1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid5.c : Multiple Devices driver for Linux
4 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 *	   Copyright (C) 1999, 2000 Ingo Molnar
6 *	   Copyright (C) 2002, 2003 H. Peter Anvin
7 *
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
11 */
12
13/*
14 * BITMAP UNPLUGGING:
15 *
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
18 * explanation.
19 *
20 * We group bitmap updates into batches.  Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
24 *    new additions.
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 *   we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
31 *   batch.
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
35 * miss any bits.
36 */
37
38#include <linux/blkdev.h>
39#include <linux/delay.h>
40#include <linux/kthread.h>
41#include <linux/raid/pq.h>
42#include <linux/async_tx.h>
43#include <linux/module.h>
44#include <linux/async.h>
45#include <linux/seq_file.h>
46#include <linux/cpu.h>
47#include <linux/slab.h>
48#include <linux/ratelimit.h>
49#include <linux/nodemask.h>
50
51#include <trace/events/block.h>
52#include <linux/list_sort.h>
53
54#include "md.h"
55#include "raid5.h"
56#include "raid0.h"
57#include "md-bitmap.h"
58#include "raid5-log.h"
59
60#define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
61
62#define cpu_to_group(cpu) cpu_to_node(cpu)
63#define ANY_GROUP NUMA_NO_NODE
64
65#define RAID5_MAX_REQ_STRIPES 256
66
67static bool devices_handle_discard_safely = false;
68module_param(devices_handle_discard_safely, bool, 0644);
69MODULE_PARM_DESC(devices_handle_discard_safely,
70		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
71static struct workqueue_struct *raid5_wq;
72
73static void raid5_quiesce(struct mddev *mddev, int quiesce);
74
75static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
76{
77	int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
78	return &conf->stripe_hashtbl[hash];
79}
80
81static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
82{
83	return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
84}
85
86static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
87	__acquires(&conf->device_lock)
88{
89	spin_lock_irq(conf->hash_locks + hash);
90	spin_lock(&conf->device_lock);
91}
92
93static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
94	__releases(&conf->device_lock)
95{
96	spin_unlock(&conf->device_lock);
97	spin_unlock_irq(conf->hash_locks + hash);
98}
99
100static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
101	__acquires(&conf->device_lock)
102{
103	int i;
104	spin_lock_irq(conf->hash_locks);
105	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
106		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
107	spin_lock(&conf->device_lock);
108}
109
110static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
111	__releases(&conf->device_lock)
112{
113	int i;
114	spin_unlock(&conf->device_lock);
115	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
116		spin_unlock(conf->hash_locks + i);
117	spin_unlock_irq(conf->hash_locks);
118}
119
120/* Find first data disk in a raid6 stripe */
121static inline int raid6_d0(struct stripe_head *sh)
122{
123	if (sh->ddf_layout)
124		/* ddf always start from first device */
125		return 0;
126	/* md starts just after Q block */
127	if (sh->qd_idx == sh->disks - 1)
128		return 0;
129	else
130		return sh->qd_idx + 1;
131}
132static inline int raid6_next_disk(int disk, int raid_disks)
133{
134	disk++;
135	return (disk < raid_disks) ? disk : 0;
136}
137
138/* When walking through the disks in a raid5, starting at raid6_d0,
139 * We need to map each disk to a 'slot', where the data disks are slot
140 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
141 * is raid_disks-1.  This help does that mapping.
142 */
143static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
144			     int *count, int syndrome_disks)
145{
146	int slot = *count;
147
148	if (sh->ddf_layout)
149		(*count)++;
150	if (idx == sh->pd_idx)
151		return syndrome_disks;
152	if (idx == sh->qd_idx)
153		return syndrome_disks + 1;
154	if (!sh->ddf_layout)
155		(*count)++;
156	return slot;
157}
158
159static void print_raid5_conf (struct r5conf *conf);
160
161static int stripe_operations_active(struct stripe_head *sh)
162{
163	return sh->check_state || sh->reconstruct_state ||
164	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
165	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
166}
167
168static bool stripe_is_lowprio(struct stripe_head *sh)
169{
170	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
171		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
172	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
173}
174
175static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
176	__must_hold(&sh->raid_conf->device_lock)
177{
178	struct r5conf *conf = sh->raid_conf;
179	struct r5worker_group *group;
180	int thread_cnt;
181	int i, cpu = sh->cpu;
182
183	if (!cpu_online(cpu)) {
184		cpu = cpumask_any(cpu_online_mask);
185		sh->cpu = cpu;
186	}
187
188	if (list_empty(&sh->lru)) {
189		struct r5worker_group *group;
190		group = conf->worker_groups + cpu_to_group(cpu);
191		if (stripe_is_lowprio(sh))
192			list_add_tail(&sh->lru, &group->loprio_list);
193		else
194			list_add_tail(&sh->lru, &group->handle_list);
195		group->stripes_cnt++;
196		sh->group = group;
197	}
198
199	if (conf->worker_cnt_per_group == 0) {
200		md_wakeup_thread(conf->mddev->thread);
201		return;
202	}
203
204	group = conf->worker_groups + cpu_to_group(sh->cpu);
205
206	group->workers[0].working = true;
207	/* at least one worker should run to avoid race */
208	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
209
210	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
211	/* wakeup more workers */
212	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
213		if (group->workers[i].working == false) {
214			group->workers[i].working = true;
215			queue_work_on(sh->cpu, raid5_wq,
216				      &group->workers[i].work);
217			thread_cnt--;
218		}
219	}
220}
221
222static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
223			      struct list_head *temp_inactive_list)
224	__must_hold(&conf->device_lock)
225{
226	int i;
227	int injournal = 0;	/* number of date pages with R5_InJournal */
228
229	BUG_ON(!list_empty(&sh->lru));
230	BUG_ON(atomic_read(&conf->active_stripes)==0);
231
232	if (r5c_is_writeback(conf->log))
233		for (i = sh->disks; i--; )
234			if (test_bit(R5_InJournal, &sh->dev[i].flags))
235				injournal++;
236	/*
237	 * In the following cases, the stripe cannot be released to cached
238	 * lists. Therefore, we make the stripe write out and set
239	 * STRIPE_HANDLE:
240	 *   1. when quiesce in r5c write back;
241	 *   2. when resync is requested fot the stripe.
242	 */
243	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
244	    (conf->quiesce && r5c_is_writeback(conf->log) &&
245	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
246		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
247			r5c_make_stripe_write_out(sh);
248		set_bit(STRIPE_HANDLE, &sh->state);
249	}
250
251	if (test_bit(STRIPE_HANDLE, &sh->state)) {
252		if (test_bit(STRIPE_DELAYED, &sh->state) &&
253		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
254			list_add_tail(&sh->lru, &conf->delayed_list);
255		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
256			   sh->bm_seq - conf->seq_write > 0)
257			list_add_tail(&sh->lru, &conf->bitmap_list);
258		else {
259			clear_bit(STRIPE_DELAYED, &sh->state);
260			clear_bit(STRIPE_BIT_DELAY, &sh->state);
261			if (conf->worker_cnt_per_group == 0) {
262				if (stripe_is_lowprio(sh))
263					list_add_tail(&sh->lru,
264							&conf->loprio_list);
265				else
266					list_add_tail(&sh->lru,
267							&conf->handle_list);
268			} else {
269				raid5_wakeup_stripe_thread(sh);
270				return;
271			}
272		}
273		md_wakeup_thread(conf->mddev->thread);
274	} else {
275		BUG_ON(stripe_operations_active(sh));
276		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
277			if (atomic_dec_return(&conf->preread_active_stripes)
278			    < IO_THRESHOLD)
279				md_wakeup_thread(conf->mddev->thread);
280		atomic_dec(&conf->active_stripes);
281		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
282			if (!r5c_is_writeback(conf->log))
283				list_add_tail(&sh->lru, temp_inactive_list);
284			else {
285				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
286				if (injournal == 0)
287					list_add_tail(&sh->lru, temp_inactive_list);
288				else if (injournal == conf->raid_disks - conf->max_degraded) {
289					/* full stripe */
290					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
291						atomic_inc(&conf->r5c_cached_full_stripes);
292					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
293						atomic_dec(&conf->r5c_cached_partial_stripes);
294					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
295					r5c_check_cached_full_stripe(conf);
296				} else
297					/*
298					 * STRIPE_R5C_PARTIAL_STRIPE is set in
299					 * r5c_try_caching_write(). No need to
300					 * set it again.
301					 */
302					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
303			}
304		}
305	}
306}
307
308static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
309			     struct list_head *temp_inactive_list)
310	__must_hold(&conf->device_lock)
311{
312	if (atomic_dec_and_test(&sh->count))
313		do_release_stripe(conf, sh, temp_inactive_list);
314}
315
316/*
317 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
318 *
319 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
320 * given time. Adding stripes only takes device lock, while deleting stripes
321 * only takes hash lock.
322 */
323static void release_inactive_stripe_list(struct r5conf *conf,
324					 struct list_head *temp_inactive_list,
325					 int hash)
326{
327	int size;
328	bool do_wakeup = false;
329	unsigned long flags;
330
331	if (hash == NR_STRIPE_HASH_LOCKS) {
332		size = NR_STRIPE_HASH_LOCKS;
333		hash = NR_STRIPE_HASH_LOCKS - 1;
334	} else
335		size = 1;
336	while (size) {
337		struct list_head *list = &temp_inactive_list[size - 1];
338
339		/*
340		 * We don't hold any lock here yet, raid5_get_active_stripe() might
341		 * remove stripes from the list
342		 */
343		if (!list_empty_careful(list)) {
344			spin_lock_irqsave(conf->hash_locks + hash, flags);
345			if (list_empty(conf->inactive_list + hash) &&
346			    !list_empty(list))
347				atomic_dec(&conf->empty_inactive_list_nr);
348			list_splice_tail_init(list, conf->inactive_list + hash);
349			do_wakeup = true;
350			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
351		}
352		size--;
353		hash--;
354	}
355
356	if (do_wakeup) {
357		wake_up(&conf->wait_for_stripe);
358		if (atomic_read(&conf->active_stripes) == 0)
359			wake_up(&conf->wait_for_quiescent);
360		if (conf->retry_read_aligned)
361			md_wakeup_thread(conf->mddev->thread);
362	}
363}
364
365static int release_stripe_list(struct r5conf *conf,
366			       struct list_head *temp_inactive_list)
367	__must_hold(&conf->device_lock)
368{
369	struct stripe_head *sh, *t;
370	int count = 0;
371	struct llist_node *head;
372
373	head = llist_del_all(&conf->released_stripes);
374	head = llist_reverse_order(head);
375	llist_for_each_entry_safe(sh, t, head, release_list) {
376		int hash;
377
378		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
379		smp_mb();
380		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
381		/*
382		 * Don't worry the bit is set here, because if the bit is set
383		 * again, the count is always > 1. This is true for
384		 * STRIPE_ON_UNPLUG_LIST bit too.
385		 */
386		hash = sh->hash_lock_index;
387		__release_stripe(conf, sh, &temp_inactive_list[hash]);
388		count++;
389	}
390
391	return count;
392}
393
394void raid5_release_stripe(struct stripe_head *sh)
395{
396	struct r5conf *conf = sh->raid_conf;
397	unsigned long flags;
398	struct list_head list;
399	int hash;
400	bool wakeup;
401
402	/* Avoid release_list until the last reference.
403	 */
404	if (atomic_add_unless(&sh->count, -1, 1))
405		return;
406
407	if (unlikely(!conf->mddev->thread) ||
408		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
409		goto slow_path;
410	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
411	if (wakeup)
412		md_wakeup_thread(conf->mddev->thread);
413	return;
414slow_path:
415	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
416	if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
417		INIT_LIST_HEAD(&list);
418		hash = sh->hash_lock_index;
419		do_release_stripe(conf, sh, &list);
420		spin_unlock_irqrestore(&conf->device_lock, flags);
421		release_inactive_stripe_list(conf, &list, hash);
422	}
423}
424
425static inline void remove_hash(struct stripe_head *sh)
426{
427	pr_debug("remove_hash(), stripe %llu\n",
428		(unsigned long long)sh->sector);
429
430	hlist_del_init(&sh->hash);
431}
432
433static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
434{
435	struct hlist_head *hp = stripe_hash(conf, sh->sector);
436
437	pr_debug("insert_hash(), stripe %llu\n",
438		(unsigned long long)sh->sector);
439
440	hlist_add_head(&sh->hash, hp);
441}
442
443/* find an idle stripe, make sure it is unhashed, and return it. */
444static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
445{
446	struct stripe_head *sh = NULL;
447	struct list_head *first;
448
449	if (list_empty(conf->inactive_list + hash))
450		goto out;
451	first = (conf->inactive_list + hash)->next;
452	sh = list_entry(first, struct stripe_head, lru);
453	list_del_init(first);
454	remove_hash(sh);
455	atomic_inc(&conf->active_stripes);
456	BUG_ON(hash != sh->hash_lock_index);
457	if (list_empty(conf->inactive_list + hash))
458		atomic_inc(&conf->empty_inactive_list_nr);
459out:
460	return sh;
461}
462
463#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
464static void free_stripe_pages(struct stripe_head *sh)
465{
466	int i;
467	struct page *p;
468
469	/* Have not allocate page pool */
470	if (!sh->pages)
471		return;
472
473	for (i = 0; i < sh->nr_pages; i++) {
474		p = sh->pages[i];
475		if (p)
476			put_page(p);
477		sh->pages[i] = NULL;
478	}
479}
480
481static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
482{
483	int i;
484	struct page *p;
485
486	for (i = 0; i < sh->nr_pages; i++) {
487		/* The page have allocated. */
488		if (sh->pages[i])
489			continue;
490
491		p = alloc_page(gfp);
492		if (!p) {
493			free_stripe_pages(sh);
494			return -ENOMEM;
495		}
496		sh->pages[i] = p;
497	}
498	return 0;
499}
500
501static int
502init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
503{
504	int nr_pages, cnt;
505
506	if (sh->pages)
507		return 0;
508
509	/* Each of the sh->dev[i] need one conf->stripe_size */
510	cnt = PAGE_SIZE / conf->stripe_size;
511	nr_pages = (disks + cnt - 1) / cnt;
512
513	sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
514	if (!sh->pages)
515		return -ENOMEM;
516	sh->nr_pages = nr_pages;
517	sh->stripes_per_page = cnt;
518	return 0;
519}
520#endif
521
522static void shrink_buffers(struct stripe_head *sh)
523{
524	int i;
525	int num = sh->raid_conf->pool_size;
526
527#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
528	for (i = 0; i < num ; i++) {
529		struct page *p;
530
531		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
532		p = sh->dev[i].page;
533		if (!p)
534			continue;
535		sh->dev[i].page = NULL;
536		put_page(p);
537	}
538#else
539	for (i = 0; i < num; i++)
540		sh->dev[i].page = NULL;
541	free_stripe_pages(sh); /* Free pages */
542#endif
543}
544
545static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
546{
547	int i;
548	int num = sh->raid_conf->pool_size;
549
550#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
551	for (i = 0; i < num; i++) {
552		struct page *page;
553
554		if (!(page = alloc_page(gfp))) {
555			return 1;
556		}
557		sh->dev[i].page = page;
558		sh->dev[i].orig_page = page;
559		sh->dev[i].offset = 0;
560	}
561#else
562	if (alloc_stripe_pages(sh, gfp))
563		return -ENOMEM;
564
565	for (i = 0; i < num; i++) {
566		sh->dev[i].page = raid5_get_dev_page(sh, i);
567		sh->dev[i].orig_page = sh->dev[i].page;
568		sh->dev[i].offset = raid5_get_page_offset(sh, i);
569	}
570#endif
571	return 0;
572}
573
574static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
575			    struct stripe_head *sh);
576
577static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
578{
579	struct r5conf *conf = sh->raid_conf;
580	int i, seq;
581
582	BUG_ON(atomic_read(&sh->count) != 0);
583	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
584	BUG_ON(stripe_operations_active(sh));
585	BUG_ON(sh->batch_head);
586
587	pr_debug("init_stripe called, stripe %llu\n",
588		(unsigned long long)sector);
589retry:
590	seq = read_seqcount_begin(&conf->gen_lock);
591	sh->generation = conf->generation - previous;
592	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
593	sh->sector = sector;
594	stripe_set_idx(sector, conf, previous, sh);
595	sh->state = 0;
596
597	for (i = sh->disks; i--; ) {
598		struct r5dev *dev = &sh->dev[i];
599
600		if (dev->toread || dev->read || dev->towrite || dev->written ||
601		    test_bit(R5_LOCKED, &dev->flags)) {
602			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
603			       (unsigned long long)sh->sector, i, dev->toread,
604			       dev->read, dev->towrite, dev->written,
605			       test_bit(R5_LOCKED, &dev->flags));
606			WARN_ON(1);
607		}
608		dev->flags = 0;
609		dev->sector = raid5_compute_blocknr(sh, i, previous);
610	}
611	if (read_seqcount_retry(&conf->gen_lock, seq))
612		goto retry;
613	sh->overwrite_disks = 0;
614	insert_hash(conf, sh);
615	sh->cpu = smp_processor_id();
616	set_bit(STRIPE_BATCH_READY, &sh->state);
617}
618
619static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
620					 short generation)
621{
622	struct stripe_head *sh;
623
624	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
625	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
626		if (sh->sector == sector && sh->generation == generation)
627			return sh;
628	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
629	return NULL;
630}
631
632static struct stripe_head *find_get_stripe(struct r5conf *conf,
633		sector_t sector, short generation, int hash)
634{
635	int inc_empty_inactive_list_flag;
636	struct stripe_head *sh;
637
638	sh = __find_stripe(conf, sector, generation);
639	if (!sh)
640		return NULL;
641
642	if (atomic_inc_not_zero(&sh->count))
643		return sh;
644
645	/*
646	 * Slow path. The reference count is zero which means the stripe must
647	 * be on a list (sh->lru). Must remove the stripe from the list that
648	 * references it with the device_lock held.
649	 */
650
651	spin_lock(&conf->device_lock);
652	if (!atomic_read(&sh->count)) {
653		if (!test_bit(STRIPE_HANDLE, &sh->state))
654			atomic_inc(&conf->active_stripes);
655		BUG_ON(list_empty(&sh->lru) &&
656		       !test_bit(STRIPE_EXPANDING, &sh->state));
657		inc_empty_inactive_list_flag = 0;
658		if (!list_empty(conf->inactive_list + hash))
659			inc_empty_inactive_list_flag = 1;
660		list_del_init(&sh->lru);
661		if (list_empty(conf->inactive_list + hash) &&
662		    inc_empty_inactive_list_flag)
663			atomic_inc(&conf->empty_inactive_list_nr);
664		if (sh->group) {
665			sh->group->stripes_cnt--;
666			sh->group = NULL;
667		}
668	}
669	atomic_inc(&sh->count);
670	spin_unlock(&conf->device_lock);
671
672	return sh;
673}
674
675/*
676 * Need to check if array has failed when deciding whether to:
677 *  - start an array
678 *  - remove non-faulty devices
679 *  - add a spare
680 *  - allow a reshape
681 * This determination is simple when no reshape is happening.
682 * However if there is a reshape, we need to carefully check
683 * both the before and after sections.
684 * This is because some failed devices may only affect one
685 * of the two sections, and some non-in_sync devices may
686 * be insync in the section most affected by failed devices.
687 *
688 * Most calls to this function hold &conf->device_lock. Calls
689 * in raid5_run() do not require the lock as no other threads
690 * have been started yet.
691 */
692int raid5_calc_degraded(struct r5conf *conf)
693{
694	int degraded, degraded2;
695	int i;
696
697	degraded = 0;
698	for (i = 0; i < conf->previous_raid_disks; i++) {
699		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
700
701		if (rdev && test_bit(Faulty, &rdev->flags))
702			rdev = READ_ONCE(conf->disks[i].replacement);
703		if (!rdev || test_bit(Faulty, &rdev->flags))
704			degraded++;
705		else if (test_bit(In_sync, &rdev->flags))
706			;
707		else
708			/* not in-sync or faulty.
709			 * If the reshape increases the number of devices,
710			 * this is being recovered by the reshape, so
711			 * this 'previous' section is not in_sync.
712			 * If the number of devices is being reduced however,
713			 * the device can only be part of the array if
714			 * we are reverting a reshape, so this section will
715			 * be in-sync.
716			 */
717			if (conf->raid_disks >= conf->previous_raid_disks)
718				degraded++;
719	}
720	if (conf->raid_disks == conf->previous_raid_disks)
721		return degraded;
722	degraded2 = 0;
723	for (i = 0; i < conf->raid_disks; i++) {
724		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
725
726		if (rdev && test_bit(Faulty, &rdev->flags))
727			rdev = READ_ONCE(conf->disks[i].replacement);
728		if (!rdev || test_bit(Faulty, &rdev->flags))
729			degraded2++;
730		else if (test_bit(In_sync, &rdev->flags))
731			;
732		else
733			/* not in-sync or faulty.
734			 * If reshape increases the number of devices, this
735			 * section has already been recovered, else it
736			 * almost certainly hasn't.
737			 */
738			if (conf->raid_disks <= conf->previous_raid_disks)
739				degraded2++;
740	}
741	if (degraded2 > degraded)
742		return degraded2;
743	return degraded;
744}
745
746static bool has_failed(struct r5conf *conf)
747{
748	int degraded = conf->mddev->degraded;
749
750	if (test_bit(MD_BROKEN, &conf->mddev->flags))
751		return true;
752
753	if (conf->mddev->reshape_position != MaxSector)
754		degraded = raid5_calc_degraded(conf);
755
756	return degraded > conf->max_degraded;
757}
758
759enum stripe_result {
760	STRIPE_SUCCESS = 0,
761	STRIPE_RETRY,
762	STRIPE_SCHEDULE_AND_RETRY,
763	STRIPE_FAIL,
764	STRIPE_WAIT_RESHAPE,
765};
766
767struct stripe_request_ctx {
768	/* a reference to the last stripe_head for batching */
769	struct stripe_head *batch_last;
770
771	/* first sector in the request */
772	sector_t first_sector;
773
774	/* last sector in the request */
775	sector_t last_sector;
776
777	/*
778	 * bitmap to track stripe sectors that have been added to stripes
779	 * add one to account for unaligned requests
780	 */
781	DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1);
782
783	/* the request had REQ_PREFLUSH, cleared after the first stripe_head */
784	bool do_flush;
785};
786
787/*
788 * Block until another thread clears R5_INACTIVE_BLOCKED or
789 * there are fewer than 3/4 the maximum number of active stripes
790 * and there is an inactive stripe available.
791 */
792static bool is_inactive_blocked(struct r5conf *conf, int hash)
793{
794	if (list_empty(conf->inactive_list + hash))
795		return false;
796
797	if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
798		return true;
799
800	return (atomic_read(&conf->active_stripes) <
801		(conf->max_nr_stripes * 3 / 4));
802}
803
804struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
805		struct stripe_request_ctx *ctx, sector_t sector,
806		unsigned int flags)
807{
808	struct stripe_head *sh;
809	int hash = stripe_hash_locks_hash(conf, sector);
810	int previous = !!(flags & R5_GAS_PREVIOUS);
811
812	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
813
814	spin_lock_irq(conf->hash_locks + hash);
815
816	for (;;) {
817		if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) {
818			/*
819			 * Must release the reference to batch_last before
820			 * waiting, on quiesce, otherwise the batch_last will
821			 * hold a reference to a stripe and raid5_quiesce()
822			 * will deadlock waiting for active_stripes to go to
823			 * zero.
824			 */
825			if (ctx && ctx->batch_last) {
826				raid5_release_stripe(ctx->batch_last);
827				ctx->batch_last = NULL;
828			}
829
830			wait_event_lock_irq(conf->wait_for_quiescent,
831					    !conf->quiesce,
832					    *(conf->hash_locks + hash));
833		}
834
835		sh = find_get_stripe(conf, sector, conf->generation - previous,
836				     hash);
837		if (sh)
838			break;
839
840		if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
841			sh = get_free_stripe(conf, hash);
842			if (sh) {
843				r5c_check_stripe_cache_usage(conf);
844				init_stripe(sh, sector, previous);
845				atomic_inc(&sh->count);
846				break;
847			}
848
849			if (!test_bit(R5_DID_ALLOC, &conf->cache_state))
850				set_bit(R5_ALLOC_MORE, &conf->cache_state);
851		}
852
853		if (flags & R5_GAS_NOBLOCK)
854			break;
855
856		set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
857		r5l_wake_reclaim(conf->log, 0);
858
859		/* release batch_last before wait to avoid risk of deadlock */
860		if (ctx && ctx->batch_last) {
861			raid5_release_stripe(ctx->batch_last);
862			ctx->batch_last = NULL;
863		}
864
865		wait_event_lock_irq(conf->wait_for_stripe,
866				    is_inactive_blocked(conf, hash),
867				    *(conf->hash_locks + hash));
868		clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
869	}
870
871	spin_unlock_irq(conf->hash_locks + hash);
872	return sh;
873}
874
875static bool is_full_stripe_write(struct stripe_head *sh)
876{
877	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
878	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
879}
880
881static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
882		__acquires(&sh1->stripe_lock)
883		__acquires(&sh2->stripe_lock)
884{
885	if (sh1 > sh2) {
886		spin_lock_irq(&sh2->stripe_lock);
887		spin_lock_nested(&sh1->stripe_lock, 1);
888	} else {
889		spin_lock_irq(&sh1->stripe_lock);
890		spin_lock_nested(&sh2->stripe_lock, 1);
891	}
892}
893
894static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
895		__releases(&sh1->stripe_lock)
896		__releases(&sh2->stripe_lock)
897{
898	spin_unlock(&sh1->stripe_lock);
899	spin_unlock_irq(&sh2->stripe_lock);
900}
901
902/* Only freshly new full stripe normal write stripe can be added to a batch list */
903static bool stripe_can_batch(struct stripe_head *sh)
904{
905	struct r5conf *conf = sh->raid_conf;
906
907	if (raid5_has_log(conf) || raid5_has_ppl(conf))
908		return false;
909	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
910		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
911		is_full_stripe_write(sh);
912}
913
914/* we only do back search */
915static void stripe_add_to_batch_list(struct r5conf *conf,
916		struct stripe_head *sh, struct stripe_head *last_sh)
917{
918	struct stripe_head *head;
919	sector_t head_sector, tmp_sec;
920	int hash;
921	int dd_idx;
922
923	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
924	tmp_sec = sh->sector;
925	if (!sector_div(tmp_sec, conf->chunk_sectors))
926		return;
927	head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
928
929	if (last_sh && head_sector == last_sh->sector) {
930		head = last_sh;
931		atomic_inc(&head->count);
932	} else {
933		hash = stripe_hash_locks_hash(conf, head_sector);
934		spin_lock_irq(conf->hash_locks + hash);
935		head = find_get_stripe(conf, head_sector, conf->generation,
936				       hash);
937		spin_unlock_irq(conf->hash_locks + hash);
938		if (!head)
939			return;
940		if (!stripe_can_batch(head))
941			goto out;
942	}
943
944	lock_two_stripes(head, sh);
945	/* clear_batch_ready clear the flag */
946	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
947		goto unlock_out;
948
949	if (sh->batch_head)
950		goto unlock_out;
951
952	dd_idx = 0;
953	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
954		dd_idx++;
955	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
956	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
957		goto unlock_out;
958
959	if (head->batch_head) {
960		spin_lock(&head->batch_head->batch_lock);
961		/* This batch list is already running */
962		if (!stripe_can_batch(head)) {
963			spin_unlock(&head->batch_head->batch_lock);
964			goto unlock_out;
965		}
966		/*
967		 * We must assign batch_head of this stripe within the
968		 * batch_lock, otherwise clear_batch_ready of batch head
969		 * stripe could clear BATCH_READY bit of this stripe and
970		 * this stripe->batch_head doesn't get assigned, which
971		 * could confuse clear_batch_ready for this stripe
972		 */
973		sh->batch_head = head->batch_head;
974
975		/*
976		 * at this point, head's BATCH_READY could be cleared, but we
977		 * can still add the stripe to batch list
978		 */
979		list_add(&sh->batch_list, &head->batch_list);
980		spin_unlock(&head->batch_head->batch_lock);
981	} else {
982		head->batch_head = head;
983		sh->batch_head = head->batch_head;
984		spin_lock(&head->batch_lock);
985		list_add_tail(&sh->batch_list, &head->batch_list);
986		spin_unlock(&head->batch_lock);
987	}
988
989	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
990		if (atomic_dec_return(&conf->preread_active_stripes)
991		    < IO_THRESHOLD)
992			md_wakeup_thread(conf->mddev->thread);
993
994	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
995		int seq = sh->bm_seq;
996		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
997		    sh->batch_head->bm_seq > seq)
998			seq = sh->batch_head->bm_seq;
999		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
1000		sh->batch_head->bm_seq = seq;
1001	}
1002
1003	atomic_inc(&sh->count);
1004unlock_out:
1005	unlock_two_stripes(head, sh);
1006out:
1007	raid5_release_stripe(head);
1008}
1009
1010/* Determine if 'data_offset' or 'new_data_offset' should be used
1011 * in this stripe_head.
1012 */
1013static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
1014{
1015	sector_t progress = conf->reshape_progress;
1016	/* Need a memory barrier to make sure we see the value
1017	 * of conf->generation, or ->data_offset that was set before
1018	 * reshape_progress was updated.
1019	 */
1020	smp_rmb();
1021	if (progress == MaxSector)
1022		return 0;
1023	if (sh->generation == conf->generation - 1)
1024		return 0;
1025	/* We are in a reshape, and this is a new-generation stripe,
1026	 * so use new_data_offset.
1027	 */
1028	return 1;
1029}
1030
1031static void dispatch_bio_list(struct bio_list *tmp)
1032{
1033	struct bio *bio;
1034
1035	while ((bio = bio_list_pop(tmp)))
1036		submit_bio_noacct(bio);
1037}
1038
1039static int cmp_stripe(void *priv, const struct list_head *a,
1040		      const struct list_head *b)
1041{
1042	const struct r5pending_data *da = list_entry(a,
1043				struct r5pending_data, sibling);
1044	const struct r5pending_data *db = list_entry(b,
1045				struct r5pending_data, sibling);
1046	if (da->sector > db->sector)
1047		return 1;
1048	if (da->sector < db->sector)
1049		return -1;
1050	return 0;
1051}
1052
1053static void dispatch_defer_bios(struct r5conf *conf, int target,
1054				struct bio_list *list)
1055{
1056	struct r5pending_data *data;
1057	struct list_head *first, *next = NULL;
1058	int cnt = 0;
1059
1060	if (conf->pending_data_cnt == 0)
1061		return;
1062
1063	list_sort(NULL, &conf->pending_list, cmp_stripe);
1064
1065	first = conf->pending_list.next;
1066
1067	/* temporarily move the head */
1068	if (conf->next_pending_data)
1069		list_move_tail(&conf->pending_list,
1070				&conf->next_pending_data->sibling);
1071
1072	while (!list_empty(&conf->pending_list)) {
1073		data = list_first_entry(&conf->pending_list,
1074			struct r5pending_data, sibling);
1075		if (&data->sibling == first)
1076			first = data->sibling.next;
1077		next = data->sibling.next;
1078
1079		bio_list_merge(list, &data->bios);
1080		list_move(&data->sibling, &conf->free_list);
1081		cnt++;
1082		if (cnt >= target)
1083			break;
1084	}
1085	conf->pending_data_cnt -= cnt;
1086	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1087
1088	if (next != &conf->pending_list)
1089		conf->next_pending_data = list_entry(next,
1090				struct r5pending_data, sibling);
1091	else
1092		conf->next_pending_data = NULL;
1093	/* list isn't empty */
1094	if (first != &conf->pending_list)
1095		list_move_tail(&conf->pending_list, first);
1096}
1097
1098static void flush_deferred_bios(struct r5conf *conf)
1099{
1100	struct bio_list tmp = BIO_EMPTY_LIST;
1101
1102	if (conf->pending_data_cnt == 0)
1103		return;
1104
1105	spin_lock(&conf->pending_bios_lock);
1106	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1107	BUG_ON(conf->pending_data_cnt != 0);
1108	spin_unlock(&conf->pending_bios_lock);
1109
1110	dispatch_bio_list(&tmp);
1111}
1112
1113static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1114				struct bio_list *bios)
1115{
1116	struct bio_list tmp = BIO_EMPTY_LIST;
1117	struct r5pending_data *ent;
1118
1119	spin_lock(&conf->pending_bios_lock);
1120	ent = list_first_entry(&conf->free_list, struct r5pending_data,
1121							sibling);
1122	list_move_tail(&ent->sibling, &conf->pending_list);
1123	ent->sector = sector;
1124	bio_list_init(&ent->bios);
1125	bio_list_merge(&ent->bios, bios);
1126	conf->pending_data_cnt++;
1127	if (conf->pending_data_cnt >= PENDING_IO_MAX)
1128		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1129
1130	spin_unlock(&conf->pending_bios_lock);
1131
1132	dispatch_bio_list(&tmp);
1133}
1134
1135static void
1136raid5_end_read_request(struct bio *bi);
1137static void
1138raid5_end_write_request(struct bio *bi);
1139
1140static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1141{
1142	struct r5conf *conf = sh->raid_conf;
1143	int i, disks = sh->disks;
1144	struct stripe_head *head_sh = sh;
1145	struct bio_list pending_bios = BIO_EMPTY_LIST;
1146	struct r5dev *dev;
1147	bool should_defer;
1148
1149	might_sleep();
1150
1151	if (log_stripe(sh, s) == 0)
1152		return;
1153
1154	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1155
1156	for (i = disks; i--; ) {
1157		enum req_op op;
1158		blk_opf_t op_flags = 0;
1159		int replace_only = 0;
1160		struct bio *bi, *rbi;
1161		struct md_rdev *rdev, *rrdev = NULL;
1162
1163		sh = head_sh;
1164		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1165			op = REQ_OP_WRITE;
1166			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1167				op_flags = REQ_FUA;
1168			if (test_bit(R5_Discard, &sh->dev[i].flags))
1169				op = REQ_OP_DISCARD;
1170		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1171			op = REQ_OP_READ;
1172		else if (test_and_clear_bit(R5_WantReplace,
1173					    &sh->dev[i].flags)) {
1174			op = REQ_OP_WRITE;
1175			replace_only = 1;
1176		} else
1177			continue;
1178		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1179			op_flags |= REQ_SYNC;
1180
1181again:
1182		dev = &sh->dev[i];
1183		bi = &dev->req;
1184		rbi = &dev->rreq; /* For writing to replacement */
1185
1186		rdev = conf->disks[i].rdev;
1187		rrdev = conf->disks[i].replacement;
1188		if (op_is_write(op)) {
1189			if (replace_only)
1190				rdev = NULL;
1191			if (rdev == rrdev)
1192				/* We raced and saw duplicates */
1193				rrdev = NULL;
1194		} else {
1195			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1196				rdev = rrdev;
1197			rrdev = NULL;
1198		}
1199
1200		if (rdev && test_bit(Faulty, &rdev->flags))
1201			rdev = NULL;
1202		if (rdev)
1203			atomic_inc(&rdev->nr_pending);
1204		if (rrdev && test_bit(Faulty, &rrdev->flags))
1205			rrdev = NULL;
1206		if (rrdev)
1207			atomic_inc(&rrdev->nr_pending);
1208
1209		/* We have already checked bad blocks for reads.  Now
1210		 * need to check for writes.  We never accept write errors
1211		 * on the replacement, so we don't to check rrdev.
