1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *   Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver
4 *
5 *   Copyright (C) 2010-2013 Mauro Carvalho Chehab
6 *   Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com>
7 */
8
9#include <linux/kernel.h>
10#include <asm/div64.h>
11
12#include <media/dvb_frontend.h>
13#include "mb86a20s.h"
14
15#define NUM_LAYERS 3
16
17enum mb86a20s_bandwidth {
18	MB86A20S_13SEG = 0,
19	MB86A20S_13SEG_PARTIAL = 1,
20	MB86A20S_1SEG = 2,
21	MB86A20S_3SEG = 3,
22};
23
24static u8 mb86a20s_subchannel[] = {
25	0xb0, 0xc0, 0xd0, 0xe0,
26	0xf0, 0x00, 0x10, 0x20,
27};
28
29struct mb86a20s_state {
30	struct i2c_adapter *i2c;
31	const struct mb86a20s_config *config;
32	u32 last_frequency;
33
34	struct dvb_frontend frontend;
35
36	u32 if_freq;
37	enum mb86a20s_bandwidth bw;
38	bool inversion;
39	u32 subchannel;
40
41	u32 estimated_rate[NUM_LAYERS];
42	unsigned long get_strength_time;
43
44	bool need_init;
45};
46
47struct regdata {
48	u8 reg;
49	u8 data;
50};
51
52#define BER_SAMPLING_RATE	1	/* Seconds */
53
54/*
55 * Initialization sequence: Use whatevere default values that PV SBTVD
56 * does on its initialisation, obtained via USB snoop
57 */
58static struct regdata mb86a20s_init1[] = {
59	{ 0x70, 0x0f },
60	{ 0x70, 0xff },
61	{ 0x08, 0x01 },
62	{ 0x50, 0xd1 }, { 0x51, 0x20 },
63};
64
65static struct regdata mb86a20s_init2[] = {
66	{ 0x50, 0xd1 }, { 0x51, 0x22 },
67	{ 0x39, 0x01 },
68	{ 0x71, 0x00 },
69	{ 0x3b, 0x21 },
70	{ 0x3c, 0x3a },
71	{ 0x01, 0x0d },
72	{ 0x04, 0x08 }, { 0x05, 0x05 },
73	{ 0x04, 0x0e }, { 0x05, 0x00 },
74	{ 0x04, 0x0f }, { 0x05, 0x14 },
75	{ 0x04, 0x0b }, { 0x05, 0x8c },
76	{ 0x04, 0x00 }, { 0x05, 0x00 },
77	{ 0x04, 0x01 }, { 0x05, 0x07 },
78	{ 0x04, 0x02 }, { 0x05, 0x0f },
79	{ 0x04, 0x03 }, { 0x05, 0xa0 },
80	{ 0x04, 0x09 }, { 0x05, 0x00 },
81	{ 0x04, 0x0a }, { 0x05, 0xff },
82	{ 0x04, 0x27 }, { 0x05, 0x64 },
83	{ 0x04, 0x28 }, { 0x05, 0x00 },
84	{ 0x04, 0x1e }, { 0x05, 0xff },
85	{ 0x04, 0x29 }, { 0x05, 0x0a },
86	{ 0x04, 0x32 }, { 0x05, 0x0a },
87	{ 0x04, 0x14 }, { 0x05, 0x02 },
88	{ 0x04, 0x04 }, { 0x05, 0x00 },
89	{ 0x04, 0x05 }, { 0x05, 0x22 },
90	{ 0x04, 0x06 }, { 0x05, 0x0e },
91	{ 0x04, 0x07 }, { 0x05, 0xd8 },
92	{ 0x04, 0x12 }, { 0x05, 0x00 },
93	{ 0x04, 0x13 }, { 0x05, 0xff },
94
95	/*
96	 * On this demod, when the bit count reaches the count below,
97	 * it collects the bit error count. The bit counters are initialized
98	 * to 65535 here. This warrants that all of them will be quickly
99	 * calculated when device gets locked. As TMCC is parsed, the values
100	 * will be adjusted later in the driver's code.
101	 */
102	{ 0x52, 0x01 },				/* Turn on BER before Viterbi */
103	{ 0x50, 0xa7 }, { 0x51, 0x00 },
104	{ 0x50, 0xa8 }, { 0x51, 0xff },
105	{ 0x50, 0xa9 }, { 0x51, 0xff },
106	{ 0x50, 0xaa }, { 0x51, 0x00 },
107	{ 0x50, 0xab }, { 0x51, 0xff },
108	{ 0x50, 0xac }, { 0x51, 0xff },
109	{ 0x50, 0xad }, { 0x51, 0x00 },
110	{ 0x50, 0xae }, { 0x51, 0xff },
111	{ 0x50, 0xaf }, { 0x51, 0xff },
112
113	/*
114	 * On this demod, post BER counts blocks. When the count reaches the
115	 * value below, it collects the block error count. The block counters
116	 * are initialized to 127 here. This warrants that all of them will be
117	 * quickly calculated when device gets locked. As TMCC is parsed, the
118	 * values will be adjusted later in the driver's code.
119	 */
120	{ 0x5e, 0x07 },				/* Turn on BER after Viterbi */
121	{ 0x50, 0xdc }, { 0x51, 0x00 },
122	{ 0x50, 0xdd }, { 0x51, 0x7f },
123	{ 0x50, 0xde }, { 0x51, 0x00 },
124	{ 0x50, 0xdf }, { 0x51, 0x7f },
125	{ 0x50, 0xe0 }, { 0x51, 0x00 },
126	{ 0x50, 0xe1 }, { 0x51, 0x7f },
127
128	/*
129	 * On this demod, when the block count reaches the count below,
130	 * it collects the block error count. The block counters are initialized
131	 * to 127 here. This warrants that all of them will be quickly
132	 * calculated when device gets locked. As TMCC is parsed, the values
133	 * will be adjusted later in the driver's code.
134	 */
135	{ 0x50, 0xb0 }, { 0x51, 0x07 },		/* Enable PER */
136	{ 0x50, 0xb2 }, { 0x51, 0x00 },
137	{ 0x50, 0xb3 }, { 0x51, 0x7f },
138	{ 0x50, 0xb4 }, { 0x51, 0x00 },
139	{ 0x50, 0xb5 }, { 0x51, 0x7f },
140	{ 0x50, 0xb6 }, { 0x51, 0x00 },
141	{ 0x50, 0xb7 }, { 0x51, 0x7f },
142
143	{ 0x50, 0x50 }, { 0x51, 0x02 },		/* MER manual mode */
144	{ 0x50, 0x51 }, { 0x51, 0x04 },		/* MER symbol 4 */
145	{ 0x45, 0x04 },				/* CN symbol 4 */
146	{ 0x48, 0x04 },				/* CN manual mode */
147	{ 0x50, 0xd5 }, { 0x51, 0x01 },
148	{ 0x50, 0xd6 }, { 0x51, 0x1f },
149	{ 0x50, 0xd2 }, { 0x51, 0x03 },
150	{ 0x50, 0xd7 }, { 0x51, 0x3f },
151	{ 0x1c, 0x01 },
152	{ 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x03 },
153	{ 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0d },
154	{ 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
155	{ 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x01 },
156	{ 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x21 },
157	{ 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x29 },
158	{ 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
159	{ 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x31 },
160	{ 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0e },
161	{ 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x4e },
162	{ 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x46 },
163	{ 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
164	{ 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x56 },
165	{ 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x35 },
166	{ 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbe },
167	{ 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0x84 },
168	{ 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x03 }, { 0x2b, 0xee },
169	{ 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x98 },
170	{ 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x9f },
171	{ 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xb2 },
172	{ 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0xc2 },
173	{ 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0x4a },
174	{ 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xbc },
175	{ 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x04 }, { 0x2b, 0xba },
176	{ 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x06 }, { 0x2b, 0x14 },
177	{ 0x50, 0x1e }, { 0x51, 0x5d },
178	{ 0x50, 0x22 }, { 0x51, 0x00 },
179	{ 0x50, 0x23 }, { 0x51, 0xc8 },
180	{ 0x50, 0x24 }, { 0x51, 0x00 },
181	{ 0x50, 0x25 }, { 0x51, 0xf0 },
182	{ 0x50, 0x26 }, { 0x51, 0x00 },
183	{ 0x50, 0x27 }, { 0x51, 0xc3 },
184	{ 0x50, 0x39 }, { 0x51, 0x02 },
185	{ 0x50, 0xd5 }, { 0x51, 0x01 },
186	{ 0xd0, 0x00 },
187};
188
189static struct regdata mb86a20s_reset_reception[] = {
190	{ 0x70, 0xf0 },
191	{ 0x70, 0xff },
192	{ 0x08, 0x01 },
193	{ 0x08, 0x00 },
194};
195
196static struct regdata mb86a20s_per_ber_reset[] = {
197	{ 0x53, 0x00 },	/* pre BER Counter reset */
198	{ 0x53, 0x07 },
199
200	{ 0x5f, 0x00 },	/* post BER Counter reset */
201	{ 0x5f, 0x07 },
202
203	{ 0x50, 0xb1 },	/* PER Counter reset */
204	{ 0x51, 0x07 },
205	{ 0x51, 0x00 },
206};
207
208/*
209 * I2C read/write functions and macros
210 */
211
212static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
213			     u8 i2c_addr, u8 reg, u8 data)
214{
215	u8 buf[] = { reg, data };
216	struct i2c_msg msg = {
217		.addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
