= 9.5dB */
238	{  100,   4467  }, /* C/N=10.0dB */
239	{  105,   4236  }, /* C/N=10.5dB */
240	{  110,   4013  }, /* C/N=11.0dB */
241	{  115,   3800  }, /* C/N=11.5dB */
242	{  120,   3598  }, /* C/N=12.0dB */
243	{  125,   3406  }, /* C/N=12.5dB */
244	{  130,   3225  }, /* C/N=13.0dB */
245	{  135,   3052  }, /* C/N=13.5dB */
246	{  140,   2889  }, /* C/N=14.0dB */
247	{  145,   2733  }, /* C/N=14.5dB */
248	{  150,   2587  }, /* C/N=15.0dB */
249	{  160,   2318  }, /* C/N=16.0dB */
250	{  170,   2077  }, /* C/N=17.0dB */
251	{  180,   1862  }, /* C/N=18.0dB */
252	{  190,   1670  }, /* C/N=19.0dB */
253	{  200,   1499  }, /* C/N=20.0dB */
254	{  210,   1347  }, /* C/N=21.0dB */
255	{  220,   1213  }, /* C/N=22.0dB */
256	{  230,   1095  }, /* C/N=23.0dB */
257	{  240,    992  }, /* C/N=24.0dB */
258	{  250,    900  }, /* C/N=25.0dB */
259	{  260,    826  }, /* C/N=26.0dB */
260	{  270,    758  }, /* C/N=27.0dB */
261	{  280,    702  }, /* C/N=28.0dB */
262	{  290,    653  }, /* C/N=29.0dB */
263	{  300,    613  }, /* C/N=30.0dB */
264	{  310,    579  }, /* C/N=31.0dB */
265	{  320,    550  }, /* C/N=32.0dB */
266	{  330,    526  }, /* C/N=33.0dB */
267	{  350,    490  }, /* C/N=33.0dB */
268	{  400,    445  }, /* C/N=40.0dB */
269	{  450,    430  }, /* C/N=45.0dB */
270	{  500,    426  }, /* C/N=50.0dB */
271	{  510,    425  }  /* C/N=51.0dB */
272};
273
274static const struct slookup s2_sn_lookup[] = {
275	{  -30,  13950  }, /* C/N=-2.5dB */
276	{  -25,  13580  }, /* C/N=-2.5dB */
277	{  -20,  13150  }, /* C/N=-2.0dB */
278	{  -15,  12760  }, /* C/N=-1.5dB */
279	{  -10,  12345  }, /* C/N=-1.0dB */
280	{   -5,  11900  }, /* C/N=-0.5dB */
281	{    0,  11520  }, /* C/N=   0dB */
282	{    5,  11080  }, /* C/N= 0.5dB */
283	{   10,  10630  }, /* C/N= 1.0dB */
284	{   15,  10210  }, /* C/N= 1.5dB */
285	{   20,   9790  }, /* C/N= 2.0dB */
286	{   25,   9390  }, /* C/N= 2.5dB */
287	{   30,   8970  }, /* C/N= 3.0dB */
288	{   35,   8575  }, /* C/N= 3.5dB */
289	{   40,   8180  }, /* C/N= 4.0dB */
290	{   45,   7800  }, /* C/N= 4.5dB */
291	{   50,   7430  }, /* C/N= 5.0dB */
292	{   55,   7080  }, /* C/N= 5.5dB */
293	{   60,   6720  }, /* C/N= 6.0dB */
294	{   65,   6320  }, /* C/N= 6.5dB */
295	{   70,   6060  }, /* C/N= 7.0dB */
296	{   75,   5760  }, /* C/N= 7.5dB */
297	{   80,   5480  }, /* C/N= 8.0dB */
298	{   85,   5200  }, /* C/N= 8.5dB */
299	{   90,   4930  }, /* C/N= 9.0dB */
300	{   95,   4680  }, /* C/N= 9.5dB */
301	{  100,   4425  }, /* C/N=10.0dB */
302	{  105,   4210  }, /* C/N=10.5dB */
303	{  110,   3980  }, /* C/N=11.0dB */
304	{  115,   3765  }, /* C/N=11.5dB */
305	{  120,   3570  }, /* C/N=12.0dB */
306	{  125,   3315  }, /* C/N=12.5dB */
307	{  130,   3140  }, /* C/N=13.0dB */
308	{  135,   2980  }, /* C/N=13.5dB */
309	{  140,   2820  }, /* C/N=14.0dB */
310	{  145,   2670  }, /* C/N=14.5dB */
311	{  150,   2535  }, /* C/N=15.0dB */
312	{  160,   2270  }, /* C/N=16.0dB */
313	{  170,   2035  }, /* C/N=17.0dB */
314	{  180,   1825  }, /* C/N=18.0dB */
315	{  190,   1650  }, /* C/N=19.0dB */
316	{  200,   1485  }, /* C/N=20.0dB */
317	{  210,   1340  }, /* C/N=21.0dB */
318	{  220,   1212  }, /* C/N=22.0dB */
319	{  230,   1100  }, /* C/N=23.0dB */
320	{  240,   1000  }, /* C/N=24.0dB */
321	{  250,    910  }, /* C/N=25.0dB */
322	{  260,    836  }, /* C/N=26.0dB */
323	{  270,    772  }, /* C/N=27.0dB */
324	{  280,    718  }, /* C/N=28.0dB */
325	{  290,    671  }, /* C/N=29.0dB */
326	{  300,    635  }, /* C/N=30.0dB */
327	{  310,    602  }, /* C/N=31.0dB */
328	{  320,    575  }, /* C/N=32.0dB */
329	{  330,    550  }, /* C/N=33.0dB */
330	{  350,    517  }, /* C/N=35.0dB */
331	{  400,    480  }, /* C/N=40.0dB */
332	{  450,    466  }, /* C/N=45.0dB */
333	{  500,    464  }, /* C/N=50.0dB */
334	{  510,    463  }, /* C/N=51.0dB */
335};
336
337static const struct slookup padc_lookup[] = {
338	{    0,  118000 }, /* PADC= +0dBm */
339	{ -100,  93600  }, /* PADC= -1dBm */
340	{ -200,  74500  }, /* PADC= -2dBm */
341	{ -300,  59100  }, /* PADC= -3dBm */
342	{ -400,  47000  }, /* PADC= -4dBm */
343	{ -500,  37300  }, /* PADC= -5dBm */
344	{ -600,  29650  }, /* PADC= -6dBm */
345	{ -700,  23520  }, /* PADC= -7dBm */
346	{ -900,  14850  }, /* PADC= -9dBm */
347	{ -1100, 9380   }, /* PADC=-11dBm */
348	{ -1300, 5910   }, /* PADC=-13dBm */
349	{ -1500, 3730   }, /* PADC=-15dBm */
350	{ -1700, 2354   }, /* PADC=-17dBm */
351	{ -1900, 1485   }, /* PADC=-19dBm */
352	{ -2000, 1179   }, /* PADC=-20dBm */
353	{ -2100, 1000   }, /* PADC=-21dBm */
354};
355
356/*********************************************************************
357 * Tracking carrier loop carrier QPSK 1/4 to 8PSK 9/10 long Frame
358 *********************************************************************/
359static const u8 s2car_loop[] =	{
360	/*
361	 * Modcod  2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff
362	 * 20MPon 20MPoff 30MPon 30MPoff
363	 */
364
365	/* FE_QPSK_14  */
366	0x0C,  0x3C,  0x0B,  0x3C,  0x2A,  0x2C,  0x2A,  0x1C,  0x3A,  0x3B,
367	/* FE_QPSK_13  */
368	0x0C,  0x3C,  0x0B,  0x3C,  0x2A,  0x2C,  0x3A,  0x0C,  0x3A,  0x2B,
369	/* FE_QPSK_25  */
370	0x1C,  0x3C,  0x1B,  0x3C,  0x3A,  0x1C,  0x3A,  0x3B,  0x3A,  0x2B,
371	/* FE_QPSK_12  */
372	0x0C,  0x1C,  0x2B,  0x1C,  0x0B,  0x2C,  0x0B,  0x0C,  0x2A,  0x2B,
373	/* FE_QPSK_35  */
374	0x1C,  0x1C,  0x2B,  0x1C,  0x0B,  0x2C,  0x0B,  0x0C,  0x2A,  0x2B,
375	/* FE_QPSK_23  */
376	0x2C,  0x2C,  0x2B,  0x1C,  0x0B,  0x2C,  0x0B,  0x0C,  0x2A,  0x2B,
377	/* FE_QPSK_34  */
378	0x3C,  0x2C,  0x3B,  0x2C,  0x1B,  0x1C,  0x1B,  0x3B,  0x3A,  0x1B,
379	/* FE_QPSK_45  */
380	0x0D,  0x3C,  0x3B,  0x2C,  0x1B,  0x1C,  0x1B,  0x3B,  0x3A,  0x1B,
381	/* FE_QPSK_56  */
382	0x1D,  0x3C,  0x0C,  0x2C,  0x2B,  0x1C,  0x1B,  0x3B,  0x0B,  0x1B,
383	/* FE_QPSK_89  */
384	0x3D,  0x0D,  0x0C,  0x2C,  0x2B,  0x0C,  0x2B,  0x2B,  0x0B,  0x0B,
385	/* FE_QPSK_910 */
386	0x1E,  0x0D,  0x1C,  0x2C,  0x3B,  0x0C,  0x2B,  0x2B,  0x1B,  0x0B,
387	/* FE_8PSK_35  */
388	0x28,  0x09,  0x28,  0x09,  0x28,  0x09,  0x28,  0x08,  0x28,  0x27,
389	/* FE_8PSK_23  */
390	0x19,  0x29,  0x19,  0x29,  0x19,  0x29,  0x38,  0x19,  0x28,  0x09,
391	/* FE_8PSK_34  */
392	0x1A,  0x0B,  0x1A,  0x3A,  0x0A,  0x2A,  0x39,  0x2A,  0x39,  0x1A,