1212		 */
1213		while (op_is_write(op) && rdev &&
1214		       test_bit(WriteErrorSeen, &rdev->flags)) {
1215			int bad = rdev_has_badblock(rdev, sh->sector,
1216						    RAID5_STRIPE_SECTORS(conf));
1217			if (!bad)
1218				break;
1219
1220			if (bad < 0) {
1221				set_bit(BlockedBadBlocks, &rdev->flags);
1222				if (!conf->mddev->external &&
1223				    conf->mddev->sb_flags) {
1224					/* It is very unlikely, but we might
1225					 * still need to write out the
1226					 * bad block log - better give it
1227					 * a chance*/
1228					md_check_recovery(conf->mddev);
1229				}
1230				/*
1231				 * Because md_wait_for_blocked_rdev
1232				 * will dec nr_pending, we must
1233				 * increment it first.
1234				 */
1235				atomic_inc(&rdev->nr_pending);
1236				md_wait_for_blocked_rdev(rdev, conf->mddev);
1237			} else {
1238				/* Acknowledged bad block - skip the write */
1239				rdev_dec_pending(rdev, conf->mddev);
1240				rdev = NULL;
1241			}
1242		}
1243
1244		if (rdev) {
1245			if (s->syncing || s->expanding || s->expanded
1246			    || s->replacing)
1247				md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1248
1249			set_bit(STRIPE_IO_STARTED, &sh->state);
1250
1251			bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1252			bi->bi_end_io = op_is_write(op)
1253				? raid5_end_write_request
1254				: raid5_end_read_request;
1255			bi->bi_private = sh;
1256
1257			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1258				__func__, (unsigned long long)sh->sector,
1259				bi->bi_opf, i);
1260			atomic_inc(&sh->count);
1261			if (sh != head_sh)
1262				atomic_inc(&head_sh->count);
1263			if (use_new_offset(conf, sh))
1264				bi->bi_iter.bi_sector = (sh->sector
1265						 + rdev->new_data_offset);
1266			else
1267				bi->bi_iter.bi_sector = (sh->sector
1268						 + rdev->data_offset);
1269			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1270				bi->bi_opf |= REQ_NOMERGE;
1271
1272			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1273				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1274
1275			if (!op_is_write(op) &&
1276			    test_bit(R5_InJournal, &sh->dev[i].flags))
1277				/*
1278				 * issuing read for a page in journal, this
1279				 * must be preparing for prexor in rmw; read
1280				 * the data into orig_page
1281				 */
1282				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1283			else
1284				sh->dev[i].vec.bv_page = sh->dev[i].page;
1285			bi->bi_vcnt = 1;
1286			bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1287			bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1288			bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1289			/*
1290			 * If this is discard request, set bi_vcnt 0. We don't
1291			 * want to confuse SCSI because SCSI will replace payload
1292			 */
1293			if (op == REQ_OP_DISCARD)
1294				bi->bi_vcnt = 0;
1295			if (rrdev)
1296				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1297
1298			mddev_trace_remap(conf->mddev, bi, sh->dev[i].sector);
1299			if (should_defer && op_is_write(op))
1300				bio_list_add(&pending_bios, bi);
1301			else
1302				submit_bio_noacct(bi);
1303		}
1304		if (rrdev) {
1305			if (s->syncing || s->expanding || s->expanded
1306			    || s->replacing)
1307				md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1308
1309			set_bit(STRIPE_IO_STARTED, &sh->state);
1310
1311			bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1312			BUG_ON(!op_is_write(op));
1313			rbi->bi_end_io = raid5_end_write_request;
1314			rbi->bi_private = sh;
1315
1316			pr_debug("%s: for %llu schedule op %d on "
1317				 "replacement disc %d\n",
1318				__func__, (unsigned long long)sh->sector,
1319				rbi->bi_opf, i);
1320			atomic_inc(&sh->count);
1321			if (sh != head_sh)
1322				atomic_inc(&head_sh->count);
1323			if (use_new_offset(conf, sh))
1324				rbi->bi_iter.bi_sector = (sh->sector
1325						  + rrdev->new_data_offset);
1326			else
1327				rbi->bi_iter.bi_sector = (sh->sector
1328						  + rrdev->data_offset);
1329			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1330				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1331			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1332			rbi->bi_vcnt = 1;
1333			rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1334			rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1335			rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1336			/*
1337			 * If this is discard request, set bi_vcnt 0. We don't
1338			 * want to confuse SCSI because SCSI will replace payload
1339			 */
1340			if (op == REQ_OP_DISCARD)
1341				rbi->bi_vcnt = 0;
1342			mddev_trace_remap(conf->mddev, rbi, sh->dev[i].sector);
1343			if (should_defer && op_is_write(op))
1344				bio_list_add(&pending_bios, rbi);
1345			else
1346				submit_bio_noacct(rbi);
1347		}
1348		if (!rdev && !rrdev) {
1349			if (op_is_write(op))
1350				set_bit(STRIPE_DEGRADED, &sh->state);
1351			pr_debug("skip op %d on disc %d for sector %llu\n",
1352				bi->bi_opf, i, (unsigned long long)sh->sector);
1353			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1354			set_bit(STRIPE_HANDLE, &sh->state);
1355		}
1356
1357		if (!head_sh->batch_head)
1358			continue;
1359		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1360				      batch_list);
1361		if (sh != head_sh)
1362			goto again;
1363	}
1364
1365	if (should_defer && !bio_list_empty(&pending_bios))
1366		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1367}
1368
1369static struct dma_async_tx_descriptor *
1370async_copy_data(int frombio, struct bio *bio, struct page **page,
1371	unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1372	struct stripe_head *sh, int no_skipcopy)
1373{
1374	struct bio_vec bvl;
1375	struct bvec_iter iter;
1376	struct page *bio_page;
1377	int page_offset;
1378	struct async_submit_ctl submit;
1379	enum async_tx_flags flags = 0;
1380	struct r5conf *conf = sh->raid_conf;
1381
1382	if (bio->bi_iter.bi_sector >= sector)
1383		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1384	else
1385		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1386
1387	if (frombio)
1388		flags |= ASYNC_TX_FENCE;
1389	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1390
1391	bio_for_each_segment(bvl, bio, iter) {
1392		int len = bvl.bv_len;
1393		int clen;
1394		int b_offset = 0;
1395
1396		if (page_offset < 0) {
1397			b_offset = -page_offset;
1398			page_offset += b_offset;
1399			len -= b_offset;
1400		}
1401
1402		if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1403			clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1404		else
1405			clen = len;
1406
1407		if (clen > 0) {
1408			b_offset += bvl.bv_offset;
1409			bio_page = bvl.bv_page;
1410			if (frombio) {
1411				if (conf->skip_copy &&
1412				    b_offset == 0 && page_offset == 0 &&
1413				    clen == RAID5_STRIPE_SIZE(conf) &&
1414				    !no_skipcopy)
1415					*page = bio_page;
1416				else
1417					tx = async_memcpy(*page, bio_page, page_offset + poff,
1418						  b_offset, clen, &submit);
1419			} else
1420				tx = async_memcpy(bio_page, *page, b_offset,
1421						  page_offset + poff, clen, &submit);
1422		}
1423		/* chain the operations */
1424		submit.depend_tx = tx;
1425
1426		if (clen < len) /* hit end of page */
1427			break;
1428		page_offset +=  len;
1429	}
1430
1431	return tx;
1432}
1433
1434static void ops_complete_biofill(void *stripe_head_ref)
1435{
1436	struct stripe_head *sh = stripe_head_ref;
1437	int i;
1438	struct r5conf *conf = sh->raid_conf;
1439
1440	pr_debug("%s: stripe %llu\n", __func__,
1441		(unsigned long long)sh->sector);
1442
1443	/* clear completed biofills */
1444	for (i = sh->disks; i--; ) {
1445		struct r5dev *dev = &sh->dev[i];
1446
1447		/* acknowledge completion of a biofill operation */
1448		/* and check if we need to reply to a read request,
1449		 * new R5_Wantfill requests are held off until
1450		 * !STRIPE_BIOFILL_RUN
1451		 */
1452		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1453			struct bio *rbi, *rbi2;
1454
1455			BUG_ON(!dev->read);
1456			rbi = dev->read;
1457			dev->read = NULL;
1458			while (rbi && rbi->bi_iter.bi_sector <
1459				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1460				rbi2 = r5_next_bio(conf, rbi, dev->sector);
1461				bio_endio(rbi);
1462				rbi = rbi2;
1463			}
1464		}
1465	}
1466	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1467
1468	set_bit(STRIPE_HANDLE, &sh->state);
1469	raid5_release_stripe(sh);
1470}
1471
1472static void ops_run_biofill(struct stripe_head *sh)
1473{
1474	struct dma_async_tx_descriptor *tx = NULL;
1475	struct async_submit_ctl submit;
1476	int i;
1477	struct r5conf *conf = sh->raid_conf;
1478
1479	BUG_ON(sh->batch_head);
1480	pr_debug("%s: stripe %llu\n", __func__,
1481		(unsigned long long)sh->sector);
1482
1483	for (i = sh->disks; i--; ) {
1484		struct r5dev *dev = &sh->dev[i];
1485		if (test_bit(R5_Wantfill, &dev->flags)) {
1486			struct bio *rbi;
1487			spin_lock_irq(&sh->stripe_lock);
1488			dev->read = rbi = dev->toread;
1489			dev->toread = NULL;
1490			spin_unlock_irq(&sh->stripe_lock);
1491			while (rbi && rbi->bi_iter.bi_sector <
1492				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1493				tx = async_copy_data(0, rbi, &dev->page,
1494						     dev->offset,
1495						     dev->sector, tx, sh, 0);
1496				rbi = r5_next_bio(conf, rbi, dev->sector);
1497			}
1498		}
1499	}
1500
1501	atomic_inc(&sh->count);
1502	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1503	async_trigger_callback(&submit);
1504}
1505
1506static void mark_target_uptodate(struct stripe_head *sh, int target)
1507{
1508	struct r5dev *tgt;
1509
1510	if (target < 0)
1511		return;
1512
1513	tgt = &sh->dev[target];
1514	set_bit(R5_UPTODATE, &tgt->flags);
1515	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1516	clear_bit(R5_Wantcompute, &tgt->flags);
1517}
1518
1519static void ops_complete_compute(void *stripe_head_ref)
1520{
1521	struct stripe_head *sh = stripe_head_ref;
1522
1523	pr_debug("%s: stripe %llu\n", __func__,
1524		(unsigned long long)sh->sector);
1525
1526	/* mark the computed target(s) as uptodate */
1527	mark_target_uptodate(sh, sh->ops.target);
1528	mark_target_uptodate(sh, sh->ops.target2);
1529
1530	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1531	if (sh->check_state == check_state_compute_run)
1532		sh->check_state = check_state_compute_result;
1533	set_bit(STRIPE_HANDLE, &sh->state);
1534	raid5_release_stripe(sh);
1535}
1536
1537/* return a pointer to the address conversion region of the scribble buffer */
1538static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1539{
1540	return percpu->scribble + i * percpu->scribble_obj_size;
1541}
1542
1543/* return a pointer to the address conversion region of the scribble buffer */
1544static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1545				 struct raid5_percpu *percpu, int i)
1546{
1547	return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1548}
1549
1550/*
1551 * Return a pointer to record offset address.
1552 */
1553static unsigned int *
1554to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1555{
1556	return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1557}
1558
1559static struct dma_async_tx_descriptor *
1560ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1561{
1562	int disks = sh->disks;
1563	struct page **xor_srcs = to_addr_page(percpu, 0);
1564	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1565	int target = sh->ops.target;
1566	struct r5dev *tgt = &sh->dev[target];
1567	struct page *xor_dest = tgt->page;
1568	unsigned int off_dest = tgt->offset;
1569	int count = 0;
1570	struct dma_async_tx_descriptor *tx;
1571	struct async_submit_ctl submit;
1572	int i;
1573
1574	BUG_ON(sh->batch_head);
1575
1576	pr_debug("%s: stripe %llu block: %d\n",
1577		__func__, (unsigned long long)sh->sector, target);
1578	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1579
1580	for (i = disks; i--; ) {
1581		if (i != target) {
1582			off_srcs[count] = sh->dev[i].offset;
1583			xor_srcs[count++] = sh->dev[i].page;
1584		}
1585	}
1586
1587	atomic_inc(&sh->count);
1588
1589	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1590			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1591	if (unlikely(count == 1))
1592		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1593				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1594	else
1595		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1596				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1597
1598	return tx;
1599}
1600
1601/* set_syndrome_sources - populate source buffers for gen_syndrome
1602 * @srcs - (struct page *) array of size sh->disks
1603 * @offs - (unsigned int) array of offset for each page
1604 * @sh - stripe_head to parse
1605 *
1606 * Populates srcs in proper layout order for the stripe and returns the
1607 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1608 * destination buffer is recorded in srcs[count] and the Q destination
1609 * is recorded in srcs[count+1]].
1610 */
1611static int set_syndrome_sources(struct page **srcs,
1612				unsigned int *offs,
1613				struct stripe_head *sh,
1614				int srctype)
1615{
1616	int disks = sh->disks;
1617	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1618	int d0_idx = raid6_d0(sh);
1619	int count;
1620	int i;
1621
1622	for (i = 0; i < disks; i++)
1623		srcs[i] = NULL;
1624
1625	count = 0;
1626	i = d0_idx;
1627	do {
1628		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1629		struct r5dev *dev = &sh->dev[i];
1630
1631		if (i == sh->qd_idx || i == sh->pd_idx ||
1632		    (srctype == SYNDROME_SRC_ALL) ||
1633		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1634		     (test_bit(R5_Wantdrain, &dev->flags) ||
1635		      test_bit(R5_InJournal, &dev->flags))) ||
1636		    (srctype == SYNDROME_SRC_WRITTEN &&
1637		     (dev->written ||
1638		      test_bit(R5_InJournal, &dev->flags)))) {
1639			if (test_bit(R5_InJournal, &dev->flags))
1640				srcs[slot] = sh->dev[i].orig_page;
1641			else
1642				srcs[slot] = sh->dev[i].page;
1643			/*
1644			 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1645			 * not shared page. In that case, dev[i].offset
1646			 * is 0.
1647			 */
1648			offs[slot] = sh->dev[i].offset;
1649		}
1650		i = raid6_next_disk(i, disks);
1651	} while (i != d0_idx);
1652
1653	return syndrome_disks;
1654}
1655
1656static struct dma_async_tx_descriptor *
1657ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1658{
1659	int disks = sh->disks;
1660	struct page **blocks = to_addr_page(percpu, 0);
1661	unsigned int *offs = to_addr_offs(sh, percpu);
1662	int target;
1663	int qd_idx = sh->qd_idx;
1664	struct dma_async_tx_descriptor *tx;
1665	struct async_submit_ctl submit;
1666	struct r5dev *tgt;
1667	struct page *dest;
1668	unsigned int dest_off;
1669	int i;
1670	int count;
1671
1672	BUG_ON(sh->batch_head);
1673	if (sh->ops.target < 0)
1674		target = sh->ops.target2;
1675	else if (sh->ops.target2 < 0)
1676		target = sh->ops.target;
1677	else
1678		/* we should only have one valid target */
1679		BUG();
1680	BUG_ON(target < 0);
1681	pr_debug("%s: stripe %llu block: %d\n",
1682		__func__, (unsigned long long)sh->sector, target);
1683
1684	tgt = &sh->dev[target];
1685	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1686	dest = tgt->page;
1687	dest_off = tgt->offset;
1688
1689	atomic_inc(&sh->count);
1690
1691	if (target == qd_idx) {
1692		count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1693		blocks[count] = NULL; /* regenerating p is not necessary */
1694		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1695		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1696				  ops_complete_compute, sh,
1697				  to_addr_conv(sh, percpu, 0));
1698		tx = async_gen_syndrome(blocks, offs, count+2,
1699				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1700	} else {
1701		/* Compute any data- or p-drive using XOR */
1702		count = 0;
1703		for (i = disks; i-- ; ) {
1704			if (i == target || i == qd_idx)
1705				continue;
1706			offs[count] = sh->dev[i].offset;
1707			blocks[count++] = sh->dev[i].page;
1708		}
1709
1710		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1711				  NULL, ops_complete_compute, sh,
1712				  to_addr_conv(sh, percpu, 0));
1713		tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1714				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1715	}
1716
1717	return tx;
1718}
1719
1720static struct dma_async_tx_descriptor *
1721ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1722{
1723	int i, count, disks = sh->disks;
1724	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1725	int d0_idx = raid6_d0(sh);
1726	int faila = -1, failb = -1;
1727	int target = sh->ops.target;
1728	int target2 = sh->ops.target2;
1729	struct r5dev *tgt = &sh->dev[target];
1730	struct r5dev *tgt2 = &sh->dev[target2];
1731	struct dma_async_tx_descriptor *tx;
1732	struct page **blocks = to_addr_page(percpu, 0);
1733	unsigned int *offs = to_addr_offs(sh, percpu);
1734	struct async_submit_ctl submit;
1735
1736	BUG_ON(sh->batch_head);
1737	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1738		 __func__, (unsigned long long)sh->sector, target, target2);
1739	BUG_ON(target < 0 || target2 < 0);
1740	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1741	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1742
1743	/* we need to open-code set_syndrome_sources to handle the
1744	 * slot number conversion for 'faila' and 'failb'
1745	 */
1746	for (i = 0; i < disks ; i++) {
1747		offs[i] = 0;
1748		blocks[i] = NULL;
1749	}
1750	count = 0;
1751	i = d0_idx;
1752	do {
1753		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1754
1755		offs[slot] = sh->dev[i].offset;
1756		blocks[slot] = sh->dev[i].page;
1757
1758		if (i == target)
1759			faila = slot;
1760		if (i == target2)
1761			failb = slot;
1762		i = raid6_next_disk(i, disks);
1763	} while (i != d0_idx);
1764
1765	BUG_ON(faila == failb);
1766	if (failb < faila)
1767		swap(faila, failb);
1768	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1769		 __func__, (unsigned long long)sh->sector, faila, failb);
1770
1771	atomic_inc(&sh->count);
1772
1773	if (failb == syndrome_disks+1) {
1774		/* Q disk is one of the missing disks */
1775		if (faila == syndrome_disks) {
1776			/* Missing P+Q, just recompute */
1777			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1778					  ops_complete_compute, sh,
1779					  to_addr_conv(sh, percpu, 0));
1780			return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1781						  RAID5_STRIPE_SIZE(sh->raid_conf),
1782						  &submit);
1783		} else {
1784			struct page *dest;
1785			unsigned int dest_off;
1786			int data_target;
1787			int qd_idx = sh->qd_idx;
1788
1789			/* Missing D+Q: recompute D from P, then recompute Q */
1790			if (target == qd_idx)
1791				data_target = target2;
1792			else
1793				data_target = target;
1794
1795			count = 0;
1796			for (i = disks; i-- ; ) {
1797				if (i == data_target || i == qd_idx)
1798					continue;
1799				offs[count] = sh->dev[i].offset;
1800				blocks[count++] = sh->dev[i].page;
1801			}
1802			dest = sh->dev[data_target].page;
1803			dest_off = sh->dev[data_target].offset;
1804			init_async_submit(&submit,
1805					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1806					  NULL, NULL, NULL,
1807					  to_addr_conv(sh, percpu, 0));
1808			tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1809				       RAID5_STRIPE_SIZE(sh->raid_conf),
1810				       &submit);
1811
1812			count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1813			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1814					  ops_complete_compute, sh,
1815					  to_addr_conv(sh, percpu, 0));
1816			return async_gen_syndrome(blocks, offs, count+2,
1817						  RAID5_STRIPE_SIZE(sh->raid_conf),
1818						  &submit);
1819		}
1820	} else {
1821		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1822				  ops_complete_compute, sh,
1823				  to_addr_conv(sh, percpu, 0));
1824		if (failb == syndrome_disks) {
1825			/* We're missing D+P. */
1826			return async_raid6_datap_recov(syndrome_disks+2,
1827						RAID5_STRIPE_SIZE(sh->raid_conf),
1828						faila,
1829						blocks, offs, &submit);
1830		} else {
1831			/* We're missing D+D. */
1832			return async_raid6_2data_recov(syndrome_disks+2,
1833						RAID5_STRIPE_SIZE(sh->raid_conf),
1834						faila, failb,
1835						blocks, offs, &submit);
1836		}
1837	}
1838}
1839
1840static void ops_complete_prexor(void *stripe_head_ref)
1841{
1842	struct stripe_head *sh = stripe_head_ref;
1843
1844	pr_debug("%s: stripe %llu\n", __func__,
1845		(unsigned long long)sh->sector);
1846
1847	if (r5c_is_writeback(sh->raid_conf->log))
1848		/*
1849		 * raid5-cache write back uses orig_page during prexor.
1850		 * After prexor, it is time to free orig_page
1851		 */
1852		r5c_release_extra_page(sh);
1853}
1854
1855static struct dma_async_tx_descriptor *
1856ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1857		struct dma_async_tx_descriptor *tx)
1858{
1859	int disks = sh->disks;
1860	struct page **xor_srcs = to_addr_page(percpu, 0);
1861	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1862	int count = 0, pd_idx = sh->pd_idx, i;
1863	struct async_submit_ctl submit;
1864
1865	/* existing parity data subtracted */
1866	unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1867	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1868
1869	BUG_ON(sh->batch_head);
1870	pr_debug("%s: stripe %llu\n", __func__,
1871		(unsigned long long)sh->sector);
1872
1873	for (i = disks; i--; ) {
1874		struct r5dev *dev = &sh->dev[i];
1875		/* Only process blocks that are known to be uptodate */
1876		if (test_bit(R5_InJournal, &dev->flags)) {
1877			/*
1878			 * For this case, PAGE_SIZE must be equal to 4KB and
1879			 * page offset is zero.
1880			 */
1881			off_srcs[count] = dev->offset;
1882			xor_srcs[count++] = dev->orig_page;
1883		} else if (test_bit(R5_Wantdrain, &dev->flags)) {
1884			off_srcs[count] = dev->offset;
1885			xor_srcs[count++] = dev->page;
1886		}
1887	}
1888
1889	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1890			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1891	tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1892			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1893
1894	return tx;
1895}
1896
1897static struct dma_async_tx_descriptor *
1898ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1899		struct dma_async_tx_descriptor *tx)
1900{
1901	struct page **blocks = to_addr_page(percpu, 0);
1902	unsigned int *offs = to_addr_offs(sh, percpu);
1903	int count;
1904	struct async_submit_ctl submit;
1905
1906	pr_debug("%s: stripe %llu\n", __func__,
1907		(unsigned long long)sh->sector);
1908
1909	count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1910
1911	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1912			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1913	tx = async_gen_syndrome(blocks, offs, count+2,
1914			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1915
1916	return tx;
1917}
1918
1919static struct dma_async_tx_descriptor *
1920ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1921{
1922	struct r5conf *conf = sh->raid_conf;
1923	int disks = sh->disks;
1924	int i;
1925	struct stripe_head *head_sh = sh;
1926
1927	pr_debug("%s: stripe %llu\n", __func__,
1928		(unsigned long long)sh->sector);
1929
1930	for (i = disks; i--; ) {
1931		struct r5dev *dev;
1932		struct bio *chosen;
1933
1934		sh = head_sh;
1935		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1936			struct bio *wbi;
1937
1938again:
1939			dev = &sh->dev[i];
1940			/*
1941			 * clear R5_InJournal, so when rewriting a page in
1942			 * journal, it is not skipped by r5l_log_stripe()
1943			 */
1944			clear_bit(R5_InJournal, &dev->flags);
1945			spin_lock_irq(&sh->stripe_lock);
1946			chosen = dev->towrite;
1947			dev->towrite = NULL;
1948			sh->overwrite_disks = 0;
1949			BUG_ON(dev->written);
1950			wbi = dev->written = chosen;
1951			spin_unlock_irq(&sh->stripe_lock);
1952			WARN_ON(dev->page != dev->orig_page);
1953
1954			while (wbi && wbi->bi_iter.bi_sector <
1955				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1956				if (wbi->bi_opf & REQ_FUA)
1957					set_bit(R5_WantFUA, &dev->flags);
1958				if (wbi->bi_opf & REQ_SYNC)
1959					set_bit(R5_SyncIO, &dev->flags);
1960				if (bio_op(wbi) == REQ_OP_DISCARD)
1961					set_bit(R5_Discard, &dev->flags);
1962				else {
1963					tx = async_copy_data(1, wbi, &dev->page,
1964							     dev->offset,
1965							     dev->sector, tx, sh,
1966							     r5c_is_writeback(conf->log));
1967					if (dev->page != dev->orig_page &&
1968					    !r5c_is_writeback(conf->log)) {
1969						set_bit(R5_SkipCopy, &dev->flags);
1970						clear_bit(R5_UPTODATE, &dev->flags);
1971						clear_bit(R5_OVERWRITE, &dev->flags);
1972					}
1973				}
1974				wbi = r5_next_bio(conf, wbi, dev->sector);
1975			}
1976
1977			if (head_sh->batch_head) {
1978				sh = list_first_entry(&sh->batch_list,
1979						      struct stripe_head,
1980						      batch_list);
1981				if (sh == head_sh)
1982					continue;
1983				goto again;
1984			}
1985		}
1986	}
1987
1988	return tx;
1989}
1990
1991static void ops_complete_reconstruct(void *stripe_head_ref)
1992{
1993	struct stripe_head *sh = stripe_head_ref;
1994	int disks = sh->disks;
1995	int pd_idx = sh->pd_idx;
1996	int qd_idx = sh->qd_idx;
1997	int i;
1998	bool fua = false, sync = false, discard = false;
1999
2000	pr_debug("%s: stripe %llu\n", __func__,
2001		(unsigned long long)sh->sector);
2002
2003	for (i = disks; i--; ) {
2004		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
2005		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
2006		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
2007	}
2008
2009	for (i = disks; i--; ) {
2010		struct r5dev *dev = &sh->dev[i];
2011
2012		if (dev->written || i == pd_idx || i == qd_idx) {
2013			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
2014				set_bit(R5_UPTODATE, &dev->flags);
2015				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
2016					set_bit(R5_Expanded, &dev->flags);
2017			}
2018			if (fua)
2019				set_bit(R5_WantFUA, &dev->flags);
2020			if (sync)
2021				set_bit(R5_SyncIO, &dev->flags);
2022		}
2023	}
2024
2025	if (sh->reconstruct_state == reconstruct_state_drain_run)
2026		sh->reconstruct_state = reconstruct_state_drain_result;
2027	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
2028		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
2029	else {
2030		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
2031		sh->reconstruct_state = reconstruct_state_result;
2032	}
2033
2034	set_bit(STRIPE_HANDLE, &sh->state);
2035	raid5_release_stripe(sh);
2036}
2037
2038static void
2039ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
2040		     struct dma_async_tx_descriptor *tx)
2041{
2042	int disks = sh->disks;
2043	struct page **xor_srcs;
2044	unsigned int *off_srcs;
2045	struct async_submit_ctl submit;
2046	int count, pd_idx = sh->pd_idx, i;
2047	struct page *xor_dest;
2048	unsigned int off_dest;
2049	int prexor = 0;
2050	unsigned long flags;
2051	int j = 0;
2052	struct stripe_head *head_sh = sh;
2053	int last_stripe;
2054
2055	pr_debug("%s: stripe %llu\n", __func__,
2056		(unsigned long long)sh->sector);
2057
2058	for (i = 0; i < sh->disks; i++) {
2059		if (pd_idx == i)
2060			continue;
2061		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2062			break;
2063	}
2064	if (i >= sh->disks) {
2065		atomic_inc(&sh->count);
2066		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2067		ops_complete_reconstruct(sh);
2068		return;
2069	}
2070again:
2071	count = 0;
2072	xor_srcs = to_addr_page(percpu, j);
2073	off_srcs = to_addr_offs(sh, percpu);
2074	/* check if prexor is active which means only process blocks
2075	 * that are part of a read-modify-write (written)
2076	 */
2077	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2078		prexor = 1;
2079		off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2080		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2081		for (i = disks; i--; ) {
2082			struct r5dev *dev = &sh->dev[i];
2083			if (head_sh->dev[i].written ||
2084			    test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2085				off_srcs[count] = dev->offset;
2086				xor_srcs[count++] = dev->page;
2087			}
2088		}
2089	} else {
2090		xor_dest = sh->dev[pd_idx].page;
2091		off_dest = sh->dev[pd_idx].offset;
2092		for (i = disks; i--; ) {
2093			struct r5dev *dev = &sh->dev[i];
2094			if (i != pd_idx) {
2095				off_srcs[count] = dev->offset;
2096				xor_srcs[count++] = dev->page;
2097			}
2098		}
2099	}
2100
2101	/* 1/ if we prexor'd then the dest is reused as a source
2102	 * 2/ if we did not prexor then we are redoing the parity
2103	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2104	 * for the synchronous xor case
2105	 */
2106	last_stripe = !head_sh->batch_head ||
2107		list_first_entry(&sh->batch_list,
2108				 struct stripe_head, batch_list) == head_sh;
2109	if (last_stripe) {
2110		flags = ASYNC_TX_ACK |
2111			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2112
2113		atomic_inc(&head_sh->count);
2114		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2115				  to_addr_conv(sh, percpu, j));
2116	} else {
2117		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2118		init_async_submit(&submit, flags, tx, NULL, NULL,
2119				  to_addr_conv(sh, percpu, j));
2120	}
2121
2122	if (unlikely(count == 1))
2123		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2124				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2125	else
2126		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2127				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2128	if (!last_stripe) {
2129		j++;
2130		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2131				      batch_list);
2132		goto again;
2133	}
2134}
2135
2136static void
2137ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2138		     struct dma_async_tx_descriptor *tx)
2139{
2140	struct async_submit_ctl submit;
2141	struct page **blocks;
2142	unsigned int *offs;
2143	int count, i, j = 0;
2144	struct stripe_head *head_sh = sh;
2145	int last_stripe;
2146	int synflags;
2147	unsigned long txflags;
2148
2149	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2150
2151	for (i = 0; i < sh->disks; i++) {
2152		if (sh->pd_idx == i || sh->qd_idx == i)
2153			continue;
2154		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2155			break;
2156	}
2157	if (i >= sh->disks) {
2158		atomic_inc(&sh->count);
2159		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2160		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2161		ops_complete_reconstruct(sh);
2162		return;
2163	}
2164
2165again:
2166	blocks = to_addr_page(percpu, j);
2167	offs = to_addr_offs(sh, percpu);
2168
2169	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2170		synflags = SYNDROME_SRC_WRITTEN;
2171		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2172	} else {
2173		synflags = SYNDROME_SRC_ALL;
2174		txflags = ASYNC_TX_ACK;
2175	}
2176
2177	count = set_syndrome_sources(blocks, offs, sh, synflags);
2178	last_stripe = !head_sh->batch_head ||
2179		list_first_entry(&sh->batch_list,
2180				 struct stripe_head, batch_list) == head_sh;
2181
2182	if (last_stripe) {
2183		atomic_inc(&head_sh->count);
2184		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2185				  head_sh, to_addr_conv(sh, percpu, j));
2186	} else
2187		init_async_submit(&submit, 0, tx, NULL, NULL,
2188				  to_addr_conv(sh, percpu, j));
2189	tx = async_gen_syndrome(blocks, offs, count+2,
2190			RAID5_STRIPE_SIZE(sh->raid_conf),  &submit);
2191	if (!last_stripe) {
2192		j++;
2193		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2194				      batch_list);
2195		goto again;
2196	}
2197}
2198
2199static void ops_complete_check(void *stripe_head_ref)
2200{
2201	struct stripe_head *sh = stripe_head_ref;
2202
2203	pr_debug("%s: stripe %llu\n", __func__,
2204		(unsigned long long)sh->sector);
2205
2206	sh->check_state = check_state_check_result;
2207	set_bit(STRIPE_HANDLE, &sh->state);
2208	raid5_release_stripe(sh);
2209}
2210
2211static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2212{
2213	int disks = sh->disks;
2214	int pd_idx = sh->pd_idx;
2215	int qd_idx = sh->qd_idx;
2216	struct page *xor_dest;
2217	unsigned int off_dest;
2218	struct page **xor_srcs = to_addr_page(percpu, 0);
2219	unsigned int *off_srcs = to_addr_offs(sh, percpu);
2220	struct dma_async_tx_descriptor *tx;
2221	struct async_submit_ctl submit;
2222	int count;
2223	int i;
2224
2225	pr_debug("%s: stripe %llu\n", __func__,
2226		(unsigned long long)sh->sector);
2227
2228	BUG_ON(sh->batch_head);
2229	count = 0;
2230	xor_dest = sh->dev[pd_idx].page;
2231	off_dest = sh->dev[pd_idx].offset;
2232	off_srcs[count] = off_dest;
2233	xor_srcs[count++] = xor_dest;
2234	for (i = disks; i--; ) {
2235		if (i == pd_idx || i == qd_idx)
2236			continue;
2237		off_srcs[count] = sh->dev[i].offset;
2238		xor_srcs[count++] = sh->dev[i].page;
2239	}
2240
2241	init_async_submit(&submit, 0, NULL, NULL, NULL,
2242			  to_addr_conv(sh, percpu, 0));
2243	tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2244			   RAID5_STRIPE_SIZE(sh->raid_conf),
2245			   &sh->ops.zero_sum_result, &submit);
2246
2247	atomic_inc(&sh->count);
2248	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2249	tx = async_trigger_callback(&submit);
2250}
2251
2252static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2253{
2254	struct page **srcs = to_addr_page(percpu, 0);
2255	unsigned int *offs = to_addr_offs(sh, percpu);
2256	struct async_submit_ctl submit;
2257	int count;
2258
2259	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2260		(unsigned long long)sh->sector, checkp);
2261
2262	BUG_ON(sh->batch_head);
2263	count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2264	if (!checkp)
2265		srcs[count] = NULL;
2266
2267	atomic_inc(&sh->count);
2268	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2269			  sh, to_addr_conv(sh, percpu, 0));
2270	async_syndrome_val(srcs, offs, count+2,
2271			   RAID5_STRIPE_SIZE(sh->raid_conf),
2272			   &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2273}
2274
2275static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2276{
2277	int overlap_clear = 0, i, disks = sh->disks;
2278	struct dma_async_tx_descriptor *tx = NULL;
2279	struct r5conf *conf = sh->raid_conf;
2280	int level = conf->level;
2281	struct raid5_percpu *percpu;
2282
2283	local_lock(&conf->percpu->lock);
2284	percpu = this_cpu_ptr(conf->percpu);
2285	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2286		ops_run_biofill(sh);
2287		overlap_clear++;
2288	}
2289
2290	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2291		if (level < 6)
2292			tx = ops_run_compute5(sh, percpu);
2293		else {
2294			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2295				tx = ops_run_compute6_1(sh, percpu);
2296			else
2297				tx = ops_run_compute6_2(sh, percpu);
2298		}
2299		/* terminate the chain if reconstruct is not set to be run */
2300		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2301			async_tx_ack(tx);
2302	}
2303
2304	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2305		if (level < 6)
2306			tx = ops_run_prexor5(sh, percpu, tx);
2307		else
2308			tx = ops_run_prexor6(sh, percpu, tx);
2309	}
2310
2311	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2312		tx = ops_run_partial_parity(sh, percpu, tx);
2313
2314	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2315		tx = ops_run_biodrain(sh, tx);
2316		overlap_clear++;
2317	}
2318
2319	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2320		if (level < 6)
2321			ops_run_reconstruct5(sh, percpu, tx);
2322		else
2323			ops_run_reconstruct6(sh, percpu, tx);
2324	}
2325
2326	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2327		if (sh->check_state == check_state_run)
2328			ops_run_check_p(sh, percpu);
2329		else if (sh->check_state == check_state_run_q)
2330			ops_run_check_pq(sh, percpu, 0);
2331		else if (sh->check_state == check_state_run_pq)
2332			ops_run_check_pq(sh, percpu, 1);
2333		else
2334			BUG();
2335	}
2336
2337	if (overlap_clear && !sh->batch_head) {
2338		for (i = disks; i--; ) {
2339			struct r5dev *dev = &sh->dev[i];
2340			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2341				wake_up(&sh->raid_conf->wait_for_overlap);
2342		}
2343	}
2344	local_unlock(&conf->percpu->lock);
2345}
2346
2347static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2348{
2349#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2350	kfree(sh->pages);
2351#endif
2352	if (sh->ppl_page)
2353		__free_page(sh->ppl_page);
2354	kmem_cache_free(sc, sh);
2355}
2356
2357static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2358	int disks, struct r5conf *conf)
2359{
2360	struct stripe_head *sh;
2361
2362	sh = kmem_cache_zalloc(sc, gfp);
2363	if (sh) {
2364		spin_lock_init(&sh->stripe_lock);
2365		spin_lock_init(&sh->batch_lock);
2366		INIT_LIST_HEAD(&sh->batch_list);
2367		INIT_LIST_HEAD(&sh->lru);
2368		INIT_LIST_HEAD(&sh->r5c);
2369		INIT_LIST_HEAD(&sh->log_list);
2370		atomic_set(&sh->count, 1);
2371		sh->raid_conf = conf;
2372		sh->log_start = MaxSector;
2373
2374		if (raid5_has_ppl(conf)) {
2375			sh->ppl_page = alloc_page(gfp);
2376			if (!sh->ppl_page) {
2377				free_stripe(sc, sh);
2378				return NULL;
2379			}
2380		}
2381#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2382		if (init_stripe_shared_pages(sh, conf, disks)) {
2383			free_stripe(sc, sh);
2384			return NULL;
2385		}
2386#endif
2387	}
2388	return sh;
2389}
2390static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2391{
2392	struct stripe_head *sh;
2393
2394	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2395	if (!sh)
2396		return 0;
2397
2398	if (grow_buffers(sh, gfp)) {
2399		shrink_buffers(sh);
2400		free_stripe(conf->slab_cache, sh);
2401		return 0;
2402	}
2403	sh->hash_lock_index =
2404		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2405	/* we just created an active stripe so... */
2406	atomic_inc(&conf->active_stripes);
2407
2408	raid5_release_stripe(sh);
2409	WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes + 1);
2410	return 1;
2411}
2412
2413static int grow_stripes(struct r5conf *conf, int num)
2414{
2415	struct kmem_cache *sc;
2416	size_t namelen = sizeof(conf->cache_name[0]);
2417	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2418
2419	if (mddev_is_dm(conf->mddev))
2420		snprintf(conf->cache_name[0], namelen,
2421			"raid%d-%p", conf->level, conf->mddev);
2422	else
2423		snprintf(conf->cache_name[0], namelen,
2424			"raid%d-%s", conf->level, mdname(conf->mddev));
2425	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2426
2427	conf->active_name = 0;
2428	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2429			       struct_size_t(struct stripe_head, dev, devs),
2430			       0, 0, NULL);
2431	if (!sc)
2432		return 1;
2433	conf->slab_cache = sc;
2434	conf->pool_size = devs;
2435	while (num--)
2436		if (!grow_one_stripe(conf, GFP_KERNEL))
2437			return 1;
2438
2439	return 0;
2440}
2441
2442/**
2443 * scribble_alloc - allocate percpu scribble buffer for required size
2444 *		    of the scribble region
2445 * @percpu: from for_each_present_cpu() of the caller
2446 * @num: total number of disks in the array
2447 * @cnt: scribble objs count for required size of the scribble region
2448 *
2449 * The scribble buffer size must be enough to contain:
2450 * 1/ a struct page pointer for each device in the array +2
2451 * 2/ room to convert each entry in (1) to its corresponding dma
2452 *    (dma_map_page()) or page (page_address()) address.
