1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
4 *
5 * Copyright (C) 2003-2007 Micronas
6 */
7
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/moduleparam.h>
11#include <linux/init.h>
12#include <linux/delay.h>
13#include <linux/firmware.h>
14#include <linux/i2c.h>
15#include <asm/div64.h>
16
17#include <media/dvb_frontend.h>
18#include "drxd.h"
19#include "drxd_firm.h"
20
21#define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
22#define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
23
24#define CHUNK_SIZE 48
25
26#define DRX_I2C_RMW           0x10
27#define DRX_I2C_BROADCAST     0x20
28#define DRX_I2C_CLEARCRC      0x80
29#define DRX_I2C_SINGLE_MASTER 0xC0
30#define DRX_I2C_MODEFLAGS     0xC0
31#define DRX_I2C_FLAGS         0xF0
32
33#define DEFAULT_LOCK_TIMEOUT    1100
34
35#define DRX_CHANNEL_AUTO 0
36#define DRX_CHANNEL_HIGH 1
37#define DRX_CHANNEL_LOW  2
38
39#define DRX_LOCK_MPEG  1
40#define DRX_LOCK_FEC   2
41#define DRX_LOCK_DEMOD 4
42
43/****************************************************************************/
44
45enum CSCDState {
46	CSCD_INIT = 0,
47	CSCD_SET,
48	CSCD_SAVED
49};
50
51enum CDrxdState {
52	DRXD_UNINITIALIZED = 0,
53	DRXD_STOPPED,
54	DRXD_STARTED
55};
56
57enum AGC_CTRL_MODE {
58	AGC_CTRL_AUTO = 0,
59	AGC_CTRL_USER,
60	AGC_CTRL_OFF
61};
62
63enum OperationMode {
64	OM_Default,
65	OM_DVBT_Diversity_Front,
66	OM_DVBT_Diversity_End
67};
68
69struct SCfgAgc {
70	enum AGC_CTRL_MODE ctrlMode;
71	u16 outputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
72	u16 settleLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
73	u16 minOutputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
74	u16 maxOutputLevel;	/* range [0, ... , 1023], 1/n of fullscale range */
75	u16 speed;		/* range [0, ... , 1023], 1/n of fullscale range */
76
77	u16 R1;
78	u16 R2;
79	u16 R3;
80};
81
82struct SNoiseCal {
83	int cpOpt;
84	short cpNexpOfs;
85	short tdCal2k;
86	short tdCal8k;
87};
88
89enum app_env {
90	APPENV_STATIC = 0,
91	APPENV_PORTABLE = 1,
92	APPENV_MOBILE = 2
93};
94
95enum EIFFilter {
96	IFFILTER_SAW = 0,
97	IFFILTER_DISCRETE = 1
98};
99
100struct drxd_state {
101	struct dvb_frontend frontend;
102	struct dvb_frontend_ops ops;
103	struct dtv_frontend_properties props;
104
105	const struct firmware *fw;
106	struct device *dev;
107
108	struct i2c_adapter *i2c;
109	void *priv;
110	struct drxd_config config;
111
112	int i2c_access;
113	int init_done;
114	struct mutex mutex;
115
116	u8 chip_adr;
117	u16 hi_cfg_timing_div;
118	u16 hi_cfg_bridge_delay;
119	u16 hi_cfg_wakeup_key;
120	u16 hi_cfg_ctrl;
121
122	u16 intermediate_freq;
123	u16 osc_clock_freq;
124
125	enum CSCDState cscd_state;
126	enum CDrxdState drxd_state;
127
128	u16 sys_clock_freq;
129	s16 osc_clock_deviation;
130	u16 expected_sys_clock_freq;
131
132	u16 insert_rs_byte;
133	u16 enable_parallel;
134
135	int operation_mode;
136
137	struct SCfgAgc if_agc_cfg;
138	struct SCfgAgc rf_agc_cfg;
139
140	struct SNoiseCal noise_cal;
141
142	u32 fe_fs_add_incr;
143	u32 org_fe_fs_add_incr;
144	u16 current_fe_if_incr;
145
146	u16 m_FeAgRegAgPwd;
147	u16 m_FeAgRegAgAgcSio;
148
149	u16 m_EcOcRegOcModeLop;
150	u16 m_EcOcRegSncSncLvl;
151	u8 *m_InitAtomicRead;
152	u8 *m_HiI2cPatch;
153
154	u8 *m_ResetCEFR;
155	u8 *m_InitFE_1;
156	u8 *m_InitFE_2;
157	u8 *m_InitCP;
158	u8 *m_InitCE;
159	u8 *m_InitEQ;
160	u8 *m_InitSC;
161	u8 *m_InitEC;
162	u8 *m_ResetECRAM;
163	u8 *m_InitDiversityFront;
164	u8 *m_InitDiversityEnd;
165	u8 *m_DisableDiversity;
166	u8 *m_StartDiversityFront;
167	u8 *m_StartDiversityEnd;
168
169	u8 *m_DiversityDelay8MHZ;
170	u8 *m_DiversityDelay6MHZ;
171
172	u8 *microcode;
173	u32 microcode_length;
174
175	int type_A;
176	int PGA;
177	int diversity;
178	int tuner_mirrors;
179
180	enum app_env app_env_default;
181	enum app_env app_env_diversity;
182
183};
184
185/****************************************************************************/
186/* I2C **********************************************************************/
187/****************************************************************************/
188
189static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
190{
191	struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
192
193	if (i2c_transfer(adap, &msg, 1) != 1)
194		return -1;
195	return 0;
196}
197
198static int i2c_read(struct i2c_adapter *adap,
199		    u8 adr, u8 *msg, int len, u8 *answ, int alen)
200{
201	struct i2c_msg msgs[2] = {
202		{
203			.addr = adr, .flags = 0,
204			.buf = msg, .len = len
205		}, {
206			.addr = adr, .flags = I2C_M_RD,
207			.buf = answ, .len = alen
208		}
209	};
210	if (i2c_transfer(adap, msgs, 2) != 2)
211		return -1;
212	return 0;
213}
214
215static inline u32 MulDiv32(u32 a, u32 b, u32 c)
216{
217	u64 tmp64;
218
219	tmp64 = (u64)a * (u64)b;
220	do_div(tmp64, c);
221
222	return (u32) tmp64;
223}
224
225static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
226{
227	u8 adr = state->config.demod_address;
228	u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
229		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
230	};
231	u8 mm2[2];
232	if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
233		return -1;
234	if (data)
235		*data = mm2[0] | (mm2[1] << 8);
236	return mm2[0] | (mm2[1] << 8);
237}
238
239static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
240{
241	u8 adr = state->config.demod_address;
242	u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
243		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
244	};
245	u8 mm2[4];
246
247	if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
248		return -1;
249	if (data)
250		*data =
251		    mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
252	return 0;
253}
254
255static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
256{
257	u8 adr = state->config.demod_address;
258	u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
259		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
260		data & 0xff, (data >> 8) & 0xff
261	};
262
263	if (i2c_write(state->i2c, adr, mm, 6) < 0)
264		return -1;
265	return 0;
266}
267
268static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
269{
270	u8 adr = state->config.demod_address;
271	u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
272		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
273		data & 0xff, (data >> 8) & 0xff,
274		(data >> 16) & 0xff, (data >> 24) & 0xff
275	};
276
277	if (i2c_write(state->i2c, adr, mm, 8) < 0)
278		return -1;
279	return 0;
280}
281
282static int write_chunk(struct drxd_state *state,
283		       u32 reg, u8 *data, u32 len, u8 flags)
284{
285	u8 adr = state->config.demod_address;
286	u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
287		flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
288	};
289	int i;
290
291	for (i = 0; i < len; i++)
292		mm[4 + i] = data[i];
293	if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
294		printk(KERN_ERR "error in write_chunk\n");
295		return -1;
296	}
297	return 0;
298}
299
300static int WriteBlock(struct drxd_state *state,
301		      u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
302{
303	while (BlockSize > 0) {
304		u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
305
306		if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
307			return -1;
308		pBlock += Chunk;
309		Address += (Chunk >> 1);
310		BlockSize -= Chunk;
311	}
312	return 0;
313}
314
315static int WriteTable(struct drxd_state *state, u8 * pTable)
316{
317	int status = 0;
318
319	if (!pTable)
320		return 0;
321
322	while (!status) {
323		u16 Length;
324		u32 Address = pTable[0] | (pTable[1] << 8) |
325		    (pTable[2] << 16) | (pTable[3] << 24);
326
327		if (Address == 0xFFFFFFFF)
328			break;
329		pTable += sizeof(u32);
330
331		Length = pTable[0] | (pTable[1] << 8);
332		pTable += sizeof(u16);
333		if (!Length)
334			break;
335		status = WriteBlock(state, Address, Length * 2, pTable, 0);
336		pTable += (Length * 2);
337	}
338	return status;
339}
340
341/****************************************************************************/
342/****************************************************************************/
343/****************************************************************************/
344
345static int ResetCEFR(struct drxd_state *state)
346{
347	return WriteTable(state, state->m_ResetCEFR);
348}
349
350static int InitCP(struct drxd_state *state)
351{
352	return WriteTable(state, state->m_InitCP);
353}
354
355static int InitCE(struct drxd_state *state)
356{
357	int status;
358	enum app_env AppEnv = state->app_env_default;
359
360	do {
361		status = WriteTable(state, state->m_InitCE);
362		if (status < 0)
363			break;
364
365		if (state->operation_mode == OM_DVBT_Diversity_Front ||
366		    state->operation_mode == OM_DVBT_Diversity_End) {
367			AppEnv = state->app_env_diversity;
368		}
369		if (AppEnv == APPENV_STATIC) {
370			status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
371			if (status < 0)
372				break;
373		} else if (AppEnv == APPENV_PORTABLE) {
374			status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
375			if (status < 0)
376				break;
377		} else if (AppEnv == APPENV_MOBILE && state->type_A) {
378			status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
379			if (status < 0)
380				break;
381		} else if (AppEnv == APPENV_MOBILE && !state->type_A) {
382			status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
383			if (status < 0)
384				break;
385		}
386
387		/* start ce */
388		status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
389		if (status < 0)
390			break;
391	} while (0);
392	return status;
393}
394
395static int StopOC(struct drxd_state *state)
396{
397	int status = 0;
398	u16 ocSyncLvl = 0;
399	u16 ocModeLop = state->m_EcOcRegOcModeLop;
400	u16 dtoIncLop = 0;
401	u16 dtoIncHip = 0;
402
403	do {
404		/* Store output configuration */
405		status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
406		if (status < 0)
407			break;
408		/* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
409		state->m_EcOcRegSncSncLvl = ocSyncLvl;
410		/* m_EcOcRegOcModeLop = ocModeLop; */
411
412		/* Flush FIFO (byte-boundary) at fixed rate */
413		status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