218	};
219	int rc;
220
221	rc = i2c_transfer(state->i2c, &msg, 1);
222	if (rc != 1) {
223		dev_err(&state->i2c->dev,
224			"%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
225			__func__, rc, reg, data);
226		return rc;
227	}
228
229	return 0;
230}
231
232static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state,
233				     u8 i2c_addr, struct regdata *rd, int size)
234{
235	int i, rc;
236
237	for (i = 0; i < size; i++) {
238		rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg,
239					   rd[i].data);
240		if (rc < 0)
241			return rc;
242	}
243	return 0;
244}
245
246static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
247				u8 i2c_addr, u8 reg)
248{
249	u8 val;
250	int rc;
251	struct i2c_msg msg[] = {
252		{ .addr = i2c_addr, .flags = 0, .buf = &reg, .len = 1 },
253		{ .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 }
254	};
255
256	rc = i2c_transfer(state->i2c, msg, 2);
257
258	if (rc != 2) {
259		dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n",
260			__func__, reg, rc);
261		return (rc < 0) ? rc : -EIO;
262	}
263
264	return val;
265}
266
267#define mb86a20s_readreg(state, reg) \
268	mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
269#define mb86a20s_writereg(state, reg, val) \
270	mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
271#define mb86a20s_writeregdata(state, regdata) \
272	mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
273	regdata, ARRAY_SIZE(regdata))
274
275/*
276 * Ancillary internal routines (likely compiled inlined)
277 *
278 * The functions below assume that gateway lock has already obtained
279 */
280
281static int mb86a20s_read_status(struct dvb_frontend *fe, enum fe_status *status)
282{
283	struct mb86a20s_state *state = fe->demodulator_priv;
284	int val;
285
286	*status = 0;
287
288	val = mb86a20s_readreg(state, 0x0a);
289	if (val < 0)
290		return val;
291
292	val &= 0xf;
293	if (val >= 2)
294		*status |= FE_HAS_SIGNAL;
295
296	if (val >= 4)
297		*status |= FE_HAS_CARRIER;
298
299	if (val >= 5)
300		*status |= FE_HAS_VITERBI;
301
302	if (val >= 7)
303		*status |= FE_HAS_SYNC;
304
305	/*
306	 * Actually, on state S8, it starts receiving TS, but the TS
307	 * output is only on normal state after the transition to S9.
308	 */
309	if (val >= 9)
310		*status |= FE_HAS_LOCK;
311
312	dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n",
313		 __func__, *status, val);
314
315	return val;
316}
317
318static int mb86a20s_read_signal_strength(struct dvb_frontend *fe)
319{
320	struct mb86a20s_state *state = fe->demodulator_priv;
321	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
322	int rc;
323	unsigned rf_max, rf_min, rf;
324
325	if (state->get_strength_time &&
326	   (!time_after(jiffies, state->get_strength_time)))
327		return c->strength.stat[0].uvalue;
328
329	/* Reset its value if an error happen */
330	c->strength.stat[0].uvalue = 0;
331
332	/* Does a binary search to get RF strength */
333	rf_max = 0xfff;
334	rf_min = 0;
335	do {
336		rf = (rf_max + rf_min) / 2;
337		rc = mb86a20s_writereg(state, 0x04, 0x1f);
338		if (rc < 0)
339			return rc;
340		rc = mb86a20s_writereg(state, 0x05, rf >> 8);
341		if (rc < 0)
342			return rc;
343		rc = mb86a20s_writereg(state, 0x04, 0x20);
344		if (rc < 0)
345			return rc;
346		rc = mb86a20s_writereg(state, 0x05, rf);
347		if (rc < 0)
348			return rc;
349
350		rc = mb86a20s_readreg(state, 0x02);
351		if (rc < 0)
352			return rc;
353		if (rc & 0x08)
354			rf_min = (rf_max + rf_min) / 2;
355		else
356			rf_max = (rf_max + rf_min) / 2;
357		if (rf_max - rf_min < 4) {
358			rf = (rf_max + rf_min) / 2;
359
360			/* Rescale it from 2^12 (4096) to 2^16 */
361			rf = rf << (16 - 12);
362			if (rf)
363				rf |= (1 << 12) - 1;
364
365			dev_dbg(&state->i2c->dev,
366				"%s: signal strength = %d (%d < RF=%d < %d)\n",
367				__func__, rf, rf_min, rf >> 4, rf_max);
368			c->strength.stat[0].uvalue = rf;
369			state->get_strength_time = jiffies +
370						   msecs_to_jiffies(1000);
371			return 0;
372		}
373	} while (1);
374}
375
376static int mb86a20s_get_modulation(struct mb86a20s_state *state,
377				   unsigned layer)
378{
379	int rc;
380	static unsigned char reg[] = {
381		[0] = 0x86,	/* Layer A */
382		[1] = 0x8a,	/* Layer B */
383		[2] = 0x8e,	/* Layer C */
384	};
385
386	if (layer >= ARRAY_SIZE(reg))
387		return -EINVAL;
388	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
389	if (rc < 0)
390		return rc;
391	rc = mb86a20s_readreg(state, 0x6e);
392	if (rc < 0)
393		return rc;
394	switch ((rc >> 4) & 0x07) {
395	case 0:
396		return DQPSK;
397	case 1:
398		return QPSK;
399	case 2:
400		return QAM_16;
401	case 3:
402		return QAM_64;
403	default:
404		return QAM_AUTO;
405	}
406}
407
408static int mb86a20s_get_fec(struct mb86a20s_state *state,
409			    unsigned layer)
410{
411	int rc;
412
413	static unsigned char reg[] = {
414		[0] = 0x87,	/* Layer A */
415		[1] = 0x8b,	/* Layer B */
416		[2] = 0x8f,	/* Layer C */
417	};
418
419	if (layer >= ARRAY_SIZE(reg))
420		return -EINVAL;
421	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
422	if (rc < 0)
423		return rc;
424	rc = mb86a20s_readreg(state, 0x6e);
425	if (rc < 0)
426		return rc;
427	switch ((rc >> 4) & 0x07) {
428	case 0:
429		return FEC_1_2;
430	case 1:
431		return FEC_2_3;
432	case 2:
433		return FEC_3_4;
434	case 3:
435		return FEC_5_6;
436	case 4:
437		return FEC_7_8;
438	default:
439		return FEC_AUTO;
440	}
441}
442
443static int mb86a20s_get_interleaving(struct mb86a20s_state *state,
444				     unsigned layer)
445{
446	int rc;
447	static const int interleaving[] = {
448		0, 1, 2, 4, 8
449	};
450
451	static const unsigned char reg[] = {
452		[0] = 0x88,	/* Layer A */
453		[1] = 0x8c,	/* Layer B */
454		[2] = 0x90,	/* Layer C */
455	};
456
457	if (layer >= ARRAY_SIZE(reg))
458		return -EINVAL;
459	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
460	if (rc < 0)
461		return rc;
462	rc = mb86a20s_readreg(state, 0x6e);
463	if (rc < 0)
464		return rc;
465
466	return interleaving[(rc >> 4) & 0x07];
467}
468
469static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
470				      unsigned layer)
471{
472	int rc, count;
473	static unsigned char reg[] = {
474		[0] = 0x89,	/* Layer A */
475		[1] = 0x8d,	/* Layer B */
476		[2] = 0x91,	/* Layer C */
477	};
478
479	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
480
481	if (layer >= ARRAY_SIZE(reg))
482		return -EINVAL;
483
484	rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
485	if (rc < 0)
486		return rc;
487	rc = mb86a20s_readreg(state, 0x6e);
488	if (rc < 0)
489		return rc;
490	count = (rc >> 4) & 0x0f;
491
492	dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count);
493
494	return count;
495}
496
497static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe)
498{
499	struct mb86a20s_state *state = fe->demodulator_priv;
500	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
501
502	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
503
504	/* Fixed parameters */
505	c->delivery_system = SYS_ISDBT;
506	c->bandwidth_hz = 6000000;
507
508	/* Initialize values that will be later autodetected */
509	c->isdbt_layer_enabled = 0;
510	c->transmission_mode = TRANSMISSION_MODE_AUTO;
511	c->guard_interval = GUARD_INTERVAL_AUTO;
512	c->isdbt_sb_mode = 0;
513	c->isdbt_sb_segment_count = 0;
514}
515
516/*
517 * Estimates the bit rate using the per-segment bit rate given by
518 * ABNT/NBR 15601 spec (table 4).