2453 *
2454 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2455 * calculate over all devices (not just the data blocks), using zeros in place
2456 * of the P and Q blocks.
2457 */
2458static int scribble_alloc(struct raid5_percpu *percpu,
2459			  int num, int cnt)
2460{
2461	size_t obj_size =
2462		sizeof(struct page *) * (num + 2) +
2463		sizeof(addr_conv_t) * (num + 2) +
2464		sizeof(unsigned int) * (num + 2);
2465	void *scribble;
2466
2467	/*
2468	 * If here is in raid array suspend context, it is in memalloc noio
2469	 * context as well, there is no potential recursive memory reclaim
2470	 * I/Os with the GFP_KERNEL flag.
2471	 */
2472	scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2473	if (!scribble)
2474		return -ENOMEM;
2475
2476	kvfree(percpu->scribble);
2477
2478	percpu->scribble = scribble;
2479	percpu->scribble_obj_size = obj_size;
2480	return 0;
2481}
2482
2483static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2484{
2485	unsigned long cpu;
2486	int err = 0;
2487
2488	/* Never shrink. */
2489	if (conf->scribble_disks >= new_disks &&
2490	    conf->scribble_sectors >= new_sectors)
2491		return 0;
2492
2493	raid5_quiesce(conf->mddev, true);
2494	cpus_read_lock();
2495
2496	for_each_present_cpu(cpu) {
2497		struct raid5_percpu *percpu;
2498
2499		percpu = per_cpu_ptr(conf->percpu, cpu);
2500		err = scribble_alloc(percpu, new_disks,
2501				     new_sectors / RAID5_STRIPE_SECTORS(conf));
2502		if (err)
2503			break;
2504	}
2505
2506	cpus_read_unlock();
2507	raid5_quiesce(conf->mddev, false);
2508
2509	if (!err) {
2510		conf->scribble_disks = new_disks;
2511		conf->scribble_sectors = new_sectors;
2512	}
2513	return err;
2514}
2515
2516static int resize_stripes(struct r5conf *conf, int newsize)
2517{
2518	/* Make all the stripes able to hold 'newsize' devices.
2519	 * New slots in each stripe get 'page' set to a new page.
2520	 *
2521	 * This happens in stages:
2522	 * 1/ create a new kmem_cache and allocate the required number of
2523	 *    stripe_heads.
2524	 * 2/ gather all the old stripe_heads and transfer the pages across
2525	 *    to the new stripe_heads.  This will have the side effect of
2526	 *    freezing the array as once all stripe_heads have been collected,
2527	 *    no IO will be possible.  Old stripe heads are freed once their
2528	 *    pages have been transferred over, and the old kmem_cache is
2529	 *    freed when all stripes are done.
2530	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2531	 *    we simple return a failure status - no need to clean anything up.
2532	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2533	 *    If this fails, we don't bother trying the shrink the
2534	 *    stripe_heads down again, we just leave them as they are.
2535	 *    As each stripe_head is processed the new one is released into
2536	 *    active service.
2537	 *
2538	 * Once step2 is started, we cannot afford to wait for a write,
2539	 * so we use GFP_NOIO allocations.
2540	 */
2541	struct stripe_head *osh, *nsh;
2542	LIST_HEAD(newstripes);
2543	struct disk_info *ndisks;
2544	int err = 0;
2545	struct kmem_cache *sc;
2546	int i;
2547	int hash, cnt;
2548
2549	md_allow_write(conf->mddev);
2550
2551	/* Step 1 */
2552	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2553			       struct_size_t(struct stripe_head, dev, newsize),
2554			       0, 0, NULL);
2555	if (!sc)
2556		return -ENOMEM;
2557
2558	/* Need to ensure auto-resizing doesn't interfere */
2559	mutex_lock(&conf->cache_size_mutex);
2560
2561	for (i = conf->max_nr_stripes; i; i--) {
2562		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2563		if (!nsh)
2564			break;
2565
2566		list_add(&nsh->lru, &newstripes);
2567	}
2568	if (i) {
2569		/* didn't get enough, give up */
2570		while (!list_empty(&newstripes)) {
2571			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2572			list_del(&nsh->lru);
2573			free_stripe(sc, nsh);
2574		}
2575		kmem_cache_destroy(sc);
2576		mutex_unlock(&conf->cache_size_mutex);
2577		return -ENOMEM;
2578	}
2579	/* Step 2 - Must use GFP_NOIO now.
2580	 * OK, we have enough stripes, start collecting inactive
2581	 * stripes and copying them over
2582	 */
2583	hash = 0;
2584	cnt = 0;
2585	list_for_each_entry(nsh, &newstripes, lru) {
2586		lock_device_hash_lock(conf, hash);
2587		wait_event_cmd(conf->wait_for_stripe,
2588				    !list_empty(conf->inactive_list + hash),
2589				    unlock_device_hash_lock(conf, hash),
2590				    lock_device_hash_lock(conf, hash));
2591		osh = get_free_stripe(conf, hash);
2592		unlock_device_hash_lock(conf, hash);
2593
2594#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2595	for (i = 0; i < osh->nr_pages; i++) {
2596		nsh->pages[i] = osh->pages[i];
2597		osh->pages[i] = NULL;
2598	}
2599#endif
2600		for(i=0; i<conf->pool_size; i++) {
2601			nsh->dev[i].page = osh->dev[i].page;
2602			nsh->dev[i].orig_page = osh->dev[i].page;
2603			nsh->dev[i].offset = osh->dev[i].offset;
2604		}
2605		nsh->hash_lock_index = hash;
2606		free_stripe(conf->slab_cache, osh);
2607		cnt++;
2608		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2609		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2610			hash++;
2611			cnt = 0;
2612		}
2613	}
2614	kmem_cache_destroy(conf->slab_cache);
2615
2616	/* Step 3.
2617	 * At this point, we are holding all the stripes so the array
2618	 * is completely stalled, so now is a good time to resize
2619	 * conf->disks and the scribble region
2620	 */
2621	ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2622	if (ndisks) {
2623		for (i = 0; i < conf->pool_size; i++)
2624			ndisks[i] = conf->disks[i];
2625
2626		for (i = conf->pool_size; i < newsize; i++) {
2627			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2628			if (!ndisks[i].extra_page)
2629				err = -ENOMEM;
2630		}
2631
2632		if (err) {
2633			for (i = conf->pool_size; i < newsize; i++)
2634				if (ndisks[i].extra_page)
2635					put_page(ndisks[i].extra_page);
2636			kfree(ndisks);
2637		} else {
2638			kfree(conf->disks);
2639			conf->disks = ndisks;
2640		}
2641	} else
2642		err = -ENOMEM;
2643
2644	conf->slab_cache = sc;
2645	conf->active_name = 1-conf->active_name;
2646
2647	/* Step 4, return new stripes to service */
2648	while(!list_empty(&newstripes)) {
2649		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2650		list_del_init(&nsh->lru);
2651
2652#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2653		for (i = 0; i < nsh->nr_pages; i++) {
2654			if (nsh->pages[i])
2655				continue;
2656			nsh->pages[i] = alloc_page(GFP_NOIO);
2657			if (!nsh->pages[i])
2658				err = -ENOMEM;
2659		}
2660
2661		for (i = conf->raid_disks; i < newsize; i++) {
2662			if (nsh->dev[i].page)
2663				continue;
2664			nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2665			nsh->dev[i].orig_page = nsh->dev[i].page;
2666			nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2667		}
2668#else
2669		for (i=conf->raid_disks; i < newsize; i++)
2670			if (nsh->dev[i].page == NULL) {
2671				struct page *p = alloc_page(GFP_NOIO);
2672				nsh->dev[i].page = p;
2673				nsh->dev[i].orig_page = p;
2674				nsh->dev[i].offset = 0;
2675				if (!p)
2676					err = -ENOMEM;
2677			}
2678#endif
2679		raid5_release_stripe(nsh);
2680	}
2681	/* critical section pass, GFP_NOIO no longer needed */
2682
2683	if (!err)
2684		conf->pool_size = newsize;
2685	mutex_unlock(&conf->cache_size_mutex);
2686
2687	return err;
2688}
2689
2690static int drop_one_stripe(struct r5conf *conf)
2691{
2692	struct stripe_head *sh;
2693	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2694
2695	spin_lock_irq(conf->hash_locks + hash);
2696	sh = get_free_stripe(conf, hash);
2697	spin_unlock_irq(conf->hash_locks + hash);
2698	if (!sh)
2699		return 0;
2700	BUG_ON(atomic_read(&sh->count));
2701	shrink_buffers(sh);
2702	free_stripe(conf->slab_cache, sh);
2703	atomic_dec(&conf->active_stripes);
2704	WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes - 1);
2705	return 1;
2706}
2707
2708static void shrink_stripes(struct r5conf *conf)
2709{
2710	while (conf->max_nr_stripes &&
2711	       drop_one_stripe(conf))
2712		;
2713
2714	kmem_cache_destroy(conf->slab_cache);
2715	conf->slab_cache = NULL;
2716}
2717
2718static void raid5_end_read_request(struct bio * bi)
2719{
2720	struct stripe_head *sh = bi->bi_private;
2721	struct r5conf *conf = sh->raid_conf;
2722	int disks = sh->disks, i;
2723	struct md_rdev *rdev = NULL;
2724	sector_t s;
2725
2726	for (i=0 ; i<disks; i++)
2727		if (bi == &sh->dev[i].req)
2728			break;
2729
2730	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2731		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2732		bi->bi_status);
2733	if (i == disks) {
2734		BUG();
2735		return;
2736	}
2737	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2738		/* If replacement finished while this request was outstanding,
2739		 * 'replacement' might be NULL already.
2740		 * In that case it moved down to 'rdev'.
2741		 * rdev is not removed until all requests are finished.
2742		 */
2743		rdev = conf->disks[i].replacement;
2744	if (!rdev)
2745		rdev = conf->disks[i].rdev;
2746
2747	if (use_new_offset(conf, sh))
2748		s = sh->sector + rdev->new_data_offset;
2749	else
2750		s = sh->sector + rdev->data_offset;
2751	if (!bi->bi_status) {
2752		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2753		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2754			/* Note that this cannot happen on a
2755			 * replacement device.  We just fail those on
2756			 * any error
2757			 */
2758			pr_info_ratelimited(
2759				"md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
2760				mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2761				(unsigned long long)s,
2762				rdev->bdev);
2763			atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2764			clear_bit(R5_ReadError, &sh->dev[i].flags);
2765			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2766		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2767			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2768
2769		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2770			/*
2771			 * end read for a page in journal, this
2772			 * must be preparing for prexor in rmw
2773			 */
2774			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2775
2776		if (atomic_read(&rdev->read_errors))
2777			atomic_set(&rdev->read_errors, 0);
2778	} else {
2779		int retry = 0;
2780		int set_bad = 0;
2781
2782		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2783		if (!(bi->bi_status == BLK_STS_PROTECTION))
2784			atomic_inc(&rdev->read_errors);
2785		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2786			pr_warn_ratelimited(
2787				"md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
2788				mdname(conf->mddev),
2789				(unsigned long long)s,
2790				rdev->bdev);
2791		else if (conf->mddev->degraded >= conf->max_degraded) {
2792			set_bad = 1;
2793			pr_warn_ratelimited(
2794				"md/raid:%s: read error not correctable (sector %llu on %pg).\n",
2795				mdname(conf->mddev),
2796				(unsigned long long)s,
2797				rdev->bdev);
2798		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2799			/* Oh, no!!! */
2800			set_bad = 1;
2801			pr_warn_ratelimited(
2802				"md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
2803				mdname(conf->mddev),
2804				(unsigned long long)s,
2805				rdev->bdev);
2806		} else if (atomic_read(&rdev->read_errors)
2807			 > conf->max_nr_stripes) {
2808			if (!test_bit(Faulty, &rdev->flags)) {
2809				pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2810				    mdname(conf->mddev),
2811				    atomic_read(&rdev->read_errors),
2812				    conf->max_nr_stripes);
2813				pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2814				    mdname(conf->mddev), rdev->bdev);
2815			}
2816		} else
2817			retry = 1;
2818		if (set_bad && test_bit(In_sync, &rdev->flags)
2819		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2820			retry = 1;
2821		if (retry)
2822			if (sh->qd_idx >= 0 && sh->pd_idx == i)
2823				set_bit(R5_ReadError, &sh->dev[i].flags);
2824			else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2825				set_bit(R5_ReadError, &sh->dev[i].flags);
2826				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2827			} else
2828				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2829		else {
2830			clear_bit(R5_ReadError, &sh->dev[i].flags);
2831			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2832			if (!(set_bad
2833			      && test_bit(In_sync, &rdev->flags)
2834			      && rdev_set_badblocks(
2835				      rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2836				md_error(conf->mddev, rdev);
2837		}
2838	}
2839	rdev_dec_pending(rdev, conf->mddev);
2840	bio_uninit(bi);
2841	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2842	set_bit(STRIPE_HANDLE, &sh->state);
2843	raid5_release_stripe(sh);
2844}
2845
2846static void raid5_end_write_request(struct bio *bi)
2847{
2848	struct stripe_head *sh = bi->bi_private;
2849	struct r5conf *conf = sh->raid_conf;
2850	int disks = sh->disks, i;
2851	struct md_rdev *rdev;
2852	int replacement = 0;
2853
2854	for (i = 0 ; i < disks; i++) {
2855		if (bi == &sh->dev[i].req) {
2856			rdev = conf->disks[i].rdev;
2857			break;
2858		}
2859		if (bi == &sh->dev[i].rreq) {
2860			rdev = conf->disks[i].replacement;
2861			if (rdev)
2862				replacement = 1;
2863			else
2864				/* rdev was removed and 'replacement'
2865				 * replaced it.  rdev is not removed
2866				 * until all requests are finished.
2867				 */
2868				rdev = conf->disks[i].rdev;
2869			break;
2870		}
2871	}
2872	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2873		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2874		bi->bi_status);
2875	if (i == disks) {
2876		BUG();
2877		return;
2878	}
2879
2880	if (replacement) {
2881		if (bi->bi_status)
2882			md_error(conf->mddev, rdev);
2883		else if (rdev_has_badblock(rdev, sh->sector,
2884					   RAID5_STRIPE_SECTORS(conf)))
2885			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2886	} else {
2887		if (bi->bi_status) {
2888			set_bit(STRIPE_DEGRADED, &sh->state);
2889			set_bit(WriteErrorSeen, &rdev->flags);
2890			set_bit(R5_WriteError, &sh->dev[i].flags);
2891			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2892				set_bit(MD_RECOVERY_NEEDED,
2893					&rdev->mddev->recovery);
2894		} else if (rdev_has_badblock(rdev, sh->sector,
2895					     RAID5_STRIPE_SECTORS(conf))) {
2896			set_bit(R5_MadeGood, &sh->dev[i].flags);
2897			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2898				/* That was a successful write so make
2899				 * sure it looks like we already did
2900				 * a re-write.
2901				 */
2902				set_bit(R5_ReWrite, &sh->dev[i].flags);
2903		}
2904	}
2905	rdev_dec_pending(rdev, conf->mddev);
2906
2907	if (sh->batch_head && bi->bi_status && !replacement)
2908		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2909
2910	bio_uninit(bi);
2911	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2912		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2913	set_bit(STRIPE_HANDLE, &sh->state);
2914
2915	if (sh->batch_head && sh != sh->batch_head)
2916		raid5_release_stripe(sh->batch_head);
2917	raid5_release_stripe(sh);
2918}
2919
2920static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2921{
2922	struct r5conf *conf = mddev->private;
2923	unsigned long flags;
2924	pr_debug("raid456: error called\n");
2925
2926	pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2927		mdname(mddev), rdev->bdev);
2928
2929	spin_lock_irqsave(&conf->device_lock, flags);
2930	set_bit(Faulty, &rdev->flags);
2931	clear_bit(In_sync, &rdev->flags);
2932	mddev->degraded = raid5_calc_degraded(conf);
2933
2934	if (has_failed(conf)) {
2935		set_bit(MD_BROKEN, &conf->mddev->flags);
2936		conf->recovery_disabled = mddev->recovery_disabled;
2937
2938		pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2939			mdname(mddev), mddev->degraded, conf->raid_disks);
2940	} else {
2941		pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2942			mdname(mddev), conf->raid_disks - mddev->degraded);
2943	}
2944
2945	spin_unlock_irqrestore(&conf->device_lock, flags);
2946	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2947
2948	set_bit(Blocked, &rdev->flags);
2949	set_mask_bits(&mddev->sb_flags, 0,
2950		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2951	r5c_update_on_rdev_error(mddev, rdev);
2952}
2953
2954/*
2955 * Input: a 'big' sector number,
2956 * Output: index of the data and parity disk, and the sector # in them.
2957 */
2958sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2959			      int previous, int *dd_idx,
2960			      struct stripe_head *sh)
2961{
2962	sector_t stripe, stripe2;
2963	sector_t chunk_number;
2964	unsigned int chunk_offset;
2965	int pd_idx, qd_idx;
2966	int ddf_layout = 0;
2967	sector_t new_sector;
2968	int algorithm = previous ? conf->prev_algo
2969				 : conf->algorithm;
2970	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2971					 : conf->chunk_sectors;
2972	int raid_disks = previous ? conf->previous_raid_disks
2973				  : conf->raid_disks;
2974	int data_disks = raid_disks - conf->max_degraded;
2975
2976	/* First compute the information on this sector */
2977
2978	/*
2979	 * Compute the chunk number and the sector offset inside the chunk
2980	 */
2981	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2982	chunk_number = r_sector;
2983
2984	/*
2985	 * Compute the stripe number
2986	 */
2987	stripe = chunk_number;
2988	*dd_idx = sector_div(stripe, data_disks);
2989	stripe2 = stripe;
2990	/*
2991	 * Select the parity disk based on the user selected algorithm.
2992	 */
2993	pd_idx = qd_idx = -1;
2994	switch(conf->level) {
2995	case 4:
2996		pd_idx = data_disks;
2997		break;
2998	case 5:
2999		switch (algorithm) {
3000		case ALGORITHM_LEFT_ASYMMETRIC:
3001			pd_idx = data_disks - sector_div(stripe2, raid_disks);
3002			if (*dd_idx >= pd_idx)
3003				(*dd_idx)++;
3004			break;
3005		case ALGORITHM_RIGHT_ASYMMETRIC:
3006			pd_idx = sector_div(stripe2, raid_disks);
3007			if (*dd_idx >= pd_idx)
3008				(*dd_idx)++;
3009			break;
3010		case ALGORITHM_LEFT_SYMMETRIC:
3011			pd_idx = data_disks - sector_div(stripe2, raid_disks);
3012			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3013			break;
3014		case ALGORITHM_RIGHT_SYMMETRIC:
3015			pd_idx = sector_div(stripe2, raid_disks);
3016			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3017			break;
3018		case ALGORITHM_PARITY_0:
3019			pd_idx = 0;
3020			(*dd_idx)++;
3021			break;
3022		case ALGORITHM_PARITY_N:
3023			pd_idx = data_disks;
3024			break;
3025		default:
3026			BUG();
3027		}
3028		break;
3029	case 6:
3030
3031		switch (algorithm) {
3032		case ALGORITHM_LEFT_ASYMMETRIC:
3033			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3034			qd_idx = pd_idx + 1;
3035			if (pd_idx == raid_disks-1) {
3036				(*dd_idx)++;	/* Q D D D P */
3037				qd_idx = 0;
3038			} else if (*dd_idx >= pd_idx)
3039				(*dd_idx) += 2; /* D D P Q D */
3040			break;
3041		case ALGORITHM_RIGHT_ASYMMETRIC:
3042			pd_idx = sector_div(stripe2, raid_disks);
3043			qd_idx = pd_idx + 1;
3044			if (pd_idx == raid_disks-1) {
3045				(*dd_idx)++;	/* Q D D D P */
3046				qd_idx = 0;
3047			} else if (*dd_idx >= pd_idx)
3048				(*dd_idx) += 2; /* D D P Q D */
3049			break;
3050		case ALGORITHM_LEFT_SYMMETRIC:
3051			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3052			qd_idx = (pd_idx + 1) % raid_disks;
3053			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3054			break;
3055		case ALGORITHM_RIGHT_SYMMETRIC:
3056			pd_idx = sector_div(stripe2, raid_disks);
3057			qd_idx = (pd_idx + 1) % raid_disks;
3058			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3059			break;
3060
3061		case ALGORITHM_PARITY_0:
3062			pd_idx = 0;
3063			qd_idx = 1;
3064			(*dd_idx) += 2;
3065			break;
3066		case ALGORITHM_PARITY_N:
3067			pd_idx = data_disks;
3068			qd_idx = data_disks + 1;
3069			break;
3070
3071		case ALGORITHM_ROTATING_ZERO_RESTART:
3072			/* Exactly the same as RIGHT_ASYMMETRIC, but or
3073			 * of blocks for computing Q is different.
3074			 */
3075			pd_idx = sector_div(stripe2, raid_disks);
3076			qd_idx = pd_idx + 1;
3077			if (pd_idx == raid_disks-1) {
3078				(*dd_idx)++;	/* Q D D D P */
3079				qd_idx = 0;
3080			} else if (*dd_idx >= pd_idx)
3081				(*dd_idx) += 2; /* D D P Q D */
3082			ddf_layout = 1;
3083			break;
3084
3085		case ALGORITHM_ROTATING_N_RESTART:
3086			/* Same a left_asymmetric, by first stripe is
3087			 * D D D P Q  rather than
3088			 * Q D D D P
3089			 */
3090			stripe2 += 1;
3091			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3092			qd_idx = pd_idx + 1;
3093			if (pd_idx == raid_disks-1) {
3094				(*dd_idx)++;	/* Q D D D P */
3095				qd_idx = 0;
3096			} else if (*dd_idx >= pd_idx)
3097				(*dd_idx) += 2; /* D D P Q D */
3098			ddf_layout = 1;
3099			break;
3100
3101		case ALGORITHM_ROTATING_N_CONTINUE:
3102			/* Same as left_symmetric but Q is before P */
3103			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3104			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3105			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3106			ddf_layout = 1;
3107			break;
3108
3109		case ALGORITHM_LEFT_ASYMMETRIC_6:
3110			/* RAID5 left_asymmetric, with Q on last device */
3111			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3112			if (*dd_idx >= pd_idx)
3113				(*dd_idx)++;
3114			qd_idx = raid_disks - 1;
3115			break;
3116
3117		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3118			pd_idx = sector_div(stripe2, raid_disks-1);
3119			if (*dd_idx >= pd_idx)
3120				(*dd_idx)++;
3121			qd_idx = raid_disks - 1;
3122			break;
3123
3124		case ALGORITHM_LEFT_SYMMETRIC_6:
3125			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3126			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3127			qd_idx = raid_disks - 1;
3128			break;
3129
3130		case ALGORITHM_RIGHT_SYMMETRIC_6:
3131			pd_idx = sector_div(stripe2, raid_disks-1);
3132			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3133			qd_idx = raid_disks - 1;
3134			break;
3135
3136		case ALGORITHM_PARITY_0_6:
3137			pd_idx = 0;
3138			(*dd_idx)++;
3139			qd_idx = raid_disks - 1;
3140			break;
3141
3142		default:
3143			BUG();
3144		}
3145		break;
3146	}
3147
3148	if (sh) {
3149		sh->pd_idx = pd_idx;
3150		sh->qd_idx = qd_idx;
3151		sh->ddf_layout = ddf_layout;
3152	}
3153	/*
3154	 * Finally, compute the new sector number
3155	 */
3156	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3157	return new_sector;
3158}
3159
3160sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3161{
3162	struct r5conf *conf = sh->raid_conf;
3163	int raid_disks = sh->disks;
3164	int data_disks = raid_disks - conf->max_degraded;
3165	sector_t new_sector = sh->sector, check;
3166	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3167					 : conf->chunk_sectors;
3168	int algorithm = previous ? conf->prev_algo
3169				 : conf->algorithm;
3170	sector_t stripe;
3171	int chunk_offset;
3172	sector_t chunk_number;
3173	int dummy1, dd_idx = i;
3174	sector_t r_sector;
3175	struct stripe_head sh2;
3176
3177	chunk_offset = sector_div(new_sector, sectors_per_chunk);
3178	stripe = new_sector;
3179
3180	if (i == sh->pd_idx)
3181		return 0;
3182	switch(conf->level) {
3183	case 4: break;
3184	case 5:
3185		switch (algorithm) {
3186		case ALGORITHM_LEFT_ASYMMETRIC:
3187		case ALGORITHM_RIGHT_ASYMMETRIC:
3188			if (i > sh->pd_idx)
3189				i--;
3190			break;
3191		case ALGORITHM_LEFT_SYMMETRIC:
3192		case ALGORITHM_RIGHT_SYMMETRIC:
3193			if (i < sh->pd_idx)
3194				i += raid_disks;
3195			i -= (sh->pd_idx + 1);
3196			break;
3197		case ALGORITHM_PARITY_0:
3198			i -= 1;
3199			break;
3200		case ALGORITHM_PARITY_N:
3201			break;
3202		default:
3203			BUG();
3204		}
3205		break;
3206	case 6:
3207		if (i == sh->qd_idx)
3208			return 0; /* It is the Q disk */
3209		switch (algorithm) {
3210		case ALGORITHM_LEFT_ASYMMETRIC:
3211		case ALGORITHM_RIGHT_ASYMMETRIC:
3212		case ALGORITHM_ROTATING_ZERO_RESTART:
3213		case ALGORITHM_ROTATING_N_RESTART:
3214			if (sh->pd_idx == raid_disks-1)
3215				i--;	/* Q D D D P */
3216			else if (i > sh->pd_idx)
3217				i -= 2; /* D D P Q D */
3218			break;
3219		case ALGORITHM_LEFT_SYMMETRIC:
3220		case ALGORITHM_RIGHT_SYMMETRIC:
3221			if (sh->pd_idx == raid_disks-1)
3222				i--; /* Q D D D P */
3223			else {
3224				/* D D P Q D */
3225				if (i < sh->pd_idx)
3226					i += raid_disks;
3227				i -= (sh->pd_idx + 2);
3228			}
3229			break;
3230		case ALGORITHM_PARITY_0:
3231			i -= 2;
3232			break;
3233		case ALGORITHM_PARITY_N:
3234			break;
3235		case ALGORITHM_ROTATING_N_CONTINUE:
3236			/* Like left_symmetric, but P is before Q */
3237			if (sh->pd_idx == 0)
3238				i--;	/* P D D D Q */
3239			else {
3240				/* D D Q P D */
3241				if (i < sh->pd_idx)
3242					i += raid_disks;
3243				i -= (sh->pd_idx + 1);
3244			}
3245			break;
3246		case ALGORITHM_LEFT_ASYMMETRIC_6:
3247		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3248			if (i > sh->pd_idx)
3249				i--;
3250			break;
3251		case ALGORITHM_LEFT_SYMMETRIC_6:
3252		case ALGORITHM_RIGHT_SYMMETRIC_6:
3253			if (i < sh->pd_idx)
3254				i += data_disks + 1;
3255			i -= (sh->pd_idx + 1);
3256			break;
3257		case ALGORITHM_PARITY_0_6:
3258			i -= 1;
3259			break;
3260		default:
3261			BUG();
3262		}
3263		break;
3264	}
3265
3266	chunk_number = stripe * data_disks + i;
3267	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3268
3269	check = raid5_compute_sector(conf, r_sector,
3270				     previous, &dummy1, &sh2);
3271	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3272		|| sh2.qd_idx != sh->qd_idx) {
3273		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3274			mdname(conf->mddev));
3275		return 0;
3276	}
3277	return r_sector;
3278}
3279
3280/*
3281 * There are cases where we want handle_stripe_dirtying() and
3282 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3283 *
3284 * This function checks whether we want to delay the towrite. Specifically,
3285 * we delay the towrite when:
3286 *
3287 *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3288 *      stripe has data in journal (for other devices).
3289 *
3290 *      In this case, when reading data for the non-overwrite dev, it is
3291 *      necessary to handle complex rmw of write back cache (prexor with
3292 *      orig_page, and xor with page). To keep read path simple, we would
3293 *      like to flush data in journal to RAID disks first, so complex rmw
3294 *      is handled in the write patch (handle_stripe_dirtying).
3295 *
3296 *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3297 *
3298 *      It is important to be able to flush all stripes in raid5-cache.
3299 *      Therefore, we need reserve some space on the journal device for
3300 *      these flushes. If flush operation includes pending writes to the
3301 *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3302 *      for the flush out. If we exclude these pending writes from flush
3303 *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3304 *      Therefore, excluding pending writes in these cases enables more
3305 *      efficient use of the journal device.
3306 *
3307 *      Note: To make sure the stripe makes progress, we only delay
3308 *      towrite for stripes with data already in journal (injournal > 0).
3309 *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3310 *      no_space_stripes list.
3311 *
3312 *   3. during journal failure
3313 *      In journal failure, we try to flush all cached data to raid disks
3314 *      based on data in stripe cache. The array is read-only to upper
3315 *      layers, so we would skip all pending writes.
3316 *
3317 */
3318static inline bool delay_towrite(struct r5conf *conf,
3319				 struct r5dev *dev,
3320				 struct stripe_head_state *s)
3321{
3322	/* case 1 above */
3323	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3324	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3325		return true;
3326	/* case 2 above */
3327	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3328	    s->injournal > 0)
3329		return true;
3330	/* case 3 above */
3331	if (s->log_failed && s->injournal)
3332		return true;
3333	return false;
3334}
3335
3336static void
3337schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3338			 int rcw, int expand)
3339{
3340	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3341	struct r5conf *conf = sh->raid_conf;
3342	int level = conf->level;
3343
3344	if (rcw) {
3345		/*
3346		 * In some cases, handle_stripe_dirtying initially decided to
3347		 * run rmw and allocates extra page for prexor. However, rcw is
3348		 * cheaper later on. We need to free the extra page now,
3349		 * because we won't be able to do that in ops_complete_prexor().