393	/* FE_8PSK_56  */
394	0x2B,  0x2B,  0x1B,  0x1B,  0x0B,  0x1B,  0x1A,  0x0B,  0x1A,  0x1A,
395	/* FE_8PSK_89  */
396	0x0C,  0x0C,  0x3B,  0x3B,  0x1B,  0x1B,  0x2A,  0x0B,  0x2A,  0x2A,
397	/* FE_8PSK_910 */
398	0x0C,  0x1C,  0x0C,  0x3B,  0x2B,  0x1B,  0x3A,  0x0B,  0x2A,  0x2A,
399
400	/**********************************************************************
401	 * Tracking carrier loop carrier 16APSK 2/3 to 32APSK 9/10 long Frame
402	 **********************************************************************/
403
404	/*
405	 * Modcod 2MPon  2MPoff 5MPon 5MPoff 10MPon 10MPoff 20MPon
406	 * 20MPoff 30MPon 30MPoff
407	 */
408
409	/* FE_16APSK_23  */
410	0x0A,  0x0A,  0x0A,  0x0A,  0x1A,  0x0A,  0x39,  0x0A,  0x29,  0x0A,
411	/* FE_16APSK_34  */
412	0x0A,  0x0A,  0x0A,  0x0A,  0x0B,  0x0A,  0x2A,  0x0A,  0x1A,  0x0A,
413	/* FE_16APSK_45  */
414	0x0A,  0x0A,  0x0A,  0x0A,  0x1B,  0x0A,  0x3A,  0x0A,  0x2A,  0x0A,
415	/* FE_16APSK_56  */
416	0x0A,  0x0A,  0x0A,  0x0A,  0x1B,  0x0A,  0x3A,  0x0A,  0x2A,  0x0A,
417	/* FE_16APSK_89  */
418	0x0A,  0x0A,  0x0A,  0x0A,  0x2B,  0x0A,  0x0B,  0x0A,  0x3A,  0x0A,
419	/* FE_16APSK_910 */
420	0x0A,  0x0A,  0x0A,  0x0A,  0x2B,  0x0A,  0x0B,  0x0A,  0x3A,  0x0A,
421	/* FE_32APSK_34  */
422	0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
423	/* FE_32APSK_45  */
424	0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
425	/* FE_32APSK_56  */
426	0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
427	/* FE_32APSK_89  */
428	0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
429	/* FE_32APSK_910 */
430	0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,  0x09,
431};
432
433static u8 get_optim_cloop(struct stv *state,
434			  enum fe_stv0910_mod_cod mod_cod, u32 pilots)
435{
436	int i = 0;
437
438	if (mod_cod >= FE_32APSK_910)
439		i = ((int)FE_32APSK_910 - (int)FE_QPSK_14) * 10;
440	else if (mod_cod >= FE_QPSK_14)
441		i = ((int)mod_cod - (int)FE_QPSK_14) * 10;
442
443	if (state->symbol_rate <= 3000000)
444		i += 0;
445	else if (state->symbol_rate <=  7000000)
446		i += 2;
447	else if (state->symbol_rate <= 15000000)
448		i += 4;
449	else if (state->symbol_rate <= 25000000)
450		i += 6;
451	else
452		i += 8;
453
454	if (!pilots)
455		i += 1;
456
457	return s2car_loop[i];
458}
459
460static int get_cur_symbol_rate(struct stv *state, u32 *p_symbol_rate)
461{
462	int status = 0;
463	u8 symb_freq0;
464	u8 symb_freq1;
465	u8 symb_freq2;
466	u8 symb_freq3;
467	u8 tim_offs0;
468	u8 tim_offs1;
469	u8 tim_offs2;
470	u32 symbol_rate;
471	s32 timing_offset;
472
473	*p_symbol_rate = 0;
474	if (!state->started)
475		return status;
476
477	read_reg(state, RSTV0910_P2_SFR3 + state->regoff, &symb_freq3);
478	read_reg(state, RSTV0910_P2_SFR2 + state->regoff, &symb_freq2);
479	read_reg(state, RSTV0910_P2_SFR1 + state->regoff, &symb_freq1);
480	read_reg(state, RSTV0910_P2_SFR0 + state->regoff, &symb_freq0);
481	read_reg(state, RSTV0910_P2_TMGREG2 + state->regoff, &tim_offs2);
482	read_reg(state, RSTV0910_P2_TMGREG1 + state->regoff, &tim_offs1);
483	read_reg(state, RSTV0910_P2_TMGREG0 + state->regoff, &tim_offs0);
484
485	symbol_rate = ((u32)symb_freq3 << 24) | ((u32)symb_freq2 << 16) |
486		((u32)symb_freq1 << 8) | (u32)symb_freq0;
487	timing_offset = ((u32)tim_offs2 << 16) | ((u32)tim_offs1 << 8) |
488		(u32)tim_offs0;
489
490	if ((timing_offset & (1 << 23)) != 0)
491		timing_offset |= 0xFF000000; /* Sign extent */
492
493	symbol_rate = (u32)(((u64)symbol_rate * state->base->mclk) >> 32);
494	timing_offset = (s32)(((s64)symbol_rate * (s64)timing_offset) >> 29);
495
496	*p_symbol_rate = symbol_rate + timing_offset;
497
498	return 0;
499}
500
501static int get_signal_parameters(struct stv *state)
502{
503	u8 tmp;
504
505	if (!state->started)
506		return -EINVAL;
507
508	if (state->receive_mode == RCVMODE_DVBS2) {
509		read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
510		state->mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2);
511		state->pilots = (tmp & 0x01) != 0;
512		state->fectype = (enum dvbs2_fectype)((tmp & 0x02) >> 1);
513
514	} else if (state->receive_mode == RCVMODE_DVBS) {
515		read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
516		state->puncture_rate = FEC_NONE;
517		switch (tmp & 0x1F) {
518		case 0x0d:
519			state->puncture_rate = FEC_1_2;
520			break;
521		case 0x12:
522			state->puncture_rate = FEC_2_3;
523			break;
524		case 0x15:
525			state->puncture_rate = FEC_3_4;
526			break;
527		case 0x18:
528			state->puncture_rate = FEC_5_6;
529			break;
530		case 0x1a:
531			state->puncture_rate = FEC_7_8;
532			break;
533		}
534		state->is_vcm = 0;
535		state->is_standard_broadcast = 1;
536		state->feroll_off = FE_SAT_35;
537	}
538	return 0;
539}
540
541static int tracking_optimization(struct stv *state)
542{
543	u8 tmp;
544
545	read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &tmp);
546	tmp &= ~0xC0;
547
548	switch (state->receive_mode) {
549	case RCVMODE_DVBS:
550		tmp |= 0x40;
551		break;
552	case RCVMODE_DVBS2:
553		tmp |= 0x80;
554		break;
555	default:
556		tmp |= 0xC0;
557		break;
558	}
559	write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, tmp);
560
561	if (state->receive_mode == RCVMODE_DVBS2) {
562		/* Disable Reed-Solomon */
563		write_shared_reg(state,
564				 RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01,
565				 0x03);
566
567		if (state->fectype == DVBS2_64K) {
568			u8 aclc = get_optim_cloop(state, state->mod_cod,
569						  state->pilots);
570
571			if (state->mod_cod <= FE_QPSK_910) {
572				write_reg(state, RSTV0910_P2_ACLC2S2Q +
573					  state->regoff, aclc);
574			} else if (state->mod_cod <= FE_8PSK_910) {
575				write_reg(state, RSTV0910_P2_ACLC2S2Q +
576					  state->regoff, 0x2a);
577				write_reg(state, RSTV0910_P2_ACLC2S28 +
578					  state->regoff, aclc);
579			} else if (state->mod_cod <= FE_16APSK_910) {
580				write_reg(state, RSTV0910_P2_ACLC2S2Q +
581					  state->regoff, 0x2a);
582				write_reg(state, RSTV0910_P2_ACLC2S216A +
583					  state->regoff, aclc);
584			} else if (state->mod_cod <= FE_32APSK_910) {
585				write_reg(state, RSTV0910_P2_ACLC2S2Q +
586					  state->regoff, 0x2a);
587				write_reg(state, RSTV0910_P2_ACLC2S232A +
588					  state->regoff, aclc);
589			}
590		}
591	}