414		if (status < 0)
415			break;
416		status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
417		if (status < 0)
418			break;
419		status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
420		if (status < 0)
421			break;
422		status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
423		if (status < 0)
424			break;
425		ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
426		ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
427		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
428		if (status < 0)
429			break;
430		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
431		if (status < 0)
432			break;
433
434		msleep(1);
435		/* Output pins to '0' */
436		status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
437		if (status < 0)
438			break;
439
440		/* Force the OC out of sync */
441		ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
442		status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
443		if (status < 0)
444			break;
445		ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
446		ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
447		ocModeLop |= 0x2;	/* Magically-out-of-sync */
448		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
449		if (status < 0)
450			break;
451		status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
452		if (status < 0)
453			break;
454		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
455		if (status < 0)
456			break;
457	} while (0);
458
459	return status;
460}
461
462static int StartOC(struct drxd_state *state)
463{
464	int status = 0;
465
466	do {
467		/* Stop OC */
468		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
469		if (status < 0)
470			break;
471
472		/* Restore output configuration */
473		status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
474		if (status < 0)
475			break;
476		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
477		if (status < 0)
478			break;
479
480		/* Output pins active again */
481		status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
482		if (status < 0)
483			break;
484
485		/* Start OC */
486		status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
487		if (status < 0)
488			break;
489	} while (0);
490	return status;
491}
492
493static int InitEQ(struct drxd_state *state)
494{
495	return WriteTable(state, state->m_InitEQ);
496}
497
498static int InitEC(struct drxd_state *state)
499{
500	return WriteTable(state, state->m_InitEC);
501}
502
503static int InitSC(struct drxd_state *state)
504{
505	return WriteTable(state, state->m_InitSC);
506}
507
508static int InitAtomicRead(struct drxd_state *state)
509{
510	return WriteTable(state, state->m_InitAtomicRead);
511}
512
513static int CorrectSysClockDeviation(struct drxd_state *state);
514
515static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
516{
517	u16 ScRaRamLock = 0;
518	const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
519				    SC_RA_RAM_LOCK_FEC__M |
520				    SC_RA_RAM_LOCK_DEMOD__M);
521	const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
522				   SC_RA_RAM_LOCK_DEMOD__M);
523	const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
524
525	int status;
526
527	*pLockStatus = 0;
528
529	status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
530	if (status < 0) {
531		printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
532		return status;
533	}
534
535	if (state->drxd_state != DRXD_STARTED)
536		return 0;
537
538	if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
539		*pLockStatus |= DRX_LOCK_MPEG;
540		CorrectSysClockDeviation(state);
541	}
542
543	if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
544		*pLockStatus |= DRX_LOCK_FEC;
545
546	if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
547		*pLockStatus |= DRX_LOCK_DEMOD;
548	return 0;
549}
550
551/****************************************************************************/
552
553static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
554{
555	int status;
556
557	if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
558		return -1;
559
560	if (cfg->ctrlMode == AGC_CTRL_USER) {
561		do {
562			u16 FeAgRegPm1AgcWri;
563			u16 FeAgRegAgModeLop;
564
565			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
566			if (status < 0)
567				break;
568			FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
569			FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
570			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
571			if (status < 0)
572				break;
573
574			FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
575						  FE_AG_REG_PM1_AGC_WRI__M);
576			status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
577			if (status < 0)
578				break;
579		} while (0);
580	} else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
581		if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
582		    ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
583		    ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
584		    ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
585		    )
586			return -1;
587		do {
588			u16 FeAgRegAgModeLop;
589			u16 FeAgRegEgcSetLvl;
590			u16 slope, offset;
591
592			/* == Mode == */
593
594			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
595			if (status < 0)
596				break;
597			FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
598			FeAgRegAgModeLop |=
599			    FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
600			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
601			if (status < 0)
602				break;
603
604			/* == Settle level == */
605
606			FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
607						  FE_AG_REG_EGC_SET_LVL__M);
608			status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
609			if (status < 0)
610				break;
611
612			/* == Min/Max == */
613
614			slope = (u16) ((cfg->maxOutputLevel -
615					cfg->minOutputLevel) / 2);
616			offset = (u16) ((cfg->maxOutputLevel +
617					 cfg->minOutputLevel) / 2 - 511);
618
619			status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
620			if (status < 0)
621				break;
622			status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
623			if (status < 0)
624				break;
625
626			/* == Speed == */
627			{
628				const u16 maxRur = 8;
629				static const u16 slowIncrDecLUT[] = {
630					3, 4, 4, 5, 6 };
631				static const u16 fastIncrDecLUT[] = {
632					14, 15, 15, 16,
633					17, 18, 18, 19,
634					20, 21, 22, 23,
635					24, 26, 27, 28,
636					29, 31
637				};
638
639				u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
640				    (maxRur + 1);
641				u16 fineSpeed = (u16) (cfg->speed -
642						       ((cfg->speed /
643							 fineSteps) *
644							fineSteps));
645				u16 invRurCount = (u16) (cfg->speed /
646							 fineSteps);
647				u16 rurCount;
648				if (invRurCount > maxRur) {
649					rurCount = 0;
650					fineSpeed += fineSteps;
651				} else {
652					rurCount = maxRur - invRurCount;
653				}
654
655				/*
656				   fastInc = default *
657				   (2^(fineSpeed/fineSteps))
658				   => range[default...2*default>
659				   slowInc = default *
660				   (2^(fineSpeed/fineSteps))
661				 */
662				{
663					u16 fastIncrDec =
664					    fastIncrDecLUT[fineSpeed /
665							   ((fineSteps /
666							     (14 + 1)) + 1)];
667					u16 slowIncrDec =
668					    slowIncrDecLUT[fineSpeed /
669							   (fineSteps /
670							    (3 + 1))];
671
672					status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
673					if (status < 0)
674						break;
675					status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
676					if (status < 0)
677						break;
678					status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
679					if (status < 0)
680						break;
681					status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
682					if (status < 0)
683						break;
684					status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
685					if (status < 0)
686						break;
687				}
688			}
689		} while (0);
690
691	} else {
692		/* No OFF mode for IF control */
693		return -1;
694	}
695	return status;
696}
697
698static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
699{
700	int status = 0;
701
702	if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
703		return -1;
704
705	if (cfg->ctrlMode == AGC_CTRL_USER) {
706		do {
707			u16 AgModeLop = 0;
708			u16 level = (cfg->outputLevel);
709
710			if (level == DRXD_FE_CTRL_MAX)
711				level++;
712
713			status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
714			if (status < 0)
715				break;
716
717			/*==== Mode ====*/
718
719			/* Powerdown PD2, WRI source */
720			state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
721			state->m_FeAgRegAgPwd |=
722			    FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
723			status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
724			if (status < 0)
725				break;
726
727			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
728			if (status < 0)
729				break;
730			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
731					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
732			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
733				      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
734			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
735			if (status < 0)
736				break;
737
738			/* enable AGC2 pin */
739			{
740				u16 FeAgRegAgAgcSio = 0;
741				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
742				if (status < 0)
743					break;
744				FeAgRegAgAgcSio &=
745				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
746				FeAgRegAgAgcSio |=
747				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
748				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
749				if (status < 0)
750					break;
751			}
752
753		} while (0);
754	} else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
755		u16 AgModeLop = 0;
756
757		do {
758			u16 level;
759			/* Automatic control */
760			/* Powerup PD2, AGC2 as output, TGC source */
761			(state->m_FeAgRegAgPwd) &=
762			    ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
763			(state->m_FeAgRegAgPwd) |=
764			    FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
765			status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