3350		 */
3351		r5c_release_extra_page(sh);
3352
3353		for (i = disks; i--; ) {
3354			struct r5dev *dev = &sh->dev[i];
3355
3356			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3357				set_bit(R5_LOCKED, &dev->flags);
3358				set_bit(R5_Wantdrain, &dev->flags);
3359				if (!expand)
3360					clear_bit(R5_UPTODATE, &dev->flags);
3361				s->locked++;
3362			} else if (test_bit(R5_InJournal, &dev->flags)) {
3363				set_bit(R5_LOCKED, &dev->flags);
3364				s->locked++;
3365			}
3366		}
3367		/* if we are not expanding this is a proper write request, and
3368		 * there will be bios with new data to be drained into the
3369		 * stripe cache
3370		 */
3371		if (!expand) {
3372			if (!s->locked)
3373				/* False alarm, nothing to do */
3374				return;
3375			sh->reconstruct_state = reconstruct_state_drain_run;
3376			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3377		} else
3378			sh->reconstruct_state = reconstruct_state_run;
3379
3380		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3381
3382		if (s->locked + conf->max_degraded == disks)
3383			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3384				atomic_inc(&conf->pending_full_writes);
3385	} else {
3386		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3387			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3388		BUG_ON(level == 6 &&
3389			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3390			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3391
3392		for (i = disks; i--; ) {
3393			struct r5dev *dev = &sh->dev[i];
3394			if (i == pd_idx || i == qd_idx)
3395				continue;
3396
3397			if (dev->towrite &&
3398			    (test_bit(R5_UPTODATE, &dev->flags) ||
3399			     test_bit(R5_Wantcompute, &dev->flags))) {
3400				set_bit(R5_Wantdrain, &dev->flags);
3401				set_bit(R5_LOCKED, &dev->flags);
3402				clear_bit(R5_UPTODATE, &dev->flags);
3403				s->locked++;
3404			} else if (test_bit(R5_InJournal, &dev->flags)) {
3405				set_bit(R5_LOCKED, &dev->flags);
3406				s->locked++;
3407			}
3408		}
3409		if (!s->locked)
3410			/* False alarm - nothing to do */
3411			return;
3412		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3413		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3414		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3415		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3416	}
3417
3418	/* keep the parity disk(s) locked while asynchronous operations
3419	 * are in flight
3420	 */
3421	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3422	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3423	s->locked++;
3424
3425	if (level == 6) {
3426		int qd_idx = sh->qd_idx;
3427		struct r5dev *dev = &sh->dev[qd_idx];
3428
3429		set_bit(R5_LOCKED, &dev->flags);
3430		clear_bit(R5_UPTODATE, &dev->flags);
3431		s->locked++;
3432	}
3433
3434	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3435	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3436	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3437	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3438		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3439
3440	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3441		__func__, (unsigned long long)sh->sector,
3442		s->locked, s->ops_request);
3443}
3444
3445static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
3446				int dd_idx, int forwrite)
3447{
3448	struct r5conf *conf = sh->raid_conf;
3449	struct bio **bip;
3450
3451	pr_debug("checking bi b#%llu to stripe s#%llu\n",
3452		 bi->bi_iter.bi_sector, sh->sector);
3453
3454	/* Don't allow new IO added to stripes in batch list */
3455	if (sh->batch_head)
3456		return true;
3457
3458	if (forwrite)
3459		bip = &sh->dev[dd_idx].towrite;
3460	else
3461		bip = &sh->dev[dd_idx].toread;
3462
3463	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3464		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3465			return true;
3466		bip = &(*bip)->bi_next;
3467	}
3468
3469	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3470		return true;
3471
3472	if (forwrite && raid5_has_ppl(conf)) {
3473		/*
3474		 * With PPL only writes to consecutive data chunks within a
3475		 * stripe are allowed because for a single stripe_head we can
3476		 * only have one PPL entry at a time, which describes one data
3477		 * range. Not really an overlap, but wait_for_overlap can be
3478		 * used to handle this.
3479		 */
3480		sector_t sector;
3481		sector_t first = 0;
3482		sector_t last = 0;
3483		int count = 0;
3484		int i;
3485
3486		for (i = 0; i < sh->disks; i++) {
3487			if (i != sh->pd_idx &&
3488			    (i == dd_idx || sh->dev[i].towrite)) {
3489				sector = sh->dev[i].sector;
3490				if (count == 0 || sector < first)
3491					first = sector;
3492				if (sector > last)
3493					last = sector;
3494				count++;
3495			}
3496		}
3497
3498		if (first + conf->chunk_sectors * (count - 1) != last)
3499			return true;
3500	}
3501
3502	return false;
3503}
3504
3505static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3506			     int dd_idx, int forwrite, int previous)
3507{
3508	struct r5conf *conf = sh->raid_conf;
3509	struct bio **bip;
3510	int firstwrite = 0;
3511
3512	if (forwrite) {
3513		bip = &sh->dev[dd_idx].towrite;
3514		if (!*bip)
3515			firstwrite = 1;
3516	} else {
3517		bip = &sh->dev[dd_idx].toread;
3518	}
3519
3520	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector)
3521		bip = &(*bip)->bi_next;
3522
3523	if (!forwrite || previous)
3524		clear_bit(STRIPE_BATCH_READY, &sh->state);
3525
3526	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3527	if (*bip)
3528		bi->bi_next = *bip;
3529	*bip = bi;
3530	bio_inc_remaining(bi);
3531	md_write_inc(conf->mddev, bi);
3532
3533	if (forwrite) {
3534		/* check if page is covered */
3535		sector_t sector = sh->dev[dd_idx].sector;
3536		for (bi=sh->dev[dd_idx].towrite;
3537		     sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3538			     bi && bi->bi_iter.bi_sector <= sector;
3539		     bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3540			if (bio_end_sector(bi) >= sector)
3541				sector = bio_end_sector(bi);
3542		}
3543		if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3544			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3545				sh->overwrite_disks++;
3546	}
3547
3548	pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
3549		 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx,
3550		 sh->dev[dd_idx].sector);
3551
3552	if (conf->mddev->bitmap && firstwrite) {
3553		/* Cannot hold spinlock over bitmap_startwrite,
3554		 * but must ensure this isn't added to a batch until
3555		 * we have added to the bitmap and set bm_seq.
3556		 * So set STRIPE_BITMAP_PENDING to prevent
3557		 * batching.
3558		 * If multiple __add_stripe_bio() calls race here they
3559		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3560		 * to complete "bitmap_startwrite" gets to set
3561		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3562		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3563		 * any more.
3564		 */
3565		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3566		spin_unlock_irq(&sh->stripe_lock);
3567		md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3568				     RAID5_STRIPE_SECTORS(conf), 0);
3569		spin_lock_irq(&sh->stripe_lock);
3570		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3571		if (!sh->batch_head) {
3572			sh->bm_seq = conf->seq_flush+1;
3573			set_bit(STRIPE_BIT_DELAY, &sh->state);
3574		}
3575	}
3576}
3577
3578/*
3579 * Each stripe/dev can have one or more bios attached.
3580 * toread/towrite point to the first in a chain.
3581 * The bi_next chain must be in order.
3582 */
3583static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3584			   int dd_idx, int forwrite, int previous)
3585{
3586	spin_lock_irq(&sh->stripe_lock);
3587
3588	if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
3589		set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3590		spin_unlock_irq(&sh->stripe_lock);
3591		return false;
3592	}
3593
3594	__add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
3595	spin_unlock_irq(&sh->stripe_lock);
3596	return true;
3597}
3598
3599static void end_reshape(struct r5conf *conf);
3600
3601static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3602			    struct stripe_head *sh)
3603{
3604	int sectors_per_chunk =
3605		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3606	int dd_idx;
3607	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3608	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3609
3610	raid5_compute_sector(conf,
3611			     stripe * (disks - conf->max_degraded)
3612			     *sectors_per_chunk + chunk_offset,
3613			     previous,
3614			     &dd_idx, sh);
3615}
3616
3617static void
3618handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3619		     struct stripe_head_state *s, int disks)
3620{
3621	int i;
3622	BUG_ON(sh->batch_head);
3623	for (i = disks; i--; ) {
3624		struct bio *bi;
3625		int bitmap_end = 0;
3626
3627		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3628			struct md_rdev *rdev = conf->disks[i].rdev;
3629
3630			if (rdev && test_bit(In_sync, &rdev->flags) &&
3631			    !test_bit(Faulty, &rdev->flags))
3632				atomic_inc(&rdev->nr_pending);
3633			else
3634				rdev = NULL;
3635			if (rdev) {
3636				if (!rdev_set_badblocks(
3637					    rdev,
3638					    sh->sector,
3639					    RAID5_STRIPE_SECTORS(conf), 0))
3640					md_error(conf->mddev, rdev);
3641				rdev_dec_pending(rdev, conf->mddev);
3642			}
3643		}
3644		spin_lock_irq(&sh->stripe_lock);
3645		/* fail all writes first */
3646		bi = sh->dev[i].towrite;
3647		sh->dev[i].towrite = NULL;
3648		sh->overwrite_disks = 0;
3649		spin_unlock_irq(&sh->stripe_lock);
3650		if (bi)
3651			bitmap_end = 1;
3652
3653		log_stripe_write_finished(sh);
3654
3655		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3656			wake_up(&conf->wait_for_overlap);
3657
3658		while (bi && bi->bi_iter.bi_sector <
3659			sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3660			struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3661
3662			md_write_end(conf->mddev);
3663			bio_io_error(bi);
3664			bi = nextbi;
3665		}
3666		if (bitmap_end)
3667			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3668					   RAID5_STRIPE_SECTORS(conf), 0, 0);
3669		bitmap_end = 0;
3670		/* and fail all 'written' */
3671		bi = sh->dev[i].written;
3672		sh->dev[i].written = NULL;
3673		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3674			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3675			sh->dev[i].page = sh->dev[i].orig_page;
3676		}
3677
3678		if (bi) bitmap_end = 1;
3679		while (bi && bi->bi_iter.bi_sector <
3680		       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3681			struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3682
3683			md_write_end(conf->mddev);
3684			bio_io_error(bi);
3685			bi = bi2;
3686		}
3687
3688		/* fail any reads if this device is non-operational and
3689		 * the data has not reached the cache yet.
3690		 */
3691		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3692		    s->failed > conf->max_degraded &&
3693		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3694		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3695			spin_lock_irq(&sh->stripe_lock);
3696			bi = sh->dev[i].toread;
3697			sh->dev[i].toread = NULL;
3698			spin_unlock_irq(&sh->stripe_lock);
3699			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3700				wake_up(&conf->wait_for_overlap);
3701			if (bi)
3702				s->to_read--;
3703			while (bi && bi->bi_iter.bi_sector <
3704			       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3705				struct bio *nextbi =
3706					r5_next_bio(conf, bi, sh->dev[i].sector);
3707
3708				bio_io_error(bi);
3709				bi = nextbi;
3710			}
3711		}
3712		if (bitmap_end)
3713			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3714					   RAID5_STRIPE_SECTORS(conf), 0, 0);
3715		/* If we were in the middle of a write the parity block might
3716		 * still be locked - so just clear all R5_LOCKED flags
3717		 */
3718		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3719	}
3720	s->to_write = 0;
3721	s->written = 0;
3722
3723	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3724		if (atomic_dec_and_test(&conf->pending_full_writes))
3725			md_wakeup_thread(conf->mddev->thread);
3726}
3727
3728static void
3729handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3730		   struct stripe_head_state *s)
3731{
3732	int abort = 0;
3733	int i;
3734
3735	BUG_ON(sh->batch_head);
3736	clear_bit(STRIPE_SYNCING, &sh->state);
3737	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3738		wake_up(&conf->wait_for_overlap);
3739	s->syncing = 0;
3740	s->replacing = 0;
3741	/* There is nothing more to do for sync/check/repair.
3742	 * Don't even need to abort as that is handled elsewhere
3743	 * if needed, and not always wanted e.g. if there is a known
3744	 * bad block here.
3745	 * For recover/replace we need to record a bad block on all
3746	 * non-sync devices, or abort the recovery
3747	 */
3748	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3749		/* During recovery devices cannot be removed, so
3750		 * locking and refcounting of rdevs is not needed
3751		 */
3752		for (i = 0; i < conf->raid_disks; i++) {
3753			struct md_rdev *rdev = conf->disks[i].rdev;
3754
3755			if (rdev
3756			    && !test_bit(Faulty, &rdev->flags)
3757			    && !test_bit(In_sync, &rdev->flags)
3758			    && !rdev_set_badblocks(rdev, sh->sector,
3759						   RAID5_STRIPE_SECTORS(conf), 0))
3760				abort = 1;
3761			rdev = conf->disks[i].replacement;
3762
3763			if (rdev
3764			    && !test_bit(Faulty, &rdev->flags)
3765			    && !test_bit(In_sync, &rdev->flags)
3766			    && !rdev_set_badblocks(rdev, sh->sector,
3767						   RAID5_STRIPE_SECTORS(conf), 0))
3768				abort = 1;
3769		}
3770		if (abort)
3771			conf->recovery_disabled =
3772				conf->mddev->recovery_disabled;
3773	}
3774	md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3775}
3776
3777static int want_replace(struct stripe_head *sh, int disk_idx)
3778{
3779	struct md_rdev *rdev;
3780	int rv = 0;
3781
3782	rdev = sh->raid_conf->disks[disk_idx].replacement;
3783	if (rdev
3784	    && !test_bit(Faulty, &rdev->flags)
3785	    && !test_bit(In_sync, &rdev->flags)
3786	    && (rdev->recovery_offset <= sh->sector
3787		|| rdev->mddev->recovery_cp <= sh->sector))
3788		rv = 1;
3789	return rv;
3790}
3791
3792static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3793			   int disk_idx, int disks)
3794{
3795	struct r5dev *dev = &sh->dev[disk_idx];
3796	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3797				  &sh->dev[s->failed_num[1]] };
3798	int i;
3799	bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3800
3801
3802	if (test_bit(R5_LOCKED, &dev->flags) ||
3803	    test_bit(R5_UPTODATE, &dev->flags))
3804		/* No point reading this as we already have it or have
3805		 * decided to get it.
3806		 */
3807		return 0;
3808
3809	if (dev->toread ||
3810	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3811		/* We need this block to directly satisfy a request */
3812		return 1;
3813
3814	if (s->syncing || s->expanding ||
3815	    (s->replacing && want_replace(sh, disk_idx)))
3816		/* When syncing, or expanding we read everything.
3817		 * When replacing, we need the replaced block.
3818		 */
3819		return 1;
3820
3821	if ((s->failed >= 1 && fdev[0]->toread) ||
3822	    (s->failed >= 2 && fdev[1]->toread))
3823		/* If we want to read from a failed device, then
3824		 * we need to actually read every other device.
3825		 */
3826		return 1;
3827
3828	/* Sometimes neither read-modify-write nor reconstruct-write
3829	 * cycles can work.  In those cases we read every block we
3830	 * can.  Then the parity-update is certain to have enough to
3831	 * work with.
3832	 * This can only be a problem when we need to write something,
3833	 * and some device has failed.  If either of those tests
3834	 * fail we need look no further.
3835	 */
3836	if (!s->failed || !s->to_write)
3837		return 0;
3838
3839	if (test_bit(R5_Insync, &dev->flags) &&
3840	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3841		/* Pre-reads at not permitted until after short delay
3842		 * to gather multiple requests.  However if this
3843		 * device is no Insync, the block could only be computed
3844		 * and there is no need to delay that.
3845		 */
3846		return 0;
3847
3848	for (i = 0; i < s->failed && i < 2; i++) {
3849		if (fdev[i]->towrite &&
3850		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3851		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3852			/* If we have a partial write to a failed
3853			 * device, then we will need to reconstruct
3854			 * the content of that device, so all other
3855			 * devices must be read.
3856			 */
3857			return 1;
3858
3859		if (s->failed >= 2 &&
3860		    (fdev[i]->towrite ||
3861		     s->failed_num[i] == sh->pd_idx ||
3862		     s->failed_num[i] == sh->qd_idx) &&
3863		    !test_bit(R5_UPTODATE, &fdev[i]->flags))
3864			/* In max degraded raid6, If the failed disk is P, Q,
3865			 * or we want to read the failed disk, we need to do
3866			 * reconstruct-write.
3867			 */
3868			force_rcw = true;
3869	}
3870
3871	/* If we are forced to do a reconstruct-write, because parity
3872	 * cannot be trusted and we are currently recovering it, there
3873	 * is extra need to be careful.
3874	 * If one of the devices that we would need to read, because
3875	 * it is not being overwritten (and maybe not written at all)
3876	 * is missing/faulty, then we need to read everything we can.
3877	 */
3878	if (!force_rcw &&
3879	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3880		/* reconstruct-write isn't being forced */
3881		return 0;
3882	for (i = 0; i < s->failed && i < 2; i++) {
3883		if (s->failed_num[i] != sh->pd_idx &&
3884		    s->failed_num[i] != sh->qd_idx &&
3885		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3886		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3887			return 1;
3888	}
3889
3890	return 0;
3891}
3892
3893/* fetch_block - checks the given member device to see if its data needs
3894 * to be read or computed to satisfy a request.
3895 *
3896 * Returns 1 when no more member devices need to be checked, otherwise returns
3897 * 0 to tell the loop in handle_stripe_fill to continue
3898 */
3899static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3900		       int disk_idx, int disks)
3901{
3902	struct r5dev *dev = &sh->dev[disk_idx];
3903
3904	/* is the data in this block needed, and can we get it? */
3905	if (need_this_block(sh, s, disk_idx, disks)) {
3906		/* we would like to get this block, possibly by computing it,
3907		 * otherwise read it if the backing disk is insync
3908		 */
3909		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3910		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3911		BUG_ON(sh->batch_head);
3912
3913		/*
3914		 * In the raid6 case if the only non-uptodate disk is P
3915		 * then we already trusted P to compute the other failed
3916		 * drives. It is safe to compute rather than re-read P.
3917		 * In other cases we only compute blocks from failed
3918		 * devices, otherwise check/repair might fail to detect
3919		 * a real inconsistency.
3920		 */
3921
3922		if ((s->uptodate == disks - 1) &&
3923		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3924		    (s->failed && (disk_idx == s->failed_num[0] ||
3925				   disk_idx == s->failed_num[1])))) {
3926			/* have disk failed, and we're requested to fetch it;
3927			 * do compute it
3928			 */
3929			pr_debug("Computing stripe %llu block %d\n",
3930			       (unsigned long long)sh->sector, disk_idx);
3931			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3932			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3933			set_bit(R5_Wantcompute, &dev->flags);
3934			sh->ops.target = disk_idx;
3935			sh->ops.target2 = -1; /* no 2nd target */
3936			s->req_compute = 1;
3937			/* Careful: from this point on 'uptodate' is in the eye
3938			 * of raid_run_ops which services 'compute' operations
3939			 * before writes. R5_Wantcompute flags a block that will
3940			 * be R5_UPTODATE by the time it is needed for a
3941			 * subsequent operation.
3942			 */
3943			s->uptodate++;
3944			return 1;
3945		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3946			/* Computing 2-failure is *very* expensive; only
3947			 * do it if failed >= 2
3948			 */
3949			int other;
3950			for (other = disks; other--; ) {
3951				if (other == disk_idx)
3952					continue;
3953				if (!test_bit(R5_UPTODATE,
3954				      &sh->dev[other].flags))
3955					break;
3956			}
3957			BUG_ON(other < 0);
3958			pr_debug("Computing stripe %llu blocks %d,%d\n",
3959			       (unsigned long long)sh->sector,
3960			       disk_idx, other);
3961			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3962			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3963			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3964			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3965			sh->ops.target = disk_idx;
3966			sh->ops.target2 = other;
3967			s->uptodate += 2;
3968			s->req_compute = 1;
3969			return 1;
3970		} else if (test_bit(R5_Insync, &dev->flags)) {
3971			set_bit(R5_LOCKED, &dev->flags);
3972			set_bit(R5_Wantread, &dev->flags);
3973			s->locked++;
3974			pr_debug("Reading block %d (sync=%d)\n",
3975				disk_idx, s->syncing);
3976		}
3977	}
3978
3979	return 0;
3980}
3981
3982/*
3983 * handle_stripe_fill - read or compute data to satisfy pending requests.
3984 */
3985static void handle_stripe_fill(struct stripe_head *sh,
3986			       struct stripe_head_state *s,
3987			       int disks)
3988{
3989	int i;
3990
3991	/* look for blocks to read/compute, skip this if a compute
3992	 * is already in flight, or if the stripe contents are in the
3993	 * midst of changing due to a write
3994	 */
3995	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3996	    !sh->reconstruct_state) {
3997
3998		/*
3999		 * For degraded stripe with data in journal, do not handle
4000		 * read requests yet, instead, flush the stripe to raid
4001		 * disks first, this avoids handling complex rmw of write
4002		 * back cache (prexor with orig_page, and then xor with
4003		 * page) in the read path
4004		 */
4005		if (s->to_read && s->injournal && s->failed) {
4006			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
4007				r5c_make_stripe_write_out(sh);
4008			goto out;
4009		}
4010
4011		for (i = disks; i--; )
4012			if (fetch_block(sh, s, i, disks))
4013				break;
4014	}
4015out:
4016	set_bit(STRIPE_HANDLE, &sh->state);
4017}
4018
4019static void break_stripe_batch_list(struct stripe_head *head_sh,
4020				    unsigned long handle_flags);
4021/* handle_stripe_clean_event
4022 * any written block on an uptodate or failed drive can be returned.
4023 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
4024 * never LOCKED, so we don't need to test 'failed' directly.
4025 */
4026static void handle_stripe_clean_event(struct r5conf *conf,
4027	struct stripe_head *sh, int disks)
4028{
4029	int i;
4030	struct r5dev *dev;
4031	int discard_pending = 0;
4032	struct stripe_head *head_sh = sh;
4033	bool do_endio = false;
4034
4035	for (i = disks; i--; )
4036		if (sh->dev[i].written) {
4037			dev = &sh->dev[i];
4038			if (!test_bit(R5_LOCKED, &dev->flags) &&
4039			    (test_bit(R5_UPTODATE, &dev->flags) ||
4040			     test_bit(R5_Discard, &dev->flags) ||
4041			     test_bit(R5_SkipCopy, &dev->flags))) {
4042				/* We can return any write requests */
4043				struct bio *wbi, *wbi2;
4044				pr_debug("Return write for disc %d\n", i);
4045				if (test_and_clear_bit(R5_Discard, &dev->flags))
4046					clear_bit(R5_UPTODATE, &dev->flags);
4047				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
4048					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
4049				}
4050				do_endio = true;
4051
4052returnbi:
4053				dev->page = dev->orig_page;
4054				wbi = dev->written;
4055				dev->written = NULL;
4056				while (wbi && wbi->bi_iter.bi_sector <
4057					dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4058					wbi2 = r5_next_bio(conf, wbi, dev->sector);
4059					md_write_end(conf->mddev);
4060					bio_endio(wbi);
4061					wbi = wbi2;
4062				}
4063				md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
4064						   RAID5_STRIPE_SECTORS(conf),
4065						   !test_bit(STRIPE_DEGRADED, &sh->state),
4066						   0);
4067				if (head_sh->batch_head) {
4068					sh = list_first_entry(&sh->batch_list,
4069							      struct stripe_head,
4070							      batch_list);
4071					if (sh != head_sh) {
4072						dev = &sh->dev[i];
4073						goto returnbi;
4074					}
4075				}
4076				sh = head_sh;
4077				dev = &sh->dev[i];
4078			} else if (test_bit(R5_Discard, &dev->flags))
4079				discard_pending = 1;
4080		}
4081
4082	log_stripe_write_finished(sh);
4083
4084	if (!discard_pending &&
4085	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4086		int hash;
4087		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4088		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4089		if (sh->qd_idx >= 0) {
4090			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4091			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4092		}
4093		/* now that discard is done we can proceed with any sync */
4094		clear_bit(STRIPE_DISCARD, &sh->state);
4095		/*
4096		 * SCSI discard will change some bio fields and the stripe has
4097		 * no updated data, so remove it from hash list and the stripe
4098		 * will be reinitialized
4099		 */
4100unhash:
4101		hash = sh->hash_lock_index;
4102		spin_lock_irq(conf->hash_locks + hash);
4103		remove_hash(sh);
4104		spin_unlock_irq(conf->hash_locks + hash);
4105		if (head_sh->batch_head) {
4106			sh = list_first_entry(&sh->batch_list,
4107					      struct stripe_head, batch_list);
4108			if (sh != head_sh)
4109					goto unhash;
4110		}
4111		sh = head_sh;
4112
4113		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4114			set_bit(STRIPE_HANDLE, &sh->state);
4115
4116	}
4117
4118	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4119		if (atomic_dec_and_test(&conf->pending_full_writes))
4120			md_wakeup_thread(conf->mddev->thread);
4121
4122	if (head_sh->batch_head && do_endio)
4123		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4124}
4125
4126/*
4127 * For RMW in write back cache, we need extra page in prexor to store the
4128 * old data. This page is stored in dev->orig_page.
4129 *
4130 * This function checks whether we have data for prexor. The exact logic
4131 * is:
4132 *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4133 */
4134static inline bool uptodate_for_rmw(struct r5dev *dev)
4135{
4136	return (test_bit(R5_UPTODATE, &dev->flags)) &&
4137		(!test_bit(R5_InJournal, &dev->flags) ||
4138		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4139}
4140
4141static int handle_stripe_dirtying(struct r5conf *conf,
4142				  struct stripe_head *sh,
4143				  struct stripe_head_state *s,
4144				  int disks)
4145{
4146	int rmw = 0, rcw = 0, i;
4147	sector_t recovery_cp = conf->mddev->recovery_cp;
4148
4149	/* Check whether resync is now happening or should start.
4150	 * If yes, then the array is dirty (after unclean shutdown or
4151	 * initial creation), so parity in some stripes might be inconsistent.
4152	 * In this case, we need to always do reconstruct-write, to ensure
4153	 * that in case of drive failure or read-error correction, we
4154	 * generate correct data from the parity.
4155	 */
4156	if (conf->rmw_level == PARITY_DISABLE_RMW ||
4157	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4158	     s->failed == 0)) {
4159		/* Calculate the real rcw later - for now make it
4160		 * look like rcw is cheaper
4161		 */
4162		rcw = 1; rmw = 2;
4163		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4164			 conf->rmw_level, (unsigned long long)recovery_cp,
4165			 (unsigned long long)sh->sector);
4166	} else for (i = disks; i--; ) {
4167		/* would I have to read this buffer for read_modify_write */
4168		struct r5dev *dev = &sh->dev[i];
4169		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4170		     i == sh->pd_idx || i == sh->qd_idx ||
4171		     test_bit(R5_InJournal, &dev->flags)) &&
4172		    !test_bit(R5_LOCKED, &dev->flags) &&
4173		    !(uptodate_for_rmw(dev) ||
4174		      test_bit(R5_Wantcompute, &dev->flags))) {
4175			if (test_bit(R5_Insync, &dev->flags))
4176				rmw++;
4177			else
4178				rmw += 2*disks;  /* cannot read it */
4179		}
4180		/* Would I have to read this buffer for reconstruct_write */
4181		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4182		    i != sh->pd_idx && i != sh->qd_idx &&
4183		    !test_bit(R5_LOCKED, &dev->flags) &&
4184		    !(test_bit(R5_UPTODATE, &dev->flags) ||
4185		      test_bit(R5_Wantcompute, &dev->flags))) {
4186			if (test_bit(R5_Insync, &dev->flags))
4187				rcw++;
4188			else
4189				rcw += 2*disks;
4190		}
4191	}
4192
4193	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4194		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4195	set_bit(STRIPE_HANDLE, &sh->state);
4196	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4197		/* prefer read-modify-write, but need to get some data */
4198		mddev_add_trace_msg(conf->mddev, "raid5 rmw %llu %d",
4199				sh->sector, rmw);
4200
4201		for (i = disks; i--; ) {
4202			struct r5dev *dev = &sh->dev[i];
4203			if (test_bit(R5_InJournal, &dev->flags) &&
4204			    dev->page == dev->orig_page &&
4205			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4206				/* alloc page for prexor */
4207				struct page *p = alloc_page(GFP_NOIO);
4208
4209				if (p) {
4210					dev->orig_page = p;
4211					continue;
4212				}
4213
4214				/*
4215				 * alloc_page() failed, try use
4216				 * disk_info->extra_page
4217				 */
4218				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4219						      &conf->cache_state)) {
4220					r5c_use_extra_page(sh);
4221					break;
4222				}
4223
4224				/* extra_page in use, add to delayed_list */
4225				set_bit(STRIPE_DELAYED, &sh->state);
4226				s->waiting_extra_page = 1;
4227				return -EAGAIN;
4228			}
4229		}
4230
4231		for (i = disks; i--; ) {
4232			struct r5dev *dev = &sh->dev[i];
4233			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4234			     i == sh->pd_idx || i == sh->qd_idx ||
4235			     test_bit(R5_InJournal, &dev->flags)) &&
4236			    !test_bit(R5_LOCKED, &dev->flags) &&
4237			    !(uptodate_for_rmw(dev) ||
4238			      test_bit(R5_Wantcompute, &dev->flags)) &&
4239			    test_bit(R5_Insync, &dev->flags)) {
4240				if (test_bit(STRIPE_PREREAD_ACTIVE,
4241					     &sh->state)) {
4242					pr_debug("Read_old block %d for r-m-w\n",
4243						 i);
4244					set_bit(R5_LOCKED, &dev->flags);
4245					set_bit(R5_Wantread, &dev->flags);
4246					s->locked++;
4247				} else
4248					set_bit(STRIPE_DELAYED, &sh->state);
4249			}
4250		}
4251	}
4252	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4253		/* want reconstruct write, but need to get some data */
4254		int qread =0;
4255		rcw = 0;
4256		for (i = disks; i--; ) {
4257			struct r5dev *dev = &sh->dev[i];
4258			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4259			    i != sh->pd_idx && i != sh->qd_idx &&
4260			    !test_bit(R5_LOCKED, &dev->flags) &&
4261			    !(test_bit(R5_UPTODATE, &dev->flags) ||
4262			      test_bit(R5_Wantcompute, &dev->flags))) {
4263				rcw++;
4264				if (test_bit(R5_Insync, &dev->flags) &&
4265				    test_bit(STRIPE_PREREAD_ACTIVE,
4266					     &sh->state)) {
4267					pr_debug("Read_old block "
4268						"%d for Reconstruct\n", i);
4269					set_bit(R5_LOCKED, &dev->flags);
4270					set_bit(R5_Wantread, &dev->flags);
4271					s->locked++;
4272					qread++;
4273				} else
4274					set_bit(STRIPE_DELAYED, &sh->state);
4275			}
4276		}
4277		if (rcw && !mddev_is_dm(conf->mddev))
4278			blk_add_trace_msg(conf->mddev->gendisk->queue,
4279				"raid5 rcw %llu %d %d %d",
4280				(unsigned long long)sh->sector, rcw, qread,
4281				test_bit(STRIPE_DELAYED, &sh->state));
4282	}
4283
4284	if (rcw > disks && rmw > disks &&
4285	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4286		set_bit(STRIPE_DELAYED, &sh->state);
4287
4288	/* now if nothing is locked, and if we have enough data,
4289	 * we can start a write request
4290	 */
4291	/* since handle_stripe can be called at any time we need to handle the
4292	 * case where a compute block operation has been submitted and then a
4293	 * subsequent call wants to start a write request.  raid_run_ops only
4294	 * handles the case where compute block and reconstruct are requested
4295	 * simultaneously.  If this is not the case then new writes need to be
4296	 * held off until the compute completes.
4297	 */
4298	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4299	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4300	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4301		schedule_reconstruction(sh, s, rcw == 0, 0);
4302	return 0;
4303}
4304
4305static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4306				struct stripe_head_state *s, int disks)
4307{
4308	struct r5dev *dev = NULL;
4309
4310	BUG_ON(sh->batch_head);
4311	set_bit(STRIPE_HANDLE, &sh->state);
4312
4313	switch (sh->check_state) {
4314	case check_state_idle:
4315		/* start a new check operation if there are no failures */
4316		if (s->failed == 0) {
4317			BUG_ON(s->uptodate != disks);
4318			sh->check_state = check_state_run;
4319			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4320			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4321			s->uptodate--;
4322			break;
4323		}
4324		dev = &sh->dev[s->failed_num[0]];
4325		fallthrough;
4326	case check_state_compute_result:
4327		sh->check_state = check_state_idle;
4328		if (!dev)
4329			dev = &sh->dev[sh->pd_idx];
4330
4331		/* check that a write has not made the stripe insync */
4332		if (test_bit(STRIPE_INSYNC, &sh->state))
4333			break;
4334
4335		/* either failed parity check, or recovery is happening */
4336		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4337		BUG_ON(s->uptodate != disks);
4338
4339		set_bit(R5_LOCKED, &dev->flags);
4340		s->locked++;
4341		set_bit(R5_Wantwrite, &dev->flags);
4342
4343		clear_bit(STRIPE_DEGRADED, &sh->state);
4344		set_bit(STRIPE_INSYNC, &sh->state);
4345		break;
4346	case check_state_run:
4347		break; /* we will be called again upon completion */
4348	case check_state_check_result:
4349		sh->check_state = check_state_idle;
4350
4351		/* if a failure occurred during the check operation, leave
4352		 * STRIPE_INSYNC not set and let the stripe be handled again
4353		 */
4354		if (s->failed)
4355			break;
4356
4357		/* handle a successful check operation, if parity is correct
4358		 * we are done.  Otherwise update the mismatch count and repair
4359		 * parity if !MD_RECOVERY_CHECK
4360		 */
4361		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4362			/* parity is correct (on disc,
4363			 * not in buffer any more)
4364			 */
4365			set_bit(STRIPE_INSYNC, &sh->state);
4366		else {
4367			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4368			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4369				/* don't try to repair!! */
4370				set_bit(STRIPE_INSYNC, &sh->state);
4371				pr_warn_ratelimited("%s: mismatch sector in range "
4372						    "%llu-%llu\n", mdname(conf->mddev),
4373						    (unsigned long long) sh->sector,
4374						    (unsigned long long) sh->sector +
4375						    RAID5_STRIPE_SECTORS(conf));
4376			} else {
4377				sh->check_state = check_state_compute_run;
4378				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4379				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4380				set_bit(R5_Wantcompute,
4381					&sh->dev[sh->pd_idx].flags);
4382				sh->ops.target = sh->pd_idx;
4383				sh->ops.target2 = -1;
4384				s->uptodate++;
4385			}
4386		}
4387		break;
4388	case check_state_compute_run:
4389		break;
4390	default:
4391		pr_err("%s: unknown check_state: %d sector: %llu\n",
4392		       __func__, sh->check_state,
4393		       (unsigned long long) sh->sector);
4394		BUG();
4395	}
4396}
4397
4398static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4399				  struct stripe_head_state *s,
4400				  int disks)
4401{
4402	int pd_idx = sh->pd_idx;
4403	int qd_idx = sh->qd_idx;
4404	struct r5dev *dev;
4405
4406	BUG_ON(sh->batch_head);
4407	set_bit(STRIPE_HANDLE, &sh->state);
4408
4409	BUG_ON(s->failed > 2);
4410
4411	/* Want to check and possibly repair P and Q.
4412	 * However there could be one 'failed' device, in which
4413	 * case we can only check one of them, possibly using the
4414	 * other to generate missing data
4415	 */
4416
4417	switch (sh->check_state) {
4418	case check_state_idle:
4419		/* start a new check operation if there are < 2 failures */
4420		if (s->failed == s->q_failed) {
4421			/* The only possible failed device holds Q, so it
4422			 * makes sense to check P (If anything else were failed,
4423			 * we would have used P to recreate it).