519 */
520static const u32 isdbt_rate[3][5][4] = {
521	{	/* DQPSK/QPSK */
522		{  280850,  312060,  330420,  340430 },	/* 1/2 */
523		{  374470,  416080,  440560,  453910 },	/* 2/3 */
524		{  421280,  468090,  495630,  510650 },	/* 3/4 */
525		{  468090,  520100,  550700,  567390 },	/* 5/6 */
526		{  491500,  546110,  578230,  595760 },	/* 7/8 */
527	}, {	/* QAM16 */
528		{  561710,  624130,  660840,  680870 },	/* 1/2 */
529		{  748950,  832170,  881120,  907820 },	/* 2/3 */
530		{  842570,  936190,  991260, 1021300 },	/* 3/4 */
531		{  936190, 1040210, 1101400, 1134780 },	/* 5/6 */
532		{  983000, 1092220, 1156470, 1191520 },	/* 7/8 */
533	}, {	/* QAM64 */
534		{  842570,  936190,  991260, 1021300 },	/* 1/2 */
535		{ 1123430, 1248260, 1321680, 1361740 },	/* 2/3 */
536		{ 1263860, 1404290, 1486900, 1531950 },	/* 3/4 */
537		{ 1404290, 1560320, 1652110, 1702170 },	/* 5/6 */
538		{ 1474500, 1638340, 1734710, 1787280 },	/* 7/8 */
539	}
540};
541
542static u32 isdbt_layer_min_bitrate(struct dtv_frontend_properties *c,
543				   u32 layer)
544{
545	int mod, fec, guard;
546
547	/*
548	 * If modulation/fec/guard is not detected, the default is
549	 * to consider the lowest bit rate, to avoid taking too long time
550	 * to get BER.
551	 */
552	switch (c->layer[layer].modulation) {
553	case DQPSK:
554	case QPSK:
555	default:
556		mod = 0;
557		break;
558	case QAM_16:
559		mod = 1;
560		break;
561	case QAM_64:
562		mod = 2;
563		break;
564	}
565
566	switch (c->layer[layer].fec) {
567	default:
568	case FEC_1_2:
569	case FEC_AUTO:
570		fec = 0;
571		break;
572	case FEC_2_3:
573		fec = 1;
574		break;
575	case FEC_3_4:
576		fec = 2;
577		break;
578	case FEC_5_6:
579		fec = 3;
580		break;
581	case FEC_7_8:
582		fec = 4;
583		break;
584	}
585
586	switch (c->guard_interval) {
587	default:
588	case GUARD_INTERVAL_1_4:
589		guard = 0;
590		break;
591	case GUARD_INTERVAL_1_8:
592		guard = 1;
593		break;
594	case GUARD_INTERVAL_1_16:
595		guard = 2;
596		break;
597	case GUARD_INTERVAL_1_32:
598		guard = 3;
599		break;
600	}
601
602	return isdbt_rate[mod][fec][guard] * c->layer[layer].segment_count;
603}
604
605static int mb86a20s_get_frontend(struct dvb_frontend *fe)
606{
607	struct mb86a20s_state *state = fe->demodulator_priv;
608	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
609	int layer, rc, rate, counter;
610
611	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
612
613	/* Reset frontend cache to default values */
614	mb86a20s_reset_frontend_cache(fe);
615
616	/* Check for partial reception */
617	rc = mb86a20s_writereg(state, 0x6d, 0x85);
618	if (rc < 0)
619		return rc;
620	rc = mb86a20s_readreg(state, 0x6e);
621	if (rc < 0)
622		return rc;
623	c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
624
625	/* Get per-layer data */
626
627	for (layer = 0; layer < NUM_LAYERS; layer++) {
628		dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n",
629			__func__, 'A' + layer);
630
631		rc = mb86a20s_get_segment_count(state, layer);
632		if (rc < 0)
633			goto noperlayer_error;
634		if (rc >= 0 && rc < 14) {
635			c->layer[layer].segment_count = rc;
636		} else {
637			c->layer[layer].segment_count = 0;
638			state->estimated_rate[layer] = 0;
639			continue;
640		}
641		c->isdbt_layer_enabled |= 1 << layer;
642		rc = mb86a20s_get_modulation(state, layer);
643		if (rc < 0)
644			goto noperlayer_error;
645		dev_dbg(&state->i2c->dev, "%s: modulation %d.\n",
646			__func__, rc);
647		c->layer[layer].modulation = rc;
648		rc = mb86a20s_get_fec(state, layer);
649		if (rc < 0)
650			goto noperlayer_error;
651		dev_dbg(&state->i2c->dev, "%s: FEC %d.\n",
652			__func__, rc);
653		c->layer[layer].fec = rc;
654		rc = mb86a20s_get_interleaving(state, layer);
655		if (rc < 0)
656			goto noperlayer_error;
657		dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n",
658			__func__, rc);
659		c->layer[layer].interleaving = rc;
660
661		rate = isdbt_layer_min_bitrate(c, layer);
662		counter = rate * BER_SAMPLING_RATE;
663
664		/* Avoids sampling too quickly or to overflow the register */
665		if (counter < 256)
666			counter = 256;
667		else if (counter > (1 << 24) - 1)
668			counter = (1 << 24) - 1;
669
670		dev_dbg(&state->i2c->dev,
671			"%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
672			__func__, 'A' + layer, rate / 1000, counter, counter);
673
674		state->estimated_rate[layer] = counter;
675	}
676
677	rc = mb86a20s_writereg(state, 0x6d, 0x84);
678	if (rc < 0)
679		return rc;
680	if ((rc & 0x60) == 0x20) {
681		c->isdbt_sb_mode = 1;
682		/* At least, one segment should exist */
683		if (!c->isdbt_sb_segment_count)
684			c->isdbt_sb_segment_count = 1;
685	}
686
687	/* Get transmission mode and guard interval */
688	rc = mb86a20s_readreg(state, 0x07);
689	if (rc < 0)
690		return rc;
691	c->transmission_mode = TRANSMISSION_MODE_AUTO;
692	if ((rc & 0x60) == 0x20) {
693		/* Only modes 2 and 3 are supported */
694		switch ((rc >> 2) & 0x03) {
695		case 1:
696			c->transmission_mode = TRANSMISSION_MODE_4K;
697			break;
698		case 2:
699			c->transmission_mode = TRANSMISSION_MODE_8K;
700			break;
701		}
702	}
703	c->guard_interval = GUARD_INTERVAL_AUTO;
704	if (!(rc & 0x10)) {
705		/* Guard interval 1/32 is not supported */
706		switch (rc & 0x3) {
707		case 0:
708			c->guard_interval = GUARD_INTERVAL_1_4;
709			break;
710		case 1:
711			c->guard_interval = GUARD_INTERVAL_1_8;
712			break;
713		case 2:
714			c->guard_interval = GUARD_INTERVAL_1_16;
715			break;
716		}
717	}
718	return 0;
719
720noperlayer_error:
721
722	/* per-layer info is incomplete; discard all per-layer */
723	c->isdbt_layer_enabled = 0;
724
725	return rc;
726}
727
728static int mb86a20s_reset_counters(struct dvb_frontend *fe)
729{
730	struct mb86a20s_state *state = fe->demodulator_priv;
731	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
732	int rc, val;
733
734	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
735
736	/* Reset the counters, if the channel changed */
737	if (state->last_frequency != c->frequency) {
738		memset(&c->cnr, 0, sizeof(c->cnr));
739		memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error));
740		memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count));
741		memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
742		memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
743		memset(&c->block_error, 0, sizeof(c->block_error));
744		memset(&c->block_count, 0, sizeof(c->block_count));
745
746		state->last_frequency = c->frequency;
747	}
748
749	/* Clear status for most stats */
750
751	/* BER/PER counter reset */
752	rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset);
753	if (rc < 0)
754		goto err;
755
756	/* CNR counter reset */
757	rc = mb86a20s_readreg(state, 0x45);
758	if (rc < 0)
759		goto err;
760	val = rc;
761	rc = mb86a20s_writereg(state, 0x45, val | 0x10);
762	if (rc < 0)
763		goto err;
764	rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
765	if (rc < 0)
766		goto err;
767
768	/* MER counter reset */
769	rc = mb86a20s_writereg(state, 0x50, 0x50);
770	if (rc < 0)
771		goto err;
772	rc = mb86a20s_readreg(state, 0x51);
773	if (rc < 0)
774		goto err;
775	val = rc;
776	rc = mb86a20s_writereg(state, 0x51, val | 0x01);
777	if (rc < 0)
778		goto err;
779	rc = mb86a20s_writereg(state, 0x51, val & 0x06);
780	if (rc < 0)
781		goto err;
782
783	goto ok;
784err:
785	dev_err(&state->i2c->dev,
786		"%s: Can't reset FE statistics (error %d).\n",
787		__func__, rc);
788ok:
789	return rc;
790}
791
792static int mb86a20s_get_pre_ber(struct dvb_frontend *fe,
793				unsigned layer,
794				u32 *error, u32 *count)
795{
796	struct mb86a20s_state *state = fe->demodulator_priv;
797	int rc, val;
798
799	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
800
801	if (layer >= NUM_LAYERS)
802		return -EINVAL;
803
804	/* Check if the BER measures are already available */
805	rc = mb86a20s_readreg(state, 0x54);
806	if (rc < 0)
807		return rc;
808
809	/* Check if data is available for that layer */
810	if (!(rc & (1 << layer))) {
811		dev_dbg(&state->i2c->dev,
812			"%s: preBER for layer %c is not available yet.\n",
813			__func__, 'A' + layer);
814		return -EBUSY;
815	}
816
817	/* Read Bit Error Count */
818	rc = mb86a20s_readreg(state, 0x55 + layer * 3);
819	if (rc < 0)
820		return rc;
821	*error = rc << 16;
822	rc = mb86a20s_readreg(state, 0x56 + layer * 3);
823	if (rc < 0)
824		return rc;
825	*error |= rc << 8;
826	rc = mb86a20s_readreg(state, 0x57 + layer * 3);
827	if (rc < 0)