766			if (status < 0)
767				break;
768
769			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
770			if (status < 0)
771				break;
772			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
773					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
774			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
775				      FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
776			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
777			if (status < 0)
778				break;
779			/* Settle level */
780			level = (((cfg->settleLevel) >> 4) &
781				 FE_AG_REG_TGC_SET_LVL__M);
782			status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
783			if (status < 0)
784				break;
785
786			/* Min/max: don't care */
787
788			/* Speed: TODO */
789
790			/* enable AGC2 pin */
791			{
792				u16 FeAgRegAgAgcSio = 0;
793				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
794				if (status < 0)
795					break;
796				FeAgRegAgAgcSio &=
797				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
798				FeAgRegAgAgcSio |=
799				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
800				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
801				if (status < 0)
802					break;
803			}
804
805		} while (0);
806	} else {
807		u16 AgModeLop = 0;
808
809		do {
810			/* No RF AGC control */
811			/* Powerdown PD2, AGC2 as output, WRI source */
812			(state->m_FeAgRegAgPwd) &=
813			    ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
814			(state->m_FeAgRegAgPwd) |=
815			    FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
816			status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
817			if (status < 0)
818				break;
819
820			status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
821			if (status < 0)
822				break;
823			AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
824					FE_AG_REG_AG_MODE_LOP_MODE_E__M));
825			AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
826				      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
827			status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
828			if (status < 0)
829				break;
830
831			/* set FeAgRegAgAgcSio AGC2 (RF) as input */
832			{
833				u16 FeAgRegAgAgcSio = 0;
834				status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
835				if (status < 0)
836					break;
837				FeAgRegAgAgcSio &=
838				    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
839				FeAgRegAgAgcSio |=
840				    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
841				status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
842				if (status < 0)
843					break;
844			}
845		} while (0);
846	}
847	return status;
848}
849
850static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
851{
852	int status = 0;
853
854	*pValue = 0;
855	if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
856		u16 Value;
857		status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
858		Value &= FE_AG_REG_GC1_AGC_DAT__M;
859		if (status >= 0) {
860			/*           3.3V
861			   |
862			   R1
863			   |
864			   Vin - R3 - * -- Vout
865			   |
866			   R2
867			   |
868			   GND
869			 */
870			u32 R1 = state->if_agc_cfg.R1;
871			u32 R2 = state->if_agc_cfg.R2;
872			u32 R3 = state->if_agc_cfg.R3;
873
874			u32 Vmax, Rpar, Vmin, Vout;
875
876			if (R2 == 0 && (R1 == 0 || R3 == 0))
877				return 0;
878
879			Vmax = (3300 * R2) / (R1 + R2);
880			Rpar = (R2 * R3) / (R3 + R2);
881			Vmin = (3300 * Rpar) / (R1 + Rpar);
882			Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
883
884			*pValue = Vout;
885		}
886	}
887	return status;
888}
889
890static int load_firmware(struct drxd_state *state, const char *fw_name)
891{
892	const struct firmware *fw;
893
894	if (request_firmware(&fw, fw_name, state->dev) < 0) {
895		printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
896		return -EIO;
897	}
898
899	state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
900	if (!state->microcode) {
901		release_firmware(fw);
902		return -ENOMEM;
903	}
904
905	state->microcode_length = fw->size;
906	release_firmware(fw);
907	return 0;
908}
909
910static int DownloadMicrocode(struct drxd_state *state,
911			     const u8 *pMCImage, u32 Length)
912{
913	u8 *pSrc;
914	u32 Address;
915	u16 nBlocks;
916	u16 BlockSize;
917	int i, status = 0;
918
919	pSrc = (u8 *) pMCImage;
920	/* We're not using Flags */
921	/* Flags = (pSrc[0] << 8) | pSrc[1]; */
922	pSrc += sizeof(u16);
923	nBlocks = (pSrc[0] << 8) | pSrc[1];
924	pSrc += sizeof(u16);
925
926	for (i = 0; i < nBlocks; i++) {
927		Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
928		    (pSrc[2] << 8) | pSrc[3];
929		pSrc += sizeof(u32);
930
931		BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
932		pSrc += sizeof(u16);
933
934		/* We're not using Flags */
935		/* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
936		pSrc += sizeof(u16);
937
938		/* We're not using BlockCRC */
939		/* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
940		pSrc += sizeof(u16);
941
942		status = WriteBlock(state, Address, BlockSize,
943				    pSrc, DRX_I2C_CLEARCRC);
944		if (status < 0)
945			break;
946		pSrc += BlockSize;
947	}
948
949	return status;
950}
951
952static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
953{
954	u32 nrRetries = 0;
955	int status;
956
957	status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
958	if (status < 0)
959		return status;
960
961	do {
962		nrRetries += 1;
963		if (nrRetries > DRXD_MAX_RETRIES) {
964			status = -1;
965			break;
966		}
967		status = Read16(state, HI_RA_RAM_SRV_CMD__A, NULL, 0);
968	} while (status != 0);
969
970	if (status >= 0)
971		status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
972	return status;
973}
974
975static int HI_CfgCommand(struct drxd_state *state)
976{
977	int status = 0;
978
979	mutex_lock(&state->mutex);
980	Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
981	Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
982	Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
983	Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
984	Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
985
986	Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
987
988	if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
989	    HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
990		status = Write16(state, HI_RA_RAM_SRV_CMD__A,
991				 HI_RA_RAM_SRV_CMD_CONFIG, 0);
992	else
993		status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
994	mutex_unlock(&state->mutex);
995	return status;
996}
997
998static int InitHI(struct drxd_state *state)
999{
1000	state->hi_cfg_wakeup_key = (state->chip_adr);
1001	/* port/bridge/power down ctrl */
1002	state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1003	return HI_CfgCommand(state);
1004}
1005
1006static int HI_ResetCommand(struct drxd_state *state)
1007{
1008	int status;
1009
1010	mutex_lock(&state->mutex);
1011	status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1012			 HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1013	if (status == 0)
1014		status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
1015	mutex_unlock(&state->mutex);
1016	msleep(1);
1017	return status;
1018}
1019
1020static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1021{
1022	state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1023	if (bEnableBridge)
1024		state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1025	else
1026		state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1027
1028	return HI_CfgCommand(state);
1029}
1030
1031#define HI_TR_WRITE      0x9
1032#define HI_TR_READ       0xA
1033#define HI_TR_READ_WRITE 0xB
1034#define HI_TR_BROADCAST  0x4
1035
1036#if 0
1037static int AtomicReadBlock(struct drxd_state *state,
1038			   u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1039{
1040	int status;
1041	int i = 0;
1042
1043	/* Parameter check */
1044	if ((!pData) || ((DataSize & 1) != 0))
1045		return -1;
1046
1047	mutex_lock(&state->mutex);
1048
1049	do {
1050		/* Instruct HI to read n bytes */
1051		/* TODO use proper names forthese egisters */
1052		status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1053		if (status < 0)
1054			break;
1055		status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1056		if (status < 0)
1057			break;
1058		status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1059		if (status < 0)
1060			break;
1061		status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1062		if (status < 0)
1063			break;
1064		status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1065		if (status < 0)
1066			break;
1067
1068		status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1069		if (status < 0)
1070			break;
1071
1072	} while (0);
1073
1074	if (status >= 0) {
1075		for (i = 0; i < (DataSize / 2); i += 1) {
1076			u16 word;
1077
1078			status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1079					&word, 0);
1080			if (status < 0)
1081				break;
1082			pData[2 * i] = (u8) (word & 0xFF);
1083			pData[(2 * i) + 1] = (u8) (word >> 8);
1084		}
1085	}
1086	mutex_unlock(&state->mutex);
1087	return status;
1088}
1089
1090static int AtomicReadReg32(struct drxd_state *state,
1091			   u32 Addr, u32 *pData, u8 Flags)
1092{
1093	u8 buf[sizeof(u32)];
1094	int status;
1095
1096	if (!pData)
1097		return -1;
1098	status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1099	*pData = (((u32) buf[0]) << 0) +
1100	    (((u32) buf[1]) << 8) +
1101	    (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1102	return status;
1103}
1104#endif
1105
1106static int StopAllProcessors(struct drxd_state *state)
1107{
1108	return Write16(state, HI_COMM_EXEC__A,
1109		       SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1110}
1111
1112static int EnableAndResetMB(struct drxd_state *state)
1113{
1114	if (state->type_A) {
1115		/* disable? monitor bus observe @ EC_OC */
1116		Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1117	}
1118
1119	/* do inverse broadcast, followed by explicit write to HI */
1120	Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1121	Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1122	return 0;
1123}
1124
1125static int InitCC(struct drxd_state *state)
1126{
1127	int status = 0;
1128
1129	if (state->osc_clock_freq == 0 ||