4424			 */
4425			sh->check_state = check_state_run;
4426		}
4427		if (!s->q_failed && s->failed < 2) {
4428			/* Q is not failed, and we didn't use it to generate
4429			 * anything, so it makes sense to check it
4430			 */
4431			if (sh->check_state == check_state_run)
4432				sh->check_state = check_state_run_pq;
4433			else
4434				sh->check_state = check_state_run_q;
4435		}
4436
4437		/* discard potentially stale zero_sum_result */
4438		sh->ops.zero_sum_result = 0;
4439
4440		if (sh->check_state == check_state_run) {
4441			/* async_xor_zero_sum destroys the contents of P */
4442			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4443			s->uptodate--;
4444		}
4445		if (sh->check_state >= check_state_run &&
4446		    sh->check_state <= check_state_run_pq) {
4447			/* async_syndrome_zero_sum preserves P and Q, so
4448			 * no need to mark them !uptodate here
4449			 */
4450			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4451			break;
4452		}
4453
4454		/* we have 2-disk failure */
4455		BUG_ON(s->failed != 2);
4456		fallthrough;
4457	case check_state_compute_result:
4458		sh->check_state = check_state_idle;
4459
4460		/* check that a write has not made the stripe insync */
4461		if (test_bit(STRIPE_INSYNC, &sh->state))
4462			break;
4463
4464		/* now write out any block on a failed drive,
4465		 * or P or Q if they were recomputed
4466		 */
4467		dev = NULL;
4468		if (s->failed == 2) {
4469			dev = &sh->dev[s->failed_num[1]];
4470			s->locked++;
4471			set_bit(R5_LOCKED, &dev->flags);
4472			set_bit(R5_Wantwrite, &dev->flags);
4473		}
4474		if (s->failed >= 1) {
4475			dev = &sh->dev[s->failed_num[0]];
4476			s->locked++;
4477			set_bit(R5_LOCKED, &dev->flags);
4478			set_bit(R5_Wantwrite, &dev->flags);
4479		}
4480		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4481			dev = &sh->dev[pd_idx];
4482			s->locked++;
4483			set_bit(R5_LOCKED, &dev->flags);
4484			set_bit(R5_Wantwrite, &dev->flags);
4485		}
4486		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4487			dev = &sh->dev[qd_idx];
4488			s->locked++;
4489			set_bit(R5_LOCKED, &dev->flags);
4490			set_bit(R5_Wantwrite, &dev->flags);
4491		}
4492		if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4493			      "%s: disk%td not up to date\n",
4494			      mdname(conf->mddev),
4495			      dev - (struct r5dev *) &sh->dev)) {
4496			clear_bit(R5_LOCKED, &dev->flags);
4497			clear_bit(R5_Wantwrite, &dev->flags);
4498			s->locked--;
4499		}
4500		clear_bit(STRIPE_DEGRADED, &sh->state);
4501
4502		set_bit(STRIPE_INSYNC, &sh->state);
4503		break;
4504	case check_state_run:
4505	case check_state_run_q:
4506	case check_state_run_pq:
4507		break; /* we will be called again upon completion */
4508	case check_state_check_result:
4509		sh->check_state = check_state_idle;
4510
4511		/* handle a successful check operation, if parity is correct
4512		 * we are done.  Otherwise update the mismatch count and repair
4513		 * parity if !MD_RECOVERY_CHECK
4514		 */
4515		if (sh->ops.zero_sum_result == 0) {
4516			/* both parities are correct */
4517			if (!s->failed)
4518				set_bit(STRIPE_INSYNC, &sh->state);
4519			else {
4520				/* in contrast to the raid5 case we can validate
4521				 * parity, but still have a failure to write
4522				 * back
4523				 */
4524				sh->check_state = check_state_compute_result;
4525				/* Returning at this point means that we may go
4526				 * off and bring p and/or q uptodate again so
4527				 * we make sure to check zero_sum_result again
4528				 * to verify if p or q need writeback
4529				 */
4530			}
4531		} else {
4532			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4533			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4534				/* don't try to repair!! */
4535				set_bit(STRIPE_INSYNC, &sh->state);
4536				pr_warn_ratelimited("%s: mismatch sector in range "
4537						    "%llu-%llu\n", mdname(conf->mddev),
4538						    (unsigned long long) sh->sector,
4539						    (unsigned long long) sh->sector +
4540						    RAID5_STRIPE_SECTORS(conf));
4541			} else {
4542				int *target = &sh->ops.target;
4543
4544				sh->ops.target = -1;
4545				sh->ops.target2 = -1;
4546				sh->check_state = check_state_compute_run;
4547				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4548				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4549				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4550					set_bit(R5_Wantcompute,
4551						&sh->dev[pd_idx].flags);
4552					*target = pd_idx;
4553					target = &sh->ops.target2;
4554					s->uptodate++;
4555				}
4556				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4557					set_bit(R5_Wantcompute,
4558						&sh->dev[qd_idx].flags);
4559					*target = qd_idx;
4560					s->uptodate++;
4561				}
4562			}
4563		}
4564		break;
4565	case check_state_compute_run:
4566		break;
4567	default:
4568		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4569			__func__, sh->check_state,
4570			(unsigned long long) sh->sector);
4571		BUG();
4572	}
4573}
4574
4575static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4576{
4577	int i;
4578
4579	/* We have read all the blocks in this stripe and now we need to
4580	 * copy some of them into a target stripe for expand.
4581	 */
4582	struct dma_async_tx_descriptor *tx = NULL;
4583	BUG_ON(sh->batch_head);
4584	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4585	for (i = 0; i < sh->disks; i++)
4586		if (i != sh->pd_idx && i != sh->qd_idx) {
4587			int dd_idx, j;
4588			struct stripe_head *sh2;
4589			struct async_submit_ctl submit;
4590
4591			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4592			sector_t s = raid5_compute_sector(conf, bn, 0,
4593							  &dd_idx, NULL);
4594			sh2 = raid5_get_active_stripe(conf, NULL, s,
4595				R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
4596			if (sh2 == NULL)
4597				/* so far only the early blocks of this stripe
4598				 * have been requested.  When later blocks
4599				 * get requested, we will try again
4600				 */
4601				continue;
4602			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4603			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4604				/* must have already done this block */
4605				raid5_release_stripe(sh2);
4606				continue;
4607			}
4608
4609			/* place all the copies on one channel */
4610			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4611			tx = async_memcpy(sh2->dev[dd_idx].page,
4612					  sh->dev[i].page, sh2->dev[dd_idx].offset,
4613					  sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4614					  &submit);
4615
4616			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4617			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4618			for (j = 0; j < conf->raid_disks; j++)
4619				if (j != sh2->pd_idx &&
4620				    j != sh2->qd_idx &&
4621				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4622					break;
4623			if (j == conf->raid_disks) {
4624				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4625				set_bit(STRIPE_HANDLE, &sh2->state);
4626			}
4627			raid5_release_stripe(sh2);
4628
4629		}
4630	/* done submitting copies, wait for them to complete */
4631	async_tx_quiesce(&tx);
4632}
4633
4634/*
4635 * handle_stripe - do things to a stripe.
4636 *
4637 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4638 * state of various bits to see what needs to be done.
4639 * Possible results:
4640 *    return some read requests which now have data
4641 *    return some write requests which are safely on storage
4642 *    schedule a read on some buffers
4643 *    schedule a write of some buffers
4644 *    return confirmation of parity correctness
4645 *
4646 */
4647
4648static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4649{
4650	struct r5conf *conf = sh->raid_conf;
4651	int disks = sh->disks;
4652	struct r5dev *dev;
4653	int i;
4654	int do_recovery = 0;
4655
4656	memset(s, 0, sizeof(*s));
4657
4658	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4659	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4660	s->failed_num[0] = -1;
4661	s->failed_num[1] = -1;
4662	s->log_failed = r5l_log_disk_error(conf);
4663
4664	/* Now to look around and see what can be done */
4665	for (i=disks; i--; ) {
4666		struct md_rdev *rdev;
4667		int is_bad = 0;
4668
4669		dev = &sh->dev[i];
4670
4671		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4672			 i, dev->flags,
4673			 dev->toread, dev->towrite, dev->written);
4674		/* maybe we can reply to a read
4675		 *
4676		 * new wantfill requests are only permitted while
4677		 * ops_complete_biofill is guaranteed to be inactive
4678		 */
4679		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4680		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4681			set_bit(R5_Wantfill, &dev->flags);
4682
4683		/* now count some things */
4684		if (test_bit(R5_LOCKED, &dev->flags))
4685			s->locked++;
4686		if (test_bit(R5_UPTODATE, &dev->flags))
4687			s->uptodate++;
4688		if (test_bit(R5_Wantcompute, &dev->flags)) {
4689			s->compute++;
4690			BUG_ON(s->compute > 2);
4691		}
4692
4693		if (test_bit(R5_Wantfill, &dev->flags))
4694			s->to_fill++;
4695		else if (dev->toread)
4696			s->to_read++;
4697		if (dev->towrite) {
4698			s->to_write++;
4699			if (!test_bit(R5_OVERWRITE, &dev->flags))
4700				s->non_overwrite++;
4701		}
4702		if (dev->written)
4703			s->written++;
4704		/* Prefer to use the replacement for reads, but only
4705		 * if it is recovered enough and has no bad blocks.
4706		 */
4707		rdev = conf->disks[i].replacement;
4708		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4709		    rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4710		    !rdev_has_badblock(rdev, sh->sector,
4711				       RAID5_STRIPE_SECTORS(conf)))
4712			set_bit(R5_ReadRepl, &dev->flags);
4713		else {
4714			if (rdev && !test_bit(Faulty, &rdev->flags))
4715				set_bit(R5_NeedReplace, &dev->flags);
4716			else
4717				clear_bit(R5_NeedReplace, &dev->flags);
4718			rdev = conf->disks[i].rdev;
4719			clear_bit(R5_ReadRepl, &dev->flags);
4720		}
4721		if (rdev && test_bit(Faulty, &rdev->flags))
4722			rdev = NULL;
4723		if (rdev) {
4724			is_bad = rdev_has_badblock(rdev, sh->sector,
4725						   RAID5_STRIPE_SECTORS(conf));
4726			if (s->blocked_rdev == NULL
4727			    && (test_bit(Blocked, &rdev->flags)
4728				|| is_bad < 0)) {
4729				if (is_bad < 0)
4730					set_bit(BlockedBadBlocks,
4731						&rdev->flags);
4732				s->blocked_rdev = rdev;
4733				atomic_inc(&rdev->nr_pending);
4734			}
4735		}
4736		clear_bit(R5_Insync, &dev->flags);
4737		if (!rdev)
4738			/* Not in-sync */;
4739		else if (is_bad) {
4740			/* also not in-sync */
4741			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4742			    test_bit(R5_UPTODATE, &dev->flags)) {
4743				/* treat as in-sync, but with a read error
4744				 * which we can now try to correct
4745				 */
4746				set_bit(R5_Insync, &dev->flags);
4747				set_bit(R5_ReadError, &dev->flags);
4748			}
4749		} else if (test_bit(In_sync, &rdev->flags))
4750			set_bit(R5_Insync, &dev->flags);
4751		else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4752			/* in sync if before recovery_offset */
4753			set_bit(R5_Insync, &dev->flags);
4754		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4755			 test_bit(R5_Expanded, &dev->flags))
4756			/* If we've reshaped into here, we assume it is Insync.
4757			 * We will shortly update recovery_offset to make
4758			 * it official.
4759			 */
4760			set_bit(R5_Insync, &dev->flags);
4761
4762		if (test_bit(R5_WriteError, &dev->flags)) {
4763			/* This flag does not apply to '.replacement'
4764			 * only to .rdev, so make sure to check that*/
4765			struct md_rdev *rdev2 = conf->disks[i].rdev;
4766
4767			if (rdev2 == rdev)
4768				clear_bit(R5_Insync, &dev->flags);
4769			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4770				s->handle_bad_blocks = 1;
4771				atomic_inc(&rdev2->nr_pending);
4772			} else
4773				clear_bit(R5_WriteError, &dev->flags);
4774		}
4775		if (test_bit(R5_MadeGood, &dev->flags)) {
4776			/* This flag does not apply to '.replacement'
4777			 * only to .rdev, so make sure to check that*/
4778			struct md_rdev *rdev2 = conf->disks[i].rdev;
4779
4780			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4781				s->handle_bad_blocks = 1;
4782				atomic_inc(&rdev2->nr_pending);
4783			} else
4784				clear_bit(R5_MadeGood, &dev->flags);
4785		}
4786		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4787			struct md_rdev *rdev2 = conf->disks[i].replacement;
4788
4789			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4790				s->handle_bad_blocks = 1;
4791				atomic_inc(&rdev2->nr_pending);
4792			} else
4793				clear_bit(R5_MadeGoodRepl, &dev->flags);
4794		}
4795		if (!test_bit(R5_Insync, &dev->flags)) {
4796			/* The ReadError flag will just be confusing now */
4797			clear_bit(R5_ReadError, &dev->flags);
4798			clear_bit(R5_ReWrite, &dev->flags);
4799		}
4800		if (test_bit(R5_ReadError, &dev->flags))
4801			clear_bit(R5_Insync, &dev->flags);
4802		if (!test_bit(R5_Insync, &dev->flags)) {
4803			if (s->failed < 2)
4804				s->failed_num[s->failed] = i;
4805			s->failed++;
4806			if (rdev && !test_bit(Faulty, &rdev->flags))
4807				do_recovery = 1;
4808			else if (!rdev) {
4809				rdev = conf->disks[i].replacement;
4810				if (rdev && !test_bit(Faulty, &rdev->flags))
4811					do_recovery = 1;
4812			}
4813		}
4814
4815		if (test_bit(R5_InJournal, &dev->flags))
4816			s->injournal++;
4817		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4818			s->just_cached++;
4819	}
4820	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4821		/* If there is a failed device being replaced,
4822		 *     we must be recovering.
4823		 * else if we are after recovery_cp, we must be syncing
4824		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4825		 * else we can only be replacing
4826		 * sync and recovery both need to read all devices, and so
4827		 * use the same flag.
4828		 */
4829		if (do_recovery ||
4830		    sh->sector >= conf->mddev->recovery_cp ||
4831		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4832			s->syncing = 1;
4833		else
4834			s->replacing = 1;
4835	}
4836}
4837
4838/*
4839 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4840 * a head which can now be handled.
4841 */
4842static int clear_batch_ready(struct stripe_head *sh)
4843{
4844	struct stripe_head *tmp;
4845	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4846		return (sh->batch_head && sh->batch_head != sh);
4847	spin_lock(&sh->stripe_lock);
4848	if (!sh->batch_head) {
4849		spin_unlock(&sh->stripe_lock);
4850		return 0;
4851	}
4852
4853	/*
4854	 * this stripe could be added to a batch list before we check
4855	 * BATCH_READY, skips it
4856	 */
4857	if (sh->batch_head != sh) {
4858		spin_unlock(&sh->stripe_lock);
4859		return 1;
4860	}
4861	spin_lock(&sh->batch_lock);
4862	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4863		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4864	spin_unlock(&sh->batch_lock);
4865	spin_unlock(&sh->stripe_lock);
4866
4867	/*
4868	 * BATCH_READY is cleared, no new stripes can be added.
4869	 * batch_list can be accessed without lock
4870	 */
4871	return 0;
4872}
4873
4874static void break_stripe_batch_list(struct stripe_head *head_sh,
4875				    unsigned long handle_flags)
4876{
4877	struct stripe_head *sh, *next;
4878	int i;
4879	int do_wakeup = 0;
4880
4881	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4882
4883		list_del_init(&sh->batch_list);
4884
4885		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4886					  (1 << STRIPE_SYNCING) |
4887					  (1 << STRIPE_REPLACED) |
4888					  (1 << STRIPE_DELAYED) |
4889					  (1 << STRIPE_BIT_DELAY) |
4890					  (1 << STRIPE_FULL_WRITE) |
4891					  (1 << STRIPE_BIOFILL_RUN) |
4892					  (1 << STRIPE_COMPUTE_RUN)  |
4893					  (1 << STRIPE_DISCARD) |
4894					  (1 << STRIPE_BATCH_READY) |
4895					  (1 << STRIPE_BATCH_ERR) |
4896					  (1 << STRIPE_BITMAP_PENDING)),
4897			"stripe state: %lx\n", sh->state);
4898		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4899					      (1 << STRIPE_REPLACED)),
4900			"head stripe state: %lx\n", head_sh->state);
4901
4902		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4903					    (1 << STRIPE_PREREAD_ACTIVE) |
4904					    (1 << STRIPE_DEGRADED) |
4905					    (1 << STRIPE_ON_UNPLUG_LIST)),
4906			      head_sh->state & (1 << STRIPE_INSYNC));
4907
4908		sh->check_state = head_sh->check_state;
4909		sh->reconstruct_state = head_sh->reconstruct_state;
4910		spin_lock_irq(&sh->stripe_lock);
4911		sh->batch_head = NULL;
4912		spin_unlock_irq(&sh->stripe_lock);
4913		for (i = 0; i < sh->disks; i++) {
4914			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4915				do_wakeup = 1;
4916			sh->dev[i].flags = head_sh->dev[i].flags &
4917				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4918		}
4919		if (handle_flags == 0 ||
4920		    sh->state & handle_flags)
4921			set_bit(STRIPE_HANDLE, &sh->state);
4922		raid5_release_stripe(sh);
4923	}
4924	spin_lock_irq(&head_sh->stripe_lock);
4925	head_sh->batch_head = NULL;
4926	spin_unlock_irq(&head_sh->stripe_lock);
4927	for (i = 0; i < head_sh->disks; i++)
4928		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4929			do_wakeup = 1;
4930	if (head_sh->state & handle_flags)
4931		set_bit(STRIPE_HANDLE, &head_sh->state);
4932
4933	if (do_wakeup)
4934		wake_up(&head_sh->raid_conf->wait_for_overlap);
4935}
4936
4937static void handle_stripe(struct stripe_head *sh)
4938{
4939	struct stripe_head_state s;
4940	struct r5conf *conf = sh->raid_conf;
4941	int i;
4942	int prexor;
4943	int disks = sh->disks;
4944	struct r5dev *pdev, *qdev;
4945
4946	clear_bit(STRIPE_HANDLE, &sh->state);
4947
4948	/*
4949	 * handle_stripe should not continue handle the batched stripe, only
4950	 * the head of batch list or lone stripe can continue. Otherwise we
4951	 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4952	 * is set for the batched stripe.
4953	 */
4954	if (clear_batch_ready(sh))
4955		return;
4956
4957	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4958		/* already being handled, ensure it gets handled
4959		 * again when current action finishes */
4960		set_bit(STRIPE_HANDLE, &sh->state);
4961		return;
4962	}
4963
4964	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4965		break_stripe_batch_list(sh, 0);
4966
4967	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4968		spin_lock(&sh->stripe_lock);
4969		/*
4970		 * Cannot process 'sync' concurrently with 'discard'.
4971		 * Flush data in r5cache before 'sync'.
4972		 */
4973		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4974		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4975		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4976		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4977			set_bit(STRIPE_SYNCING, &sh->state);
4978			clear_bit(STRIPE_INSYNC, &sh->state);
4979			clear_bit(STRIPE_REPLACED, &sh->state);
4980		}
4981		spin_unlock(&sh->stripe_lock);
4982	}
4983	clear_bit(STRIPE_DELAYED, &sh->state);
4984
4985	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4986		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4987	       (unsigned long long)sh->sector, sh->state,
4988	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4989	       sh->check_state, sh->reconstruct_state);
4990
4991	analyse_stripe(sh, &s);
4992
4993	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4994		goto finish;
4995
4996	if (s.handle_bad_blocks ||
4997	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4998		set_bit(STRIPE_HANDLE, &sh->state);
4999		goto finish;
5000	}
5001
5002	if (unlikely(s.blocked_rdev)) {
5003		if (s.syncing || s.expanding || s.expanded ||
5004		    s.replacing || s.to_write || s.written) {
5005			set_bit(STRIPE_HANDLE, &sh->state);
5006			goto finish;
5007		}
5008		/* There is nothing for the blocked_rdev to block */
5009		rdev_dec_pending(s.blocked_rdev, conf->mddev);
5010		s.blocked_rdev = NULL;
5011	}
5012
5013	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
5014		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
5015		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
5016	}
5017
5018	pr_debug("locked=%d uptodate=%d to_read=%d"
5019	       " to_write=%d failed=%d failed_num=%d,%d\n",
5020	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
5021	       s.failed_num[0], s.failed_num[1]);
5022	/*
5023	 * check if the array has lost more than max_degraded devices and,
5024	 * if so, some requests might need to be failed.
5025	 *
5026	 * When journal device failed (log_failed), we will only process
5027	 * the stripe if there is data need write to raid disks
5028	 */
5029	if (s.failed > conf->max_degraded ||
5030	    (s.log_failed && s.injournal == 0)) {
5031		sh->check_state = 0;
5032		sh->reconstruct_state = 0;
5033		break_stripe_batch_list(sh, 0);
5034		if (s.to_read+s.to_write+s.written)
5035			handle_failed_stripe(conf, sh, &s, disks);
5036		if (s.syncing + s.replacing)
5037			handle_failed_sync(conf, sh, &s);
5038	}
5039
5040	/* Now we check to see if any write operations have recently
5041	 * completed
5042	 */
5043	prexor = 0;
5044	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
5045		prexor = 1;
5046	if (sh->reconstruct_state == reconstruct_state_drain_result ||
5047	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
5048		sh->reconstruct_state = reconstruct_state_idle;
5049
5050		/* All the 'written' buffers and the parity block are ready to
5051		 * be written back to disk
5052		 */
5053		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
5054		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
5055		BUG_ON(sh->qd_idx >= 0 &&
5056		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5057		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
5058		for (i = disks; i--; ) {
5059			struct r5dev *dev = &sh->dev[i];
5060			if (test_bit(R5_LOCKED, &dev->flags) &&
5061				(i == sh->pd_idx || i == sh->qd_idx ||
5062				 dev->written || test_bit(R5_InJournal,
5063							  &dev->flags))) {
5064				pr_debug("Writing block %d\n", i);
5065				set_bit(R5_Wantwrite, &dev->flags);
5066				if (prexor)
5067					continue;
5068				if (s.failed > 1)
5069					continue;
5070				if (!test_bit(R5_Insync, &dev->flags) ||
5071				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
5072				     s.failed == 0))
5073					set_bit(STRIPE_INSYNC, &sh->state);
5074			}
5075		}
5076		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5077			s.dec_preread_active = 1;
5078	}
5079
5080	/*
5081	 * might be able to return some write requests if the parity blocks
5082	 * are safe, or on a failed drive
5083	 */
5084	pdev = &sh->dev[sh->pd_idx];
5085	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5086		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5087	qdev = &sh->dev[sh->qd_idx];
5088	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5089		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5090		|| conf->level < 6;
5091
5092	if (s.written &&
5093	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5094			     && !test_bit(R5_LOCKED, &pdev->flags)
5095			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
5096				 test_bit(R5_Discard, &pdev->flags))))) &&
5097	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5098			     && !test_bit(R5_LOCKED, &qdev->flags)
5099			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
5100				 test_bit(R5_Discard, &qdev->flags))))))
5101		handle_stripe_clean_event(conf, sh, disks);
5102
5103	if (s.just_cached)
5104		r5c_handle_cached_data_endio(conf, sh, disks);
5105	log_stripe_write_finished(sh);
5106
5107	/* Now we might consider reading some blocks, either to check/generate
5108	 * parity, or to satisfy requests
5109	 * or to load a block that is being partially written.
5110	 */
5111	if (s.to_read || s.non_overwrite
5112	    || (s.to_write && s.failed)
5113	    || (s.syncing && (s.uptodate + s.compute < disks))
5114	    || s.replacing
5115	    || s.expanding)
5116		handle_stripe_fill(sh, &s, disks);
5117
5118	/*
5119	 * When the stripe finishes full journal write cycle (write to journal
5120	 * and raid disk), this is the clean up procedure so it is ready for
5121	 * next operation.
5122	 */
5123	r5c_finish_stripe_write_out(conf, sh, &s);
5124
5125	/*
5126	 * Now to consider new write requests, cache write back and what else,
5127	 * if anything should be read.  We do not handle new writes when:
5128	 * 1/ A 'write' operation (copy+xor) is already in flight.
5129	 * 2/ A 'check' operation is in flight, as it may clobber the parity
5130	 *    block.
5131	 * 3/ A r5c cache log write is in flight.
5132	 */
5133
5134	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5135		if (!r5c_is_writeback(conf->log)) {
5136			if (s.to_write)
5137				handle_stripe_dirtying(conf, sh, &s, disks);
5138		} else { /* write back cache */
5139			int ret = 0;
5140
5141			/* First, try handle writes in caching phase */
5142			if (s.to_write)
5143				ret = r5c_try_caching_write(conf, sh, &s,
5144							    disks);
5145			/*
5146			 * If caching phase failed: ret == -EAGAIN
5147			 *    OR
5148			 * stripe under reclaim: !caching && injournal
5149			 *
5150			 * fall back to handle_stripe_dirtying()
5151			 */
5152			if (ret == -EAGAIN ||
5153			    /* stripe under reclaim: !caching && injournal */
5154			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5155			     s.injournal > 0)) {
5156				ret = handle_stripe_dirtying(conf, sh, &s,
5157							     disks);
5158				if (ret == -EAGAIN)
5159					goto finish;
5160			}
5161		}
5162	}
5163
5164	/* maybe we need to check and possibly fix the parity for this stripe
5165	 * Any reads will already have been scheduled, so we just see if enough
5166	 * data is available.  The parity check is held off while parity
5167	 * dependent operations are in flight.
5168	 */
5169	if (sh->check_state ||
5170	    (s.syncing && s.locked == 0 &&
5171	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5172	     !test_bit(STRIPE_INSYNC, &sh->state))) {
5173		if (conf->level == 6)
5174			handle_parity_checks6(conf, sh, &s, disks);
5175		else
5176			handle_parity_checks5(conf, sh, &s, disks);
5177	}
5178
5179	if ((s.replacing || s.syncing) && s.locked == 0
5180	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5181	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
5182		/* Write out to replacement devices where possible */
5183		for (i = 0; i < conf->raid_disks; i++)
5184			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5185				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5186				set_bit(R5_WantReplace, &sh->dev[i].flags);
5187				set_bit(R5_LOCKED, &sh->dev[i].flags);
5188				s.locked++;
5189			}
5190		if (s.replacing)
5191			set_bit(STRIPE_INSYNC, &sh->state);
5192		set_bit(STRIPE_REPLACED, &sh->state);
5193	}
5194	if ((s.syncing || s.replacing) && s.locked == 0 &&
5195	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5196	    test_bit(STRIPE_INSYNC, &sh->state)) {
5197		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5198		clear_bit(STRIPE_SYNCING, &sh->state);
5199		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5200			wake_up(&conf->wait_for_overlap);
5201	}
5202
5203	/* If the failed drives are just a ReadError, then we might need
5204	 * to progress the repair/check process
5205	 */
5206	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5207		for (i = 0; i < s.failed; i++) {
5208			struct r5dev *dev = &sh->dev[s.failed_num[i]];
5209			if (test_bit(R5_ReadError, &dev->flags)
5210			    && !test_bit(R5_LOCKED, &dev->flags)
5211			    && test_bit(R5_UPTODATE, &dev->flags)
5212				) {
5213				if (!test_bit(R5_ReWrite, &dev->flags)) {
5214					set_bit(R5_Wantwrite, &dev->flags);
5215					set_bit(R5_ReWrite, &dev->flags);
5216				} else
5217					/* let's read it back */
5218					set_bit(R5_Wantread, &dev->flags);
5219				set_bit(R5_LOCKED, &dev->flags);
5220				s.locked++;
5221			}
5222		}
5223
5224	/* Finish reconstruct operations initiated by the expansion process */
5225	if (sh->reconstruct_state == reconstruct_state_result) {
5226		struct stripe_head *sh_src
5227			= raid5_get_active_stripe(conf, NULL, sh->sector,
5228					R5_GAS_PREVIOUS | R5_GAS_NOBLOCK |
5229					R5_GAS_NOQUIESCE);
5230		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5231			/* sh cannot be written until sh_src has been read.
5232			 * so arrange for sh to be delayed a little
5233			 */
5234			set_bit(STRIPE_DELAYED, &sh->state);
5235			set_bit(STRIPE_HANDLE, &sh->state);
5236			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5237					      &sh_src->state))
5238				atomic_inc(&conf->preread_active_stripes);
5239			raid5_release_stripe(sh_src);
5240			goto finish;
5241		}
5242		if (sh_src)
5243			raid5_release_stripe(sh_src);
5244
5245		sh->reconstruct_state = reconstruct_state_idle;
5246		clear_bit(STRIPE_EXPANDING, &sh->state);
5247		for (i = conf->raid_disks; i--; ) {
5248			set_bit(R5_Wantwrite, &sh->dev[i].flags);
5249			set_bit(R5_LOCKED, &sh->dev[i].flags);
5250			s.locked++;
5251		}
5252	}
5253
5254	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5255	    !sh->reconstruct_state) {
5256		/* Need to write out all blocks after computing parity */
5257		sh->disks = conf->raid_disks;
5258		stripe_set_idx(sh->sector, conf, 0, sh);
5259		schedule_reconstruction(sh, &s, 1, 1);
5260	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5261		clear_bit(STRIPE_EXPAND_READY, &sh->state);
5262		atomic_dec(&conf->reshape_stripes);
5263		wake_up(&conf->wait_for_overlap);
5264		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5265	}
5266
5267	if (s.expanding && s.locked == 0 &&
5268	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5269		handle_stripe_expansion(conf, sh);
5270
5271finish:
5272	/* wait for this device to become unblocked */
5273	if (unlikely(s.blocked_rdev)) {
5274		if (conf->mddev->external)
5275			md_wait_for_blocked_rdev(s.blocked_rdev,
5276						 conf->mddev);
5277		else
5278			/* Internal metadata will immediately
5279			 * be written by raid5d, so we don't
5280			 * need to wait here.
5281			 */
5282			rdev_dec_pending(s.blocked_rdev,
5283					 conf->mddev);
5284	}
5285
5286	if (s.handle_bad_blocks)
5287		for (i = disks; i--; ) {
5288			struct md_rdev *rdev;
5289			struct r5dev *dev = &sh->dev[i];
5290			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5291				/* We own a safe reference to the rdev */
5292				rdev = conf->disks[i].rdev;
5293				if (!rdev_set_badblocks(rdev, sh->sector,
5294							RAID5_STRIPE_SECTORS(conf), 0))
5295					md_error(conf->mddev, rdev);
5296				rdev_dec_pending(rdev, conf->mddev);
5297			}
5298			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5299				rdev = conf->disks[i].rdev;
5300				rdev_clear_badblocks(rdev, sh->sector,
5301						     RAID5_STRIPE_SECTORS(conf), 0);
5302				rdev_dec_pending(rdev, conf->mddev);
5303			}
5304			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5305				rdev = conf->disks[i].replacement;
5306				if (!rdev)
5307					/* rdev have been moved down */
5308					rdev = conf->disks[i].rdev;
5309				rdev_clear_badblocks(rdev, sh->sector,
5310						     RAID5_STRIPE_SECTORS(conf), 0);
5311				rdev_dec_pending(rdev, conf->mddev);
5312			}
5313		}
5314
5315	if (s.ops_request)
5316		raid_run_ops(sh, s.ops_request);
5317
5318	ops_run_io(sh, &s);
5319
5320	if (s.dec_preread_active) {
5321		/* We delay this until after ops_run_io so that if make_request
5322		 * is waiting on a flush, it won't continue until the writes
5323		 * have actually been submitted.
5324		 */
5325		atomic_dec(&conf->preread_active_stripes);
5326		if (atomic_read(&conf->preread_active_stripes) <
5327		    IO_THRESHOLD)
5328			md_wakeup_thread(conf->mddev->thread);
5329	}
5330
5331	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5332}
5333
5334static void raid5_activate_delayed(struct r5conf *conf)
5335	__must_hold(&conf->device_lock)
5336{
5337	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5338		while (!list_empty(&conf->delayed_list)) {
5339			struct list_head *l = conf->delayed_list.next;
5340			struct stripe_head *sh;
5341			sh = list_entry(l, struct stripe_head, lru);
5342			list_del_init(l);
5343			clear_bit(STRIPE_DELAYED, &sh->state);
5344			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5345				atomic_inc(&conf->preread_active_stripes);
5346			list_add_tail(&sh->lru, &conf->hold_list);
5347			raid5_wakeup_stripe_thread(sh);
5348		}
5349	}
5350}
5351
5352static void activate_bit_delay(struct r5conf *conf,
5353		struct list_head *temp_inactive_list)
5354	__must_hold(&conf->device_lock)
5355{
5356	struct list_head head;
5357	list_add(&head, &conf->bitmap_list);
5358	list_del_init(&conf->bitmap_list);
5359	while (!list_empty(&head)) {
5360		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5361		int hash;
5362		list_del_init(&sh->lru);
5363		atomic_inc(&sh->count);
5364		hash = sh->hash_lock_index;
5365		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5366	}
5367}
5368
5369static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5370{
5371	struct r5conf *conf = mddev->private;
5372	sector_t sector = bio->bi_iter.bi_sector;
5373	unsigned int chunk_sectors;
5374	unsigned int bio_sectors = bio_sectors(bio);
5375
5376	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5377	return  chunk_sectors >=
5378		((sector & (chunk_sectors - 1)) + bio_sectors);
5379}
5380
5381/*
5382 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5383 *  later sampled by raid5d.
5384 */
5385static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5386{
5387	unsigned long flags;
5388
5389	spin_lock_irqsave(&conf->device_lock, flags);
5390
5391	bi->bi_next = conf->retry_read_aligned_list;
5392	conf->retry_read_aligned_list = bi;
5393
5394	spin_unlock_irqrestore(&conf->device_lock, flags);
5395	md_wakeup_thread(conf->mddev->thread);
5396}
5397
5398static struct bio *remove_bio_from_retry(struct r5conf *conf,
5399					 unsigned int *offset)
5400{
5401	struct bio *bi;
5402
5403	bi = conf->retry_read_aligned;
5404	if (bi) {
5405		*offset = conf->retry_read_offset;
5406		conf->retry_read_aligned = NULL;
5407		return bi;
5408	}
5409	bi = conf->retry_read_aligned_list;
5410	if(bi) {
5411		conf->retry_read_aligned_list = bi->bi_next;
5412		bi->bi_next = NULL;
5413		*offset = 0;
5414	}
5415
5416	return bi;
5417}
5418
5419/*
5420 *  The "raid5_align_endio" should check if the read succeeded and if it
5421 *  did, call bio_endio on the original bio (having bio_put the new bio
5422 *  first).
5423 *  If the read failed..