592	return 0;
593}
594
595static s32 table_lookup(const struct slookup *table,
596			int table_size, u32 reg_value)
597{
598	s32 value;
599	int imin = 0;
600	int imax = table_size - 1;
601	int i;
602	s32 reg_diff;
603
604	/* Assumes Table[0].RegValue > Table[imax].RegValue */
605	if (reg_value >= table[0].reg_value) {
606		value = table[0].value;
607	} else if (reg_value <= table[imax].reg_value) {
608		value = table[imax].value;
609	} else {
610		while ((imax - imin) > 1) {
611			i = (imax + imin) / 2;
612			if ((table[imin].reg_value >= reg_value) &&
613			    (reg_value >= table[i].reg_value))
614				imax = i;
615			else
616				imin = i;
617		}
618
619		reg_diff = table[imax].reg_value - table[imin].reg_value;
620		value = table[imin].value;
621		if (reg_diff != 0)
622			value += ((s32)(reg_value - table[imin].reg_value) *
623				  (s32)(table[imax].value
624					- table[imin].value))
625					/ (reg_diff);
626	}
627
628	return value;
629}
630
631static int get_signal_to_noise(struct stv *state, s32 *signal_to_noise)
632{
633	u8 data0;
634	u8 data1;
635	u16 data;
636	int n_lookup;
637	const struct slookup *lookup;
638
639	*signal_to_noise = 0;
640
641	if (!state->started)
642		return -EINVAL;
643
644	if (state->receive_mode == RCVMODE_DVBS2) {
645		read_reg(state, RSTV0910_P2_NNOSPLHT1 + state->regoff,
646			 &data1);
647		read_reg(state, RSTV0910_P2_NNOSPLHT0 + state->regoff,
648			 &data0);
649		n_lookup = ARRAY_SIZE(s2_sn_lookup);
650		lookup = s2_sn_lookup;
651	} else {
652		read_reg(state, RSTV0910_P2_NNOSDATAT1 + state->regoff,
653			 &data1);
654		read_reg(state, RSTV0910_P2_NNOSDATAT0 + state->regoff,
655			 &data0);
656		n_lookup = ARRAY_SIZE(s1_sn_lookup);
657		lookup = s1_sn_lookup;
658	}
659	data = (((u16)data1) << 8) | (u16)data0;
660	*signal_to_noise = table_lookup(lookup, n_lookup, data);
661	return 0;
662}
663
664static int get_bit_error_rate_s(struct stv *state, u32 *bernumerator,
665				u32 *berdenominator)
666{
667	u8 regs[3];
668
669	int status = read_regs(state,
670			       RSTV0910_P2_ERRCNT12 + state->regoff,
671			       regs, 3);
672
673	if (status)
674		return -EINVAL;
675
676	if ((regs[0] & 0x80) == 0) {
677		state->last_berdenominator = 1ULL << ((state->berscale * 2) +
678						     10 + 3);
679		state->last_bernumerator = ((u32)(regs[0] & 0x7F) << 16) |
680			((u32)regs[1] << 8) | regs[2];
681		if (state->last_bernumerator < 256 && state->berscale < 6) {
682			state->berscale += 1;
683			status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
684					   state->regoff,
685					   0x20 | state->berscale);
686		} else if (state->last_bernumerator > 1024 &&
687			   state->berscale > 2) {
688			state->berscale -= 1;
689			status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
690					   state->regoff, 0x20 |
691					   state->berscale);
692		}
693	}
694	*bernumerator = state->last_bernumerator;
695	*berdenominator = state->last_berdenominator;
696	return 0;
697}
698
699static u32 dvbs2_nbch(enum dvbs2_mod_cod mod_cod, enum dvbs2_fectype fectype)
700{
701	static const u32 nbch[][2] = {
702		{    0,     0}, /* DUMMY_PLF   */
703		{16200,  3240}, /* QPSK_1_4,   */
704		{21600,  5400}, /* QPSK_1_3,   */
705		{25920,  6480}, /* QPSK_2_5,   */
706		{32400,  7200}, /* QPSK_1_2,   */
707		{38880,  9720}, /* QPSK_3_5,   */
708		{43200, 10800}, /* QPSK_2_3,   */
709		{48600, 11880}, /* QPSK_3_4,   */
710		{51840, 12600}, /* QPSK_4_5,   */
711		{54000, 13320}, /* QPSK_5_6,   */
712		{57600, 14400}, /* QPSK_8_9,   */
713		{58320, 16000}, /* QPSK_9_10,  */
714		{43200,  9720}, /* 8PSK_3_5,   */
715		{48600, 10800}, /* 8PSK_2_3,   */
716		{51840, 11880}, /* 8PSK_3_4,   */
717		{54000, 13320}, /* 8PSK_5_6,   */
718		{57600, 14400}, /* 8PSK_8_9,   */
719		{58320, 16000}, /* 8PSK_9_10,  */
720		{43200, 10800}, /* 16APSK_2_3, */
721		{48600, 11880}, /* 16APSK_3_4, */
722		{51840, 12600}, /* 16APSK_4_5, */
723		{54000, 13320}, /* 16APSK_5_6, */
724		{57600, 14400}, /* 16APSK_8_9, */
725		{58320, 16000}, /* 16APSK_9_10 */
726		{48600, 11880}, /* 32APSK_3_4, */
727		{51840, 12600}, /* 32APSK_4_5, */
728		{54000, 13320}, /* 32APSK_5_6, */
729		{57600, 14400}, /* 32APSK_8_9, */
730		{58320, 16000}, /* 32APSK_9_10 */
731	};
732
733	if (mod_cod >= DVBS2_QPSK_1_4 &&
734	    mod_cod <= DVBS2_32APSK_9_10 && fectype <= DVBS2_16K)
735		return nbch[mod_cod][fectype];
736	return 64800;
737}
738
739static int get_bit_error_rate_s2(struct stv *state, u32 *bernumerator,
740				 u32 *berdenominator)
741{
742	u8 regs[3];
743
744	int status = read_regs(state, RSTV0910_P2_ERRCNT12 + state->regoff,
745			       regs, 3);
746
747	if (status)
748		return -EINVAL;
749
750	if ((regs[0] & 0x80) == 0) {
751		state->last_berdenominator =
752			dvbs2_nbch((enum dvbs2_mod_cod)state->mod_cod,
753				   state->fectype) <<
754			(state->berscale * 2);
755		state->last_bernumerator = (((u32)regs[0] & 0x7F) << 16) |
756			((u32)regs[1] << 8) | regs[2];
757		if (state->last_bernumerator < 256 && state->berscale < 6) {
758			state->berscale += 1;
759			write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
760				  0x20 | state->berscale);
761		} else if (state->last_bernumerator > 1024 &&
762			   state->berscale > 2) {
763			state->berscale -= 1;
764			write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
765				  0x20 | state->berscale);
766		}
767	}
768	*bernumerator = state->last_bernumerator;
769	*berdenominator = state->last_berdenominator;
770	return status;
771}
772
773static int get_bit_error_rate(struct stv *state, u32 *bernumerator,
774			      u32 *berdenominator)
775{
776	*bernumerator = 0;
777	*berdenominator = 1;
778
779	switch (state->receive_mode) {
780	case RCVMODE_DVBS:
781		return get_bit_error_rate_s(state,
782					    bernumerator, berdenominator);
783	case RCVMODE_DVBS2:
784		return get_bit_error_rate_s2(state,
785					     bernumerator, berdenominator);
786	default:
787		break;
788	}
789	return 0;
790}
791
792static int set_mclock(struct stv *state, u32 master_clock)
793{
794	u32 idf = 1;
795	u32 odf = 4;
796	u32 quartz = state->base->extclk / 1000000;
797	u32 fphi = master_clock / 1000000;
798	u32 ndiv = (fphi * odf * idf) / quartz;
799	u32 cp = 7;
800	u32 fvco;
801
802	if (ndiv >= 7 && ndiv <= 71)
803		cp = 7;