1130	    state->osc_clock_freq > 20000 ||
1131	    (state->osc_clock_freq % 4000) != 0) {
1132		printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1133		return -1;
1134	}
1135
1136	status |= Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1137	status |= Write16(state, CC_REG_PLL_MODE__A,
1138				CC_REG_PLL_MODE_BYPASS_PLL |
1139				CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1140	status |= Write16(state, CC_REG_REF_DIVIDE__A,
1141				state->osc_clock_freq / 4000, 0);
1142	status |= Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL,
1143				0);
1144	status |= Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1145
1146	return status;
1147}
1148
1149static int ResetECOD(struct drxd_state *state)
1150{
1151	int status = 0;
1152
1153	if (state->type_A)
1154		status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1155	else
1156		status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1157
1158	if (!(status < 0))
1159		status = WriteTable(state, state->m_ResetECRAM);
1160	if (!(status < 0))
1161		status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1162	return status;
1163}
1164
1165/* Configure PGA switch */
1166
1167static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1168{
1169	int status;
1170	u16 AgModeLop = 0;
1171	u16 AgModeHip = 0;
1172	do {
1173		if (pgaSwitch) {
1174			/* PGA on */
1175			/* fine gain */
1176			status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1177			if (status < 0)
1178				break;
1179			AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1180			AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1181			status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1182			if (status < 0)
1183				break;
1184
1185			/* coarse gain */
1186			status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1187			if (status < 0)
1188				break;
1189			AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1190			AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1191			status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1192			if (status < 0)
1193				break;
1194
1195			/* enable fine and coarse gain, enable AAF,
1196			   no ext resistor */
1197			status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1198			if (status < 0)
1199				break;
1200		} else {
1201			/* PGA off, bypass */
1202
1203			/* fine gain */
1204			status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1205			if (status < 0)
1206				break;
1207			AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1208			AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1209			status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1210			if (status < 0)
1211				break;
1212
1213			/* coarse gain */
1214			status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1215			if (status < 0)
1216				break;
1217			AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1218			AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1219			status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1220			if (status < 0)
1221				break;
1222
1223			/* disable fine and coarse gain, enable AAF,
1224			   no ext resistor */
1225			status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1226			if (status < 0)
1227				break;
1228		}
1229	} while (0);
1230	return status;
1231}
1232
1233static int InitFE(struct drxd_state *state)
1234{
1235	int status;
1236
1237	do {
1238		status = WriteTable(state, state->m_InitFE_1);
1239		if (status < 0)
1240			break;
1241
1242		if (state->type_A) {
1243			status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1244					 FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1245					 0);
1246		} else {
1247			if (state->PGA)
1248				status = SetCfgPga(state, 0);
1249			else
1250				status =
1251				    Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1252					    B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1253					    0);
1254		}
1255
1256		if (status < 0)
1257			break;
1258		status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1259		if (status < 0)
1260			break;
1261		status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1262		if (status < 0)
1263			break;
1264
1265		status = WriteTable(state, state->m_InitFE_2);
1266		if (status < 0)
1267			break;
1268
1269	} while (0);
1270
1271	return status;
1272}
1273
1274static int InitFT(struct drxd_state *state)
1275{
1276	/*
1277	   norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1278	   SC stuff
1279	 */
1280	return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1281}
1282
1283static int SC_WaitForReady(struct drxd_state *state)
1284{
1285	int i;
1286
1287	for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1288		int status = Read16(state, SC_RA_RAM_CMD__A, NULL, 0);
1289		if (status == 0)
1290			return status;
1291	}
1292	return -1;
1293}
1294
1295static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1296{
1297	int status = 0, ret;
1298	u16 errCode;
1299
1300	status = Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1301	if (status < 0)
1302		return status;
1303
1304	SC_WaitForReady(state);
1305
1306	ret = Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1307
1308	if (ret < 0 || errCode == 0xFFFF) {
1309		printk(KERN_ERR "Command Error\n");
1310		status = -1;
1311	}
1312
1313	return status;
1314}
1315
1316static int SC_ProcStartCommand(struct drxd_state *state,
1317			       u16 subCmd, u16 param0, u16 param1)
1318{
1319	int ret, status = 0;
1320	u16 scExec;
1321
1322	mutex_lock(&state->mutex);
1323	do {
1324		ret = Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1325		if (ret < 0 || scExec != 1) {
1326			status = -1;
1327			break;
1328		}
1329		SC_WaitForReady(state);
1330		status |= Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1331		status |= Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1332		status |= Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1333
1334		SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1335	} while (0);
1336	mutex_unlock(&state->mutex);
1337	return status;
1338}
1339
1340static int SC_SetPrefParamCommand(struct drxd_state *state,
1341				  u16 subCmd, u16 param0, u16 param1)
1342{
1343	int status;
1344
1345	mutex_lock(&state->mutex);
1346	do {
1347		status = SC_WaitForReady(state);
1348		if (status < 0)
1349			break;
1350		status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1351		if (status < 0)
1352			break;
1353		status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1354		if (status < 0)
1355			break;
1356		status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1357		if (status < 0)
1358			break;
1359
1360		status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1361		if (status < 0)
1362			break;
1363	} while (0);
1364	mutex_unlock(&state->mutex);
1365	return status;
1366}
1367
1368#if 0
1369static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1370{
1371	int status = 0;
1372
1373	mutex_lock(&state->mutex);
1374	do {
1375		status = SC_WaitForReady(state);
1376		if (status < 0)
1377			break;
1378		status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1379		if (status < 0)
1380			break;
1381		status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1382		if (status < 0)
1383			break;
1384	} while (0);
1385	mutex_unlock(&state->mutex);
1386	return status;
1387}
1388#endif
1389
1390static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1391{
1392	int status;
1393
1394	do {
1395		u16 EcOcRegIprInvMpg = 0;
1396		u16 EcOcRegOcModeLop = 0;
1397		u16 EcOcRegOcModeHip = 0;
1398		u16 EcOcRegOcMpgSio = 0;
1399
1400		/*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1401
1402		if (state->operation_mode == OM_DVBT_Diversity_Front) {
1403			if (bEnableOutput) {
1404				EcOcRegOcModeHip |=
1405				    B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1406			} else
1407				EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1408			EcOcRegOcModeLop |=
1409			    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1410		} else {
1411			EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1412
1413			if (bEnableOutput)
1414				EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1415			else
1416				EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1417
1418			/* Don't Insert RS Byte */
1419			if (state->insert_rs_byte) {
1420				EcOcRegOcModeLop &=
1421				    (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1422				EcOcRegOcModeHip &=
1423				    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1424				EcOcRegOcModeHip |=
1425				    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1426			} else {
1427				EcOcRegOcModeLop |=
1428				    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1429				EcOcRegOcModeHip &=
1430				    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1431				EcOcRegOcModeHip |=
1432				    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1433			}
1434
1435			/* Mode = Parallel */
1436			if (state->enable_parallel)
1437				EcOcRegOcModeLop &=
1438				    (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1439			else
1440				EcOcRegOcModeLop |=
1441				    EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1442		}
1443		/* Invert Data */
1444		/* EcOcRegIprInvMpg |= 0x00FF; */
1445		EcOcRegIprInvMpg &= (~(0x00FF));
1446
1447		/* Invert Error ( we don't use the pin ) */
1448		/*  EcOcRegIprInvMpg |= 0x0100; */
1449		EcOcRegIprInvMpg &= (~(0x0100));
1450
1451		/* Invert Start ( we don't use the pin ) */
1452		/* EcOcRegIprInvMpg |= 0x0200; */
1453		EcOcRegIprInvMpg &= (~(0x0200));
1454
1455		/* Invert Valid ( we don't use the pin ) */
1456		/* EcOcRegIprInvMpg |= 0x0400; */
1457		EcOcRegIprInvMpg &= (~(0x0400));
1458
1459		/* Invert Clock */
1460		/* EcOcRegIprInvMpg |= 0x0800; */
1461		EcOcRegIprInvMpg &= (~(0x0800));
1462
1463		/* EcOcRegOcModeLop =0x05; */
1464		status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1465		if (status < 0)
1466			break;
1467		status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1468		if (status < 0)
1469			break;
1470		status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1471		if (status < 0)
1472			break;
1473		status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1474		if (status < 0)
1475			break;
1476	} while (0);
1477	return status;
1478}