5424 */
5425static void raid5_align_endio(struct bio *bi)
5426{
5427	struct bio *raid_bi = bi->bi_private;
5428	struct md_rdev *rdev = (void *)raid_bi->bi_next;
5429	struct mddev *mddev = rdev->mddev;
5430	struct r5conf *conf = mddev->private;
5431	blk_status_t error = bi->bi_status;
5432
5433	bio_put(bi);
5434	raid_bi->bi_next = NULL;
5435	rdev_dec_pending(rdev, conf->mddev);
5436
5437	if (!error) {
5438		bio_endio(raid_bi);
5439		if (atomic_dec_and_test(&conf->active_aligned_reads))
5440			wake_up(&conf->wait_for_quiescent);
5441		return;
5442	}
5443
5444	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5445
5446	add_bio_to_retry(raid_bi, conf);
5447}
5448
5449static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5450{
5451	struct r5conf *conf = mddev->private;
5452	struct bio *align_bio;
5453	struct md_rdev *rdev;
5454	sector_t sector, end_sector;
5455	int dd_idx;
5456	bool did_inc;
5457
5458	if (!in_chunk_boundary(mddev, raid_bio)) {
5459		pr_debug("%s: non aligned\n", __func__);
5460		return 0;
5461	}
5462
5463	sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5464				      &dd_idx, NULL);
5465	end_sector = sector + bio_sectors(raid_bio);
5466
5467	if (r5c_big_stripe_cached(conf, sector))
5468		return 0;
5469
5470	rdev = conf->disks[dd_idx].replacement;
5471	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5472	    rdev->recovery_offset < end_sector) {
5473		rdev = conf->disks[dd_idx].rdev;
5474		if (!rdev)
5475			return 0;
5476		if (test_bit(Faulty, &rdev->flags) ||
5477		    !(test_bit(In_sync, &rdev->flags) ||
5478		      rdev->recovery_offset >= end_sector))
5479			return 0;
5480	}
5481
5482	atomic_inc(&rdev->nr_pending);
5483
5484	if (rdev_has_badblock(rdev, sector, bio_sectors(raid_bio))) {
5485		rdev_dec_pending(rdev, mddev);
5486		return 0;
5487	}
5488
5489	md_account_bio(mddev, &raid_bio);
5490	raid_bio->bi_next = (void *)rdev;
5491
5492	align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5493				    &mddev->bio_set);
5494	align_bio->bi_end_io = raid5_align_endio;
5495	align_bio->bi_private = raid_bio;
5496	align_bio->bi_iter.bi_sector = sector;
5497
5498	/* No reshape active, so we can trust rdev->data_offset */
5499	align_bio->bi_iter.bi_sector += rdev->data_offset;
5500
5501	did_inc = false;
5502	if (conf->quiesce == 0) {
5503		atomic_inc(&conf->active_aligned_reads);
5504		did_inc = true;
5505	}
5506	/* need a memory barrier to detect the race with raid5_quiesce() */
5507	if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5508		/* quiesce is in progress, so we need to undo io activation and wait
5509		 * for it to finish
5510		 */
5511		if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5512			wake_up(&conf->wait_for_quiescent);
5513		spin_lock_irq(&conf->device_lock);
5514		wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5515				    conf->device_lock);
5516		atomic_inc(&conf->active_aligned_reads);
5517		spin_unlock_irq(&conf->device_lock);
5518	}
5519
5520	mddev_trace_remap(mddev, align_bio, raid_bio->bi_iter.bi_sector);
5521	submit_bio_noacct(align_bio);
5522	return 1;
5523}
5524
5525static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5526{
5527	struct bio *split;
5528	sector_t sector = raid_bio->bi_iter.bi_sector;
5529	unsigned chunk_sects = mddev->chunk_sectors;
5530	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5531
5532	if (sectors < bio_sectors(raid_bio)) {
5533		struct r5conf *conf = mddev->private;
5534		split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5535		bio_chain(split, raid_bio);
5536		submit_bio_noacct(raid_bio);
5537		raid_bio = split;
5538	}
5539
5540	if (!raid5_read_one_chunk(mddev, raid_bio))
5541		return raid_bio;
5542
5543	return NULL;
5544}
5545
5546/* __get_priority_stripe - get the next stripe to process
5547 *
5548 * Full stripe writes are allowed to pass preread active stripes up until
5549 * the bypass_threshold is exceeded.  In general the bypass_count
5550 * increments when the handle_list is handled before the hold_list; however, it
5551 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5552 * stripe with in flight i/o.  The bypass_count will be reset when the
5553 * head of the hold_list has changed, i.e. the head was promoted to the
5554 * handle_list.
5555 */
5556static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5557	__must_hold(&conf->device_lock)
5558{
5559	struct stripe_head *sh, *tmp;
5560	struct list_head *handle_list = NULL;
5561	struct r5worker_group *wg;
5562	bool second_try = !r5c_is_writeback(conf->log) &&
5563		!r5l_log_disk_error(conf);
5564	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5565		r5l_log_disk_error(conf);
5566
5567again:
5568	wg = NULL;
5569	sh = NULL;
5570	if (conf->worker_cnt_per_group == 0) {
5571		handle_list = try_loprio ? &conf->loprio_list :
5572					&conf->handle_list;
5573	} else if (group != ANY_GROUP) {
5574		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5575				&conf->worker_groups[group].handle_list;
5576		wg = &conf->worker_groups[group];
5577	} else {
5578		int i;
5579		for (i = 0; i < conf->group_cnt; i++) {
5580			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5581				&conf->worker_groups[i].handle_list;
5582			wg = &conf->worker_groups[i];
5583			if (!list_empty(handle_list))
5584				break;
5585		}
5586	}
5587
5588	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5589		  __func__,
5590		  list_empty(handle_list) ? "empty" : "busy",
5591		  list_empty(&conf->hold_list) ? "empty" : "busy",
5592		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5593
5594	if (!list_empty(handle_list)) {
5595		sh = list_entry(handle_list->next, typeof(*sh), lru);
5596
5597		if (list_empty(&conf->hold_list))
5598			conf->bypass_count = 0;
5599		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5600			if (conf->hold_list.next == conf->last_hold)
5601				conf->bypass_count++;
5602			else {
5603				conf->last_hold = conf->hold_list.next;
5604				conf->bypass_count -= conf->bypass_threshold;
5605				if (conf->bypass_count < 0)
5606					conf->bypass_count = 0;
5607			}
5608		}
5609	} else if (!list_empty(&conf->hold_list) &&
5610		   ((conf->bypass_threshold &&
5611		     conf->bypass_count > conf->bypass_threshold) ||
5612		    atomic_read(&conf->pending_full_writes) == 0)) {
5613
5614		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5615			if (conf->worker_cnt_per_group == 0 ||
5616			    group == ANY_GROUP ||
5617			    !cpu_online(tmp->cpu) ||
5618			    cpu_to_group(tmp->cpu) == group) {
5619				sh = tmp;
5620				break;
5621			}
5622		}
5623
5624		if (sh) {
5625			conf->bypass_count -= conf->bypass_threshold;
5626			if (conf->bypass_count < 0)
5627				conf->bypass_count = 0;
5628		}
5629		wg = NULL;
5630	}
5631
5632	if (!sh) {
5633		if (second_try)
5634			return NULL;
5635		second_try = true;
5636		try_loprio = !try_loprio;
5637		goto again;
5638	}
5639
5640	if (wg) {
5641		wg->stripes_cnt--;
5642		sh->group = NULL;
5643	}
5644	list_del_init(&sh->lru);
5645	BUG_ON(atomic_inc_return(&sh->count) != 1);
5646	return sh;
5647}
5648
5649struct raid5_plug_cb {
5650	struct blk_plug_cb	cb;
5651	struct list_head	list;
5652	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5653};
5654
5655static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5656{
5657	struct raid5_plug_cb *cb = container_of(
5658		blk_cb, struct raid5_plug_cb, cb);
5659	struct stripe_head *sh;
5660	struct mddev *mddev = cb->cb.data;
5661	struct r5conf *conf = mddev->private;
5662	int cnt = 0;
5663	int hash;
5664
5665	if (cb->list.next && !list_empty(&cb->list)) {
5666		spin_lock_irq(&conf->device_lock);
5667		while (!list_empty(&cb->list)) {
5668			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5669			list_del_init(&sh->lru);
5670			/*
5671			 * avoid race release_stripe_plug() sees
5672			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5673			 * is still in our list
5674			 */
5675			smp_mb__before_atomic();
5676			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5677			/*
5678			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5679			 * case, the count is always > 1 here
5680			 */
5681			hash = sh->hash_lock_index;
5682			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5683			cnt++;
5684		}
5685		spin_unlock_irq(&conf->device_lock);
5686	}
5687	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5688				     NR_STRIPE_HASH_LOCKS);
5689	if (!mddev_is_dm(mddev))
5690		trace_block_unplug(mddev->gendisk->queue, cnt, !from_schedule);
5691	kfree(cb);
5692}
5693
5694static void release_stripe_plug(struct mddev *mddev,
5695				struct stripe_head *sh)
5696{
5697	struct blk_plug_cb *blk_cb = blk_check_plugged(
5698		raid5_unplug, mddev,
5699		sizeof(struct raid5_plug_cb));
5700	struct raid5_plug_cb *cb;
5701
5702	if (!blk_cb) {
5703		raid5_release_stripe(sh);
5704		return;
5705	}
5706
5707	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5708
5709	if (cb->list.next == NULL) {
5710		int i;
5711		INIT_LIST_HEAD(&cb->list);
5712		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5713			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5714	}
5715
5716	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5717		list_add_tail(&sh->lru, &cb->list);
5718	else
5719		raid5_release_stripe(sh);
5720}
5721
5722static void make_discard_request(struct mddev *mddev, struct bio *bi)
5723{
5724	struct r5conf *conf = mddev->private;
5725	sector_t logical_sector, last_sector;
5726	struct stripe_head *sh;
5727	int stripe_sectors;
5728
5729	/* We need to handle this when io_uring supports discard/trim */
5730	if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5731		return;
5732
5733	if (mddev->reshape_position != MaxSector)
5734		/* Skip discard while reshape is happening */
5735		return;
5736
5737	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5738	last_sector = bio_end_sector(bi);
5739
5740	bi->bi_next = NULL;
5741
5742	stripe_sectors = conf->chunk_sectors *
5743		(conf->raid_disks - conf->max_degraded);
5744	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5745					       stripe_sectors);
5746	sector_div(last_sector, stripe_sectors);
5747
5748	logical_sector *= conf->chunk_sectors;
5749	last_sector *= conf->chunk_sectors;
5750
5751	for (; logical_sector < last_sector;
5752	     logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5753		DEFINE_WAIT(w);
5754		int d;
5755	again:
5756		sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0);
5757		prepare_to_wait(&conf->wait_for_overlap, &w,
5758				TASK_UNINTERRUPTIBLE);
5759		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5760		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5761			raid5_release_stripe(sh);
5762			schedule();
5763			goto again;
5764		}
5765		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5766		spin_lock_irq(&sh->stripe_lock);
5767		for (d = 0; d < conf->raid_disks; d++) {
5768			if (d == sh->pd_idx || d == sh->qd_idx)
5769				continue;
5770			if (sh->dev[d].towrite || sh->dev[d].toread) {
5771				set_bit(R5_Overlap, &sh->dev[d].flags);
5772				spin_unlock_irq(&sh->stripe_lock);
5773				raid5_release_stripe(sh);
5774				schedule();
5775				goto again;
5776			}
5777		}
5778		set_bit(STRIPE_DISCARD, &sh->state);
5779		finish_wait(&conf->wait_for_overlap, &w);
5780		sh->overwrite_disks = 0;
5781		for (d = 0; d < conf->raid_disks; d++) {
5782			if (d == sh->pd_idx || d == sh->qd_idx)
5783				continue;
5784			sh->dev[d].towrite = bi;
5785			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5786			bio_inc_remaining(bi);
5787			md_write_inc(mddev, bi);
5788			sh->overwrite_disks++;
5789		}
5790		spin_unlock_irq(&sh->stripe_lock);
5791		if (conf->mddev->bitmap) {
5792			for (d = 0;
5793			     d < conf->raid_disks - conf->max_degraded;
5794			     d++)
5795				md_bitmap_startwrite(mddev->bitmap,
5796						     sh->sector,
5797						     RAID5_STRIPE_SECTORS(conf),
5798						     0);
5799			sh->bm_seq = conf->seq_flush + 1;
5800			set_bit(STRIPE_BIT_DELAY, &sh->state);
5801		}
5802
5803		set_bit(STRIPE_HANDLE, &sh->state);
5804		clear_bit(STRIPE_DELAYED, &sh->state);
5805		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5806			atomic_inc(&conf->preread_active_stripes);
5807		release_stripe_plug(mddev, sh);
5808	}
5809
5810	bio_endio(bi);
5811}
5812
5813static bool ahead_of_reshape(struct mddev *mddev, sector_t sector,
5814			     sector_t reshape_sector)
5815{
5816	return mddev->reshape_backwards ? sector < reshape_sector :
5817					  sector >= reshape_sector;
5818}
5819
5820static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min,
5821				   sector_t max, sector_t reshape_sector)
5822{
5823	return mddev->reshape_backwards ? max < reshape_sector :
5824					  min >= reshape_sector;
5825}
5826
5827static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf,
5828				    struct stripe_head *sh)
5829{
5830	sector_t max_sector = 0, min_sector = MaxSector;
5831	bool ret = false;
5832	int dd_idx;
5833
5834	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5835		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5836			continue;
5837
5838		min_sector = min(min_sector, sh->dev[dd_idx].sector);
5839		max_sector = max(max_sector, sh->dev[dd_idx].sector);
5840	}
5841
5842	spin_lock_irq(&conf->device_lock);
5843
5844	if (!range_ahead_of_reshape(mddev, min_sector, max_sector,
5845				     conf->reshape_progress))
5846		/* mismatch, need to try again */
5847		ret = true;
5848
5849	spin_unlock_irq(&conf->device_lock);
5850
5851	return ret;
5852}
5853
5854static int add_all_stripe_bios(struct r5conf *conf,
5855		struct stripe_request_ctx *ctx, struct stripe_head *sh,
5856		struct bio *bi, int forwrite, int previous)
5857{
5858	int dd_idx;
5859	int ret = 1;
5860
5861	spin_lock_irq(&sh->stripe_lock);
5862
5863	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5864		struct r5dev *dev = &sh->dev[dd_idx];
5865
5866		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5867			continue;
5868
5869		if (dev->sector < ctx->first_sector ||
5870		    dev->sector >= ctx->last_sector)
5871			continue;
5872
5873		if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
5874			set_bit(R5_Overlap, &dev->flags);
5875			ret = 0;
5876			continue;
5877		}
5878	}
5879
5880	if (!ret)
5881		goto out;
5882
5883	for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5884		struct r5dev *dev = &sh->dev[dd_idx];
5885
5886		if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5887			continue;
5888
5889		if (dev->sector < ctx->first_sector ||
5890		    dev->sector >= ctx->last_sector)
5891			continue;
5892
5893		__add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
5894		clear_bit((dev->sector - ctx->first_sector) >>
5895			  RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do);
5896	}
5897
5898out:
5899	spin_unlock_irq(&sh->stripe_lock);
5900	return ret;
5901}
5902
5903static enum stripe_result make_stripe_request(struct mddev *mddev,
5904		struct r5conf *conf, struct stripe_request_ctx *ctx,
5905		sector_t logical_sector, struct bio *bi)
5906{
5907	const int rw = bio_data_dir(bi);
5908	enum stripe_result ret;
5909	struct stripe_head *sh;
5910	sector_t new_sector;
5911	int previous = 0, flags = 0;
5912	int seq, dd_idx;
5913
5914	seq = read_seqcount_begin(&conf->gen_lock);
5915
5916	if (unlikely(conf->reshape_progress != MaxSector)) {
5917		/*
5918		 * Spinlock is needed as reshape_progress may be
5919		 * 64bit on a 32bit platform, and so it might be
5920		 * possible to see a half-updated value
5921		 * Of course reshape_progress could change after
5922		 * the lock is dropped, so once we get a reference
5923		 * to the stripe that we think it is, we will have
5924		 * to check again.
5925		 */
5926		spin_lock_irq(&conf->device_lock);
5927		if (ahead_of_reshape(mddev, logical_sector,
5928				     conf->reshape_progress)) {
5929			previous = 1;
5930		} else {
5931			if (ahead_of_reshape(mddev, logical_sector,
5932					     conf->reshape_safe)) {
5933				spin_unlock_irq(&conf->device_lock);
5934				ret = STRIPE_SCHEDULE_AND_RETRY;
5935				goto out;
5936			}
5937		}
5938		spin_unlock_irq(&conf->device_lock);
5939	}
5940
5941	new_sector = raid5_compute_sector(conf, logical_sector, previous,
5942					  &dd_idx, NULL);
5943	pr_debug("raid456: %s, sector %llu logical %llu\n", __func__,
5944		 new_sector, logical_sector);
5945
5946	if (previous)
5947		flags |= R5_GAS_PREVIOUS;
5948	if (bi->bi_opf & REQ_RAHEAD)
5949		flags |= R5_GAS_NOBLOCK;
5950	sh = raid5_get_active_stripe(conf, ctx, new_sector, flags);
5951	if (unlikely(!sh)) {
5952		/* cannot get stripe, just give-up */
5953		bi->bi_status = BLK_STS_IOERR;
5954		return STRIPE_FAIL;
5955	}
5956
5957	if (unlikely(previous) &&
5958	    stripe_ahead_of_reshape(mddev, conf, sh)) {
5959		/*
5960		 * Expansion moved on while waiting for a stripe.
5961		 * Expansion could still move past after this
5962		 * test, but as we are holding a reference to
5963		 * 'sh', we know that if that happens,
5964		 *  STRIPE_EXPANDING will get set and the expansion
5965		 * won't proceed until we finish with the stripe.
5966		 */
5967		ret = STRIPE_SCHEDULE_AND_RETRY;
5968		goto out_release;
5969	}
5970
5971	if (read_seqcount_retry(&conf->gen_lock, seq)) {
5972		/* Might have got the wrong stripe_head by accident */
5973		ret = STRIPE_RETRY;
5974		goto out_release;
5975	}
5976
5977	if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5978	    !add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
5979		/*
5980		 * Stripe is busy expanding or add failed due to
5981		 * overlap. Flush everything and wait a while.
5982		 */
5983		md_wakeup_thread(mddev->thread);
5984		ret = STRIPE_SCHEDULE_AND_RETRY;
5985		goto out_release;
5986	}
5987
5988	if (stripe_can_batch(sh)) {
5989		stripe_add_to_batch_list(conf, sh, ctx->batch_last);
5990		if (ctx->batch_last)
5991			raid5_release_stripe(ctx->batch_last);
5992		atomic_inc(&sh->count);
5993		ctx->batch_last = sh;
5994	}
5995
5996	if (ctx->do_flush) {
5997		set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5998		/* we only need flush for one stripe */
5999		ctx->do_flush = false;
6000	}
6001
6002	set_bit(STRIPE_HANDLE, &sh->state);
6003	clear_bit(STRIPE_DELAYED, &sh->state);
6004	if ((!sh->batch_head || sh == sh->batch_head) &&
6005	    (bi->bi_opf & REQ_SYNC) &&
6006	    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
6007		atomic_inc(&conf->preread_active_stripes);
6008
6009	release_stripe_plug(mddev, sh);
6010	return STRIPE_SUCCESS;
6011
6012out_release:
6013	raid5_release_stripe(sh);
6014out:
6015	if (ret == STRIPE_SCHEDULE_AND_RETRY && reshape_interrupted(mddev)) {
6016		bi->bi_status = BLK_STS_RESOURCE;
6017		ret = STRIPE_WAIT_RESHAPE;
6018		pr_err_ratelimited("dm-raid456: io across reshape position while reshape can't make progress");
6019	}
6020	return ret;
6021}
6022
6023/*
6024 * If the bio covers multiple data disks, find sector within the bio that has
6025 * the lowest chunk offset in the first chunk.
6026 */
6027static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf,
6028					      struct bio *bi)
6029{
6030	int sectors_per_chunk = conf->chunk_sectors;
6031	int raid_disks = conf->raid_disks;
6032	int dd_idx;
6033	struct stripe_head sh;
6034	unsigned int chunk_offset;
6035	sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6036	sector_t sector;
6037
6038	/* We pass in fake stripe_head to get back parity disk numbers */
6039	sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh);
6040	chunk_offset = sector_div(sector, sectors_per_chunk);
6041	if (sectors_per_chunk - chunk_offset >= bio_sectors(bi))
6042		return r_sector;
6043	/*
6044	 * Bio crosses to the next data disk. Check whether it's in the same
6045	 * chunk.
6046	 */
6047	dd_idx++;
6048	while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx)
6049		dd_idx++;
6050	if (dd_idx >= raid_disks)
6051		return r_sector;
6052	return r_sector + sectors_per_chunk - chunk_offset;
6053}
6054
6055static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
6056{
6057	DEFINE_WAIT_FUNC(wait, woken_wake_function);
6058	struct r5conf *conf = mddev->private;
6059	sector_t logical_sector;
6060	struct stripe_request_ctx ctx = {};
6061	const int rw = bio_data_dir(bi);
6062	enum stripe_result res;
6063	int s, stripe_cnt;
6064
6065	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
6066		int ret = log_handle_flush_request(conf, bi);
6067
6068		if (ret == 0)
6069			return true;
6070		if (ret == -ENODEV) {
6071			if (md_flush_request(mddev, bi))
6072				return true;
6073		}
6074		/* ret == -EAGAIN, fallback */
6075		/*
6076		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
6077		 * we need to flush journal device
6078		 */
6079		ctx.do_flush = bi->bi_opf & REQ_PREFLUSH;
6080	}
6081
6082	if (!md_write_start(mddev, bi))
6083		return false;
6084	/*
6085	 * If array is degraded, better not do chunk aligned read because
6086	 * later we might have to read it again in order to reconstruct
6087	 * data on failed drives.
6088	 */
6089	if (rw == READ && mddev->degraded == 0 &&
6090	    mddev->reshape_position == MaxSector) {
6091		bi = chunk_aligned_read(mddev, bi);
6092		if (!bi)
6093			return true;
6094	}
6095
6096	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
6097		make_discard_request(mddev, bi);
6098		md_write_end(mddev);
6099		return true;
6100	}
6101
6102	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6103	ctx.first_sector = logical_sector;
6104	ctx.last_sector = bio_end_sector(bi);
6105	bi->bi_next = NULL;
6106
6107	stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector,
6108					   RAID5_STRIPE_SECTORS(conf));
6109	bitmap_set(ctx.sectors_to_do, 0, stripe_cnt);
6110
6111	pr_debug("raid456: %s, logical %llu to %llu\n", __func__,
6112		 bi->bi_iter.bi_sector, ctx.last_sector);
6113
6114	/* Bail out if conflicts with reshape and REQ_NOWAIT is set */
6115	if ((bi->bi_opf & REQ_NOWAIT) &&
6116	    (conf->reshape_progress != MaxSector) &&
6117	    !ahead_of_reshape(mddev, logical_sector, conf->reshape_progress) &&
6118	    ahead_of_reshape(mddev, logical_sector, conf->reshape_safe)) {
6119		bio_wouldblock_error(bi);
6120		if (rw == WRITE)
6121			md_write_end(mddev);
6122		return true;
6123	}
6124	md_account_bio(mddev, &bi);
6125
6126	/*
6127	 * Lets start with the stripe with the lowest chunk offset in the first
6128	 * chunk. That has the best chances of creating IOs adjacent to
6129	 * previous IOs in case of sequential IO and thus creates the most
6130	 * sequential IO pattern. We don't bother with the optimization when
6131	 * reshaping as the performance benefit is not worth the complexity.
6132	 */
6133	if (likely(conf->reshape_progress == MaxSector))
6134		logical_sector = raid5_bio_lowest_chunk_sector(conf, bi);
6135	s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf);
6136
6137	add_wait_queue(&conf->wait_for_overlap, &wait);
6138	while (1) {
6139		res = make_stripe_request(mddev, conf, &ctx, logical_sector,
6140					  bi);
6141		if (res == STRIPE_FAIL || res == STRIPE_WAIT_RESHAPE)
6142			break;
6143
6144		if (res == STRIPE_RETRY)
6145			continue;
6146
6147		if (res == STRIPE_SCHEDULE_AND_RETRY) {
6148			/*
6149			 * Must release the reference to batch_last before
6150			 * scheduling and waiting for work to be done,
6151			 * otherwise the batch_last stripe head could prevent
6152			 * raid5_activate_delayed() from making progress
6153			 * and thus deadlocking.
6154			 */
6155			if (ctx.batch_last) {
6156				raid5_release_stripe(ctx.batch_last);
6157				ctx.batch_last = NULL;
6158			}
6159
6160			wait_woken(&wait, TASK_UNINTERRUPTIBLE,
6161				   MAX_SCHEDULE_TIMEOUT);
6162			continue;
6163		}
6164
6165		s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s);
6166		if (s == stripe_cnt)
6167			break;
6168
6169		logical_sector = ctx.first_sector +
6170			(s << RAID5_STRIPE_SHIFT(conf));
6171	}
6172	remove_wait_queue(&conf->wait_for_overlap, &wait);
6173
6174	if (ctx.batch_last)
6175		raid5_release_stripe(ctx.batch_last);
6176
6177	if (rw == WRITE)
6178		md_write_end(mddev);
6179	if (res == STRIPE_WAIT_RESHAPE) {
6180		md_free_cloned_bio(bi);
6181		return false;
6182	}
6183
6184	bio_endio(bi);
6185	return true;
6186}
6187
6188static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
6189
6190static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
6191{
6192	/* reshaping is quite different to recovery/resync so it is
6193	 * handled quite separately ... here.
6194	 *
6195	 * On each call to sync_request, we gather one chunk worth of
6196	 * destination stripes and flag them as expanding.
6197	 * Then we find all the source stripes and request reads.
6198	 * As the reads complete, handle_stripe will copy the data
6199	 * into the destination stripe and release that stripe.
6200	 */
6201	struct r5conf *conf = mddev->private;
6202	struct stripe_head *sh;
6203	struct md_rdev *rdev;
6204	sector_t first_sector, last_sector;
6205	int raid_disks = conf->previous_raid_disks;
6206	int data_disks = raid_disks - conf->max_degraded;
6207	int new_data_disks = conf->raid_disks - conf->max_degraded;
6208	int i;
6209	int dd_idx;
6210	sector_t writepos, readpos, safepos;
6211	sector_t stripe_addr;
6212	int reshape_sectors;
6213	struct list_head stripes;
6214	sector_t retn;
6215
6216	if (sector_nr == 0) {
6217		/* If restarting in the middle, skip the initial sectors */
6218		if (mddev->reshape_backwards &&
6219		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6220			sector_nr = raid5_size(mddev, 0, 0)
6221				- conf->reshape_progress;
6222		} else if (mddev->reshape_backwards &&
6223			   conf->reshape_progress == MaxSector) {
6224			/* shouldn't happen, but just in case, finish up.*/
6225			sector_nr = MaxSector;
6226		} else if (!mddev->reshape_backwards &&
6227			   conf->reshape_progress > 0)
6228			sector_nr = conf->reshape_progress;
6229		sector_div(sector_nr, new_data_disks);
6230		if (sector_nr) {
6231			mddev->curr_resync_completed = sector_nr;
6232			sysfs_notify_dirent_safe(mddev->sysfs_completed);
6233			*skipped = 1;
6234			retn = sector_nr;
6235			goto finish;
6236		}
6237	}
6238
6239	/* We need to process a full chunk at a time.
6240	 * If old and new chunk sizes differ, we need to process the
6241	 * largest of these
6242	 */
6243
6244	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6245
6246	/* We update the metadata at least every 10 seconds, or when
6247	 * the data about to be copied would over-write the source of
6248	 * the data at the front of the range.  i.e. one new_stripe
6249	 * along from reshape_progress new_maps to after where
6250	 * reshape_safe old_maps to
6251	 */
6252	writepos = conf->reshape_progress;
6253	sector_div(writepos, new_data_disks);
6254	readpos = conf->reshape_progress;
6255	sector_div(readpos, data_disks);
6256	safepos = conf->reshape_safe;
6257	sector_div(safepos, data_disks);
6258	if (mddev->reshape_backwards) {
6259		BUG_ON(writepos < reshape_sectors);
6260		writepos -= reshape_sectors;
6261		readpos += reshape_sectors;
6262		safepos += reshape_sectors;
6263	} else {
6264		writepos += reshape_sectors;
6265		/* readpos and safepos are worst-case calculations.
6266		 * A negative number is overly pessimistic, and causes
6267		 * obvious problems for unsigned storage.  So clip to 0.
6268		 */
6269		readpos -= min_t(sector_t, reshape_sectors, readpos);
6270		safepos -= min_t(sector_t, reshape_sectors, safepos);
6271	}
6272
6273	/* Having calculated the 'writepos' possibly use it
6274	 * to set 'stripe_addr' which is where we will write to.
6275	 */
6276	if (mddev->reshape_backwards) {
6277		BUG_ON(conf->reshape_progress == 0);
6278		stripe_addr = writepos;
6279		BUG_ON((mddev->dev_sectors &
6280			~((sector_t)reshape_sectors - 1))
6281		       - reshape_sectors - stripe_addr
6282		       != sector_nr);
6283	} else {
6284		BUG_ON(writepos != sector_nr + reshape_sectors);
6285		stripe_addr = sector_nr;
6286	}
6287
6288	/* 'writepos' is the most advanced device address we might write.
6289	 * 'readpos' is the least advanced device address we might read.
6290	 * 'safepos' is the least address recorded in the metadata as having
6291	 *     been reshaped.
6292	 * If there is a min_offset_diff, these are adjusted either by
6293	 * increasing the safepos/readpos if diff is negative, or
6294	 * increasing writepos if diff is positive.
6295	 * If 'readpos' is then behind 'writepos', there is no way that we can
6296	 * ensure safety in the face of a crash - that must be done by userspace
6297	 * making a backup of the data.  So in that case there is no particular
6298	 * rush to update metadata.
6299	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6300	 * update the metadata to advance 'safepos' to match 'readpos' so that
6301	 * we can be safe in the event of a crash.
6302	 * So we insist on updating metadata if safepos is behind writepos and
6303	 * readpos is beyond writepos.
6304	 * In any case, update the metadata every 10 seconds.
6305	 * Maybe that number should be configurable, but I'm not sure it is
6306	 * worth it.... maybe it could be a multiple of safemode_delay???
6307	 */
6308	if (conf->min_offset_diff < 0) {
6309		safepos += -conf->min_offset_diff;
6310		readpos += -conf->min_offset_diff;
6311	} else
6312		writepos += conf->min_offset_diff;
6313
6314	if ((mddev->reshape_backwards
6315	     ? (safepos > writepos && readpos < writepos)
6316	     : (safepos < writepos && readpos > writepos)) ||
6317	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6318		/* Cannot proceed until we've updated the superblock... */
6319		wait_event(conf->wait_for_overlap,
6320			   atomic_read(&conf->reshape_stripes)==0
6321			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6322		if (atomic_read(&conf->reshape_stripes) != 0)
6323			return 0;
6324		mddev->reshape_position = conf->reshape_progress;
6325		mddev->curr_resync_completed = sector_nr;
6326		if (!mddev->reshape_backwards)
6327			/* Can update recovery_offset */
6328			rdev_for_each(rdev, mddev)
6329				if (rdev->raid_disk >= 0 &&
6330				    !test_bit(Journal, &rdev->flags) &&
6331				    !test_bit(In_sync, &rdev->flags) &&
6332				    rdev->recovery_offset < sector_nr)
6333					rdev->recovery_offset = sector_nr;
6334
6335		conf->reshape_checkpoint = jiffies;
6336		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6337		md_wakeup_thread(mddev->thread);
6338		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6339			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6340		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6341			return 0;
6342		spin_lock_irq(&conf->device_lock);
6343		conf->reshape_safe = mddev->reshape_position;
6344		spin_unlock_irq(&conf->device_lock);
6345		wake_up(&conf->wait_for_overlap);
6346		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6347	}
6348
6349	INIT_LIST_HEAD(&stripes);
6350	for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6351		int j;
6352		int skipped_disk = 0;
6353		sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i,
6354					     R5_GAS_NOQUIESCE);
6355		set_bit(STRIPE_EXPANDING, &sh->state);
6356		atomic_inc(&conf->reshape_stripes);
6357		/* If any of this stripe is beyond the end of the old
6358		 * array, then we need to zero those blocks
6359		 */
6360		for (j=sh->disks; j--;) {
6361			sector_t s;
6362			if (j == sh->pd_idx)
6363				continue;
6364			if (conf->level == 6 &&
6365			    j == sh->qd_idx)
6366				continue;
6367			s = raid5_compute_blocknr(sh, j, 0);
6368			if (s < raid5_size(mddev, 0, 0)) {
6369				skipped_disk = 1;
6370				continue;
6371			}
6372			memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6373			set_bit(R5_Expanded, &sh->dev[j].flags);
6374			set_bit(R5_UPTODATE, &sh->dev[j].flags);
6375		}
6376		if (!skipped_disk) {
6377			set_bit(STRIPE_EXPAND_READY, &sh->state);
6378			set_bit(STRIPE_HANDLE, &sh->state);
6379		}
6380		list_add(&sh->lru, &stripes);
6381	}
6382	spin_lock_irq(&conf->device_lock);
6383	if (mddev->reshape_backwards)
6384		conf->reshape_progress -= reshape_sectors * new_data_disks;
6385	else
6386		conf->reshape_progress += reshape_sectors * new_data_disks;
6387	spin_unlock_irq(&conf->device_lock);
6388	/* Ok, those stripe are ready. We can start scheduling
6389	 * reads on the source stripes.
6390	 * The source stripes are determined by mapping the first and last
6391	 * block on the destination stripes.
6392	 */
6393	first_sector =
6394		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6395				     1, &dd_idx, NULL);
6396	last_sector =
6397		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6398					    * new_data_disks - 1),
6399				     1, &dd_idx, NULL);
6400	if (last_sector >= mddev->dev_sectors)
6401		last_sector = mddev->dev_sectors - 1;
6402	while (first_sector <= last_sector) {
6403		sh = raid5_get_active_stripe(conf, NULL, first_sector,
6404				R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE);
6405		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6406		set_bit(STRIPE_HANDLE, &sh->state);
6407		raid5_release_stripe(sh);
6408		first_sector += RAID5_STRIPE_SECTORS(conf);
6409	}
6410	/* Now that the sources are clearly marked, we can release
6411	 * the destination stripes
6412	 */
6413	while (!list_empty(&stripes)) {
6414		sh = list_entry(stripes.next, struct stripe_head, lru);
6415		list_del_init(&sh->lru);
6416		raid5_release_stripe(sh);
6417	}
6418	/* If this takes us to the resync_max point where we have to pause,
6419	 * then we need to write out the superblock.
6420	 */
6421	sector_nr += reshape_sectors;
6422	retn = reshape_sectors;
6423finish:
6424	if (mddev->curr_resync_completed > mddev->resync_max ||
6425	    (sector_nr - mddev->curr_resync_completed) * 2
6426	    >= mddev->resync_max - mddev->curr_resync_completed) {
6427		/* Cannot proceed until we've updated the superblock... */
6428		wait_event(conf->wait_for_overlap,
6429			   atomic_read(&conf->reshape_stripes) == 0
6430			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6431		if (atomic_read(&conf->reshape_stripes) != 0)
6432			goto ret;
6433		mddev->reshape_position = conf->reshape_progress;
6434		mddev->curr_resync_completed = sector_nr;
6435		if (!mddev->reshape_backwards)
6436			/* Can update recovery_offset */
6437			rdev_for_each(rdev, mddev)
6438				if (rdev->raid_disk >= 0 &&
6439				    !test_bit(Journal, &rdev->flags) &&
6440				    !test_bit(In_sync, &rdev->flags) &&
6441				    rdev->recovery_offset < sector_nr)
6442					rdev->recovery_offset = sector_nr;
6443		conf->reshape_checkpoint = jiffies;
6444		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6445		md_wakeup_thread(mddev->thread);
6446		wait_event(mddev->sb_wait,
6447			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6448			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6449		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6450			goto ret;
6451		spin_lock_irq(&conf->device_lock);
6452		conf->reshape_safe = mddev->reshape_position;
6453		spin_unlock_irq(&conf->device_lock);
6454		wake_up(&conf->wait_for_overlap);
6455		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6456	}
6457ret:
6458	return retn;
6459}
6460
6461static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6462					  int *skipped)
6463{
6464	struct r5conf *conf = mddev->private;
6465	struct stripe_head *sh;
6466	sector_t max_sector = mddev->dev_sectors;
6467	sector_t sync_blocks;
6468	int still_degraded = 0;
6469	int i;
6470
6471	if (sector_nr >= max_sector) {
6472		/* just being told to finish up .. nothing much to do */
6473
6474		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6475			end_reshape(conf);
6476			return 0;
6477		}
6478
6479		if (mddev->curr_resync < max_sector) /* aborted */
6480			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6481					   &sync_blocks, 1);
6482		else /* completed sync */
6483			conf->fullsync = 0;
6484		md_bitmap_close_sync(mddev->bitmap);
6485
6486		return 0;
6487	}
6488
6489	/* Allow raid5_quiesce to complete */
6490	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6491
6492	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6493		return reshape_request(mddev, sector_nr, skipped);
6494
6495	/* No need to check resync_max as we never do more than one
6496	 * stripe, and as resync_max will always be on a chunk boundary,
6497	 * if the check in md_do_sync didn't fire, there is no chance
6498	 * of overstepping resync_max here
6499	 */
6500
6501	/* if there is too many failed drives and we are trying
6502	 * to resync, then assert that we are finished, because there is
6503	 * nothing we can do.