804	else if (ndiv >=  72 && ndiv <=  79)
805		cp = 8;
806	else if (ndiv >=  80 && ndiv <=  87)
807		cp = 9;
808	else if (ndiv >=  88 && ndiv <=  95)
809		cp = 10;
810	else if (ndiv >=  96 && ndiv <= 103)
811		cp = 11;
812	else if (ndiv >= 104 && ndiv <= 111)
813		cp = 12;
814	else if (ndiv >= 112 && ndiv <= 119)
815		cp = 13;
816	else if (ndiv >= 120 && ndiv <= 127)
817		cp = 14;
818	else if (ndiv >= 128 && ndiv <= 135)
819		cp = 15;
820	else if (ndiv >= 136 && ndiv <= 143)
821		cp = 16;
822	else if (ndiv >= 144 && ndiv <= 151)
823		cp = 17;
824	else if (ndiv >= 152 && ndiv <= 159)
825		cp = 18;
826	else if (ndiv >= 160 && ndiv <= 167)
827		cp = 19;
828	else if (ndiv >= 168 && ndiv <= 175)
829		cp = 20;
830	else if (ndiv >= 176 && ndiv <= 183)
831		cp = 21;
832	else if (ndiv >= 184 && ndiv <= 191)
833		cp = 22;
834	else if (ndiv >= 192 && ndiv <= 199)
835		cp = 23;
836	else if (ndiv >= 200 && ndiv <= 207)
837		cp = 24;
838	else if (ndiv >= 208 && ndiv <= 215)
839		cp = 25;
840	else if (ndiv >= 216 && ndiv <= 223)
841		cp = 26;
842	else if (ndiv >= 224 && ndiv <= 225)
843		cp = 27;
844
845	write_reg(state, RSTV0910_NCOARSE, (cp << 3) | idf);
846	write_reg(state, RSTV0910_NCOARSE2, odf);
847	write_reg(state, RSTV0910_NCOARSE1, ndiv);
848
849	fvco = (quartz * 2 * ndiv) / idf;
850	state->base->mclk = fvco / (2 * odf) * 1000000;
851
852	return 0;
853}
854
855static int stop(struct stv *state)
856{
857	if (state->started) {
858		u8 tmp;
859
860		write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
861			  state->tscfgh | 0x01);
862		read_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, &tmp);
863		tmp &= ~0x01; /* release reset DVBS2 packet delin */
864		write_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, tmp);
865		/* Blind optim*/
866		write_reg(state, RSTV0910_P2_AGC2O + state->regoff, 0x5B);
867		/* Stop the demod */
868		write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5c);
869		state->started = 0;
870	}
871	state->receive_mode = RCVMODE_NONE;
872	return 0;
873}
874
875static void set_pls(struct stv *state, u32 pls_code)
876{
877	if (pls_code == state->cur_scrambling_code)
878		return;
879
880	/* PLROOT2 bit 2 = gold code */
881	write_reg(state, RSTV0910_P2_PLROOT0 + state->regoff,
882		  pls_code & 0xff);
883	write_reg(state, RSTV0910_P2_PLROOT1 + state->regoff,
884		  (pls_code >> 8) & 0xff);
885	write_reg(state, RSTV0910_P2_PLROOT2 + state->regoff,
886		  0x04 | ((pls_code >> 16) & 0x03));
887	state->cur_scrambling_code = pls_code;
888}
889
890static void set_isi(struct stv *state, u32 isi)
891{
892	if (isi == NO_STREAM_ID_FILTER)
893		return;
894	if (isi == 0x80000000) {
895		SET_FIELD(FORCE_CONTINUOUS, 1);
896		SET_FIELD(TSOUT_NOSYNC, 1);
897	} else {
898		SET_FIELD(FILTER_EN, 1);
899		write_reg(state, RSTV0910_P2_ISIENTRY + state->regoff,
900			  isi & 0xff);
901		write_reg(state, RSTV0910_P2_ISIBITENA + state->regoff, 0xff);
902	}
903	SET_FIELD(ALGOSWRST, 1);
904	SET_FIELD(ALGOSWRST, 0);
905}
906
907static void set_stream_modes(struct stv *state,
908			     struct dtv_frontend_properties *p)
909{
910	set_isi(state, p->stream_id);
911	set_pls(state, p->scrambling_sequence_index);
912}
913
914static int init_search_param(struct stv *state,
915			     struct dtv_frontend_properties *p)
916{
917	SET_FIELD(FORCE_CONTINUOUS, 0);
918	SET_FIELD(FRAME_MODE, 0);
919	SET_FIELD(FILTER_EN, 0);
920	SET_FIELD(TSOUT_NOSYNC, 0);
921	SET_FIELD(TSFIFO_EMBINDVB, 0);
922	SET_FIELD(TSDEL_SYNCBYTE, 0);
923	SET_REG(UPLCCST0, 0xe0);
924	SET_FIELD(TSINS_TOKEN, 0);
925	SET_FIELD(HYSTERESIS_THRESHOLD, 0);
926	SET_FIELD(ISIOBS_MODE, 1);
927
928	set_stream_modes(state, p);
929	return 0;
930}
931
932static int enable_puncture_rate(struct stv *state, enum fe_code_rate rate)
933{
934	u8 val;
935
936	switch (rate) {
937	case FEC_1_2:
938		val = 0x01;
939		break;
940	case FEC_2_3:
941		val = 0x02;
942		break;
943	case FEC_3_4:
944		val = 0x04;
945		break;
946	case FEC_5_6:
947		val = 0x08;
948		break;
949	case FEC_7_8:
950		val = 0x20;
951		break;
952	case FEC_NONE:
953	default:
954		val = 0x2f;
955		break;
956	}
957
958	return write_reg(state, RSTV0910_P2_PRVIT + state->regoff, val);
959}
960
961static int set_vth_default(struct stv *state)
962{
963	state->vth[0] = 0xd7;
964	state->vth[1] = 0x85;
965	state->vth[2] = 0x58;
966	state->vth[3] = 0x3a;
967	state->vth[4] = 0x34;
968	state->vth[5] = 0x28;
969	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]);
970	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]);
971	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]);
972	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]);
973	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]);
974	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]);
975	return 0;
976}
977
978static int set_vth(struct stv *state)
979{
980	static const struct slookup vthlookup_table[] = {
981		{250,	8780}, /* C/N= 1.5dB */
982		{100,	7405}, /* C/N= 4.5dB */
983		{40,	6330}, /* C/N= 6.5dB */
984		{12,	5224}, /* C/N= 8.5dB */
985		{5,	4236}  /* C/N=10.5dB */
986	};
987
988	int i;
989	u8 tmp[2];
990	int status = read_regs(state,
991			       RSTV0910_P2_NNOSDATAT1 + state->regoff,
992			       tmp, 2);
993	u16 reg_value = (tmp[0] << 8) | tmp[1];
994	s32 vth = table_lookup(vthlookup_table, ARRAY_SIZE(vthlookup_table),
995			      reg_value);
996
997	for (i = 0; i < 6; i += 1)
998		if (state->vth[i] > vth)
999			state->vth[i] = vth;
1000
1001	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]);
1002	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]);
1003	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]);
1004	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]);
1005	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]);
1006	write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]);
1007	return status;
1008}
1009
1010static int start(struct stv *state, struct dtv_frontend_properties *p)
1011{
1012	s32 freq;
1013	u8  reg_dmdcfgmd;
1014	u16 symb;
1015
1016	if (p->symbol_rate < 100000 || p->symbol_rate > 70000000)
1017		return -EINVAL;
1018
1019	state->receive_mode = RCVMODE_NONE;
1020	state->demod_lock_time = 0;
1021
1022	/* Demod Stop */
1023	if (state->started)
1024		write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5C);
1025