1479
1480static int SetDeviceTypeId(struct drxd_state *state)
1481{
1482	int status = 0;
1483	u16 deviceId = 0;
1484
1485	do {
1486		status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1487		if (status < 0)
1488			break;
1489		/* TODO: why twice? */
1490		status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1491		if (status < 0)
1492			break;
1493		printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1494
1495		state->type_A = 0;
1496		state->PGA = 0;
1497		state->diversity = 0;
1498		if (deviceId == 0) {	/* on A2 only 3975 available */
1499			state->type_A = 1;
1500			printk(KERN_INFO "DRX3975D-A2\n");
1501		} else {
1502			deviceId >>= 12;
1503			printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1504			switch (deviceId) {
1505			case 4:
1506				state->diversity = 1;
1507				fallthrough;
1508			case 3:
1509			case 7:
1510				state->PGA = 1;
1511				break;
1512			case 6:
1513				state->diversity = 1;
1514				fallthrough;
1515			case 5:
1516			case 8:
1517				break;
1518			default:
1519				status = -1;
1520				break;
1521			}
1522		}
1523	} while (0);
1524
1525	if (status < 0)
1526		return status;
1527
1528	/* Init Table selection */
1529	state->m_InitAtomicRead = DRXD_InitAtomicRead;
1530	state->m_InitSC = DRXD_InitSC;
1531	state->m_ResetECRAM = DRXD_ResetECRAM;
1532	if (state->type_A) {
1533		state->m_ResetCEFR = DRXD_ResetCEFR;
1534		state->m_InitFE_1 = DRXD_InitFEA2_1;
1535		state->m_InitFE_2 = DRXD_InitFEA2_2;
1536		state->m_InitCP = DRXD_InitCPA2;
1537		state->m_InitCE = DRXD_InitCEA2;
1538		state->m_InitEQ = DRXD_InitEQA2;
1539		state->m_InitEC = DRXD_InitECA2;
1540		if (load_firmware(state, DRX_FW_FILENAME_A2))
1541			return -EIO;
1542	} else {
1543		state->m_ResetCEFR = NULL;
1544		state->m_InitFE_1 = DRXD_InitFEB1_1;
1545		state->m_InitFE_2 = DRXD_InitFEB1_2;
1546		state->m_InitCP = DRXD_InitCPB1;
1547		state->m_InitCE = DRXD_InitCEB1;
1548		state->m_InitEQ = DRXD_InitEQB1;
1549		state->m_InitEC = DRXD_InitECB1;
1550		if (load_firmware(state, DRX_FW_FILENAME_B1))
1551			return -EIO;
1552	}
1553	if (state->diversity) {
1554		state->m_InitDiversityFront = DRXD_InitDiversityFront;
1555		state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1556		state->m_DisableDiversity = DRXD_DisableDiversity;
1557		state->m_StartDiversityFront = DRXD_StartDiversityFront;
1558		state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1559		state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1560		state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1561	} else {
1562		state->m_InitDiversityFront = NULL;
1563		state->m_InitDiversityEnd = NULL;
1564		state->m_DisableDiversity = NULL;
1565		state->m_StartDiversityFront = NULL;
1566		state->m_StartDiversityEnd = NULL;
1567		state->m_DiversityDelay8MHZ = NULL;
1568		state->m_DiversityDelay6MHZ = NULL;
1569	}
1570
1571	return status;
1572}
1573
1574static int CorrectSysClockDeviation(struct drxd_state *state)
1575{
1576	int status;
1577	s32 incr = 0;
1578	s32 nomincr = 0;
1579	u32 bandwidth = 0;
1580	u32 sysClockInHz = 0;
1581	u32 sysClockFreq = 0;	/* in kHz */
1582	s16 oscClockDeviation;
1583	s16 Diff;
1584
1585	do {
1586		/* Retrieve bandwidth and incr, sanity check */
1587
1588		/* These accesses should be AtomicReadReg32, but that
1589		   causes trouble (at least for diversity */
1590		status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1591		if (status < 0)
1592			break;
1593		status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1594		if (status < 0)
1595			break;
1596
1597		if (state->type_A) {
1598			if ((nomincr - incr < -500) || (nomincr - incr > 500))
1599				break;
1600		} else {
1601			if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1602				break;
1603		}
1604
1605		switch (state->props.bandwidth_hz) {
1606		case 8000000:
1607			bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1608			break;
1609		case 7000000:
1610			bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1611			break;
1612		case 6000000:
1613			bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1614			break;
1615		default:
1616			return -1;
1617		}
1618
1619		/* Compute new sysclock value
1620		   sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1621		incr += (1 << 23);
1622		sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1623		sysClockFreq = (u32) (sysClockInHz / 1000);
1624		/* rounding */
1625		if ((sysClockInHz % 1000) > 500)
1626			sysClockFreq++;
1627
1628		/* Compute clock deviation in ppm */
1629		oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1630					     (s32)
1631					     (state->expected_sys_clock_freq)) *
1632					    1000000L) /
1633					   (s32)
1634					   (state->expected_sys_clock_freq));
1635
1636		Diff = oscClockDeviation - state->osc_clock_deviation;
1637		/*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1638		if (Diff >= -200 && Diff <= 200) {
1639			state->sys_clock_freq = (u16) sysClockFreq;
1640			if (oscClockDeviation != state->osc_clock_deviation) {
1641				if (state->config.osc_deviation) {
1642					state->config.osc_deviation(state->priv,
1643								    oscClockDeviation,
1644								    1);
1645					state->osc_clock_deviation =
1646					    oscClockDeviation;
1647				}
1648			}
1649			/* switch OFF SRMM scan in SC */
1650			status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1651			if (status < 0)
1652				break;
1653			/* overrule FE_IF internal value for
1654			   proper re-locking */
1655			status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1656			if (status < 0)
1657				break;
1658			state->cscd_state = CSCD_SAVED;
1659		}
1660	} while (0);
1661
1662	return status;
1663}
1664
1665static int DRX_Stop(struct drxd_state *state)
1666{
1667	int status;
1668
1669	if (state->drxd_state != DRXD_STARTED)
1670		return 0;
1671
1672	do {
1673		if (state->cscd_state != CSCD_SAVED) {
1674			u32 lock;
1675			status = DRX_GetLockStatus(state, &lock);
1676			if (status < 0)
1677				break;
1678		}
1679
1680		status = StopOC(state);
1681		if (status < 0)
1682			break;
1683
1684		state->drxd_state = DRXD_STOPPED;
1685
1686		status = ConfigureMPEGOutput(state, 0);
1687		if (status < 0)
1688			break;
1689
1690		if (state->type_A) {
1691			/* Stop relevant processors off the device */
1692			status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1693			if (status < 0)
1694				break;
1695
1696			status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1697			if (status < 0)
1698				break;
1699			status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1700			if (status < 0)
1701				break;
1702		} else {
1703			/* Stop all processors except HI & CC & FE */
1704			status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1705			if (status < 0)
1706				break;
1707			status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1708			if (status < 0)
1709				break;
1710			status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1711			if (status < 0)
1712				break;
1713			status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1714			if (status < 0)
1715				break;
1716			status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1717			if (status < 0)
1718				break;
1719			status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1720			if (status < 0)
1721				break;
1722			status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1723			if (status < 0)
1724				break;
1725		}
1726
1727	} while (0);
1728	return status;
1729}
1730
1731#if 0	/* Currently unused */
1732static int SetOperationMode(struct drxd_state *state, int oMode)
1733{
1734	int status;
1735
1736	do {
1737		if (state->drxd_state != DRXD_STOPPED) {
1738			status = -1;
1739			break;
1740		}
1741
1742		if (oMode == state->operation_mode) {
1743			status = 0;
1744			break;
1745		}
1746
1747		if (oMode != OM_Default && !state->diversity) {
1748			status = -1;
1749			break;
1750		}
1751
1752		switch (oMode) {
1753		case OM_DVBT_Diversity_Front:
1754			status = WriteTable(state, state->m_InitDiversityFront);
1755			break;
1756		case OM_DVBT_Diversity_End:
1757			status = WriteTable(state, state->m_InitDiversityEnd);
1758			break;
1759		case OM_Default:
1760			/* We need to check how to
1761			   get DRXD out of diversity */
1762		default:
1763			status = WriteTable(state, state->m_DisableDiversity);
1764			break;
1765		}
1766	} while (0);
1767
1768	if (!status)
1769		state->operation_mode = oMode;
1770	return status;
1771}
1772#endif
1773
1774static int StartDiversity(struct drxd_state *state)
1775{
1776	int status = 0;
1777	u16 rcControl;
1778
1779	do {
1780		if (state->operation_mode == OM_DVBT_Diversity_Front) {
1781			status = WriteTable(state, state->m_StartDiversityFront);
1782			if (status < 0)
1783				break;
1784		} else if (state->operation_mode == OM_DVBT_Diversity_End) {
1785			status = WriteTable(state, state->m_StartDiversityEnd);
1786			if (status < 0)
1787				break;
1788			if (state->props.bandwidth_hz == 8000000) {
1789				status = WriteTable(state, state->m_DiversityDelay8MHZ);
1790				if (status < 0)
1791					break;
1792			} else {
1793				status = WriteTable(state, state->m_DiversityDelay6MHZ);
1794				if (status < 0)
1795					break;
1796			}
1797
1798			status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1799			if (status < 0)
1800				break;
1801			rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1802			rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1803			    /*  combining enabled */
1804			    B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1805			    B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1806			    B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1807			status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1808			if (status < 0)
1809				break;
1810		}
1811	} while (0);
1812	return status;
1813}
1814
1815static int SetFrequencyShift(struct drxd_state *state,
1816			     u32 offsetFreq, int channelMirrored)
1817{
1818	int negativeShift = (state->tuner_mirrors == channelMirrored);
1819
1820	/* Handle all mirroring
1821	 *
1822	 * Note: ADC mirroring (aliasing) is implictly handled by limiting
1823	 * feFsRegAddInc to 28 bits below
1824	 * (if the result before masking is more than 28 bits, this means
1825	 *  that the ADC is mirroring.