6504	 */
6505	if (mddev->degraded >= conf->max_degraded &&
6506	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6507		sector_t rv = mddev->dev_sectors - sector_nr;
6508		*skipped = 1;
6509		return rv;
6510	}
6511	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6512	    !conf->fullsync &&
6513	    !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6514	    sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6515		/* we can skip this block, and probably more */
6516		do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6517		*skipped = 1;
6518		/* keep things rounded to whole stripes */
6519		return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6520	}
6521
6522	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6523
6524	sh = raid5_get_active_stripe(conf, NULL, sector_nr,
6525				     R5_GAS_NOBLOCK);
6526	if (sh == NULL) {
6527		sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0);
6528		/* make sure we don't swamp the stripe cache if someone else
6529		 * is trying to get access
6530		 */
6531		schedule_timeout_uninterruptible(1);
6532	}
6533	/* Need to check if array will still be degraded after recovery/resync
6534	 * Note in case of > 1 drive failures it's possible we're rebuilding
6535	 * one drive while leaving another faulty drive in array.
6536	 */
6537	for (i = 0; i < conf->raid_disks; i++) {
6538		struct md_rdev *rdev = conf->disks[i].rdev;
6539
6540		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6541			still_degraded = 1;
6542	}
6543
6544	md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6545
6546	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6547	set_bit(STRIPE_HANDLE, &sh->state);
6548
6549	raid5_release_stripe(sh);
6550
6551	return RAID5_STRIPE_SECTORS(conf);
6552}
6553
6554static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6555			       unsigned int offset)
6556{
6557	/* We may not be able to submit a whole bio at once as there
6558	 * may not be enough stripe_heads available.
6559	 * We cannot pre-allocate enough stripe_heads as we may need
6560	 * more than exist in the cache (if we allow ever large chunks).
6561	 * So we do one stripe head at a time and record in
6562	 * ->bi_hw_segments how many have been done.
6563	 *
6564	 * We *know* that this entire raid_bio is in one chunk, so
6565	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6566	 */
6567	struct stripe_head *sh;
6568	int dd_idx;
6569	sector_t sector, logical_sector, last_sector;
6570	int scnt = 0;
6571	int handled = 0;
6572
6573	logical_sector = raid_bio->bi_iter.bi_sector &
6574		~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6575	sector = raid5_compute_sector(conf, logical_sector,
6576				      0, &dd_idx, NULL);
6577	last_sector = bio_end_sector(raid_bio);
6578
6579	for (; logical_sector < last_sector;
6580	     logical_sector += RAID5_STRIPE_SECTORS(conf),
6581		     sector += RAID5_STRIPE_SECTORS(conf),
6582		     scnt++) {
6583
6584		if (scnt < offset)
6585			/* already done this stripe */
6586			continue;
6587
6588		sh = raid5_get_active_stripe(conf, NULL, sector,
6589				R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
6590		if (!sh) {
6591			/* failed to get a stripe - must wait */
6592			conf->retry_read_aligned = raid_bio;
6593			conf->retry_read_offset = scnt;
6594			return handled;
6595		}
6596
6597		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6598			raid5_release_stripe(sh);
6599			conf->retry_read_aligned = raid_bio;
6600			conf->retry_read_offset = scnt;
6601			return handled;
6602		}
6603
6604		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6605		handle_stripe(sh);
6606		raid5_release_stripe(sh);
6607		handled++;
6608	}
6609
6610	bio_endio(raid_bio);
6611
6612	if (atomic_dec_and_test(&conf->active_aligned_reads))
6613		wake_up(&conf->wait_for_quiescent);
6614	return handled;
6615}
6616
6617static int handle_active_stripes(struct r5conf *conf, int group,
6618				 struct r5worker *worker,
6619				 struct list_head *temp_inactive_list)
6620		__must_hold(&conf->device_lock)
6621{
6622	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6623	int i, batch_size = 0, hash;
6624	bool release_inactive = false;
6625
6626	while (batch_size < MAX_STRIPE_BATCH &&
6627			(sh = __get_priority_stripe(conf, group)) != NULL)
6628		batch[batch_size++] = sh;
6629
6630	if (batch_size == 0) {
6631		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6632			if (!list_empty(temp_inactive_list + i))
6633				break;
6634		if (i == NR_STRIPE_HASH_LOCKS) {
6635			spin_unlock_irq(&conf->device_lock);
6636			log_flush_stripe_to_raid(conf);
6637			spin_lock_irq(&conf->device_lock);
6638			return batch_size;
6639		}
6640		release_inactive = true;
6641	}
6642	spin_unlock_irq(&conf->device_lock);
6643
6644	release_inactive_stripe_list(conf, temp_inactive_list,
6645				     NR_STRIPE_HASH_LOCKS);
6646
6647	r5l_flush_stripe_to_raid(conf->log);
6648	if (release_inactive) {
6649		spin_lock_irq(&conf->device_lock);
6650		return 0;
6651	}
6652
6653	for (i = 0; i < batch_size; i++)
6654		handle_stripe(batch[i]);
6655	log_write_stripe_run(conf);
6656
6657	cond_resched();
6658
6659	spin_lock_irq(&conf->device_lock);
6660	for (i = 0; i < batch_size; i++) {
6661		hash = batch[i]->hash_lock_index;
6662		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6663	}
6664	return batch_size;
6665}
6666
6667static void raid5_do_work(struct work_struct *work)
6668{
6669	struct r5worker *worker = container_of(work, struct r5worker, work);
6670	struct r5worker_group *group = worker->group;
6671	struct r5conf *conf = group->conf;
6672	struct mddev *mddev = conf->mddev;
6673	int group_id = group - conf->worker_groups;
6674	int handled;
6675	struct blk_plug plug;
6676
6677	pr_debug("+++ raid5worker active\n");
6678
6679	blk_start_plug(&plug);
6680	handled = 0;
6681	spin_lock_irq(&conf->device_lock);
6682	while (1) {
6683		int batch_size, released;
6684
6685		released = release_stripe_list(conf, worker->temp_inactive_list);
6686
6687		batch_size = handle_active_stripes(conf, group_id, worker,
6688						   worker->temp_inactive_list);
6689		worker->working = false;
6690		if (!batch_size && !released)
6691			break;
6692		handled += batch_size;
6693		wait_event_lock_irq(mddev->sb_wait,
6694			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6695			conf->device_lock);
6696	}
6697	pr_debug("%d stripes handled\n", handled);
6698
6699	spin_unlock_irq(&conf->device_lock);
6700
6701	flush_deferred_bios(conf);
6702
6703	r5l_flush_stripe_to_raid(conf->log);
6704
6705	async_tx_issue_pending_all();
6706	blk_finish_plug(&plug);
6707
6708	pr_debug("--- raid5worker inactive\n");
6709}
6710
6711/*
6712 * This is our raid5 kernel thread.
6713 *
6714 * We scan the hash table for stripes which can be handled now.
6715 * During the scan, completed stripes are saved for us by the interrupt
6716 * handler, so that they will not have to wait for our next wakeup.
6717 */
6718static void raid5d(struct md_thread *thread)
6719{
6720	struct mddev *mddev = thread->mddev;
6721	struct r5conf *conf = mddev->private;
6722	int handled;
6723	struct blk_plug plug;
6724
6725	pr_debug("+++ raid5d active\n");
6726
6727	md_check_recovery(mddev);
6728
6729	blk_start_plug(&plug);
6730	handled = 0;
6731	spin_lock_irq(&conf->device_lock);
6732	while (1) {
6733		struct bio *bio;
6734		int batch_size, released;
6735		unsigned int offset;
6736
6737		released = release_stripe_list(conf, conf->temp_inactive_list);
6738		if (released)
6739			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6740
6741		if (
6742		    !list_empty(&conf->bitmap_list)) {
6743			/* Now is a good time to flush some bitmap updates */
6744			conf->seq_flush++;
6745			spin_unlock_irq(&conf->device_lock);
6746			md_bitmap_unplug(mddev->bitmap);
6747			spin_lock_irq(&conf->device_lock);
6748			conf->seq_write = conf->seq_flush;
6749			activate_bit_delay(conf, conf->temp_inactive_list);
6750		}
6751		raid5_activate_delayed(conf);
6752
6753		while ((bio = remove_bio_from_retry(conf, &offset))) {
6754			int ok;
6755			spin_unlock_irq(&conf->device_lock);
6756			ok = retry_aligned_read(conf, bio, offset);
6757			spin_lock_irq(&conf->device_lock);
6758			if (!ok)
6759				break;
6760			handled++;
6761		}
6762
6763		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6764						   conf->temp_inactive_list);
6765		if (!batch_size && !released)
6766			break;
6767		handled += batch_size;
6768
6769		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6770			spin_unlock_irq(&conf->device_lock);
6771			md_check_recovery(mddev);
6772			spin_lock_irq(&conf->device_lock);
6773
6774			/*
6775			 * Waiting on MD_SB_CHANGE_PENDING below may deadlock
6776			 * seeing md_check_recovery() is needed to clear
6777			 * the flag when using mdmon.
6778			 */
6779			continue;
6780		}
6781
6782		wait_event_lock_irq(mddev->sb_wait,
6783			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6784			conf->device_lock);
6785	}
6786	pr_debug("%d stripes handled\n", handled);
6787
6788	spin_unlock_irq(&conf->device_lock);
6789	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6790	    mutex_trylock(&conf->cache_size_mutex)) {
6791		grow_one_stripe(conf, __GFP_NOWARN);
6792		/* Set flag even if allocation failed.  This helps
6793		 * slow down allocation requests when mem is short
6794		 */
6795		set_bit(R5_DID_ALLOC, &conf->cache_state);
6796		mutex_unlock(&conf->cache_size_mutex);
6797	}
6798
6799	flush_deferred_bios(conf);
6800
6801	r5l_flush_stripe_to_raid(conf->log);
6802
6803	async_tx_issue_pending_all();
6804	blk_finish_plug(&plug);
6805
6806	pr_debug("--- raid5d inactive\n");
6807}
6808
6809static ssize_t
6810raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6811{
6812	struct r5conf *conf;
6813	int ret = 0;
6814	spin_lock(&mddev->lock);
6815	conf = mddev->private;
6816	if (conf)
6817		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6818	spin_unlock(&mddev->lock);
6819	return ret;
6820}
6821
6822int
6823raid5_set_cache_size(struct mddev *mddev, int size)
6824{
6825	int result = 0;
6826	struct r5conf *conf = mddev->private;
6827
6828	if (size <= 16 || size > 32768)
6829		return -EINVAL;
6830
6831	WRITE_ONCE(conf->min_nr_stripes, size);
6832	mutex_lock(&conf->cache_size_mutex);
6833	while (size < conf->max_nr_stripes &&
6834	       drop_one_stripe(conf))
6835		;
6836	mutex_unlock(&conf->cache_size_mutex);
6837
6838	md_allow_write(mddev);
6839
6840	mutex_lock(&conf->cache_size_mutex);
6841	while (size > conf->max_nr_stripes)
6842		if (!grow_one_stripe(conf, GFP_KERNEL)) {
6843			WRITE_ONCE(conf->min_nr_stripes, conf->max_nr_stripes);
6844			result = -ENOMEM;
6845			break;
6846		}
6847	mutex_unlock(&conf->cache_size_mutex);
6848
6849	return result;
6850}
6851EXPORT_SYMBOL(raid5_set_cache_size);
6852
6853static ssize_t
6854raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6855{
6856	struct r5conf *conf;
6857	unsigned long new;
6858	int err;
6859
6860	if (len >= PAGE_SIZE)
6861		return -EINVAL;
6862	if (kstrtoul(page, 10, &new))
6863		return -EINVAL;
6864	err = mddev_lock(mddev);
6865	if (err)
6866		return err;
6867	conf = mddev->private;
6868	if (!conf)
6869		err = -ENODEV;
6870	else
6871		err = raid5_set_cache_size(mddev, new);
6872	mddev_unlock(mddev);
6873
6874	return err ?: len;
6875}
6876
6877static struct md_sysfs_entry
6878raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6879				raid5_show_stripe_cache_size,
6880				raid5_store_stripe_cache_size);
6881
6882static ssize_t
6883raid5_show_rmw_level(struct mddev  *mddev, char *page)
6884{
6885	struct r5conf *conf = mddev->private;
6886	if (conf)
6887		return sprintf(page, "%d\n", conf->rmw_level);
6888	else
6889		return 0;
6890}
6891
6892static ssize_t
6893raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6894{
6895	struct r5conf *conf = mddev->private;
6896	unsigned long new;
6897
6898	if (!conf)
6899		return -ENODEV;
6900
6901	if (len >= PAGE_SIZE)
6902		return -EINVAL;
6903
6904	if (kstrtoul(page, 10, &new))
6905		return -EINVAL;
6906
6907	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6908		return -EINVAL;
6909
6910	if (new != PARITY_DISABLE_RMW &&
6911	    new != PARITY_ENABLE_RMW &&
6912	    new != PARITY_PREFER_RMW)
6913		return -EINVAL;
6914
6915	conf->rmw_level = new;
6916	return len;
6917}
6918
6919static struct md_sysfs_entry
6920raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6921			 raid5_show_rmw_level,
6922			 raid5_store_rmw_level);
6923
6924static ssize_t
6925raid5_show_stripe_size(struct mddev  *mddev, char *page)
6926{
6927	struct r5conf *conf;
6928	int ret = 0;
6929
6930	spin_lock(&mddev->lock);
6931	conf = mddev->private;
6932	if (conf)
6933		ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6934	spin_unlock(&mddev->lock);
6935	return ret;
6936}
6937
6938#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6939static ssize_t
6940raid5_store_stripe_size(struct mddev  *mddev, const char *page, size_t len)
6941{
6942	struct r5conf *conf;
6943	unsigned long new;
6944	int err;
6945	int size;
6946
6947	if (len >= PAGE_SIZE)
6948		return -EINVAL;
6949	if (kstrtoul(page, 10, &new))
6950		return -EINVAL;
6951
6952	/*
6953	 * The value should not be bigger than PAGE_SIZE. It requires to
6954	 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6955	 * of two.
6956	 */
6957	if (new % DEFAULT_STRIPE_SIZE != 0 ||
6958			new > PAGE_SIZE || new == 0 ||
6959			new != roundup_pow_of_two(new))
6960		return -EINVAL;
6961
6962	err = mddev_suspend_and_lock(mddev);
6963	if (err)
6964		return err;
6965
6966	conf = mddev->private;
6967	if (!conf) {
6968		err = -ENODEV;
6969		goto out_unlock;
6970	}
6971
6972	if (new == conf->stripe_size)
6973		goto out_unlock;
6974
6975	pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6976			conf->stripe_size, new);
6977
6978	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6979	    mddev->reshape_position != MaxSector || mddev->sysfs_active) {
6980		err = -EBUSY;
6981		goto out_unlock;
6982	}
6983
6984	mutex_lock(&conf->cache_size_mutex);
6985	size = conf->max_nr_stripes;
6986
6987	shrink_stripes(conf);
6988
6989	conf->stripe_size = new;
6990	conf->stripe_shift = ilog2(new) - 9;
6991	conf->stripe_sectors = new >> 9;
6992	if (grow_stripes(conf, size)) {
6993		pr_warn("md/raid:%s: couldn't allocate buffers\n",
6994				mdname(mddev));
6995		err = -ENOMEM;
6996	}
6997	mutex_unlock(&conf->cache_size_mutex);
6998
6999out_unlock:
7000	mddev_unlock_and_resume(mddev);
7001	return err ?: len;
7002}
7003
7004static struct md_sysfs_entry
7005raid5_stripe_size = __ATTR(stripe_size, 0644,
7006			 raid5_show_stripe_size,
7007			 raid5_store_stripe_size);
7008#else
7009static struct md_sysfs_entry
7010raid5_stripe_size = __ATTR(stripe_size, 0444,
7011			 raid5_show_stripe_size,
7012			 NULL);
7013#endif
7014
7015static ssize_t
7016raid5_show_preread_threshold(struct mddev *mddev, char *page)
7017{
7018	struct r5conf *conf;
7019	int ret = 0;
7020	spin_lock(&mddev->lock);
7021	conf = mddev->private;
7022	if (conf)
7023		ret = sprintf(page, "%d\n", conf->bypass_threshold);
7024	spin_unlock(&mddev->lock);
7025	return ret;
7026}
7027
7028static ssize_t
7029raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
7030{
7031	struct r5conf *conf;
7032	unsigned long new;
7033	int err;
7034
7035	if (len >= PAGE_SIZE)
7036		return -EINVAL;
7037	if (kstrtoul(page, 10, &new))
7038		return -EINVAL;
7039
7040	err = mddev_lock(mddev);
7041	if (err)
7042		return err;
7043	conf = mddev->private;
7044	if (!conf)
7045		err = -ENODEV;
7046	else if (new > conf->min_nr_stripes)
7047		err = -EINVAL;
7048	else
7049		conf->bypass_threshold = new;
7050	mddev_unlock(mddev);
7051	return err ?: len;
7052}
7053
7054static struct md_sysfs_entry
7055raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
7056					S_IRUGO | S_IWUSR,
7057					raid5_show_preread_threshold,
7058					raid5_store_preread_threshold);
7059
7060static ssize_t
7061raid5_show_skip_copy(struct mddev *mddev, char *page)
7062{
7063	struct r5conf *conf;
7064	int ret = 0;
7065	spin_lock(&mddev->lock);
7066	conf = mddev->private;
7067	if (conf)
7068		ret = sprintf(page, "%d\n", conf->skip_copy);
7069	spin_unlock(&mddev->lock);
7070	return ret;
7071}
7072
7073static ssize_t
7074raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
7075{
7076	struct r5conf *conf;
7077	unsigned long new;
7078	int err;
7079
7080	if (len >= PAGE_SIZE)
7081		return -EINVAL;
7082	if (kstrtoul(page, 10, &new))
7083		return -EINVAL;
7084	new = !!new;
7085
7086	err = mddev_suspend_and_lock(mddev);
7087	if (err)
7088		return err;
7089	conf = mddev->private;
7090	if (!conf)
7091		err = -ENODEV;
7092	else if (new != conf->skip_copy) {
7093		struct request_queue *q = mddev->gendisk->queue;
7094
7095		conf->skip_copy = new;
7096		if (new)
7097			blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
7098		else
7099			blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
7100	}
7101	mddev_unlock_and_resume(mddev);
7102	return err ?: len;
7103}
7104
7105static struct md_sysfs_entry
7106raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
7107					raid5_show_skip_copy,
7108					raid5_store_skip_copy);
7109
7110static ssize_t
7111stripe_cache_active_show(struct mddev *mddev, char *page)
7112{
7113	struct r5conf *conf = mddev->private;
7114	if (conf)
7115		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
7116	else
7117		return 0;
7118}
7119
7120static struct md_sysfs_entry
7121raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
7122
7123static ssize_t
7124raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
7125{
7126	struct r5conf *conf;
7127	int ret = 0;
7128	spin_lock(&mddev->lock);
7129	conf = mddev->private;
7130	if (conf)
7131		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
7132	spin_unlock(&mddev->lock);
7133	return ret;
7134}
7135
7136static int alloc_thread_groups(struct r5conf *conf, int cnt,
7137			       int *group_cnt,
7138			       struct r5worker_group **worker_groups);
7139static ssize_t
7140raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
7141{
7142	struct r5conf *conf;
7143	unsigned int new;
7144	int err;
7145	struct r5worker_group *new_groups, *old_groups;
7146	int group_cnt;
7147
7148	if (len >= PAGE_SIZE)
7149		return -EINVAL;
7150	if (kstrtouint(page, 10, &new))
7151		return -EINVAL;
7152	/* 8192 should be big enough */
7153	if (new > 8192)
7154		return -EINVAL;
7155
7156	err = mddev_suspend_and_lock(mddev);
7157	if (err)
7158		return err;
7159	conf = mddev->private;
7160	if (!conf)
7161		err = -ENODEV;
7162	else if (new != conf->worker_cnt_per_group) {
7163		old_groups = conf->worker_groups;
7164		if (old_groups)
7165			flush_workqueue(raid5_wq);
7166
7167		err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
7168		if (!err) {
7169			spin_lock_irq(&conf->device_lock);
7170			conf->group_cnt = group_cnt;
7171			conf->worker_cnt_per_group = new;
7172			conf->worker_groups = new_groups;
7173			spin_unlock_irq(&conf->device_lock);
7174
7175			if (old_groups)
7176				kfree(old_groups[0].workers);
7177			kfree(old_groups);
7178		}
7179	}
7180	mddev_unlock_and_resume(mddev);
7181
7182	return err ?: len;
7183}
7184
7185static struct md_sysfs_entry
7186raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
7187				raid5_show_group_thread_cnt,
7188				raid5_store_group_thread_cnt);
7189
7190static struct attribute *raid5_attrs[] =  {
7191	&raid5_stripecache_size.attr,
7192	&raid5_stripecache_active.attr,
7193	&raid5_preread_bypass_threshold.attr,
7194	&raid5_group_thread_cnt.attr,
7195	&raid5_skip_copy.attr,
7196	&raid5_rmw_level.attr,
7197	&raid5_stripe_size.attr,
7198	&r5c_journal_mode.attr,
7199	&ppl_write_hint.attr,
7200	NULL,
7201};
7202static const struct attribute_group raid5_attrs_group = {
7203	.name = NULL,
7204	.attrs = raid5_attrs,
7205};
7206
7207static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
7208			       struct r5worker_group **worker_groups)
7209{
7210	int i, j, k;
7211	ssize_t size;
7212	struct r5worker *workers;
7213
7214	if (cnt == 0) {
7215		*group_cnt = 0;
7216		*worker_groups = NULL;
7217		return 0;
7218	}
7219	*group_cnt = num_possible_nodes();
7220	size = sizeof(struct r5worker) * cnt;
7221	workers = kcalloc(size, *group_cnt, GFP_NOIO);
7222	*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7223				 GFP_NOIO);
7224	if (!*worker_groups || !workers) {
7225		kfree(workers);
7226		kfree(*worker_groups);
7227		return -ENOMEM;
7228	}
7229
7230	for (i = 0; i < *group_cnt; i++) {
7231		struct r5worker_group *group;
7232
7233		group = &(*worker_groups)[i];
7234		INIT_LIST_HEAD(&group->handle_list);
7235		INIT_LIST_HEAD(&group->loprio_list);
7236		group->conf = conf;
7237		group->workers = workers + i * cnt;
7238
7239		for (j = 0; j < cnt; j++) {
7240			struct r5worker *worker = group->workers + j;
7241			worker->group = group;
7242			INIT_WORK(&worker->work, raid5_do_work);
7243
7244			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7245				INIT_LIST_HEAD(worker->temp_inactive_list + k);
7246		}
7247	}
7248
7249	return 0;
7250}
7251
7252static void free_thread_groups(struct r5conf *conf)
7253{
7254	if (conf->worker_groups)
7255		kfree(conf->worker_groups[0].workers);
7256	kfree(conf->worker_groups);
7257	conf->worker_groups = NULL;
7258}
7259
7260static sector_t
7261raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7262{
7263	struct r5conf *conf = mddev->private;
7264
7265	if (!sectors)
7266		sectors = mddev->dev_sectors;
7267	if (!raid_disks)
7268		/* size is defined by the smallest of previous and new size */
7269		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7270
7271	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7272	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7273	return sectors * (raid_disks - conf->max_degraded);
7274}
7275
7276static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7277{
7278	safe_put_page(percpu->spare_page);
7279	percpu->spare_page = NULL;
7280	kvfree(percpu->scribble);
7281	percpu->scribble = NULL;
7282}
7283
7284static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7285{
7286	if (conf->level == 6 && !percpu->spare_page) {
7287		percpu->spare_page = alloc_page(GFP_KERNEL);
7288		if (!percpu->spare_page)
7289			return -ENOMEM;
7290	}
7291
7292	if (scribble_alloc(percpu,
7293			   max(conf->raid_disks,
7294			       conf->previous_raid_disks),
7295			   max(conf->chunk_sectors,
7296			       conf->prev_chunk_sectors)
7297			   / RAID5_STRIPE_SECTORS(conf))) {
7298		free_scratch_buffer(conf, percpu);
7299		return -ENOMEM;
7300	}
7301
7302	local_lock_init(&percpu->lock);
7303	return 0;
7304}
7305
7306static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7307{
7308	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7309
7310	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7311	return 0;
7312}
7313
7314static void raid5_free_percpu(struct r5conf *conf)
7315{
7316	if (!conf->percpu)
7317		return;
7318
7319	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7320	free_percpu(conf->percpu);
7321}
7322
7323static void free_conf(struct r5conf *conf)
7324{
7325	int i;
7326
7327	log_exit(conf);
7328
7329	shrinker_free(conf->shrinker);
7330	free_thread_groups(conf);
7331	shrink_stripes(conf);
7332	raid5_free_percpu(conf);
7333	for (i = 0; i < conf->pool_size; i++)
7334		if (conf->disks[i].extra_page)
7335			put_page(conf->disks[i].extra_page);
7336	kfree(conf->disks);
7337	bioset_exit(&conf->bio_split);
7338	kfree(conf->stripe_hashtbl);
7339	kfree(conf->pending_data);
7340	kfree(conf);
7341}
7342
7343static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7344{
7345	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7346	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7347
7348	if (alloc_scratch_buffer(conf, percpu)) {
7349		pr_warn("%s: failed memory allocation for cpu%u\n",
7350			__func__, cpu);
7351		return -ENOMEM;
7352	}
7353	return 0;
7354}
7355
7356static int raid5_alloc_percpu(struct r5conf *conf)
7357{
7358	int err = 0;
7359
7360	conf->percpu = alloc_percpu(struct raid5_percpu);
7361	if (!conf->percpu)
7362		return -ENOMEM;
7363
7364	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7365	if (!err) {
7366		conf->scribble_disks = max(conf->raid_disks,
7367			conf->previous_raid_disks);
7368		conf->scribble_sectors = max(conf->chunk_sectors,
7369			conf->prev_chunk_sectors);
7370	}
7371	return err;
7372}
7373
7374static unsigned long raid5_cache_scan(struct shrinker *shrink,
7375				      struct shrink_control *sc)
7376{
7377	struct r5conf *conf = shrink->private_data;
7378	unsigned long ret = SHRINK_STOP;
7379
7380	if (mutex_trylock(&conf->cache_size_mutex)) {
7381		ret= 0;
7382		while (ret < sc->nr_to_scan &&
7383		       conf->max_nr_stripes > conf->min_nr_stripes) {
7384			if (drop_one_stripe(conf) == 0) {
7385				ret = SHRINK_STOP;
7386				break;
7387			}
7388			ret++;
7389		}
7390		mutex_unlock(&conf->cache_size_mutex);
7391	}
7392	return ret;
7393}
7394
7395static unsigned long raid5_cache_count(struct shrinker *shrink,
7396				       struct shrink_control *sc)
7397{
7398	struct r5conf *conf = shrink->private_data;
7399	int max_stripes = READ_ONCE(conf->max_nr_stripes);
7400	int min_stripes = READ_ONCE(conf->min_nr_stripes);
7401
7402	if (max_stripes < min_stripes)
7403		/* unlikely, but not impossible */
7404		return 0;
7405	return max_stripes - min_stripes;
7406}
7407
7408static struct r5conf *setup_conf(struct mddev *mddev)
7409{
7410	struct r5conf *conf;
7411	int raid_disk, memory, max_disks;
7412	struct md_rdev *rdev;
7413	struct disk_info *disk;
7414	char pers_name[6];
7415	int i;
7416	int group_cnt;
7417	struct r5worker_group *new_group;
7418	int ret = -ENOMEM;
7419
7420	if (mddev->new_level != 5
7421	    && mddev->new_level != 4
7422	    && mddev->new_level != 6) {
7423		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7424			mdname(mddev), mddev->new_level);
7425		return ERR_PTR(-EIO);
7426	}
7427	if ((mddev->new_level == 5
7428	     && !algorithm_valid_raid5(mddev->new_layout)) ||
7429	    (mddev->new_level == 6
7430	     && !algorithm_valid_raid6(mddev->new_layout))) {
7431		pr_warn("md/raid:%s: layout %d not supported\n",
7432			mdname(mddev), mddev->new_layout);
7433		return ERR_PTR(-EIO);
7434	}
7435	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7436		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7437			mdname(mddev), mddev->raid_disks);
7438		return ERR_PTR(-EINVAL);
7439	}
7440
7441	if (!mddev->new_chunk_sectors ||
7442	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7443	    !is_power_of_2(mddev->new_chunk_sectors)) {
7444		pr_warn("md/raid:%s: invalid chunk size %d\n",
7445			mdname(mddev), mddev->new_chunk_sectors << 9);
7446		return ERR_PTR(-EINVAL);
7447	}
7448
7449	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7450	if (conf == NULL)
7451		goto abort;
7452
7453#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7454	conf->stripe_size = DEFAULT_STRIPE_SIZE;
7455	conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7456	conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7457#endif
7458	INIT_LIST_HEAD(&conf->free_list);
7459	INIT_LIST_HEAD(&conf->pending_list);
7460	conf->pending_data = kcalloc(PENDING_IO_MAX,
7461				     sizeof(struct r5pending_data),
7462				     GFP_KERNEL);
7463	if (!conf->pending_data)
7464		goto abort;
7465	for (i = 0; i < PENDING_IO_MAX; i++)
7466		list_add(&conf->pending_data[i].sibling, &conf->free_list);
7467	/* Don't enable multi-threading by default*/
7468	if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7469		conf->group_cnt = group_cnt;
7470		conf->worker_cnt_per_group = 0;
7471		conf->worker_groups = new_group;
7472	} else
7473		goto abort;
7474	spin_lock_init(&conf->device_lock);
7475	seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7476	mutex_init(&conf->cache_size_mutex);
7477
7478	init_waitqueue_head(&conf->wait_for_quiescent);
7479	init_waitqueue_head(&conf->wait_for_stripe);
7480	init_waitqueue_head(&conf->wait_for_overlap);
7481	INIT_LIST_HEAD(&conf->handle_list);
7482	INIT_LIST_HEAD(&conf->loprio_list);
7483	INIT_LIST_HEAD(&conf->hold_list);
7484	INIT_LIST_HEAD(&conf->delayed_list);
7485	INIT_LIST_HEAD(&conf->bitmap_list);
7486	init_llist_head(&conf->released_stripes);
7487	atomic_set(&conf->active_stripes, 0);
7488	atomic_set(&conf->preread_active_stripes, 0);
7489	atomic_set(&conf->active_aligned_reads, 0);
7490	spin_lock_init(&conf->pending_bios_lock);
7491	conf->batch_bio_dispatch = true;
7492	rdev_for_each(rdev, mddev) {
7493		if (test_bit(Journal, &rdev->flags))
7494			continue;
7495		if (bdev_nonrot(rdev->bdev)) {
7496			conf->batch_bio_dispatch = false;
7497			break;
7498		}
7499	}
7500
7501	conf->bypass_threshold = BYPASS_THRESHOLD;
7502	conf->recovery_disabled = mddev->recovery_disabled - 1;
7503
7504	conf->raid_disks = mddev->raid_disks;
7505	if (mddev->reshape_position == MaxSector)
7506		conf->previous_raid_disks = mddev->raid_disks;
7507	else
7508		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7509	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7510
7511	conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7512			      GFP_KERNEL);
7513
7514	if (!conf->disks)
7515		goto abort;
7516
7517	for (i = 0; i < max_disks; i++) {
7518		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7519		if (!conf->disks[i].extra_page)
7520			goto abort;
7521	}
7522
7523	ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7524	if (ret)
7525		goto abort;
7526	conf->mddev = mddev;
7527
7528	ret = -ENOMEM;
7529	conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
7530	if (!conf->stripe_hashtbl)
7531		goto abort;
7532
7533	/* We init hash_locks[0] separately to that it can be used
7534	 * as the reference lock in the spin_lock_nest_lock() call
7535	 * in lock_all_device_hash_locks_irq in order to convince
7536	 * lockdep that we know what we are doing.
7537	 */
7538	spin_lock_init(conf->hash_locks);
7539	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7540		spin_lock_init(conf->hash_locks + i);
7541
7542	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7543		INIT_LIST_HEAD(conf->inactive_list + i);
7544
7545	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7546		INIT_LIST_HEAD(conf->temp_inactive_list + i);
7547
7548	atomic_set(&conf->r5c_cached_full_stripes, 0);
7549	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7550	atomic_set(&conf->r5c_cached_partial_stripes, 0);
7551	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7552	atomic_set(&conf->r5c_flushing_full_stripes, 0);
7553	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7554
7555	conf->level = mddev->new_level;
7556	conf->chunk_sectors = mddev->new_chunk_sectors;
7557	ret = raid5_alloc_percpu(conf);
7558	if (ret)
7559		goto abort;
7560
7561	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7562
7563	ret = -EIO;
7564	rdev_for_each(rdev, mddev) {
7565		raid_disk = rdev->raid_disk;
7566		if (raid_disk >= max_disks
7567		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7568			continue;
7569		disk = conf->disks + raid_disk;
7570
7571		if (test_bit(Replacement, &rdev->flags)) {
7572			if (disk->replacement)
7573				goto abort;
7574			RCU_INIT_POINTER(disk->replacement, rdev);
7575		} else {
7576			if (disk->rdev)
7577				goto abort;
7578			RCU_INIT_POINTER(disk->rdev, rdev);
7579		}
7580
7581		if (test_bit(In_sync, &rdev->flags)) {
7582			pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7583				mdname(mddev), rdev->bdev, raid_disk);
7584		} else if (rdev->saved_raid_disk != raid_disk)
7585			/* Cannot rely on bitmap to complete recovery */
7586			conf->fullsync = 1;
7587	}
7588
7589	conf->level = mddev->new_level;
7590	if (conf->level == 6) {
7591		conf->max_degraded = 2;
7592		if (raid6_call.xor_syndrome)
7593			conf->rmw_level = PARITY_ENABLE_RMW;
7594		else
7595			conf->rmw_level = PARITY_DISABLE_RMW;
7596	} else {
7597		conf->max_degraded = 1;
7598		conf->rmw_level = PARITY_ENABLE_RMW;
7599	}
7600	conf->algorithm = mddev->new_layout;
7601	conf->reshape_progress = mddev->reshape_position;
7602	if (conf->reshape_progress != MaxSector) {
7603		conf->prev_chunk_sectors = mddev->chunk_sectors;
7604		conf->prev_algo = mddev->layout;
7605	} else {
7606		conf->prev_chunk_sectors = conf->chunk_sectors;
7607		conf->prev_algo = conf->algorithm;
7608	}
7609
7610	conf->min_nr_stripes = NR_STRIPES;
7611	if (mddev->reshape_position != MaxSector) {
7612		int stripes = max_t(int,
7613			((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7614			((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7615		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7616		if (conf->min_nr_stripes != NR_STRIPES)
7617			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7618				mdname(mddev), conf->min_nr_stripes);
7619	}
7620	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7621		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7622	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7623	if (grow_stripes(conf, conf->min_nr_stripes)) {
7624		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7625			mdname(mddev), memory);
7626		ret = -ENOMEM;
7627		goto abort;
7628	} else
7629		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7630	/*
7631	 * Losing a stripe head costs more than the time to refill it,
7632	 * it reduces the queue depth and so can hurt throughput.