1026	init_search_param(state, p);
1027
1028	if (p->symbol_rate <= 1000000) { /* SR <=1Msps */
1029		state->demod_timeout = 3000;
1030		state->fec_timeout = 2000;
1031	} else if (p->symbol_rate <= 2000000) { /* 1Msps < SR <=2Msps */
1032		state->demod_timeout = 2500;
1033		state->fec_timeout = 1300;
1034	} else if (p->symbol_rate <= 5000000) { /* 2Msps< SR <=5Msps */
1035		state->demod_timeout = 1000;
1036		state->fec_timeout = 650;
1037	} else if (p->symbol_rate <= 10000000) { /* 5Msps< SR <=10Msps */
1038		state->demod_timeout = 700;
1039		state->fec_timeout = 350;
1040	} else if (p->symbol_rate < 20000000) { /* 10Msps< SR <=20Msps */
1041		state->demod_timeout = 400;
1042		state->fec_timeout = 200;
1043	} else { /* SR >=20Msps */
1044		state->demod_timeout = 300;
1045		state->fec_timeout = 200;
1046	}
1047
1048	/* Set the Init Symbol rate */
1049	symb = muldiv32(p->symbol_rate, 65536, state->base->mclk);
1050	write_reg(state, RSTV0910_P2_SFRINIT1 + state->regoff,
1051		  ((symb >> 8) & 0x7F));
1052	write_reg(state, RSTV0910_P2_SFRINIT0 + state->regoff, (symb & 0xFF));
1053
1054	state->demod_bits |= 0x80;
1055	write_reg(state, RSTV0910_P2_DEMOD + state->regoff, state->demod_bits);
1056
1057	/* FE_STV0910_SetSearchStandard */
1058	read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &reg_dmdcfgmd);
1059	write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff,
1060		  reg_dmdcfgmd |= 0xC0);
1061
1062	write_shared_reg(state,
1063			 RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01, 0x00);
1064
1065	/* Disable DSS */
1066	write_reg(state, RSTV0910_P2_FECM  + state->regoff, 0x00);
1067	write_reg(state, RSTV0910_P2_PRVIT + state->regoff, 0x2F);
1068
1069	enable_puncture_rate(state, FEC_NONE);
1070
1071	/* 8PSK 3/5, 8PSK 2/3 Poff tracking optimization WA */
1072	write_reg(state, RSTV0910_P2_ACLC2S2Q + state->regoff, 0x0B);
1073	write_reg(state, RSTV0910_P2_ACLC2S28 + state->regoff, 0x0A);
1074	write_reg(state, RSTV0910_P2_BCLC2S2Q + state->regoff, 0x84);
1075	write_reg(state, RSTV0910_P2_BCLC2S28 + state->regoff, 0x84);
1076	write_reg(state, RSTV0910_P2_CARHDR + state->regoff, 0x1C);
1077	write_reg(state, RSTV0910_P2_CARFREQ + state->regoff, 0x79);
1078
1079	write_reg(state, RSTV0910_P2_ACLC2S216A + state->regoff, 0x29);
1080	write_reg(state, RSTV0910_P2_ACLC2S232A + state->regoff, 0x09);
1081	write_reg(state, RSTV0910_P2_BCLC2S216A + state->regoff, 0x84);
1082	write_reg(state, RSTV0910_P2_BCLC2S232A + state->regoff, 0x84);
1083
1084	/*
1085	 * Reset CAR3, bug DVBS2->DVBS1 lock
1086	 * Note: The bit is only pulsed -> no lock on shared register needed
1087	 */
1088	write_reg(state, RSTV0910_TSTRES0, state->nr ? 0x04 : 0x08);
1089	write_reg(state, RSTV0910_TSTRES0, 0);
1090
1091	set_vth_default(state);
1092	/* Reset demod */
1093	write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
1094
1095	write_reg(state, RSTV0910_P2_CARCFG + state->regoff, 0x46);
1096
1097	if (p->symbol_rate <= 5000000)
1098		freq = (state->search_range / 2000) + 80;
1099	else
1100		freq = (state->search_range / 2000) + 1600;
1101	freq = (freq << 16) / (state->base->mclk / 1000);
1102
1103	write_reg(state, RSTV0910_P2_CFRUP1 + state->regoff,
1104		  (freq >> 8) & 0xff);
1105	write_reg(state, RSTV0910_P2_CFRUP0 + state->regoff, (freq & 0xff));
1106	/* CFR Low Setting */
1107	freq = -freq;
1108	write_reg(state, RSTV0910_P2_CFRLOW1 + state->regoff,
1109		  (freq >> 8) & 0xff);
1110	write_reg(state, RSTV0910_P2_CFRLOW0 + state->regoff, (freq & 0xff));
1111
1112	/* init the demod frequency offset to 0 */
1113	write_reg(state, RSTV0910_P2_CFRINIT1 + state->regoff, 0);
1114	write_reg(state, RSTV0910_P2_CFRINIT0 + state->regoff, 0);
1115
1116	write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
1117	/* Trigger acq */
1118	write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x15);
1119
1120	state->demod_lock_time += TUNING_DELAY;
1121	state->started = 1;
1122
1123	return 0;
1124}
1125
1126static int init_diseqc(struct stv *state)
1127{
1128	u16 offs = state->nr ? 0x40 : 0; /* Address offset */
1129	u8 freq = ((state->base->mclk + 11000 * 32) / (22000 * 32));
1130
1131	/* Disable receiver */
1132	write_reg(state, RSTV0910_P1_DISRXCFG + offs, 0x00);
1133	write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0xBA); /* Reset = 1 */
1134	write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A); /* Reset = 0 */
1135	write_reg(state, RSTV0910_P1_DISTXF22 + offs, freq);
1136	return 0;
1137}
1138
1139static int probe(struct stv *state)
1140{
1141	u8 id;
1142
1143	state->receive_mode = RCVMODE_NONE;
1144	state->started = 0;
1145
1146	if (read_reg(state, RSTV0910_MID, &id) < 0)
1147		return -ENODEV;
1148
1149	if (id != 0x51)
1150		return -EINVAL;
1151
1152	/* Configure the I2C repeater to off */
1153	write_reg(state, RSTV0910_P1_I2CRPT, 0x24);
1154	/* Configure the I2C repeater to off */
1155	write_reg(state, RSTV0910_P2_I2CRPT, 0x24);
1156	/* Set the I2C to oversampling ratio */
1157	write_reg(state, RSTV0910_I2CCFG, 0x88); /* state->i2ccfg */
1158
1159	write_reg(state, RSTV0910_OUTCFG,    0x00); /* OUTCFG */
1160	write_reg(state, RSTV0910_PADCFG,    0x05); /* RFAGC Pads Dev = 05 */
1161	write_reg(state, RSTV0910_SYNTCTRL,  0x02); /* SYNTCTRL */
1162	write_reg(state, RSTV0910_TSGENERAL, state->tsgeneral); /* TSGENERAL */
1163	write_reg(state, RSTV0910_CFGEXT,    0x02); /* CFGEXT */
1164
1165	if (state->single)
1166		write_reg(state, RSTV0910_GENCFG, 0x14); /* GENCFG */
1167	else
1168		write_reg(state, RSTV0910_GENCFG, 0x15); /* GENCFG */
1169
1170	write_reg(state, RSTV0910_P1_TNRCFG2, 0x02); /* IQSWAP = 0 */
1171	write_reg(state, RSTV0910_P2_TNRCFG2, 0x82); /* IQSWAP = 1 */
1172
1173	write_reg(state, RSTV0910_P1_CAR3CFG, 0x02);
1174	write_reg(state, RSTV0910_P2_CAR3CFG, 0x02);
1175	write_reg(state, RSTV0910_P1_DMDCFG4, 0x04);
1176	write_reg(state, RSTV0910_P2_DMDCFG4, 0x04);
1177
1178	write_reg(state, RSTV0910_TSTRES0, 0x80); /* LDPC Reset */
1179	write_reg(state, RSTV0910_TSTRES0, 0x00);
1180
1181	write_reg(state, RSTV0910_P1_TSPIDFLT1, 0x00);
1182	write_reg(state, RSTV0910_P2_TSPIDFLT1, 0x00);
1183
1184	write_reg(state, RSTV0910_P1_TMGCFG2, 0x80);
1185	write_reg(state, RSTV0910_P2_TMGCFG2, 0x80);
1186
1187	set_mclock(state, 135000000);
1188