1826	 * The masking is in fact the aliasing of the ADC)
1827	 *
1828	 */
1829
1830	/* Compute register value, unsigned computation */
1831	state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1832					 offsetFreq,
1833					 1 << 28, state->sys_clock_freq);
1834	/* Remove integer part */
1835	state->fe_fs_add_incr &= 0x0FFFFFFFL;
1836	if (negativeShift)
1837		state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1838
1839	/* Save the frequency shift without tunerOffset compensation
1840	   for CtrlGetChannel. */
1841	state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1842					     1 << 28, state->sys_clock_freq);
1843	/* Remove integer part */
1844	state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1845	if (negativeShift)
1846		state->org_fe_fs_add_incr = ((1L << 28) -
1847					     state->org_fe_fs_add_incr);
1848
1849	return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1850		       state->fe_fs_add_incr, 0);
1851}
1852
1853static int SetCfgNoiseCalibration(struct drxd_state *state,
1854				  struct SNoiseCal *noiseCal)
1855{
1856	u16 beOptEna;
1857	int status = 0;
1858
1859	do {
1860		status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1861		if (status < 0)
1862			break;
1863		if (noiseCal->cpOpt) {
1864			beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1865		} else {
1866			beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1867			status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1868			if (status < 0)
1869				break;
1870		}
1871		status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1872		if (status < 0)
1873			break;
1874
1875		if (!state->type_A) {
1876			status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1877			if (status < 0)
1878				break;
1879			status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1880			if (status < 0)
1881				break;
1882		}
1883	} while (0);
1884
1885	return status;
1886}
1887
1888static int DRX_Start(struct drxd_state *state, s32 off)
1889{
1890	struct dtv_frontend_properties *p = &state->props;
1891	int status;
1892
1893	u16 transmissionParams = 0;
1894	u16 operationMode = 0;
1895	u16 qpskTdTpsPwr = 0;
1896	u16 qam16TdTpsPwr = 0;
1897	u16 qam64TdTpsPwr = 0;
1898	u32 feIfIncr = 0;
1899	u32 bandwidth = 0;
1900	int mirrorFreqSpect;
1901
1902	u16 qpskSnCeGain = 0;
1903	u16 qam16SnCeGain = 0;
1904	u16 qam64SnCeGain = 0;
1905	u16 qpskIsGainMan = 0;
1906	u16 qam16IsGainMan = 0;
1907	u16 qam64IsGainMan = 0;
1908	u16 qpskIsGainExp = 0;
1909	u16 qam16IsGainExp = 0;
1910	u16 qam64IsGainExp = 0;
1911	u16 bandwidthParam = 0;
1912
1913	if (off < 0)
1914		off = (off - 500) / 1000;
1915	else
1916		off = (off + 500) / 1000;
1917
1918	do {
1919		if (state->drxd_state != DRXD_STOPPED)
1920			return -1;
1921		status = ResetECOD(state);
1922		if (status < 0)
1923			break;
1924		if (state->type_A) {
1925			status = InitSC(state);
1926			if (status < 0)
1927				break;
1928		} else {
1929			status = InitFT(state);
1930			if (status < 0)
1931				break;
1932			status = InitCP(state);
1933			if (status < 0)
1934				break;
1935			status = InitCE(state);
1936			if (status < 0)
1937				break;
1938			status = InitEQ(state);
1939			if (status < 0)
1940				break;
1941			status = InitSC(state);
1942			if (status < 0)
1943				break;
1944		}
1945
1946		/* Restore current IF & RF AGC settings */
1947
1948		status = SetCfgIfAgc(state, &state->if_agc_cfg);
1949		if (status < 0)
1950			break;
1951		status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1952		if (status < 0)
1953			break;
1954
1955		mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1956
1957		switch (p->transmission_mode) {
1958		default:	/* Not set, detect it automatically */
1959			operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1960			fallthrough;	/* try first guess DRX_FFTMODE_8K */
1961		case TRANSMISSION_MODE_8K:
1962			transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1963			if (state->type_A) {
1964				status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1965				if (status < 0)
1966					break;
1967				qpskSnCeGain = 99;
1968				qam16SnCeGain = 83;
1969				qam64SnCeGain = 67;
1970			}
1971			break;
1972		case TRANSMISSION_MODE_2K:
1973			transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1974			if (state->type_A) {
1975				status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1976				if (status < 0)
1977					break;
1978				qpskSnCeGain = 97;
1979				qam16SnCeGain = 71;
1980				qam64SnCeGain = 65;
1981			}
1982			break;
1983		}
1984
1985		switch (p->guard_interval) {
1986		case GUARD_INTERVAL_1_4:
1987			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
1988			break;
1989		case GUARD_INTERVAL_1_8:
1990			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
1991			break;
1992		case GUARD_INTERVAL_1_16:
1993			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
1994			break;
1995		case GUARD_INTERVAL_1_32:
1996			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
1997			break;
1998		default:	/* Not set, detect it automatically */
1999			operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2000			/* try first guess 1/4 */
2001			transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2002			break;
2003		}
2004
2005		switch (p->hierarchy) {
2006		case HIERARCHY_1:
2007			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2008			if (state->type_A) {
2009				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2010				if (status < 0)
2011					break;
2012				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2013				if (status < 0)
2014					break;
2015
2016				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2017				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2018				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2019
2020				qpskIsGainMan =
2021				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2022				qam16IsGainMan =
2023				    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2024				qam64IsGainMan =
2025				    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2026
2027				qpskIsGainExp =
2028				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2029				qam16IsGainExp =
2030				    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2031				qam64IsGainExp =
2032				    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2033			}
2034			break;
2035
2036		case HIERARCHY_2:
2037			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2038			if (state->type_A) {
2039				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2040				if (status < 0)
2041					break;
2042				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2043				if (status < 0)
2044					break;
2045
2046				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2047				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2048				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2049
2050				qpskIsGainMan =
2051				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2052				qam16IsGainMan =
2053				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2054				qam64IsGainMan =
2055				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2056
2057				qpskIsGainExp =
2058				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2059				qam16IsGainExp =
2060				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2061				qam64IsGainExp =
2062				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2063			}
2064			break;
2065		case HIERARCHY_4:
2066			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2067			if (state->type_A) {
2068				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2069				if (status < 0)
2070					break;
2071				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2072				if (status < 0)
2073					break;
2074
2075				qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2076				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2077				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2078
2079				qpskIsGainMan =
2080				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2081				qam16IsGainMan =
2082				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2083				qam64IsGainMan =
2084				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2085
2086				qpskIsGainExp =
2087				    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2088				qam16IsGainExp =
2089				    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2090				qam64IsGainExp =
2091				    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2092			}
2093			break;
2094		case HIERARCHY_AUTO:
2095		default:
2096			/* Not set, detect it automatically, start with none */
2097			operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2098			transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2099			if (state->type_A) {
2100				status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2101				if (status < 0)
2102					break;
2103				status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2104				if (status < 0)
2105					break;
2106
2107				qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2108				qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2109				qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2110
2111				qpskIsGainMan =
2112				    SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2113				qam16IsGainMan =
2114				    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2115				qam64IsGainMan =
2116				    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2117
2118				qpskIsGainExp =
2119				    SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2120				qam16IsGainExp =
2121				    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2122				qam64IsGainExp =
2123				    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2124			}
2125			break;
2126		}
2127		if (status < 0)
2128			break;
2129
2130		switch (p->modulation) {
2131		default:
2132			operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2133			fallthrough;	/* try first guess DRX_CONSTELLATION_QAM64 */
2134		case QAM_64:
2135			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2136			if (state->type_A) {
2137				status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2138				if (status < 0)
2139					break;
2140				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2141				if (status < 0)
2142					break;
2143				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2144				if (status < 0)
2145					break;
2146				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2147				if (status < 0)
2148					break;
2149				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2150				if (status < 0)
2151					break;
2152
2153				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2154				if (status < 0)
2155					break;
2156				status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2157				if (status < 0)
2158					break;
2159				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2160				if (status < 0)
2161					break;
2162				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2163				if (status < 0)
2164					break;
2165			}
2166			break;
2167		case QPSK:
2168			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2169			if (state->type_A) {
2170				status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2171				if (status < 0)
2172					break;
2173				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2174				if (status < 0)
2175					break;
2176				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2177				if (status < 0)
2178					break;
2179				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2180				if (status < 0)
2181					break;
2182				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2183				if (status < 0)
2184					break;
2185
2186				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2187				if (status < 0)