828		return rc;
829	*error |= rc;
830
831	dev_dbg(&state->i2c->dev,
832		"%s: bit error before Viterbi for layer %c: %d.\n",
833		__func__, 'A' + layer, *error);
834
835	/* Read Bit Count */
836	rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
837	if (rc < 0)
838		return rc;
839	rc = mb86a20s_readreg(state, 0x51);
840	if (rc < 0)
841		return rc;
842	*count = rc << 16;
843	rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
844	if (rc < 0)
845		return rc;
846	rc = mb86a20s_readreg(state, 0x51);
847	if (rc < 0)
848		return rc;
849	*count |= rc << 8;
850	rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
851	if (rc < 0)
852		return rc;
853	rc = mb86a20s_readreg(state, 0x51);
854	if (rc < 0)
855		return rc;
856	*count |= rc;
857
858	dev_dbg(&state->i2c->dev,
859		"%s: bit count before Viterbi for layer %c: %d.\n",
860		__func__, 'A' + layer, *count);
861
862
863	/*
864	 * As we get TMCC data from the frontend, we can better estimate the
865	 * BER bit counters, in order to do the BER measure during a longer
866	 * time. Use those data, if available, to update the bit count
867	 * measure.
868	 */
869
870	if (state->estimated_rate[layer]
871	    && state->estimated_rate[layer] != *count) {
872		dev_dbg(&state->i2c->dev,
873			"%s: updating layer %c preBER counter to %d.\n",
874			__func__, 'A' + layer, state->estimated_rate[layer]);
875
876		/* Turn off BER before Viterbi */
877		rc = mb86a20s_writereg(state, 0x52, 0x00);
878
879		/* Update counter for this layer */
880		rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
881		if (rc < 0)
882			return rc;
883		rc = mb86a20s_writereg(state, 0x51,
884				       state->estimated_rate[layer] >> 16);
885		if (rc < 0)
886			return rc;
887		rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
888		if (rc < 0)
889			return rc;
890		rc = mb86a20s_writereg(state, 0x51,
891				       state->estimated_rate[layer] >> 8);
892		if (rc < 0)
893			return rc;
894		rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
895		if (rc < 0)
896			return rc;
897		rc = mb86a20s_writereg(state, 0x51,
898				       state->estimated_rate[layer]);
899		if (rc < 0)
900			return rc;
901
902		/* Turn on BER before Viterbi */
903		rc = mb86a20s_writereg(state, 0x52, 0x01);
904
905		/* Reset all preBER counters */
906		rc = mb86a20s_writereg(state, 0x53, 0x00);
907		if (rc < 0)
908			return rc;
909		rc = mb86a20s_writereg(state, 0x53, 0x07);
910	} else {
911		/* Reset counter to collect new data */
912		rc = mb86a20s_readreg(state, 0x53);
913		if (rc < 0)
914			return rc;
915		val = rc;
916		rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer));
917		if (rc < 0)
918			return rc;
919		rc = mb86a20s_writereg(state, 0x53, val | (1 << layer));
920	}
921
922	return rc;
923}
924
925static int mb86a20s_get_post_ber(struct dvb_frontend *fe,
926				 unsigned layer,
927				  u32 *error, u32 *count)
928{
929	struct mb86a20s_state *state = fe->demodulator_priv;
930	u32 counter, collect_rate;
931	int rc, val;
932
933	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
934
935	if (layer >= NUM_LAYERS)
936		return -EINVAL;
937
938	/* Check if the BER measures are already available */
939	rc = mb86a20s_readreg(state, 0x60);
940	if (rc < 0)
941		return rc;
942
943	/* Check if data is available for that layer */
944	if (!(rc & (1 << layer))) {
945		dev_dbg(&state->i2c->dev,
946			"%s: post BER for layer %c is not available yet.\n",
947			__func__, 'A' + layer);
948		return -EBUSY;
949	}
950
951	/* Read Bit Error Count */
952	rc = mb86a20s_readreg(state, 0x64 + layer * 3);
953	if (rc < 0)
954		return rc;
955	*error = rc << 16;
956	rc = mb86a20s_readreg(state, 0x65 + layer * 3);
957	if (rc < 0)
958		return rc;
959	*error |= rc << 8;
960	rc = mb86a20s_readreg(state, 0x66 + layer * 3);
961	if (rc < 0)
962		return rc;
963	*error |= rc;
964
965	dev_dbg(&state->i2c->dev,
966		"%s: post bit error for layer %c: %d.\n",
967		__func__, 'A' + layer, *error);
968
969	/* Read Bit Count */
970	rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
971	if (rc < 0)
972		return rc;
973	rc = mb86a20s_readreg(state, 0x51);
974	if (rc < 0)
975		return rc;
976	counter = rc << 8;
977	rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
978	if (rc < 0)
979		return rc;
980	rc = mb86a20s_readreg(state, 0x51);
981	if (rc < 0)
982		return rc;
983	counter |= rc;
984	*count = counter * 204 * 8;
985
986	dev_dbg(&state->i2c->dev,
987		"%s: post bit count for layer %c: %d.\n",
988		__func__, 'A' + layer, *count);
989
990	/*
991	 * As we get TMCC data from the frontend, we can better estimate the
992	 * BER bit counters, in order to do the BER measure during a longer
993	 * time. Use those data, if available, to update the bit count
994	 * measure.
995	 */
996
997	if (!state->estimated_rate[layer])
998		goto reset_measurement;
999
1000	collect_rate = state->estimated_rate[layer] / 204 / 8;
1001	if (collect_rate < 32)
1002		collect_rate = 32;
1003	if (collect_rate > 65535)
1004		collect_rate = 65535;
1005	if (collect_rate != counter) {
1006		dev_dbg(&state->i2c->dev,
1007			"%s: updating postBER counter on layer %c to %d.\n",
1008			__func__, 'A' + layer, collect_rate);
1009
1010		/* Turn off BER after Viterbi */
1011		rc = mb86a20s_writereg(state, 0x5e, 0x00);
1012
1013		/* Update counter for this layer */
1014		rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
1015		if (rc < 0)
1016			return rc;
1017		rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1018		if (rc < 0)
1019			return rc;
1020		rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
1021		if (rc < 0)
1022			return rc;
1023		rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1024		if (rc < 0)
1025			return rc;
1026
1027		/* Turn on BER after Viterbi */
1028		rc = mb86a20s_writereg(state, 0x5e, 0x07);
1029
1030		/* Reset all preBER counters */
1031		rc = mb86a20s_writereg(state, 0x5f, 0x00);
1032		if (rc < 0)
1033			return rc;
1034		rc = mb86a20s_writereg(state, 0x5f, 0x07);
1035
1036		return rc;
1037	}
1038
1039reset_measurement:
1040	/* Reset counter to collect new data */
1041	rc = mb86a20s_readreg(state, 0x5f);
1042	if (rc < 0)
1043		return rc;
1044	val = rc;
1045	rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer));
1046	if (rc < 0)
1047		return rc;
1048	rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer));
1049
1050	return rc;
1051}
1052
1053static int mb86a20s_get_blk_error(struct dvb_frontend *fe,
1054			    unsigned layer,
1055			    u32 *error, u32 *count)
1056{
1057	struct mb86a20s_state *state = fe->demodulator_priv;
1058	int rc, val;
1059	u32 collect_rate;
1060	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1061
1062	if (layer >= NUM_LAYERS)
1063		return -EINVAL;
1064
1065	/* Check if the PER measures are already available */
1066	rc = mb86a20s_writereg(state, 0x50, 0xb8);
1067	if (rc < 0)
1068		return rc;
1069	rc = mb86a20s_readreg(state, 0x51);
1070	if (rc < 0)
1071		return rc;
1072
1073	/* Check if data is available for that layer */
1074
1075	if (!(rc & (1 << layer))) {
1076		dev_dbg(&state->i2c->dev,
1077			"%s: block counts for layer %c aren't available yet.\n",
1078			__func__, 'A' + layer);
1079		return -EBUSY;
1080	}
1081
1082	/* Read Packet error Count */
1083	rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2);
1084	if (rc < 0)
1085		return rc;
1086	rc = mb86a20s_readreg(state, 0x51);
1087	if (rc < 0)
1088		return rc;
1089	*error = rc << 8;
1090	rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2);
1091	if (rc < 0)
1092		return rc;
1093	rc = mb86a20s_readreg(state, 0x51);
1094	if (rc < 0)
1095		return rc;
1096	*error |= rc;
1097	dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n",
1098		__func__, 'A' + layer, *error);
1099
1100	/* Read Bit Count */
1101	rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1102	if (rc < 0)
1103		return rc;
1104	rc = mb86a20s_readreg(state, 0x51);
1105	if (rc < 0)
1106		return rc;
1107	*count = rc << 8;
1108	rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1109	if (rc < 0)
1110		return rc;
1111	rc = mb86a20s_readreg(state, 0x51);
1112	if (rc < 0)
1113		return rc;
1114	*count |= rc;
1115
1116	dev_dbg(&state->i2c->dev,
1117		"%s: block count for layer %c: %d.\n",
1118		__func__, 'A' + layer, *count);
1119
1120	/*
1121	 * As we get TMCC data from the frontend, we can better estimate the
1122	 * BER bit counters, in order to do the BER measure during a longer
1123	 * time. Use those data, if available, to update the bit count
1124	 * measure.