1189	/* TS output */
1190	write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01);
1191	write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh);
1192	write_reg(state, RSTV0910_P1_TSCFGM, 0xC0); /* Manual speed */
1193	write_reg(state, RSTV0910_P1_TSCFGL, 0x20);
1194
1195	write_reg(state, RSTV0910_P1_TSSPEED, state->tsspeed);
1196
1197	write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01);
1198	write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh);
1199	write_reg(state, RSTV0910_P2_TSCFGM, 0xC0); /* Manual speed */
1200	write_reg(state, RSTV0910_P2_TSCFGL, 0x20);
1201
1202	write_reg(state, RSTV0910_P2_TSSPEED, state->tsspeed);
1203
1204	/* Reset stream merger */
1205	write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01);
1206	write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01);
1207	write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh);
1208	write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh);
1209
1210	write_reg(state, RSTV0910_P1_I2CRPT, state->i2crpt);
1211	write_reg(state, RSTV0910_P2_I2CRPT, state->i2crpt);
1212
1213	write_reg(state, RSTV0910_P1_TSINSDELM, 0x17);
1214	write_reg(state, RSTV0910_P1_TSINSDELL, 0xff);
1215
1216	write_reg(state, RSTV0910_P2_TSINSDELM, 0x17);
1217	write_reg(state, RSTV0910_P2_TSINSDELL, 0xff);
1218
1219	init_diseqc(state);
1220	return 0;
1221}
1222
1223static int gate_ctrl(struct dvb_frontend *fe, int enable)
1224{
1225	struct stv *state = fe->demodulator_priv;
1226	u8 i2crpt = state->i2crpt & ~0x86;
1227
1228	/*
1229	 * mutex_lock note: Concurrent I2C gate bus accesses must be
1230	 * prevented (STV0910 = dual demod on a single IC with a single I2C
1231	 * gate/bus, and two tuners attached), similar to most (if not all)
1232	 * other I2C host interfaces/buses.
1233	 *
1234	 * enable=1 (open I2C gate) will grab the lock
1235	 * enable=0 (close I2C gate) releases the lock
1236	 */
1237
1238	if (enable) {
1239		mutex_lock(&state->base->i2c_lock);
1240		i2crpt |= 0x80;
1241	} else {
1242		i2crpt |= 0x02;
1243	}
1244
1245	if (write_reg(state, state->nr ? RSTV0910_P2_I2CRPT :
1246		      RSTV0910_P1_I2CRPT, i2crpt) < 0) {
1247		/* don't hold the I2C bus lock on failure */
1248		if (!WARN_ON(!mutex_is_locked(&state->base->i2c_lock)))
1249			mutex_unlock(&state->base->i2c_lock);
1250		dev_err(&state->base->i2c->dev,
1251			"%s() write_reg failure (enable=%d)\n",
1252			__func__, enable);
1253		return -EIO;
1254	}
1255
1256	state->i2crpt = i2crpt;
1257
1258	if (!enable)
1259		if (!WARN_ON(!mutex_is_locked(&state->base->i2c_lock)))
1260			mutex_unlock(&state->base->i2c_lock);
1261	return 0;
1262}
1263
1264static void release(struct dvb_frontend *fe)
1265{
1266	struct stv *state = fe->demodulator_priv;
1267
1268	state->base->count--;
1269	if (state->base->count == 0) {
1270		list_del(&state->base->stvlist);
1271		kfree(state->base);
1272	}
1273	kfree(state);
1274}
1275
1276static int set_parameters(struct dvb_frontend *fe)
1277{
1278	int stat = 0;
1279	struct stv *state = fe->demodulator_priv;
1280	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1281
1282	stop(state);
1283	if (fe->ops.tuner_ops.set_params)
1284		fe->ops.tuner_ops.set_params(fe);
1285	state->symbol_rate = p->symbol_rate;
1286	stat = start(state, p);
1287	return stat;
1288}
1289
1290static int manage_matype_info(struct stv *state)
1291{
1292	if (!state->started)
1293		return -EINVAL;
1294	if (state->receive_mode == RCVMODE_DVBS2) {
1295		u8 bbheader[2];
1296
1297		read_regs(state, RSTV0910_P2_MATSTR1 + state->regoff,
1298			  bbheader, 2);
1299		state->feroll_off =
1300			(enum fe_stv0910_roll_off)(bbheader[0] & 0x03);
1301		state->is_vcm = (bbheader[0] & 0x10) == 0;
1302		state->is_standard_broadcast = (bbheader[0] & 0xFC) == 0xF0;
1303	} else if (state->receive_mode == RCVMODE_DVBS) {
1304		state->is_vcm = 0;
1305		state->is_standard_broadcast = 1;
1306		state->feroll_off = FE_SAT_35;
1307	}
1308	return 0;
1309}
1310
1311static int read_snr(struct dvb_frontend *fe)
1312{
1313	struct stv *state = fe->demodulator_priv;
1314	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1315	s32 snrval;
1316
1317	if (!get_signal_to_noise(state, &snrval)) {
1318		p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1319		p->cnr.stat[0].svalue = 100 * snrval; /* fix scale */
1320	} else {
1321		p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1322	}
1323
1324	return 0;
1325}
1326
1327static int read_ber(struct dvb_frontend *fe)
1328{
1329	struct stv *state = fe->demodulator_priv;
1330	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1331	u32 n, d;
1332
1333	get_bit_error_rate(state, &n, &d);
1334
1335	p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1336	p->pre_bit_error.stat[0].uvalue = n;
1337	p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1338	p->pre_bit_count.stat[0].uvalue = d;
1339
1340	return 0;
1341}
1342
1343static void read_signal_strength(struct dvb_frontend *fe)
1344{
1345	struct stv *state = fe->demodulator_priv;
1346	struct dtv_frontend_properties *p = &state->fe.dtv_property_cache;
1347	u8 reg[2];
1348	u16 agc;
1349	s32 padc, power = 0;
1350	int i;
1351
1352	read_regs(state, RSTV0910_P2_AGCIQIN1 + state->regoff, reg, 2);
1353
1354	agc = (((u32)reg[0]) << 8) | reg[1];
1355
1356	for (i = 0; i < 5; i += 1) {
1357		read_regs(state, RSTV0910_P2_POWERI + state->regoff, reg, 2);
1358		power += (u32)reg[0] * (u32)reg[0]
1359			+ (u32)reg[1] * (u32)reg[1];
1360		usleep_range(3000, 4000);
1361	}
1362	power /= 5;
1363
1364	padc = table_lookup(padc_lookup, ARRAY_SIZE(padc_lookup), power) + 352;
1365
1366	p->strength.stat[0].scale = FE_SCALE_DECIBEL;
1367	p->strength.stat[0].svalue = (padc - agc);
1368}
1369
1370static int read_status(struct dvb_frontend *fe, enum fe_status *status)
1371{
1372	struct stv *state = fe->demodulator_priv;
1373	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1374	u8 dmd_state = 0;
1375	u8 dstatus  = 0;
1376	enum receive_mode cur_receive_mode = RCVMODE_NONE;
1377	u32 feclock = 0;
1378
1379	*status = 0;
1380
1381	read_reg(state, RSTV0910_P2_DMDSTATE + state->regoff, &dmd_state);
1382
1383	if (dmd_state & 0x40) {
1384		read_reg(state, RSTV0910_P2_DSTATUS + state->regoff, &dstatus);
1385		if (dstatus & 0x08)
1386			cur_receive_mode = (dmd_state & 0x20) ?