2188					break;
2189				status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2190				if (status < 0)
2191					break;
2192				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2193				if (status < 0)
2194					break;
2195				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2196				if (status < 0)
2197					break;
2198			}
2199			break;
2200
2201		case QAM_16:
2202			transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2203			if (state->type_A) {
2204				status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2205				if (status < 0)
2206					break;
2207				status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2208				if (status < 0)
2209					break;
2210				status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2211				if (status < 0)
2212					break;
2213				status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2214				if (status < 0)
2215					break;
2216				status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2217				if (status < 0)
2218					break;
2219
2220				status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2221				if (status < 0)
2222					break;
2223				status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2224				if (status < 0)
2225					break;
2226				status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2227				if (status < 0)
2228					break;
2229				status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2230				if (status < 0)
2231					break;
2232			}
2233			break;
2234
2235		}
2236		if (status < 0)
2237			break;
2238
2239		switch (DRX_CHANNEL_HIGH) {
2240		default:
2241		case DRX_CHANNEL_AUTO:
2242		case DRX_CHANNEL_LOW:
2243			transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2244			status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2245			break;
2246		case DRX_CHANNEL_HIGH:
2247			transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2248			status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2249			break;
2250		}
2251
2252		switch (p->code_rate_HP) {
2253		case FEC_1_2:
2254			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2255			if (state->type_A)
2256				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2257			break;
2258		default:
2259			operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2260			fallthrough;
2261		case FEC_2_3:
2262			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2263			if (state->type_A)
2264				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2265			break;
2266		case FEC_3_4:
2267			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2268			if (state->type_A)
2269				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2270			break;
2271		case FEC_5_6:
2272			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2273			if (state->type_A)
2274				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2275			break;
2276		case FEC_7_8:
2277			transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2278			if (state->type_A)
2279				status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2280			break;
2281		}
2282		if (status < 0)
2283			break;
2284
2285		/* First determine real bandwidth (Hz) */
2286		/* Also set delay for impulse noise cruncher (only A2) */
2287		/* Also set parameters for EC_OC fix, note
2288		   EC_OC_REG_TMD_HIL_MAR is changed
2289		   by SC for fix for some 8K,1/8 guard but is restored by
2290		   InitEC and ResetEC
2291		   functions */
2292		switch (p->bandwidth_hz) {
2293		case 0:
2294			p->bandwidth_hz = 8000000;
2295			fallthrough;
2296		case 8000000:
2297			/* (64/7)*(8/8)*1000000 */
2298			bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2299
2300			bandwidthParam = 0;
2301			status = Write16(state,
2302					 FE_AG_REG_IND_DEL__A, 50, 0x0000);
2303			break;
2304		case 7000000:
2305			/* (64/7)*(7/8)*1000000 */
2306			bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2307			bandwidthParam = 0x4807;	/*binary:0100 1000 0000 0111 */
2308			status = Write16(state,
2309					 FE_AG_REG_IND_DEL__A, 59, 0x0000);
2310			break;
2311		case 6000000:
2312			/* (64/7)*(6/8)*1000000 */
2313			bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2314			bandwidthParam = 0x0F07;	/*binary: 0000 1111 0000 0111 */
2315			status = Write16(state,
2316					 FE_AG_REG_IND_DEL__A, 71, 0x0000);
2317			break;
2318		default:
2319			status = -EINVAL;
2320		}
2321		if (status < 0)
2322			break;
2323
2324		status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2325		if (status < 0)
2326			break;
2327
2328		{
2329			u16 sc_config;
2330			status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2331			if (status < 0)
2332				break;
2333
2334			/* enable SLAVE mode in 2k 1/32 to
2335			   prevent timing change glitches */
2336			if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2337			    (p->guard_interval == GUARD_INTERVAL_1_32)) {
2338				/* enable slave */
2339				sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2340			} else {
2341				/* disable slave */
2342				sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2343			}
2344			status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2345			if (status < 0)
2346				break;
2347		}
2348
2349		status = SetCfgNoiseCalibration(state, &state->noise_cal);
2350		if (status < 0)
2351			break;
2352
2353		if (state->cscd_state == CSCD_INIT) {
2354			/* switch on SRMM scan in SC */
2355			status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2356			if (status < 0)
2357				break;
2358/*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2359			state->cscd_state = CSCD_SET;
2360		}
2361
2362		/* Now compute FE_IF_REG_INCR */
2363		/*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2364		   ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2365		feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2366				    (1ULL << 21), bandwidth) - (1 << 23);
2367		status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2368		if (status < 0)
2369			break;
2370		status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2371		if (status < 0)
2372			break;
2373		/* Bandwidth setting done */
2374
2375		/* Mirror & frequency offset */
2376		SetFrequencyShift(state, off, mirrorFreqSpect);
2377
2378		/* Start SC, write channel settings to SC */
2379
2380		/* Enable SC after setting all other parameters */
2381		status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2382		if (status < 0)
2383			break;
2384		status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2385		if (status < 0)
2386			break;
2387
2388		/* Write SC parameter registers, operation mode */
2389#if 1
2390		operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2391				 SC_RA_RAM_OP_AUTO_GUARD__M |
2392				 SC_RA_RAM_OP_AUTO_CONST__M |
2393				 SC_RA_RAM_OP_AUTO_HIER__M |
2394				 SC_RA_RAM_OP_AUTO_RATE__M);
2395#endif
2396		status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2397		if (status < 0)
2398			break;
2399
2400		/* Start correct processes to get in lock */
2401		status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2402		if (status < 0)
2403			break;
2404
2405		status = StartOC(state);
2406		if (status < 0)
2407			break;
2408
2409		if (state->operation_mode != OM_Default) {
2410			status = StartDiversity(state);
2411			if (status < 0)
2412				break;
2413		}
2414
2415		state->drxd_state = DRXD_STARTED;
2416	} while (0);
2417
2418	return status;
2419}
2420
2421static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2422{
2423	u32 ulRfAgcOutputLevel = 0xffffffff;
2424	u32 ulRfAgcSettleLevel = 528;	/* Optimum value for MT2060 */
2425	u32 ulRfAgcMinLevel = 0;	/* Currently unused */
2426	u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX;	/* Currently unused */
2427	u32 ulRfAgcSpeed = 0;	/* Currently unused */
2428	u32 ulRfAgcMode = 0;	/*2;   Off */
2429	u32 ulRfAgcR1 = 820;
2430	u32 ulRfAgcR2 = 2200;
2431	u32 ulRfAgcR3 = 150;
2432	u32 ulIfAgcMode = 0;	/* Auto */
2433	u32 ulIfAgcOutputLevel = 0xffffffff;
2434	u32 ulIfAgcSettleLevel = 0xffffffff;
2435	u32 ulIfAgcMinLevel = 0xffffffff;
2436	u32 ulIfAgcMaxLevel = 0xffffffff;
2437	u32 ulIfAgcSpeed = 0xffffffff;
2438	u32 ulIfAgcR1 = 820;
2439	u32 ulIfAgcR2 = 2200;
2440	u32 ulIfAgcR3 = 150;
2441	u32 ulClock = state->config.clock;
2442	u32 ulSerialMode = 0;
2443	u32 ulEcOcRegOcModeLop = 4;	/* Dynamic DTO source */
2444	u32 ulHiI2cDelay = HI_I2C_DELAY;
2445	u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2446	u32 ulHiI2cPatch = 0;
2447	u32 ulEnvironment = APPENV_PORTABLE;
2448	u32 ulEnvironmentDiversity = APPENV_MOBILE;
2449	u32 ulIFFilter = IFFILTER_SAW;
2450
2451	state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2452	state->if_agc_cfg.outputLevel = 0;
2453	state->if_agc_cfg.settleLevel = 140;
2454	state->if_agc_cfg.minOutputLevel = 0;
2455	state->if_agc_cfg.maxOutputLevel = 1023;
2456	state->if_agc_cfg.speed = 904;
2457
2458	if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2459		state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2460		state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2461	}
2462
2463	if (ulIfAgcMode == 0 &&
2464	    ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2465	    ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2466	    ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2467	    ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2468		state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2469		state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2470		state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2471		state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2472		state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2473	}
2474
2475	state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2476	state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2477	state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2478
2479	state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2480	state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2481	state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2482
2483	state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2484	/* rest of the RFAgcCfg structure currently unused */
2485	if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2486		state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2487		state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2488	}
2489
2490	if (ulRfAgcMode == 0 &&
2491	    ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2492	    ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2493	    ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2494	    ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2495		state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2496		state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2497		state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2498		state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2499		state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2500	}
2501
2502	if (ulRfAgcMode == 2)
2503		state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2504
2505	if (ulEnvironment <= 2)
2506		state->app_env_default = (enum app_env)
2507		    (ulEnvironment);
2508	if (ulEnvironmentDiversity <= 2)
2509		state->app_env_diversity = (enum app_env)
2510		    (ulEnvironmentDiversity);
2511
2512	if (ulIFFilter == IFFILTER_DISCRETE) {
2513		/* discrete filter */
2514		state->noise_cal.cpOpt = 0;
2515		state->noise_cal.cpNexpOfs = 40;
2516		state->noise_cal.tdCal2k = -40;
2517		state->noise_cal.tdCal8k = -24;
2518	} else {
2519		/* SAW filter */
2520		state->noise_cal.cpOpt = 1;
2521		state->noise_cal.cpNexpOfs = 0;
2522		state->noise_cal.tdCal2k = -21;