1125	 */
1126
1127	if (!state->estimated_rate[layer])
1128		goto reset_measurement;
1129
1130	collect_rate = state->estimated_rate[layer] / 204 / 8;
1131	if (collect_rate < 32)
1132		collect_rate = 32;
1133	if (collect_rate > 65535)
1134		collect_rate = 65535;
1135
1136	if (collect_rate != *count) {
1137		dev_dbg(&state->i2c->dev,
1138			"%s: updating PER counter on layer %c to %d.\n",
1139			__func__, 'A' + layer, collect_rate);
1140
1141		/* Stop PER measurement */
1142		rc = mb86a20s_writereg(state, 0x50, 0xb0);
1143		if (rc < 0)
1144			return rc;
1145		rc = mb86a20s_writereg(state, 0x51, 0x00);
1146		if (rc < 0)
1147			return rc;
1148
1149		/* Update this layer's counter */
1150		rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1151		if (rc < 0)
1152			return rc;
1153		rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1154		if (rc < 0)
1155			return rc;
1156		rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1157		if (rc < 0)
1158			return rc;
1159		rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1160		if (rc < 0)
1161			return rc;
1162
1163		/* start PER measurement */
1164		rc = mb86a20s_writereg(state, 0x50, 0xb0);
1165		if (rc < 0)
1166			return rc;
1167		rc = mb86a20s_writereg(state, 0x51, 0x07);
1168		if (rc < 0)
1169			return rc;
1170
1171		/* Reset all counters to collect new data */
1172		rc = mb86a20s_writereg(state, 0x50, 0xb1);
1173		if (rc < 0)
1174			return rc;
1175		rc = mb86a20s_writereg(state, 0x51, 0x07);
1176		if (rc < 0)
1177			return rc;
1178		rc = mb86a20s_writereg(state, 0x51, 0x00);
1179
1180		return rc;
1181	}
1182
1183reset_measurement:
1184	/* Reset counter to collect new data */
1185	rc = mb86a20s_writereg(state, 0x50, 0xb1);
1186	if (rc < 0)
1187		return rc;
1188	rc = mb86a20s_readreg(state, 0x51);
1189	if (rc < 0)
1190		return rc;
1191	val = rc;
1192	rc = mb86a20s_writereg(state, 0x51, val | (1 << layer));
1193	if (rc < 0)
1194		return rc;
1195	rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer));
1196
1197	return rc;
1198}
1199
1200struct linear_segments {
1201	unsigned x, y;
1202};
1203
1204/*
1205 * All tables below return a dB/1000 measurement
1206 */
1207
1208static const struct linear_segments cnr_to_db_table[] = {
1209	{ 19648,     0},
1210	{ 18187,  1000},
1211	{ 16534,  2000},
1212	{ 14823,  3000},
1213	{ 13161,  4000},
1214	{ 11622,  5000},
1215	{ 10279,  6000},
1216	{  9089,  7000},
1217	{  8042,  8000},
1218	{  7137,  9000},
1219	{  6342, 10000},
1220	{  5641, 11000},
1221	{  5030, 12000},
1222	{  4474, 13000},
1223	{  3988, 14000},
1224	{  3556, 15000},
1225	{  3180, 16000},
1226	{  2841, 17000},
1227	{  2541, 18000},
1228	{  2276, 19000},
1229	{  2038, 20000},
1230	{  1800, 21000},
1231	{  1625, 22000},
1232	{  1462, 23000},
1233	{  1324, 24000},
1234	{  1175, 25000},
1235	{  1063, 26000},
1236	{   980, 27000},
1237	{   907, 28000},
1238	{   840, 29000},
1239	{   788, 30000},
1240};
1241
1242static const struct linear_segments cnr_64qam_table[] = {
1243	{ 3922688,     0},
1244	{ 3920384,  1000},
1245	{ 3902720,  2000},
1246	{ 3894784,  3000},
1247	{ 3882496,  4000},
1248	{ 3872768,  5000},
1249	{ 3858944,  6000},
1250	{ 3851520,  7000},
1251	{ 3838976,  8000},
1252	{ 3829248,  9000},
1253	{ 3818240, 10000},
1254	{ 3806976, 11000},
1255	{ 3791872, 12000},
1256	{ 3767040, 13000},
1257	{ 3720960, 14000},
1258	{ 3637504, 15000},
1259	{ 3498496, 16000},
1260	{ 3296000, 17000},
1261	{ 3031040, 18000},
1262	{ 2715392, 19000},
1263	{ 2362624, 20000},
1264	{ 1963264, 21000},
1265	{ 1649664, 22000},
1266	{ 1366784, 23000},
1267	{ 1120768, 24000},
1268	{  890880, 25000},
1269	{  723456, 26000},
1270	{  612096, 27000},
1271	{  518912, 28000},
1272	{  448256, 29000},
1273	{  388864, 30000},
1274};
1275
1276static const struct linear_segments cnr_16qam_table[] = {
1277	{ 5314816,     0},
1278	{ 5219072,  1000},
1279	{ 5118720,  2000},
1280	{ 4998912,  3000},
1281	{ 4875520,  4000},
1282	{ 4736000,  5000},
1283	{ 4604160,  6000},
1284	{ 4458752,  7000},
1285	{ 4300288,  8000},
1286	{ 4092928,  9000},
1287	{ 3836160, 10000},
1288	{ 3521024, 11000},
1289	{ 3155968, 12000},
1290	{ 2756864, 13000},
1291	{ 2347008, 14000},
1292	{ 1955072, 15000},
1293	{ 1593600, 16000},
1294	{ 1297920, 17000},
1295	{ 1043968, 18000},
1296	{  839680, 19000},
1297	{  672256, 20000},
1298	{  523008, 21000},
1299	{  424704, 22000},
1300	{  345088, 23000},
1301	{  280064, 24000},
1302	{  221440, 25000},
1303	{  179712, 26000},
1304	{  151040, 27000},
1305	{  128512, 28000},
1306	{  110080, 29000},
1307	{   95744, 30000},
1308};
1309
1310static const struct linear_segments cnr_qpsk_table[] = {
1311	{ 2834176,     0},
1312	{ 2683648,  1000},
1313	{ 2536960,  2000},
1314	{ 2391808,  3000},
1315	{ 2133248,  4000},
1316	{ 1906176,  5000},
1317	{ 1666560,  6000},
1318	{ 1422080,  7000},
1319	{ 1189632,  8000},
1320	{  976384,  9000},
1321	{  790272, 10000},
1322	{  633344, 11000},
1323	{  505600, 12000},
1324	{  402944, 13000},
1325	{  320768, 14000},
1326	{  255488, 15000},
1327	{  204032, 16000},
1328	{  163072, 17000},
1329	{  130304, 18000},
1330	{  105216, 19000},
1331	{   83456, 20000},
1332	{   65024, 21000},
1333	{   52480, 22000},
1334	{   42752, 23000},
1335	{   34560, 24000},
1336	{   27136, 25000},
1337	{   22016, 26000},
1338	{   18432, 27000},
1339	{   15616, 28000},
1340	{   13312, 29000},
1341	{   11520, 30000},
1342};
1343
1344static u32 interpolate_value(u32 value, const struct linear_segments *segments,
1345			     unsigned len)
1346{
1347	u64 tmp64;
1348	u32 dx, dy;
1349	int i, ret;
1350
1351	if (value >= segments[0].x)
1352		return segments[0].y;
1353	if (value < segments[len-1].x)
1354		return segments[len-1].y;
1355
1356	for (i = 1; i < len - 1; i++) {
1357		/* If value is identical, no need to interpolate */
1358		if (value == segments[i].x)
1359			return segments[i].y;
1360		if (value > segments[i].x)
1361			break;
1362	}
1363
1364	/* Linear interpolation between the two (x,y) points */
1365	dy = segments[i].y - segments[i - 1].y;
1366	dx = segments[i - 1].x - segments[i].x;
1367	tmp64 = value - segments[i].x;
1368	tmp64 *= dy;
1369	do_div(tmp64, dx);
1370	ret = segments[i].y - tmp64;
1371
1372	return ret;
1373}
1374
1375static int mb86a20s_get_main_CNR(struct dvb_frontend *fe)
1376{
1377	struct mb86a20s_state *state = fe->demodulator_priv;
1378	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1379	u32 cnr_linear, cnr;
1380	int rc, val;
1381
1382	/* Check if CNR is available */
1383	rc = mb86a20s_readreg(state, 0x45);
1384	if (rc < 0)
1385		return rc;
1386
1387	if (!(rc & 0x40)) {
1388		dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n",
1389			 __func__);
1390		return -EBUSY;
1391	}
1392	val = rc;
1393
1394	rc = mb86a20s_readreg(state, 0x46);
1395	if (rc < 0)
1396		return rc;
1397	cnr_linear = rc << 8;
1398
1399	rc = mb86a20s_readreg(state, 0x46);
1400	if (rc < 0)
1401		return rc;
1402	cnr_linear |= rc;
1403
1404	cnr = interpolate_value(cnr_linear,
1405				cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table));
1406
1407	c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1408	c->cnr.stat[0].svalue = cnr;
1409
1410	dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n",
1411		__func__, cnr / 1000, cnr % 1000, cnr_linear);
1412
1413	/* CNR counter reset */
1414	rc = mb86a20s_writereg(state, 0x45, val | 0x10);
1415	if (rc < 0)
1416		return rc;
1417	rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
1418
1419	return rc;
1420}
1421
1422static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe)
1423{
1424	struct mb86a20s_state *state = fe->demodulator_priv;