1387				RCVMODE_DVBS : RCVMODE_DVBS2;
1388	}
1389	if (cur_receive_mode == RCVMODE_NONE) {
1390		set_vth(state);
1391
1392		/* reset signal statistics */
1393		p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1394		p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1395		p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1396		p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1397
1398		return 0;
1399	}
1400
1401	*status |= (FE_HAS_SIGNAL
1402		| FE_HAS_CARRIER
1403		| FE_HAS_VITERBI
1404		| FE_HAS_SYNC);
1405
1406	if (state->receive_mode == RCVMODE_NONE) {
1407		state->receive_mode = cur_receive_mode;
1408		state->demod_lock_time = jiffies;
1409		state->first_time_lock = 1;
1410
1411		get_signal_parameters(state);
1412		tracking_optimization(state);
1413
1414		write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1415			  state->tscfgh);
1416		usleep_range(3000, 4000);
1417		write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1418			  state->tscfgh | 0x01);
1419		write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
1420			  state->tscfgh);
1421	}
1422	if (dmd_state & 0x40) {
1423		if (state->receive_mode == RCVMODE_DVBS2) {
1424			u8 pdelstatus;
1425
1426			read_reg(state,
1427				 RSTV0910_P2_PDELSTATUS1 + state->regoff,
1428				 &pdelstatus);
1429			feclock = (pdelstatus & 0x02) != 0;
1430		} else {
1431			u8 vstatus;
1432
1433			read_reg(state,
1434				 RSTV0910_P2_VSTATUSVIT + state->regoff,
1435				 &vstatus);
1436			feclock = (vstatus & 0x08) != 0;
1437		}
1438	}
1439
1440	if (feclock) {
1441		*status |= FE_HAS_LOCK;
1442
1443		if (state->first_time_lock) {
1444			u8 tmp;
1445
1446			state->first_time_lock = 0;
1447
1448			manage_matype_info(state);
1449
1450			if (state->receive_mode == RCVMODE_DVBS2) {
1451				/*
1452				 * FSTV0910_P2_MANUALSX_ROLLOFF,
1453				 * FSTV0910_P2_MANUALS2_ROLLOFF = 0
1454				 */
1455				state->demod_bits &= ~0x84;
1456				write_reg(state,
1457					  RSTV0910_P2_DEMOD + state->regoff,
1458					  state->demod_bits);
1459				read_reg(state,
1460					 RSTV0910_P2_PDELCTRL2 + state->regoff,
1461					 &tmp);
1462				/* reset DVBS2 packet delinator error counter */
1463				tmp |= 0x40;
1464				write_reg(state,
1465					  RSTV0910_P2_PDELCTRL2 + state->regoff,
1466					  tmp);
1467				/* reset DVBS2 packet delinator error counter */
1468				tmp &= ~0x40;
1469				write_reg(state,
1470					  RSTV0910_P2_PDELCTRL2 + state->regoff,
1471					  tmp);
1472
1473				state->berscale = 2;
1474				state->last_bernumerator = 0;
1475				state->last_berdenominator = 1;
1476				/* force to PRE BCH Rate */
1477				write_reg(state,
1478					  RSTV0910_P2_ERRCTRL1 + state->regoff,
1479					  BER_SRC_S2 | state->berscale);
1480			} else {
1481				state->berscale = 2;
1482				state->last_bernumerator = 0;
1483				state->last_berdenominator = 1;
1484				/* force to PRE RS Rate */
1485				write_reg(state,
1486					  RSTV0910_P2_ERRCTRL1 + state->regoff,
1487					  BER_SRC_S | state->berscale);
1488			}
1489			/* Reset the Total packet counter */
1490			write_reg(state,
1491				  RSTV0910_P2_FBERCPT4 + state->regoff, 0x00);
1492			/*
1493			 * Reset the packet Error counter2 (and Set it to
1494			 * infinite error count mode)
1495			 */
1496			write_reg(state,
1497				  RSTV0910_P2_ERRCTRL2 + state->regoff, 0xc1);
1498
1499			set_vth_default(state);
1500			if (state->receive_mode == RCVMODE_DVBS)
1501				enable_puncture_rate(state,
1502						     state->puncture_rate);
1503		}
1504
1505		/* Use highest signaled ModCod for quality */
1506		if (state->is_vcm) {
1507			u8 tmp;
1508			enum fe_stv0910_mod_cod mod_cod;
1509
1510			read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff,
1511				 &tmp);
1512			mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2);
1513
1514			if (mod_cod > state->mod_cod)
1515				state->mod_cod = mod_cod;
1516		}
1517	}
1518
1519	/* read signal statistics */
1520
1521	/* read signal strength */
1522	read_signal_strength(fe);
1523
1524	/* read carrier/noise on FE_HAS_CARRIER */
1525	if (*status & FE_HAS_CARRIER)
1526		read_snr(fe);
1527	else
1528		p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1529
1530	/* read ber */
1531	if (*status & FE_HAS_VITERBI) {
1532		read_ber(fe);
1533	} else {
1534		p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1535		p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1536	}
1537
1538	return 0;
1539}
1540
1541static int get_frontend(struct dvb_frontend *fe,
1542			struct dtv_frontend_properties *p)
1543{
1544	struct stv *state = fe->demodulator_priv;
1545	u8 tmp;
1546	u32 symbolrate;
1547
1548	if (state->receive_mode == RCVMODE_DVBS2) {
1549		u32 mc;
1550		const enum fe_modulation modcod2mod[0x20] = {
1551			QPSK, QPSK, QPSK, QPSK,
1552			QPSK, QPSK, QPSK, QPSK,
1553			QPSK, QPSK, QPSK, QPSK,
1554			PSK_8, PSK_8, PSK_8, PSK_8,
1555			PSK_8, PSK_8, APSK_16, APSK_16,
1556			APSK_16, APSK_16, APSK_16, APSK_16,
1557			APSK_32, APSK_32, APSK_32, APSK_32,
1558			APSK_32,
1559		};
1560		const enum fe_code_rate modcod2fec[0x20] = {
1561			FEC_NONE, FEC_NONE, FEC_NONE, FEC_2_5,
1562			FEC_1_2, FEC_3_5, FEC_2_3, FEC_3_4,
1563			FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
1564			FEC_3_5, FEC_2_3, FEC_3_4, FEC_5_6,
1565			FEC_8_9, FEC_9_10, FEC_2_3, FEC_3_4,
1566			FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
1567			FEC_3_4, FEC_4_5, FEC_5_6, FEC_8_9,
1568			FEC_9_10
1569		};
1570		read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
1571		mc = ((tmp & 0x7c) >> 2);
1572		p->pilot = (tmp & 0x01) ? PILOT_ON : PILOT_OFF;
1573		p->modulation = modcod2mod[mc];
1574		p->fec_inner = modcod2fec[mc];
1575	} else if (state->receive_mode == RCVMODE_DVBS) {
1576		read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
1577		switch (tmp & 0x1F) {
1578		case 0x0d:
1579			p->fec_inner = FEC_1_2;
1580			break;
1581		case 0x12:
1582			p->fec_inner = FEC_2_3;
1583			break;
1584		case 0x15:
1585			p->fec_inner = FEC_3_4;
1586			break;
1587		case 0x18:
1588			p->fec_inner = FEC_5_6;
1589			break;
1590		case 0x1a:
1591			p->fec_inner = FEC_7_8;
1592			break;
1593		default:
1594			p->fec_inner = FEC_NONE;
1595			break;
1596		}
1597		p->rolloff = ROLLOFF_35;
1598	}
1599
1600	if (state->receive_mode != RCVMODE_NONE) {
1601		get_cur_symbol_rate(state, &symbolrate);