2523		state->noise_cal.tdCal8k = -24;
2524	}
2525	state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2526
2527	state->chip_adr = (state->config.demod_address << 1) | 1;
2528	switch (ulHiI2cPatch) {
2529	case 1:
2530		state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2531		break;
2532	case 3:
2533		state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2534		break;
2535	default:
2536		state->m_HiI2cPatch = NULL;
2537	}
2538
2539	/* modify tuner and clock attributes */
2540	state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2541	/* expected system clock frequency in kHz */
2542	state->expected_sys_clock_freq = 48000;
2543	/* real system clock frequency in kHz */
2544	state->sys_clock_freq = 48000;
2545	state->osc_clock_freq = (u16) ulClock;
2546	state->osc_clock_deviation = 0;
2547	state->cscd_state = CSCD_INIT;
2548	state->drxd_state = DRXD_UNINITIALIZED;
2549
2550	state->PGA = 0;
2551	state->type_A = 0;
2552	state->tuner_mirrors = 0;
2553
2554	/* modify MPEG output attributes */
2555	state->insert_rs_byte = state->config.insert_rs_byte;
2556	state->enable_parallel = (ulSerialMode != 1);
2557
2558	/* Timing div, 250ns/Psys */
2559	/* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2560
2561	state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2562					  ulHiI2cDelay) / 1000;
2563	/* Bridge delay, uses oscilator clock */
2564	/* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2565	state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2566					    ulHiI2cBridgeDelay) / 1000;
2567
2568	state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2569	/* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2570	state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2571	return 0;
2572}
2573
2574static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
2575{
2576	int status = 0;
2577	u32 driverVersion;
2578
2579	if (state->init_done)
2580		return 0;
2581
2582	CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2583
2584	do {
2585		state->operation_mode = OM_Default;
2586
2587		status = SetDeviceTypeId(state);
2588		if (status < 0)
2589			break;
2590
2591		/* Apply I2c address patch to B1 */
2592		if (!state->type_A && state->m_HiI2cPatch) {
2593			status = WriteTable(state, state->m_HiI2cPatch);
2594			if (status < 0)
2595				break;
2596		}
2597
2598		if (state->type_A) {
2599			/* HI firmware patch for UIO readout,
2600			   avoid clearing of result register */
2601			status = Write16(state, 0x43012D, 0x047f, 0);
2602			if (status < 0)
2603				break;
2604		}
2605
2606		status = HI_ResetCommand(state);
2607		if (status < 0)
2608			break;
2609
2610		status = StopAllProcessors(state);
2611		if (status < 0)
2612			break;
2613		status = InitCC(state);
2614		if (status < 0)
2615			break;
2616
2617		state->osc_clock_deviation = 0;
2618
2619		if (state->config.osc_deviation)
2620			state->osc_clock_deviation =
2621			    state->config.osc_deviation(state->priv, 0, 0);
2622		{
2623			/* Handle clock deviation */
2624			s32 devB;
2625			s32 devA = (s32) (state->osc_clock_deviation) *
2626			    (s32) (state->expected_sys_clock_freq);
2627			/* deviation in kHz */
2628			s32 deviation = (devA / (1000000L));
2629			/* rounding, signed */
2630			if (devA > 0)
2631				devB = (2);
2632			else
2633				devB = (-2);
2634			if ((devB * (devA % 1000000L) > 1000000L)) {
2635				/* add +1 or -1 */
2636				deviation += (devB / 2);
2637			}
2638
2639			state->sys_clock_freq =
2640			    (u16) ((state->expected_sys_clock_freq) +
2641				   deviation);
2642		}
2643		status = InitHI(state);
2644		if (status < 0)
2645			break;
2646		status = InitAtomicRead(state);
2647		if (status < 0)
2648			break;
2649
2650		status = EnableAndResetMB(state);
2651		if (status < 0)
2652			break;
2653		if (state->type_A) {
2654			status = ResetCEFR(state);
2655			if (status < 0)
2656				break;
2657		}
2658		if (fw) {
2659			status = DownloadMicrocode(state, fw, fw_size);
2660			if (status < 0)
2661				break;
2662		} else {
2663			status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2664			if (status < 0)
2665				break;
2666		}
2667
2668		if (state->PGA) {
2669			state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2670			SetCfgPga(state, 0);	/* PGA = 0 dB */
2671		} else {
2672			state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2673		}
2674
2675		state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2676
2677		status = InitFE(state);
2678		if (status < 0)
2679			break;
2680		status = InitFT(state);
2681		if (status < 0)
2682			break;
2683		status = InitCP(state);
2684		if (status < 0)
2685			break;
2686		status = InitCE(state);
2687		if (status < 0)
2688			break;
2689		status = InitEQ(state);
2690		if (status < 0)
2691			break;
2692		status = InitEC(state);
2693		if (status < 0)
2694			break;
2695		status = InitSC(state);
2696		if (status < 0)
2697			break;
2698
2699		status = SetCfgIfAgc(state, &state->if_agc_cfg);
2700		if (status < 0)
2701			break;
2702		status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2703		if (status < 0)
2704			break;
2705
2706		state->cscd_state = CSCD_INIT;
2707		status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2708		if (status < 0)
2709			break;
2710		status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2711		if (status < 0)
2712			break;
2713
2714		driverVersion = (((VERSION_MAJOR / 10) << 4) +
2715				 (VERSION_MAJOR % 10)) << 24;
2716		driverVersion += (((VERSION_MINOR / 10) << 4) +
2717				  (VERSION_MINOR % 10)) << 16;
2718		driverVersion += ((VERSION_PATCH / 1000) << 12) +
2719		    ((VERSION_PATCH / 100) << 8) +
2720		    ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2721
2722		status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2723		if (status < 0)
2724			break;
2725
2726		status = StopOC(state);
2727		if (status < 0)
2728			break;
2729
2730		state->drxd_state = DRXD_STOPPED;
2731		state->init_done = 1;
2732		status = 0;
2733	} while (0);
2734	return status;
2735}
2736
2737static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
2738{
2739	DRX_GetLockStatus(state, pLockStatus);
2740
2741	/*if (*pLockStatus&DRX_LOCK_MPEG) */
2742	if (*pLockStatus & DRX_LOCK_FEC) {
2743		ConfigureMPEGOutput(state, 1);
2744		/* Get status again, in case we have MPEG lock now */
2745		/*DRX_GetLockStatus(state, pLockStatus); */
2746	}
2747
2748	return 0;
2749}
2750
2751/****************************************************************************/
2752/****************************************************************************/
2753/****************************************************************************/
2754
2755static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2756{
2757	struct drxd_state *state = fe->demodulator_priv;
2758	u32 value;
2759	int res;
2760
2761	res = ReadIFAgc(state, &value);
2762	if (res < 0)
2763		*strength = 0;
2764	else
2765		*strength = 0xffff - (value << 4);
2766	return 0;
2767}
2768
2769static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status)
2770{
2771	struct drxd_state *state = fe->demodulator_priv;
2772	u32 lock;
2773
2774	DRXD_status(state, &lock);
2775	*status = 0;
2776	/* No MPEG lock in V255 firmware, bug ? */
2777#if 1
2778	if (lock & DRX_LOCK_MPEG)
2779		*status |= FE_HAS_LOCK;
2780#else
2781	if (lock & DRX_LOCK_FEC)
2782		*status |= FE_HAS_LOCK;
2783#endif
2784	if (lock & DRX_LOCK_FEC)
2785		*status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2786	if (lock & DRX_LOCK_DEMOD)
2787		*status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2788
2789	return 0;
2790}
2791
2792static int drxd_init(struct dvb_frontend *fe)
2793{
2794	struct drxd_state *state = fe->demodulator_priv;
2795
2796	return DRXD_init(state, NULL, 0);
2797}
2798
2799static int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2800{
2801	struct drxd_state *state = fe->demodulator_priv;
2802
2803	if (state->config.disable_i2c_gate_ctrl == 1)
2804		return 0;
2805
2806	return DRX_ConfigureI2CBridge(state, onoff);
2807}
2808
2809static int drxd_get_tune_settings(struct dvb_frontend *fe,
2810				  struct dvb_frontend_tune_settings *sets)
2811{
2812	sets->min_delay_ms = 10000;
2813	sets->max_drift = 0;
2814	sets->step_size = 0;
2815	return 0;
2816}
2817
2818static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2819{
2820	*ber = 0;
2821	return 0;
2822}
2823
2824static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2825{
2826	*snr = 0;
2827	return 0;
2828}
2829
2830static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2831{
2832	*ucblocks = 0;
2833	return 0;
2834}
2835
2836static int drxd_sleep(struct dvb_frontend *fe)
2837{
2838	struct drxd_state *state = fe->demodulator_priv;
2839
2840	ConfigureMPEGOutput(state, 0);
2841	return 0;
2842}
2843
2844static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2845{
2846	return drxd_config_i2c(fe, enable);
2847}
2848
2849static int drxd_set_frontend(struct dvb_frontend *fe)
2850{
2851	struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2852	struct drxd_state *state = fe->demodulator_priv;
2853	s32 off = 0;
2854
2855	state->props = *p;
2856	DRX_Stop(state);
2857
2858	if (fe->ops.tuner_ops.set_params) {
2859		fe->ops.tuner_ops.set_params(fe);
2860		if (fe->ops.i2c_gate_ctrl)
2861			fe->ops.i2c_gate_ctrl(fe, 0);
2862	}
2863
2864	msleep(200);
2865
2866	return DRX_Start(state, off);
2867}
2868
2869static void drxd_release(struct dvb_frontend *fe)
2870{
2871	struct drxd_state *state = fe->demodulator_priv;
2872
2873	kfree(state);
2874}
2875
2876static const struct dvb_frontend_ops drxd_ops = {
2877	.delsys = { SYS_DVBT},
2878	.info = {
2879		 .name = "Micronas DRXD DVB-T",
2880		 .frequency_min_hz =  47125 * kHz,
2881		 .frequency_max_hz = 855250 * kHz,
2882		 .frequency_stepsize_hz = 166667,
2883		 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2884		 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2885		 FE_CAN_FEC_AUTO |
2886		 FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2887		 FE_CAN_QAM_AUTO |
2888		 FE_CAN_TRANSMISSION_MODE_AUTO |
2889		 FE_CAN_GUARD_INTERVAL_AUTO |
2890		 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2891
2892	.release = drxd_release,
2893	.init = drxd_init,
2894	.sleep = drxd_sleep,
2895	.i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2896
2897	.set_frontend = drxd_set_frontend,
2898	.get_tune_settings = drxd_get_tune_settings,
2899
2900	.read_status = drxd_read_status,
2901	.read_ber = drxd_read_ber,
2902	.read_signal_strength = drxd_read_signal_strength,
2903	.read_snr = drxd_read_snr,
2904	.read_ucblocks = drxd_read_ucblocks,
2905};
2906
2907struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2908				 void *priv, struct i2c_adapter *i2c,
2909				 struct device *dev)
2910{
2911	struct drxd_state *state = NULL;
2912
2913	state = kzalloc(sizeof(*state), GFP_KERNEL);
2914	if (!state)
2915		return NULL;
2916
2917	state->ops = drxd_ops;
2918	state->dev = dev;
2919	state->config = *config;
2920	state->i2c = i2c;
2921	state->priv = priv;
2922
2923	mutex_init(&state->mutex);
2924
2925	if (Read16(state, 0, NULL, 0) < 0)
2926		goto error;
2927
2928	state->frontend.ops = drxd_ops;
2929	state->frontend.demodulator_priv = state;
2930	ConfigureMPEGOutput(state, 0);
2931	/* add few initialization to allow gate control */
2932	CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2933	InitHI(state);
2934
2935	return &state->frontend;
2936
2937error:
2938	printk(KERN_ERR "drxd: not found\n");
2939	kfree(state);
2940	return NULL;
2941}
2942EXPORT_SYMBOL_GPL(drxd_attach);
2943
2944MODULE_DESCRIPTION("DRXD driver");
2945MODULE_AUTHOR("Micronas");
2946MODULE_LICENSE("GPL");
2947