1425	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1426	u32 mer, cnr;
1427	int rc, val, layer;
1428	const struct linear_segments *segs;
1429	unsigned segs_len;
1430
1431	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1432
1433	/* Check if the measures are already available */
1434	rc = mb86a20s_writereg(state, 0x50, 0x5b);
1435	if (rc < 0)
1436		return rc;
1437	rc = mb86a20s_readreg(state, 0x51);
1438	if (rc < 0)
1439		return rc;
1440
1441	/* Check if data is available */
1442	if (!(rc & 0x01)) {
1443		dev_dbg(&state->i2c->dev,
1444			"%s: MER measures aren't available yet.\n", __func__);
1445		return -EBUSY;
1446	}
1447
1448	/* Read all layers */
1449	for (layer = 0; layer < NUM_LAYERS; layer++) {
1450		if (!(c->isdbt_layer_enabled & (1 << layer))) {
1451			c->cnr.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1452			continue;
1453		}
1454
1455		rc = mb86a20s_writereg(state, 0x50, 0x52 + layer * 3);
1456		if (rc < 0)
1457			return rc;
1458		rc = mb86a20s_readreg(state, 0x51);
1459		if (rc < 0)
1460			return rc;
1461		mer = rc << 16;
1462		rc = mb86a20s_writereg(state, 0x50, 0x53 + layer * 3);
1463		if (rc < 0)
1464			return rc;
1465		rc = mb86a20s_readreg(state, 0x51);
1466		if (rc < 0)
1467			return rc;
1468		mer |= rc << 8;
1469		rc = mb86a20s_writereg(state, 0x50, 0x54 + layer * 3);
1470		if (rc < 0)
1471			return rc;
1472		rc = mb86a20s_readreg(state, 0x51);
1473		if (rc < 0)
1474			return rc;
1475		mer |= rc;
1476
1477		switch (c->layer[layer].modulation) {
1478		case DQPSK:
1479		case QPSK:
1480			segs = cnr_qpsk_table;
1481			segs_len = ARRAY_SIZE(cnr_qpsk_table);
1482			break;
1483		case QAM_16:
1484			segs = cnr_16qam_table;
1485			segs_len = ARRAY_SIZE(cnr_16qam_table);
1486			break;
1487		default:
1488		case QAM_64:
1489			segs = cnr_64qam_table;
1490			segs_len = ARRAY_SIZE(cnr_64qam_table);
1491			break;
1492		}
1493		cnr = interpolate_value(mer, segs, segs_len);
1494
1495		c->cnr.stat[1 + layer].scale = FE_SCALE_DECIBEL;
1496		c->cnr.stat[1 + layer].svalue = cnr;
1497
1498		dev_dbg(&state->i2c->dev,
1499			"%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
1500			__func__, 'A' + layer, cnr / 1000, cnr % 1000, mer);
1501
1502	}
1503
1504	/* Start a new MER measurement */
1505	/* MER counter reset */
1506	rc = mb86a20s_writereg(state, 0x50, 0x50);
1507	if (rc < 0)
1508		return rc;
1509	rc = mb86a20s_readreg(state, 0x51);
1510	if (rc < 0)
1511		return rc;
1512	val = rc;
1513
1514	rc = mb86a20s_writereg(state, 0x51, val | 0x01);
1515	if (rc < 0)
1516		return rc;
1517	rc = mb86a20s_writereg(state, 0x51, val & 0x06);
1518	if (rc < 0)
1519		return rc;
1520
1521	return 0;
1522}
1523
1524static void mb86a20s_stats_not_ready(struct dvb_frontend *fe)
1525{
1526	struct mb86a20s_state *state = fe->demodulator_priv;
1527	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1528	int layer;
1529
1530	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1531
1532	/* Fill the length of each status counter */
1533
1534	/* Only global stats */
1535	c->strength.len = 1;
1536
1537	/* Per-layer stats - 3 layers + global */
1538	c->cnr.len = NUM_LAYERS + 1;
1539	c->pre_bit_error.len = NUM_LAYERS + 1;
1540	c->pre_bit_count.len = NUM_LAYERS + 1;
1541	c->post_bit_error.len = NUM_LAYERS + 1;
1542	c->post_bit_count.len = NUM_LAYERS + 1;
1543	c->block_error.len = NUM_LAYERS + 1;
1544	c->block_count.len = NUM_LAYERS + 1;
1545
1546	/* Signal is always available */
1547	c->strength.stat[0].scale = FE_SCALE_RELATIVE;
1548	c->strength.stat[0].uvalue = 0;
1549
1550	/* Put all of them at FE_SCALE_NOT_AVAILABLE */
1551	for (layer = 0; layer < NUM_LAYERS + 1; layer++) {
1552		c->cnr.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1553		c->pre_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1554		c->pre_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1555		c->post_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1556		c->post_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1557		c->block_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1558		c->block_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1559	}
1560}
1561
1562static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr)
1563{
1564	struct mb86a20s_state *state = fe->demodulator_priv;
1565	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1566	int rc = 0, layer;
1567	u32 bit_error = 0, bit_count = 0;
1568	u32 t_pre_bit_error = 0, t_pre_bit_count = 0;
1569	u32 t_post_bit_error = 0, t_post_bit_count = 0;
1570	u32 block_error = 0, block_count = 0;
1571	u32 t_block_error = 0, t_block_count = 0;
1572	int pre_ber_layers = 0, post_ber_layers = 0;
1573	int per_layers = 0;
1574
1575	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1576
1577	mb86a20s_get_main_CNR(fe);
1578
1579	/* Get per-layer stats */
1580	mb86a20s_get_blk_error_layer_CNR(fe);
1581
1582	/*
1583	 * At state 7, only CNR is available
1584	 * For BER measures, state=9 is required
1585	 * FIXME: we may get MER measures with state=8
1586	 */
1587	if (status_nr < 9)
1588		return 0;
1589
1590	for (layer = 0; layer < NUM_LAYERS; layer++) {
1591		if (c->isdbt_layer_enabled & (1 << layer)) {
1592			/* Handle BER before vterbi */
1593			rc = mb86a20s_get_pre_ber(fe, layer,
1594						  &bit_error, &bit_count);
1595			if (rc >= 0) {
1596				c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1597				c->pre_bit_error.stat[1 + layer].uvalue += bit_error;
1598				c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1599				c->pre_bit_count.stat[1 + layer].uvalue += bit_count;
1600			} else if (rc != -EBUSY) {
1601				/*
1602					* If an I/O error happened,
1603					* measures are now unavailable
1604					*/
1605				c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1606				c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1607				dev_err(&state->i2c->dev,
1608					"%s: Can't get BER for layer %c (error %d).\n",
1609					__func__, 'A' + layer, rc);
1610			}
1611			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1612				pre_ber_layers++;
1613
1614			/* Handle BER post vterbi */
1615			rc = mb86a20s_get_post_ber(fe, layer,
1616						   &bit_error, &bit_count);
1617			if (rc >= 0) {
1618				c->post_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1619				c->post_bit_error.stat[1 + layer].uvalue += bit_error;
1620				c->post_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1621				c->post_bit_count.stat[1 + layer].uvalue += bit_count;
1622			} else if (rc != -EBUSY) {
1623				/*
1624					* If an I/O error happened,
1625					* measures are now unavailable
1626					*/
1627				c->post_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1628				c->post_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1629				dev_err(&state->i2c->dev,
1630					"%s: Can't get BER for layer %c (error %d).\n",
1631					__func__, 'A' + layer, rc);
1632			}
1633			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1634				post_ber_layers++;
1635
1636			/* Handle Block errors for PER/UCB reports */
1637			rc = mb86a20s_get_blk_error(fe, layer,
1638						&block_error,
1639						&block_count);
1640			if (rc >= 0) {
1641				c->block_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1642				c->block_error.stat[1 + layer].uvalue += block_error;
1643				c->block_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1644				c->block_count.stat[1 + layer].uvalue += block_count;
1645			} else if (rc != -EBUSY) {
1646				/*
1647					* If an I/O error happened,
1648					* measures are now unavailable
1649					*/
1650				c->block_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1651				c->block_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1652				dev_err(&state->i2c->dev,