1602		p->symbol_rate = symbolrate;
1603	}
1604	return 0;
1605}
1606
1607static int tune(struct dvb_frontend *fe, bool re_tune,
1608		unsigned int mode_flags,
1609		unsigned int *delay, enum fe_status *status)
1610{
1611	struct stv *state = fe->demodulator_priv;
1612	int r;
1613
1614	if (re_tune) {
1615		r = set_parameters(fe);
1616		if (r)
1617			return r;
1618		state->tune_time = jiffies;
1619	}
1620
1621	r = read_status(fe, status);
1622	if (r)
1623		return r;
1624
1625	if (*status & FE_HAS_LOCK)
1626		return 0;
1627	*delay = HZ;
1628
1629	return 0;
1630}
1631
1632static enum dvbfe_algo get_algo(struct dvb_frontend *fe)
1633{
1634	return DVBFE_ALGO_HW;
1635}
1636
1637static int set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
1638{
1639	struct stv *state = fe->demodulator_priv;
1640	u16 offs = state->nr ? 0x40 : 0;
1641
1642	switch (tone) {
1643	case SEC_TONE_ON:
1644		return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x38);
1645	case SEC_TONE_OFF:
1646		return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3a);
1647	default:
1648		break;
1649	}
1650	return -EINVAL;
1651}
1652
1653static int wait_dis(struct stv *state, u8 flag, u8 val)
1654{
1655	int i;
1656	u8 stat;
1657	u16 offs = state->nr ? 0x40 : 0;
1658
1659	for (i = 0; i < 10; i++) {
1660		read_reg(state, RSTV0910_P1_DISTXSTATUS + offs, &stat);
1661		if ((stat & flag) == val)
1662			return 0;
1663		usleep_range(10000, 11000);
1664	}
1665	return -ETIMEDOUT;
1666}
1667
1668static int send_master_cmd(struct dvb_frontend *fe,
1669			   struct dvb_diseqc_master_cmd *cmd)
1670{
1671	struct stv *state = fe->demodulator_priv;
1672	int i;
1673
1674	SET_FIELD(DISEQC_MODE, 2);
1675	SET_FIELD(DIS_PRECHARGE, 1);
1676	for (i = 0; i < cmd->msg_len; i++) {
1677		wait_dis(state, 0x40, 0x00);
1678		SET_REG(DISTXFIFO, cmd->msg[i]);
1679	}
1680	SET_FIELD(DIS_PRECHARGE, 0);
1681	wait_dis(state, 0x20, 0x20);
1682	return 0;
1683}
1684
1685static int send_burst(struct dvb_frontend *fe, enum fe_sec_mini_cmd burst)
1686{
1687	struct stv *state = fe->demodulator_priv;
1688	u8 value;
1689
1690	if (burst == SEC_MINI_A) {
1691		SET_FIELD(DISEQC_MODE, 3);
1692		value = 0x00;
1693	} else {
1694		SET_FIELD(DISEQC_MODE, 2);
1695		value = 0xFF;
1696	}
1697
1698	SET_FIELD(DIS_PRECHARGE, 1);
1699	wait_dis(state, 0x40, 0x00);
1700	SET_REG(DISTXFIFO, value);
1701	SET_FIELD(DIS_PRECHARGE, 0);
1702	wait_dis(state, 0x20, 0x20);
1703
1704	return 0;
1705}
1706
1707static int sleep(struct dvb_frontend *fe)
1708{
1709	struct stv *state = fe->demodulator_priv;
1710
1711	stop(state);
1712	return 0;
1713}
1714
1715static const struct dvb_frontend_ops stv0910_ops = {
1716	.delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
1717	.info = {
1718		.name			= "ST STV0910",
1719		.frequency_min_hz	=  950 * MHz,
1720		.frequency_max_hz	= 2150 * MHz,
1721		.symbol_rate_min	= 100000,
1722		.symbol_rate_max	= 70000000,
1723		.caps			= FE_CAN_INVERSION_AUTO |
1724					  FE_CAN_FEC_AUTO       |
1725					  FE_CAN_QPSK           |
1726					  FE_CAN_2G_MODULATION  |
1727					  FE_CAN_MULTISTREAM
1728	},
1729	.sleep				= sleep,
1730	.release			= release,
1731	.i2c_gate_ctrl			= gate_ctrl,
1732	.set_frontend			= set_parameters,
1733	.get_frontend_algo		= get_algo,
1734	.get_frontend			= get_frontend,
1735	.tune				= tune,
1736	.read_status			= read_status,
1737	.set_tone			= set_tone,
1738
1739	.diseqc_send_master_cmd		= send_master_cmd,
1740	.diseqc_send_burst		= send_burst,
1741};
1742
1743static struct stv_base *match_base(struct i2c_adapter *i2c, u8 adr)
1744{
1745	struct stv_base *p;
1746
1747	list_for_each_entry(p, &stvlist, stvlist)
1748		if (p->i2c == i2c && p->adr == adr)
1749			return p;
1750	return NULL;
1751}
1752
1753static void stv0910_init_stats(struct stv *state)
1754{
1755	struct dtv_frontend_properties *p = &state->fe.dtv_property_cache;
1756
1757	p->strength.len = 1;
1758	p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1759	p->cnr.len = 1;
1760	p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1761	p->pre_bit_error.len = 1;
1762	p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1763	p->pre_bit_count.len = 1;
1764	p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1765}
1766
1767struct dvb_frontend *stv0910_attach(struct i2c_adapter *i2c,
1768				    struct stv0910_cfg *cfg,
1769				    int nr)
1770{
1771	struct stv *state;
1772	struct stv_base *base;
1773
1774	state = kzalloc(sizeof(*state), GFP_KERNEL);
1775	if (!state)
1776		return NULL;
1777
1778	state->tscfgh = 0x20 | (cfg->parallel ? 0 : 0x40);
1779	state->tsgeneral = (cfg->parallel == 2) ? 0x02 : 0x00;
1780	state->i2crpt = 0x0A | ((cfg->rptlvl & 0x07) << 4);
1781	/* use safe tsspeed value if unspecified through stv0910_cfg */
1782	state->tsspeed = (cfg->tsspeed ? cfg->tsspeed : 0x28);
1783	state->nr = nr;
1784	state->regoff = state->nr ? 0 : 0x200;
1785	state->search_range = 16000000;
1786	state->demod_bits = 0x10; /* Inversion : Auto with reset to 0 */
1787	state->receive_mode = RCVMODE_NONE;
1788	state->cur_scrambling_code = (~0U);
1789	state->single = cfg->single ? 1 : 0;
1790
1791	base = match_base(i2c, cfg->adr);
1792	if (base) {
1793		base->count++;
1794		state->base = base;
1795	} else {
1796		base = kzalloc(sizeof(*base), GFP_KERNEL);
1797		if (!base)
1798			goto fail;
1799		base->i2c = i2c;
1800		base->adr = cfg->adr;
1801		base->count = 1;
1802		base->extclk = cfg->clk ? cfg->clk : 30000000;
1803
1804		mutex_init(&base->i2c_lock);
1805		mutex_init(&base->reg_lock);
1806		state->base = base;
1807		if (probe(state) < 0) {
1808			dev_info(&i2c->dev, "No demod found at adr %02X on %s\n",
1809				 cfg->adr, dev_name(&i2c->dev));
1810			kfree(base);
1811			goto fail;
1812		}
1813		list_add(&base->stvlist, &stvlist);
1814	}
1815	state->fe.ops = stv0910_ops;
1816	state->fe.demodulator_priv = state;
1817	state->nr = nr;
1818
1819	dev_info(&i2c->dev, "%s demod found at adr %02X on %s\n",
1820		 state->fe.ops.info.name, cfg->adr, dev_name(&i2c->dev));
1821
1822	stv0910_init_stats(state);
1823
1824	return &state->fe;
1825
1826fail:
1827	kfree(state);
1828	return NULL;
1829}
1830EXPORT_SYMBOL_GPL(stv0910_attach);
1831
1832MODULE_DESCRIPTION("ST STV0910 multistandard frontend driver");
1833MODULE_AUTHOR("Ralph and Marcus Metzler, Manfred Voelkel");
1834MODULE_LICENSE("GPL v2");
1835