1653					"%s: Can't get PER for layer %c (error %d).\n",
1654					__func__, 'A' + layer, rc);
1655
1656			}
1657			if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1658				per_layers++;
1659
1660			/* Update total preBER */
1661			t_pre_bit_error += c->pre_bit_error.stat[1 + layer].uvalue;
1662			t_pre_bit_count += c->pre_bit_count.stat[1 + layer].uvalue;
1663
1664			/* Update total postBER */
1665			t_post_bit_error += c->post_bit_error.stat[1 + layer].uvalue;
1666			t_post_bit_count += c->post_bit_count.stat[1 + layer].uvalue;
1667
1668			/* Update total PER */
1669			t_block_error += c->block_error.stat[1 + layer].uvalue;
1670			t_block_count += c->block_count.stat[1 + layer].uvalue;
1671		}
1672	}
1673
1674	/*
1675	 * Start showing global count if at least one error count is
1676	 * available.
1677	 */
1678	if (pre_ber_layers) {
1679		/*
1680		 * At least one per-layer BER measure was read. We can now
1681		 * calculate the total BER
1682		 *
1683		 * Total Bit Error/Count is calculated as the sum of the
1684		 * bit errors on all active layers.
1685		 */
1686		c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1687		c->pre_bit_error.stat[0].uvalue = t_pre_bit_error;
1688		c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1689		c->pre_bit_count.stat[0].uvalue = t_pre_bit_count;
1690	} else {
1691		c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1692		c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1693	}
1694
1695	/*
1696	 * Start showing global count if at least one error count is
1697	 * available.
1698	 */
1699	if (post_ber_layers) {
1700		/*
1701		 * At least one per-layer BER measure was read. We can now
1702		 * calculate the total BER
1703		 *
1704		 * Total Bit Error/Count is calculated as the sum of the
1705		 * bit errors on all active layers.
1706		 */
1707		c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1708		c->post_bit_error.stat[0].uvalue = t_post_bit_error;
1709		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1710		c->post_bit_count.stat[0].uvalue = t_post_bit_count;
1711	} else {
1712		c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1713		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1714	}
1715
1716	if (per_layers) {
1717		/*
1718		 * At least one per-layer UCB measure was read. We can now
1719		 * calculate the total UCB
1720		 *
1721		 * Total block Error/Count is calculated as the sum of the
1722		 * block errors on all active layers.
1723		 */
1724		c->block_error.stat[0].scale = FE_SCALE_COUNTER;
1725		c->block_error.stat[0].uvalue = t_block_error;
1726		c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1727		c->block_count.stat[0].uvalue = t_block_count;
1728	} else {
1729		c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1730		c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1731	}
1732
1733	return rc;
1734}
1735
1736/*
1737 * The functions below are called via DVB callbacks, so they need to
1738 * properly use the I2C gate control
1739 */
1740
1741static int mb86a20s_initfe(struct dvb_frontend *fe)
1742{
1743	struct mb86a20s_state *state = fe->demodulator_priv;
1744	u64 pll;
1745	u32 fclk;
1746	int rc;
1747	u8  regD5 = 1, reg71, reg09 = 0x3a;
1748
1749	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1750
1751	if (fe->ops.i2c_gate_ctrl)
1752		fe->ops.i2c_gate_ctrl(fe, 0);
1753
1754	/* Initialize the frontend */
1755	rc = mb86a20s_writeregdata(state, mb86a20s_init1);
1756	if (rc < 0)
1757		goto err;
1758
1759	if (!state->inversion)
1760		reg09 |= 0x04;
1761	rc = mb86a20s_writereg(state, 0x09, reg09);
1762	if (rc < 0)
1763		goto err;
1764	if (!state->bw)
1765		reg71 = 1;
1766	else
1767		reg71 = 0;
1768	rc = mb86a20s_writereg(state, 0x39, reg71);
1769	if (rc < 0)
1770		goto err;
1771	rc = mb86a20s_writereg(state, 0x71, state->bw);
1772	if (rc < 0)
1773		goto err;
1774	if (state->subchannel) {
1775		rc = mb86a20s_writereg(state, 0x44, state->subchannel);
1776		if (rc < 0)
1777			goto err;
1778	}
1779
1780	fclk = state->config->fclk;
1781	if (!fclk)
1782		fclk = 32571428;
1783
1784	/* Adjust IF frequency to match tuner */
1785	if (fe->ops.tuner_ops.get_if_frequency)
1786		fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq);
1787
1788	if (!state->if_freq)
1789		state->if_freq = 3300000;
1790
1791	pll = (((u64)1) << 34) * state->if_freq;
1792	do_div(pll, 63 * fclk);
1793	pll = (1 << 25) - pll;
1794	rc = mb86a20s_writereg(state, 0x28, 0x2a);
1795	if (rc < 0)
1796		goto err;
1797	rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1798	if (rc < 0)
1799		goto err;
1800	rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1801	if (rc < 0)
1802		goto err;
1803	rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1804	if (rc < 0)
1805		goto err;
1806	dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n",
1807		__func__, fclk, state->if_freq, (long long)pll);
1808
1809	/* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */
1810	pll = state->if_freq * 1677721600L;
1811	do_div(pll, 1628571429L);
1812	rc = mb86a20s_writereg(state, 0x28, 0x20);
1813	if (rc < 0)
1814		goto err;
1815	rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1816	if (rc < 0)
1817		goto err;
1818	rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1819	if (rc < 0)
1820		goto err;
1821	rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1822	if (rc < 0)
1823		goto err;
1824	dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n",
1825		__func__, state->if_freq, (long long)pll);
1826
1827	if (!state->config->is_serial)
1828		regD5 &= ~1;
1829
1830	rc = mb86a20s_writereg(state, 0x50, 0xd5);
1831	if (rc < 0)
1832		goto err;
1833	rc = mb86a20s_writereg(state, 0x51, regD5);
1834	if (rc < 0)
1835		goto err;
1836
1837	rc = mb86a20s_writeregdata(state, mb86a20s_init2);
1838	if (rc < 0)
1839		goto err;
1840
1841
1842err:
1843	if (fe->ops.i2c_gate_ctrl)
1844		fe->ops.i2c_gate_ctrl(fe, 1);
1845
1846	if (rc < 0) {
1847		state->need_init = true;
1848		dev_info(&state->i2c->dev,
1849			 "mb86a20s: Init failed. Will try again later\n");
1850	} else {
1851		state->need_init = false;
1852		dev_dbg(&state->i2c->dev, "Initialization succeeded.\n");
1853	}
1854	return rc;
1855}
1856
1857static int mb86a20s_set_frontend(struct dvb_frontend *fe)
1858{
1859	struct mb86a20s_state *state = fe->demodulator_priv;
1860	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1861	int rc, if_freq;
1862	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1863
1864	if (!c->isdbt_layer_enabled)
1865		c->isdbt_layer_enabled = 7;
1866
1867	if (c->isdbt_layer_enabled == 1)
1868		state->bw = MB86A20S_1SEG;
1869	else if (c->isdbt_partial_reception)
1870		state->bw = MB86A20S_13SEG_PARTIAL;
1871	else
1872		state->bw = MB86A20S_13SEG;
1873
1874	if (c->inversion == INVERSION_ON)
1875		state->inversion = true;
1876	else
1877		state->inversion = false;
1878
1879	if (!c->isdbt_sb_mode) {
1880		state->subchannel = 0;
1881	} else {
1882		if (c->isdbt_sb_subchannel >= ARRAY_SIZE(mb86a20s_subchannel))
1883			c->isdbt_sb_subchannel = 0;
1884
1885		state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel];
1886	}
1887
1888	/*
1889	 * Gate should already be opened, but it doesn't hurt to
1890	 * double-check
1891	 */
1892	if (fe->ops.i2c_gate_ctrl)
1893		fe->ops.i2c_gate_ctrl(fe, 1);
1894	fe->ops.tuner_ops.set_params(fe);
1895
1896	if (fe->ops.tuner_ops.get_if_frequency)
1897		fe->ops.tuner_ops.get_if_frequency(fe, &if_freq);
1898
1899	/*
1900	 * Make it more reliable: if, for some reason, the initial
1901	 * device initialization doesn't happen, initialize it when
1902	 * a SBTVD parameters are adjusted.
1903	 *
1904	 * Unfortunately, due to a hard to track bug at tda829x/tda18271,
1905	 * the agc callback logic is not called during DVB attach time,
1906	 * causing mb86a20s to not be initialized with Kworld SBTVD.
1907	 * So, this hack is needed, in order to make Kworld SBTVD to work.
1908	 *
1909	 * It is also needed to change the IF after the initial init.
1910	 *
1911	 * HACK: Always init the frontend when set_frontend is called:
1912	 * it was noticed that, on some devices, it fails to lock on a
1913	 * different channel. So, it is better to reset everything, even
1914	 * wasting some time, than to loose channel lock.
1915	 */
1916	mb86a20s_initfe(fe);
1917
1918	if (fe->ops.i2c_gate_ctrl)
1919		fe->ops.i2c_gate_ctrl(fe, 0);
1920
1921	rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
1922	mb86a20s_reset_counters(fe);
1923	mb86a20s_stats_not_ready(fe);
1924
1925	if (fe->ops.i2c_gate_ctrl)
1926		fe->ops.i2c_gate_ctrl(fe, 1);
1927
1928	return rc;
1929}
1930
1931static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe,
1932					  enum fe_status *status)
1933{
1934	struct mb86a20s_state *state = fe->demodulator_priv;
1935	int rc, status_nr;
1936
1937	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1938
1939	if (fe->ops.i2c_gate_ctrl)
1940		fe->ops.i2c_gate_ctrl(fe, 0);
1941
1942	/* Get lock */
1943	status_nr = mb86a20s_read_status(fe, status);
1944	if (status_nr < 7) {
1945		mb86a20s_stats_not_ready(fe);
1946		mb86a20s_reset_frontend_cache(fe);
1947	}
1948	if (status_nr < 0) {
1949		dev_err(&state->i2c->dev,
1950			"%s: Can't read frontend lock status\n", __func__);
1951		rc = status_nr;
1952		goto error;
1953	}
1954
1955	/* Get signal strength */
1956	rc = mb86a20s_read_signal_strength(fe);
1957	if (rc < 0) {
1958		dev_err(&state->i2c->dev,
1959			"%s: Can't reset VBER registers.\n", __func__);
1960		mb86a20s_stats_not_ready(fe);
1961		mb86a20s_reset_frontend_cache(fe);
1962
1963		rc = 0;		/* Status is OK */
1964		goto error;
1965	}
1966
1967	if (status_nr >= 7) {
1968		/* Get TMCC info*/
1969		rc = mb86a20s_get_frontend(fe);
1970		if (rc < 0) {
1971			dev_err(&state->i2c->dev,
1972				"%s: Can't get FE TMCC data.\n", __func__);
1973			rc = 0;		/* Status is OK */
1974			goto error;
1975		}
1976
1977		/* Get statistics */
1978		rc = mb86a20s_get_stats(fe, status_nr);
1979		if (rc < 0 && rc != -EBUSY) {
1980			dev_err(&state->i2c->dev,
1981				"%s: Can't get FE statistics.\n", __func__);
1982			rc = 0;
1983			goto error;
1984		}
1985		rc = 0;	/* Don't return EBUSY to userspace */
1986	}
1987	goto ok;
1988
1989error:
1990	mb86a20s_stats_not_ready(fe);
1991
1992ok:
1993	if (fe->ops.i2c_gate_ctrl)
1994		fe->ops.i2c_gate_ctrl(fe, 1);
1995
1996	return rc;
1997}
1998
1999static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe,
2000						    u16 *strength)
2001{
2002	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2003
2004
2005	*strength = c->strength.stat[0].uvalue;
2006
2007	return 0;
2008}
2009
2010static int mb86a20s_tune(struct dvb_frontend *fe,
2011			bool re_tune,
2012			unsigned int mode_flags,
2013			unsigned int *delay,
2014			enum fe_status *status)
2015{
2016	struct mb86a20s_state *state = fe->demodulator_priv;
2017	int rc = 0;
2018
2019	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2020
2021	if (re_tune)
2022		rc = mb86a20s_set_frontend(fe);
2023
2024	if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
2025		mb86a20s_read_status_and_stats(fe, status);
2026
2027	return rc;
2028}
2029
2030static void mb86a20s_release(struct dvb_frontend *fe)
2031{
2032	struct mb86a20s_state *state = fe->demodulator_priv;
2033
2034	dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2035
2036	kfree(state);
2037}
2038
2039static enum dvbfe_algo mb86a20s_get_frontend_algo(struct dvb_frontend *fe)
2040{
2041	return DVBFE_ALGO_HW;
2042}
2043
2044static const struct dvb_frontend_ops mb86a20s_ops;
2045
2046struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
2047				    struct i2c_adapter *i2c)
2048{
2049	struct mb86a20s_state *state;
2050	u8	rev;
2051
2052	dev_dbg(&i2c->dev, "%s called.\n", __func__);
2053
2054	/* allocate memory for the internal state */
2055	state = kzalloc(sizeof(*state), GFP_KERNEL);
2056	if (!state)
2057		return NULL;
2058
2059	/* setup the state */
2060	state->config = config;
2061	state->i2c = i2c;
2062
2063	/* create dvb_frontend */
2064	memcpy(&state->frontend.ops, &mb86a20s_ops,
2065		sizeof(struct dvb_frontend_ops));
2066	state->frontend.demodulator_priv = state;
2067
2068	/* Check if it is a mb86a20s frontend */
2069	rev = mb86a20s_readreg(state, 0);
2070	if (rev != 0x13) {
2071		kfree(state);
2072		dev_dbg(&i2c->dev,
2073			"Frontend revision %d is unknown - aborting.\n",
2074		       rev);
2075		return NULL;
2076	}
2077
2078	dev_info(&i2c->dev, "Detected a Fujitsu mb86a20s frontend\n");
2079	return &state->frontend;
2080}
2081EXPORT_SYMBOL_GPL(mb86a20s_attach);
2082
2083static const struct dvb_frontend_ops mb86a20s_ops = {
2084	.delsys = { SYS_ISDBT },
2085	/* Use dib8000 values per default */
2086	.info = {
2087		.name = "Fujitsu mb86A20s",
2088		.caps = FE_CAN_RECOVER  |
2089			FE_CAN_FEC_1_2  | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
2090			FE_CAN_FEC_5_6  | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
2091			FE_CAN_QPSK     | FE_CAN_QAM_16  | FE_CAN_QAM_64 |
2092			FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO |
2093			FE_CAN_GUARD_INTERVAL_AUTO    | FE_CAN_HIERARCHY_AUTO,
2094		/* Actually, those values depend on the used tuner */
2095		.frequency_min_hz =  45 * MHz,
2096		.frequency_max_hz = 864 * MHz,
2097		.frequency_stepsize_hz = 62500,
2098	},
2099
2100	.release = mb86a20s_release,
2101
2102	.init = mb86a20s_initfe,
2103	.set_frontend = mb86a20s_set_frontend,
2104	.read_status = mb86a20s_read_status_and_stats,
2105	.read_signal_strength = mb86a20s_read_signal_strength_from_cache,
2106	.tune = mb86a20s_tune,
2107	.get_frontend_algo = mb86a20s_get_frontend_algo,
2108};
2109
2110MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
2111MODULE_AUTHOR("Mauro Carvalho Chehab");
2112MODULE_LICENSE("GPL");
2113