7633	 * So set it rather large, scaled by number of devices.
7634	 */
7635	conf->shrinker = shrinker_alloc(0, "md-raid5:%s", mdname(mddev));
7636	if (!conf->shrinker) {
7637		ret = -ENOMEM;
7638		pr_warn("md/raid:%s: couldn't allocate shrinker.\n",
7639			mdname(mddev));
7640		goto abort;
7641	}
7642
7643	conf->shrinker->seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7644	conf->shrinker->scan_objects = raid5_cache_scan;
7645	conf->shrinker->count_objects = raid5_cache_count;
7646	conf->shrinker->batch = 128;
7647	conf->shrinker->private_data = conf;
7648
7649	shrinker_register(conf->shrinker);
7650
7651	sprintf(pers_name, "raid%d", mddev->new_level);
7652	rcu_assign_pointer(conf->thread,
7653			   md_register_thread(raid5d, mddev, pers_name));
7654	if (!conf->thread) {
7655		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7656			mdname(mddev));
7657		ret = -ENOMEM;
7658		goto abort;
7659	}
7660
7661	return conf;
7662
7663 abort:
7664	if (conf)
7665		free_conf(conf);
7666	return ERR_PTR(ret);
7667}
7668
7669static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7670{
7671	switch (algo) {
7672	case ALGORITHM_PARITY_0:
7673		if (raid_disk < max_degraded)
7674			return 1;
7675		break;
7676	case ALGORITHM_PARITY_N:
7677		if (raid_disk >= raid_disks - max_degraded)
7678			return 1;
7679		break;
7680	case ALGORITHM_PARITY_0_6:
7681		if (raid_disk == 0 ||
7682		    raid_disk == raid_disks - 1)
7683			return 1;
7684		break;
7685	case ALGORITHM_LEFT_ASYMMETRIC_6:
7686	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7687	case ALGORITHM_LEFT_SYMMETRIC_6:
7688	case ALGORITHM_RIGHT_SYMMETRIC_6:
7689		if (raid_disk == raid_disks - 1)
7690			return 1;
7691	}
7692	return 0;
7693}
7694
7695static int raid5_set_limits(struct mddev *mddev)
7696{
7697	struct r5conf *conf = mddev->private;
7698	struct queue_limits lim;
7699	int data_disks, stripe;
7700	struct md_rdev *rdev;
7701
7702	/*
7703	 * The read-ahead size must cover two whole stripes, which is
7704	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices.
7705	 */
7706	data_disks = conf->previous_raid_disks - conf->max_degraded;
7707
7708	/*
7709	 * We can only discard a whole stripe. It doesn't make sense to
7710	 * discard data disk but write parity disk
7711	 */
7712	stripe = roundup_pow_of_two(data_disks * (mddev->chunk_sectors << 9));
7713
7714	blk_set_stacking_limits(&lim);
7715	lim.io_min = mddev->chunk_sectors << 9;
7716	lim.io_opt = lim.io_min * (conf->raid_disks - conf->max_degraded);
7717	lim.raid_partial_stripes_expensive = 1;
7718	lim.discard_granularity = stripe;
7719	lim.max_write_zeroes_sectors = 0;
7720	mddev_stack_rdev_limits(mddev, &lim);
7721	rdev_for_each(rdev, mddev)
7722		queue_limits_stack_bdev(&lim, rdev->bdev, rdev->new_data_offset,
7723				mddev->gendisk->disk_name);
7724
7725	/*
7726	 * Zeroing is required for discard, otherwise data could be lost.
7727	 *
7728	 * Consider a scenario: discard a stripe (the stripe could be
7729	 * inconsistent if discard_zeroes_data is 0); write one disk of the
7730	 * stripe (the stripe could be inconsistent again depending on which
7731	 * disks are used to calculate parity); the disk is broken; The stripe
7732	 * data of this disk is lost.
7733	 *
7734	 * We only allow DISCARD if the sysadmin has confirmed that only safe
7735	 * devices are in use by setting a module parameter.  A better idea
7736	 * might be to turn DISCARD into WRITE_ZEROES requests, as that is
7737	 * required to be safe.
7738	 */
7739	if (!devices_handle_discard_safely ||
7740	    lim.max_discard_sectors < (stripe >> 9) ||
7741	    lim.discard_granularity < stripe)
7742		lim.max_hw_discard_sectors = 0;
7743
7744	/*
7745	 * Requests require having a bitmap for each stripe.
7746	 * Limit the max sectors based on this.
7747	 */
7748	lim.max_hw_sectors = RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf);
7749
7750	/* No restrictions on the number of segments in the request */
7751	lim.max_segments = USHRT_MAX;
7752
7753	return queue_limits_set(mddev->gendisk->queue, &lim);
7754}
7755
7756static int raid5_run(struct mddev *mddev)
7757{
7758	struct r5conf *conf;
7759	int dirty_parity_disks = 0;
7760	struct md_rdev *rdev;
7761	struct md_rdev *journal_dev = NULL;
7762	sector_t reshape_offset = 0;
7763	int i;
7764	long long min_offset_diff = 0;
7765	int first = 1;
7766	int ret = -EIO;
7767
7768	if (mddev->recovery_cp != MaxSector)
7769		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7770			  mdname(mddev));
7771
7772	rdev_for_each(rdev, mddev) {
7773		long long diff;
7774
7775		if (test_bit(Journal, &rdev->flags)) {
7776			journal_dev = rdev;
7777			continue;
7778		}
7779		if (rdev->raid_disk < 0)
7780			continue;
7781		diff = (rdev->new_data_offset - rdev->data_offset);
7782		if (first) {
7783			min_offset_diff = diff;
7784			first = 0;
7785		} else if (mddev->reshape_backwards &&
7786			 diff < min_offset_diff)
7787			min_offset_diff = diff;
7788		else if (!mddev->reshape_backwards &&
7789			 diff > min_offset_diff)
7790			min_offset_diff = diff;
7791	}
7792
7793	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7794	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7795		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7796			  mdname(mddev));
7797		return -EINVAL;
7798	}
7799
7800	if (mddev->reshape_position != MaxSector) {
7801		/* Check that we can continue the reshape.
7802		 * Difficulties arise if the stripe we would write to
7803		 * next is at or after the stripe we would read from next.
7804		 * For a reshape that changes the number of devices, this
7805		 * is only possible for a very short time, and mdadm makes
7806		 * sure that time appears to have past before assembling
7807		 * the array.  So we fail if that time hasn't passed.
7808		 * For a reshape that keeps the number of devices the same
7809		 * mdadm must be monitoring the reshape can keeping the
7810		 * critical areas read-only and backed up.  It will start
7811		 * the array in read-only mode, so we check for that.
7812		 */
7813		sector_t here_new, here_old;
7814		int old_disks;
7815		int max_degraded = (mddev->level == 6 ? 2 : 1);
7816		int chunk_sectors;
7817		int new_data_disks;
7818
7819		if (journal_dev) {
7820			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7821				mdname(mddev));
7822			return -EINVAL;
7823		}
7824
7825		if (mddev->new_level != mddev->level) {
7826			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7827				mdname(mddev));
7828			return -EINVAL;
7829		}
7830		old_disks = mddev->raid_disks - mddev->delta_disks;
7831		/* reshape_position must be on a new-stripe boundary, and one
7832		 * further up in new geometry must map after here in old
7833		 * geometry.
7834		 * If the chunk sizes are different, then as we perform reshape
7835		 * in units of the largest of the two, reshape_position needs
7836		 * be a multiple of the largest chunk size times new data disks.
7837		 */
7838		here_new = mddev->reshape_position;
7839		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7840		new_data_disks = mddev->raid_disks - max_degraded;
7841		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7842			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7843				mdname(mddev));
7844			return -EINVAL;
7845		}
7846		reshape_offset = here_new * chunk_sectors;
7847		/* here_new is the stripe we will write to */
7848		here_old = mddev->reshape_position;
7849		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7850		/* here_old is the first stripe that we might need to read
7851		 * from */
7852		if (mddev->delta_disks == 0) {
7853			/* We cannot be sure it is safe to start an in-place
7854			 * reshape.  It is only safe if user-space is monitoring
7855			 * and taking constant backups.
7856			 * mdadm always starts a situation like this in
7857			 * readonly mode so it can take control before
7858			 * allowing any writes.  So just check for that.
7859			 */
7860			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7861			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7862				/* not really in-place - so OK */;
7863			else if (mddev->ro == 0) {
7864				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7865					mdname(mddev));
7866				return -EINVAL;
7867			}
7868		} else if (mddev->reshape_backwards
7869		    ? (here_new * chunk_sectors + min_offset_diff <=
7870		       here_old * chunk_sectors)
7871		    : (here_new * chunk_sectors >=
7872		       here_old * chunk_sectors + (-min_offset_diff))) {
7873			/* Reading from the same stripe as writing to - bad */
7874			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7875				mdname(mddev));
7876			return -EINVAL;
7877		}
7878		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7879		/* OK, we should be able to continue; */
7880	} else {
7881		BUG_ON(mddev->level != mddev->new_level);
7882		BUG_ON(mddev->layout != mddev->new_layout);
7883		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7884		BUG_ON(mddev->delta_disks != 0);
7885	}
7886
7887	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7888	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7889		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7890			mdname(mddev));
7891		clear_bit(MD_HAS_PPL, &mddev->flags);
7892		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7893	}
7894
7895	if (mddev->private == NULL)
7896		conf = setup_conf(mddev);
7897	else
7898		conf = mddev->private;
7899
7900	if (IS_ERR(conf))
7901		return PTR_ERR(conf);
7902
7903	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7904		if (!journal_dev) {
7905			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7906				mdname(mddev));
7907			mddev->ro = 1;
7908			set_disk_ro(mddev->gendisk, 1);
7909		} else if (mddev->recovery_cp == MaxSector)
7910			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7911	}
7912
7913	conf->min_offset_diff = min_offset_diff;
7914	rcu_assign_pointer(mddev->thread, conf->thread);
7915	rcu_assign_pointer(conf->thread, NULL);
7916	mddev->private = conf;
7917
7918	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7919	     i++) {
7920		rdev = conf->disks[i].rdev;
7921		if (!rdev)
7922			continue;
7923		if (conf->disks[i].replacement &&
7924		    conf->reshape_progress != MaxSector) {
7925			/* replacements and reshape simply do not mix. */
7926			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7927			goto abort;
7928		}
7929		if (test_bit(In_sync, &rdev->flags))
7930			continue;
7931		/* This disc is not fully in-sync.  However if it
7932		 * just stored parity (beyond the recovery_offset),
7933		 * when we don't need to be concerned about the
7934		 * array being dirty.
7935		 * When reshape goes 'backwards', we never have
7936		 * partially completed devices, so we only need
7937		 * to worry about reshape going forwards.
7938		 */
7939		/* Hack because v0.91 doesn't store recovery_offset properly. */
7940		if (mddev->major_version == 0 &&
7941		    mddev->minor_version > 90)
7942			rdev->recovery_offset = reshape_offset;
7943
7944		if (rdev->recovery_offset < reshape_offset) {
7945			/* We need to check old and new layout */
7946			if (!only_parity(rdev->raid_disk,
7947					 conf->algorithm,
7948					 conf->raid_disks,
7949					 conf->max_degraded))
7950				continue;
7951		}
7952		if (!only_parity(rdev->raid_disk,
7953				 conf->prev_algo,
7954				 conf->previous_raid_disks,
7955				 conf->max_degraded))
7956			continue;
7957		dirty_parity_disks++;
7958	}
7959
7960	/*
7961	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7962	 */
7963	mddev->degraded = raid5_calc_degraded(conf);
7964
7965	if (has_failed(conf)) {
7966		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7967			mdname(mddev), mddev->degraded, conf->raid_disks);
7968		goto abort;
7969	}
7970
7971	/* device size must be a multiple of chunk size */
7972	mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7973	mddev->resync_max_sectors = mddev->dev_sectors;
7974
7975	if (mddev->degraded > dirty_parity_disks &&
7976	    mddev->recovery_cp != MaxSector) {
7977		if (test_bit(MD_HAS_PPL, &mddev->flags))
7978			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7979				mdname(mddev));
7980		else if (mddev->ok_start_degraded)
7981			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7982				mdname(mddev));
7983		else {
7984			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7985				mdname(mddev));
7986			goto abort;
7987		}
7988	}
7989
7990	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7991		mdname(mddev), conf->level,
7992		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7993		mddev->new_layout);
7994
7995	print_raid5_conf(conf);
7996
7997	if (conf->reshape_progress != MaxSector) {
7998		conf->reshape_safe = conf->reshape_progress;
7999		atomic_set(&conf->reshape_stripes, 0);
8000		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8001		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8002		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8003		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8004	}
8005
8006	/* Ok, everything is just fine now */
8007	if (mddev->to_remove == &raid5_attrs_group)
8008		mddev->to_remove = NULL;
8009	else if (mddev->kobj.sd &&
8010	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
8011		pr_warn("raid5: failed to create sysfs attributes for %s\n",
8012			mdname(mddev));
8013	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
8014
8015	if (!mddev_is_dm(mddev)) {
8016		ret = raid5_set_limits(mddev);
8017		if (ret)
8018			goto abort;
8019	}
8020
8021	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
8022		goto abort;
8023
8024	return 0;
8025abort:
8026	md_unregister_thread(mddev, &mddev->thread);
8027	print_raid5_conf(conf);
8028	free_conf(conf);
8029	mddev->private = NULL;
8030	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
8031	return ret;
8032}
8033
8034static void raid5_free(struct mddev *mddev, void *priv)
8035{
8036	struct r5conf *conf = priv;
8037
8038	free_conf(conf);
8039	mddev->to_remove = &raid5_attrs_group;
8040}
8041
8042static void raid5_status(struct seq_file *seq, struct mddev *mddev)
8043{
8044	struct r5conf *conf = mddev->private;
8045	int i;
8046
8047	lockdep_assert_held(&mddev->lock);
8048
8049	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
8050		conf->chunk_sectors / 2, mddev->layout);
8051	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
8052	for (i = 0; i < conf->raid_disks; i++) {
8053		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
8054
8055		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
8056	}
8057	seq_printf (seq, "]");
8058}
8059
8060static void print_raid5_conf (struct r5conf *conf)
8061{
8062	struct md_rdev *rdev;
8063	int i;
8064
8065	pr_debug("RAID conf printout:\n");
8066	if (!conf) {
8067		pr_debug("(conf==NULL)\n");
8068		return;
8069	}
8070	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
8071	       conf->raid_disks,
8072	       conf->raid_disks - conf->mddev->degraded);
8073
8074	rcu_read_lock();
8075	for (i = 0; i < conf->raid_disks; i++) {
8076		rdev = rcu_dereference(conf->disks[i].rdev);
8077		if (rdev)
8078			pr_debug(" disk %d, o:%d, dev:%pg\n",
8079			       i, !test_bit(Faulty, &rdev->flags),
8080			       rdev->bdev);
8081	}
8082	rcu_read_unlock();
8083}
8084
8085static int raid5_spare_active(struct mddev *mddev)
8086{
8087	int i;
8088	struct r5conf *conf = mddev->private;
8089	struct md_rdev *rdev, *replacement;
8090	int count = 0;
8091	unsigned long flags;
8092
8093	for (i = 0; i < conf->raid_disks; i++) {
8094		rdev = conf->disks[i].rdev;
8095		replacement = conf->disks[i].replacement;
8096		if (replacement
8097		    && replacement->recovery_offset == MaxSector
8098		    && !test_bit(Faulty, &replacement->flags)
8099		    && !test_and_set_bit(In_sync, &replacement->flags)) {
8100			/* Replacement has just become active. */
8101			if (!rdev
8102			    || !test_and_clear_bit(In_sync, &rdev->flags))
8103				count++;
8104			if (rdev) {
8105				/* Replaced device not technically faulty,
8106				 * but we need to be sure it gets removed
8107				 * and never re-added.
8108				 */
8109				set_bit(Faulty, &rdev->flags);
8110				sysfs_notify_dirent_safe(
8111					rdev->sysfs_state);
8112			}
8113			sysfs_notify_dirent_safe(replacement->sysfs_state);
8114		} else if (rdev
8115		    && rdev->recovery_offset == MaxSector
8116		    && !test_bit(Faulty, &rdev->flags)
8117		    && !test_and_set_bit(In_sync, &rdev->flags)) {
8118			count++;
8119			sysfs_notify_dirent_safe(rdev->sysfs_state);
8120		}
8121	}
8122	spin_lock_irqsave(&conf->device_lock, flags);
8123	mddev->degraded = raid5_calc_degraded(conf);
8124	spin_unlock_irqrestore(&conf->device_lock, flags);
8125	print_raid5_conf(conf);
8126	return count;
8127}
8128
8129static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
8130{
8131	struct r5conf *conf = mddev->private;
8132	int err = 0;
8133	int number = rdev->raid_disk;
8134	struct md_rdev **rdevp;
8135	struct disk_info *p;
8136	struct md_rdev *tmp;
8137
8138	print_raid5_conf(conf);
8139	if (test_bit(Journal, &rdev->flags) && conf->log) {
8140		/*
8141		 * we can't wait pending write here, as this is called in
8142		 * raid5d, wait will deadlock.
8143		 * neilb: there is no locking about new writes here,
8144		 * so this cannot be safe.
8145		 */
8146		if (atomic_read(&conf->active_stripes) ||
8147		    atomic_read(&conf->r5c_cached_full_stripes) ||
8148		    atomic_read(&conf->r5c_cached_partial_stripes)) {
8149			return -EBUSY;
8150		}
8151		log_exit(conf);
8152		return 0;
8153	}
8154	if (unlikely(number >= conf->pool_size))
8155		return 0;
8156	p = conf->disks + number;
8157	if (rdev == p->rdev)
8158		rdevp = &p->rdev;
8159	else if (rdev == p->replacement)
8160		rdevp = &p->replacement;
8161	else
8162		return 0;
8163
8164	if (number >= conf->raid_disks &&
8165	    conf->reshape_progress == MaxSector)
8166		clear_bit(In_sync, &rdev->flags);
8167
8168	if (test_bit(In_sync, &rdev->flags) ||
8169	    atomic_read(&rdev->nr_pending)) {
8170		err = -EBUSY;
8171		goto abort;
8172	}
8173	/* Only remove non-faulty devices if recovery
8174	 * isn't possible.
8175	 */
8176	if (!test_bit(Faulty, &rdev->flags) &&
8177	    mddev->recovery_disabled != conf->recovery_disabled &&
8178	    !has_failed(conf) &&
8179	    (!p->replacement || p->replacement == rdev) &&
8180	    number < conf->raid_disks) {
8181		err = -EBUSY;
8182		goto abort;
8183	}
8184	WRITE_ONCE(*rdevp, NULL);
8185	if (!err) {
8186		err = log_modify(conf, rdev, false);
8187		if (err)
8188			goto abort;
8189	}
8190
8191	tmp = p->replacement;
8192	if (tmp) {
8193		/* We must have just cleared 'rdev' */
8194		WRITE_ONCE(p->rdev, tmp);
8195		clear_bit(Replacement, &tmp->flags);
8196		WRITE_ONCE(p->replacement, NULL);
8197
8198		if (!err)
8199			err = log_modify(conf, tmp, true);
8200	}
8201
8202	clear_bit(WantReplacement, &rdev->flags);
8203abort:
8204
8205	print_raid5_conf(conf);
8206	return err;
8207}
8208
8209static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
8210{
8211	struct r5conf *conf = mddev->private;
8212	int ret, err = -EEXIST;
8213	int disk;
8214	struct disk_info *p;
8215	struct md_rdev *tmp;
8216	int first = 0;
8217	int last = conf->raid_disks - 1;
8218
8219	if (test_bit(Journal, &rdev->flags)) {
8220		if (conf->log)
8221			return -EBUSY;
8222
8223		rdev->raid_disk = 0;
8224		/*
8225		 * The array is in readonly mode if journal is missing, so no
8226		 * write requests running. We should be safe
8227		 */
8228		ret = log_init(conf, rdev, false);
8229		if (ret)
8230			return ret;
8231
8232		ret = r5l_start(conf->log);
8233		if (ret)
8234			return ret;
8235
8236		return 0;
8237	}
8238	if (mddev->recovery_disabled == conf->recovery_disabled)
8239		return -EBUSY;
8240
8241	if (rdev->saved_raid_disk < 0 && has_failed(conf))
8242		/* no point adding a device */
8243		return -EINVAL;
8244
8245	if (rdev->raid_disk >= 0)
8246		first = last = rdev->raid_disk;
8247
8248	/*
8249	 * find the disk ... but prefer rdev->saved_raid_disk
8250	 * if possible.
8251	 */
8252	if (rdev->saved_raid_disk >= first &&
8253	    rdev->saved_raid_disk <= last &&
8254	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
8255		first = rdev->saved_raid_disk;
8256
8257	for (disk = first; disk <= last; disk++) {
8258		p = conf->disks + disk;
8259		if (p->rdev == NULL) {
8260			clear_bit(In_sync, &rdev->flags);
8261			rdev->raid_disk = disk;
8262			if (rdev->saved_raid_disk != disk)
8263				conf->fullsync = 1;
8264			WRITE_ONCE(p->rdev, rdev);
8265
8266			err = log_modify(conf, rdev, true);
8267
8268			goto out;
8269		}
8270	}
8271	for (disk = first; disk <= last; disk++) {
8272		p = conf->disks + disk;
8273		tmp = p->rdev;
8274		if (test_bit(WantReplacement, &tmp->flags) &&
8275		    mddev->reshape_position == MaxSector &&
8276		    p->replacement == NULL) {
8277			clear_bit(In_sync, &rdev->flags);
8278			set_bit(Replacement, &rdev->flags);
8279			rdev->raid_disk = disk;
8280			err = 0;
8281			conf->fullsync = 1;
8282			WRITE_ONCE(p->replacement, rdev);
8283			break;
8284		}
8285	}
8286out:
8287	print_raid5_conf(conf);
8288	return err;
8289}
8290
8291static int raid5_resize(struct mddev *mddev, sector_t sectors)
8292{
8293	/* no resync is happening, and there is enough space
8294	 * on all devices, so we can resize.
8295	 * We need to make sure resync covers any new space.
8296	 * If the array is shrinking we should possibly wait until
8297	 * any io in the removed space completes, but it hardly seems
8298	 * worth it.
8299	 */
8300	sector_t newsize;
8301	struct r5conf *conf = mddev->private;
8302
8303	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8304		return -EINVAL;
8305	sectors &= ~((sector_t)conf->chunk_sectors - 1);
8306	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8307	if (mddev->external_size &&
8308	    mddev->array_sectors > newsize)
8309		return -EINVAL;
8310	if (mddev->bitmap) {
8311		int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
8312		if (ret)
8313			return ret;
8314	}
8315	md_set_array_sectors(mddev, newsize);
8316	if (sectors > mddev->dev_sectors &&
8317	    mddev->recovery_cp > mddev->dev_sectors) {
8318		mddev->recovery_cp = mddev->dev_sectors;
8319		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8320	}
8321	mddev->dev_sectors = sectors;
8322	mddev->resync_max_sectors = sectors;
8323	return 0;
8324}
8325
8326static int check_stripe_cache(struct mddev *mddev)
8327{
8328	/* Can only proceed if there are plenty of stripe_heads.
8329	 * We need a minimum of one full stripe,, and for sensible progress
8330	 * it is best to have about 4 times that.
8331	 * If we require 4 times, then the default 256 4K stripe_heads will
8332	 * allow for chunk sizes up to 256K, which is probably OK.
8333	 * If the chunk size is greater, user-space should request more
8334	 * stripe_heads first.
8335	 */
8336	struct r5conf *conf = mddev->private;
8337	if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8338	    > conf->min_nr_stripes ||
8339	    ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8340	    > conf->min_nr_stripes) {
8341		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
8342			mdname(mddev),
8343			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8344			 / RAID5_STRIPE_SIZE(conf))*4);
8345		return 0;
8346	}
8347	return 1;
8348}
8349
8350static int check_reshape(struct mddev *mddev)
8351{
8352	struct r5conf *conf = mddev->private;
8353
8354	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8355		return -EINVAL;
8356	if (mddev->delta_disks == 0 &&
8357	    mddev->new_layout == mddev->layout &&
8358	    mddev->new_chunk_sectors == mddev->chunk_sectors)
8359		return 0; /* nothing to do */
8360	if (has_failed(conf))
8361		return -EINVAL;
8362	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8363		/* We might be able to shrink, but the devices must
8364		 * be made bigger first.
8365		 * For raid6, 4 is the minimum size.
8366		 * Otherwise 2 is the minimum
8367		 */
8368		int min = 2;
8369		if (mddev->level == 6)
8370			min = 4;
8371		if (mddev->raid_disks + mddev->delta_disks < min)
8372			return -EINVAL;
8373	}
8374
8375	if (!check_stripe_cache(mddev))
8376		return -ENOSPC;
8377
8378	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8379	    mddev->delta_disks > 0)
8380		if (resize_chunks(conf,
8381				  conf->previous_raid_disks
8382				  + max(0, mddev->delta_disks),
8383				  max(mddev->new_chunk_sectors,
8384				      mddev->chunk_sectors)
8385			    ) < 0)
8386			return -ENOMEM;
8387
8388	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8389		return 0; /* never bother to shrink */
8390	return resize_stripes(conf, (conf->previous_raid_disks
8391				     + mddev->delta_disks));
8392}
8393
8394static int raid5_start_reshape(struct mddev *mddev)
8395{
8396	struct r5conf *conf = mddev->private;
8397	struct md_rdev *rdev;
8398	int spares = 0;
8399	int i;
8400	unsigned long flags;
8401
8402	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8403		return -EBUSY;
8404
8405	if (!check_stripe_cache(mddev))
8406		return -ENOSPC;
8407
8408	if (has_failed(conf))
8409		return -EINVAL;
8410
8411	/* raid5 can't handle concurrent reshape and recovery */
8412	if (mddev->recovery_cp < MaxSector)
8413		return -EBUSY;
8414	for (i = 0; i < conf->raid_disks; i++)
8415		if (conf->disks[i].replacement)
8416			return -EBUSY;
8417
8418	rdev_for_each(rdev, mddev) {
8419		if (!test_bit(In_sync, &rdev->flags)
8420		    && !test_bit(Faulty, &rdev->flags))
8421			spares++;
8422	}
8423
8424	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8425		/* Not enough devices even to make a degraded array
8426		 * of that size
8427		 */
8428		return -EINVAL;
8429
8430	/* Refuse to reduce size of the array.  Any reductions in
8431	 * array size must be through explicit setting of array_size
8432	 * attribute.
8433	 */
8434	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8435	    < mddev->array_sectors) {
8436		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8437			mdname(mddev));
8438		return -EINVAL;
8439	}
8440
8441	atomic_set(&conf->reshape_stripes, 0);
8442	spin_lock_irq(&conf->device_lock);
8443	write_seqcount_begin(&conf->gen_lock);
8444	conf->previous_raid_disks = conf->raid_disks;
8445	conf->raid_disks += mddev->delta_disks;
8446	conf->prev_chunk_sectors = conf->chunk_sectors;
8447	conf->chunk_sectors = mddev->new_chunk_sectors;
8448	conf->prev_algo = conf->algorithm;
8449	conf->algorithm = mddev->new_layout;
8450	conf->generation++;
8451	/* Code that selects data_offset needs to see the generation update
8452	 * if reshape_progress has been set - so a memory barrier needed.
8453	 */
8454	smp_mb();
8455	if (mddev->reshape_backwards)
8456		conf->reshape_progress = raid5_size(mddev, 0, 0);
8457	else
8458		conf->reshape_progress = 0;
8459	conf->reshape_safe = conf->reshape_progress;
8460	write_seqcount_end(&conf->gen_lock);
8461	spin_unlock_irq(&conf->device_lock);
8462
8463	/* Now make sure any requests that proceeded on the assumption
8464	 * the reshape wasn't running - like Discard or Read - have
8465	 * completed.
8466	 */
8467	raid5_quiesce(mddev, true);
8468	raid5_quiesce(mddev, false);
8469
8470	/* Add some new drives, as many as will fit.
8471	 * We know there are enough to make the newly sized array work.
8472	 * Don't add devices if we are reducing the number of
8473	 * devices in the array.  This is because it is not possible
8474	 * to correctly record the "partially reconstructed" state of
8475	 * such devices during the reshape and confusion could result.
8476	 */
8477	if (mddev->delta_disks >= 0) {
8478		rdev_for_each(rdev, mddev)
8479			if (rdev->raid_disk < 0 &&
8480			    !test_bit(Faulty, &rdev->flags)) {
8481				if (raid5_add_disk(mddev, rdev) == 0) {
8482					if (rdev->raid_disk
8483					    >= conf->previous_raid_disks)
8484						set_bit(In_sync, &rdev->flags);
8485					else
8486						rdev->recovery_offset = 0;
8487
8488					/* Failure here is OK */
8489					sysfs_link_rdev(mddev, rdev);
8490				}
8491			} else if (rdev->raid_disk >= conf->previous_raid_disks
8492				   && !test_bit(Faulty, &rdev->flags)) {
8493				/* This is a spare that was manually added */
8494				set_bit(In_sync, &rdev->flags);
8495			}
8496
8497		/* When a reshape changes the number of devices,
8498		 * ->degraded is measured against the larger of the
8499		 * pre and post number of devices.
8500		 */
8501		spin_lock_irqsave(&conf->device_lock, flags);
8502		mddev->degraded = raid5_calc_degraded(conf);
8503		spin_unlock_irqrestore(&conf->device_lock, flags);
8504	}
8505	mddev->raid_disks = conf->raid_disks;
8506	mddev->reshape_position = conf->reshape_progress;
8507	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8508
8509	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8510	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8511	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8512	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8513	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8514	conf->reshape_checkpoint = jiffies;
8515	md_new_event();
8516	return 0;
8517}
8518
8519/* This is called from the reshape thread and should make any
8520 * changes needed in 'conf'
8521 */
8522static void end_reshape(struct r5conf *conf)
8523{
8524
8525	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8526		struct md_rdev *rdev;
8527
8528		spin_lock_irq(&conf->device_lock);
8529		conf->previous_raid_disks = conf->raid_disks;
8530		md_finish_reshape(conf->mddev);
8531		smp_wmb();
8532		conf->reshape_progress = MaxSector;
8533		conf->mddev->reshape_position = MaxSector;
8534		rdev_for_each(rdev, conf->mddev)
8535			if (rdev->raid_disk >= 0 &&
8536			    !test_bit(Journal, &rdev->flags) &&
8537			    !test_bit(In_sync, &rdev->flags))
8538				rdev->recovery_offset = MaxSector;
8539		spin_unlock_irq(&conf->device_lock);
8540		wake_up(&conf->wait_for_overlap);
8541
8542		mddev_update_io_opt(conf->mddev,
8543			conf->raid_disks - conf->max_degraded);
8544	}
8545}
8546
8547/* This is called from the raid5d thread with mddev_lock held.
8548 * It makes config changes to the device.
8549 */
8550static void raid5_finish_reshape(struct mddev *mddev)
8551{
8552	struct r5conf *conf = mddev->private;
8553	struct md_rdev *rdev;
8554
8555	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8556
8557		if (mddev->delta_disks <= 0) {
8558			int d;
8559			spin_lock_irq(&conf->device_lock);
8560			mddev->degraded = raid5_calc_degraded(conf);
8561			spin_unlock_irq(&conf->device_lock);
8562			for (d = conf->raid_disks ;
8563			     d < conf->raid_disks - mddev->delta_disks;
8564			     d++) {
8565				rdev = conf->disks[d].rdev;
8566				if (rdev)
8567					clear_bit(In_sync, &rdev->flags);
8568				rdev = conf->disks[d].replacement;
8569				if (rdev)
8570					clear_bit(In_sync, &rdev->flags);
8571			}
8572		}
8573		mddev->layout = conf->algorithm;
8574		mddev->chunk_sectors = conf->chunk_sectors;
8575		mddev->reshape_position = MaxSector;
8576		mddev->delta_disks = 0;
8577		mddev->reshape_backwards = 0;
8578	}
8579}
8580
8581static void raid5_quiesce(struct mddev *mddev, int quiesce)
8582{
8583	struct r5conf *conf = mddev->private;
8584
8585	if (quiesce) {
8586		/* stop all writes */
8587		lock_all_device_hash_locks_irq(conf);
8588		/* '2' tells resync/reshape to pause so that all
8589		 * active stripes can drain
8590		 */
8591		r5c_flush_cache(conf, INT_MAX);
8592		/* need a memory barrier to make sure read_one_chunk() sees
8593		 * quiesce started and reverts to slow (locked) path.
8594		 */
8595		smp_store_release(&conf->quiesce, 2);
8596		wait_event_cmd(conf->wait_for_quiescent,
8597				    atomic_read(&conf->active_stripes) == 0 &&
8598				    atomic_read(&conf->active_aligned_reads) == 0,
8599				    unlock_all_device_hash_locks_irq(conf),
8600				    lock_all_device_hash_locks_irq(conf));
8601		conf->quiesce = 1;
8602		unlock_all_device_hash_locks_irq(conf);
8603		/* allow reshape to continue */
8604		wake_up(&conf->wait_for_overlap);
8605	} else {
8606		/* re-enable writes */
8607		lock_all_device_hash_locks_irq(conf);
8608		conf->quiesce = 0;
8609		wake_up(&conf->wait_for_quiescent);
8610		wake_up(&conf->wait_for_overlap);
8611		unlock_all_device_hash_locks_irq(conf);
8612	}
8613	log_quiesce(conf, quiesce);
8614}
8615
8616static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8617{
8618	struct r0conf *raid0_conf = mddev->private;
8619	sector_t sectors;
8620
8621	/* for raid0 takeover only one zone is supported */
8622	if (raid0_conf->nr_strip_zones > 1) {
8623		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8624			mdname(mddev));
8625		return ERR_PTR(-EINVAL);
8626	}
8627
8628	sectors = raid0_conf->strip_zone[0].zone_end;
8629	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8630	mddev->dev_sectors = sectors;
8631	mddev->new_level = level;
8632	mddev->new_layout = ALGORITHM_PARITY_N;
8633	mddev->new_chunk_sectors = mddev->chunk_sectors;
8634	mddev->raid_disks += 1;
8635	mddev->delta_disks = 1;
8636	/* make sure it will be not marked as dirty */
8637	mddev->recovery_cp = MaxSector;
8638
8639	return setup_conf(mddev);
8640}
8641
8642static void *raid5_takeover_raid1(struct mddev *mddev)
8643{
8644	int chunksect;
8645	void *ret;
8646
8647	if (mddev->raid_disks != 2 ||
8648	    mddev->degraded > 1)
8649		return ERR_PTR(-EINVAL);
8650
8651	/* Should check if there are write-behind devices? */
8652
8653	chunksect = 64*2; /* 64K by default */
8654
8655	/* The array must be an exact multiple of chunksize */
8656	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8657		chunksect >>= 1;
8658
8659	if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8660		/* array size does not allow a suitable chunk size */
8661		return ERR_PTR(-EINVAL);
8662
8663	mddev->new_level = 5;
8664	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8665	mddev->new_chunk_sectors = chunksect;
8666
8667	ret = setup_conf(mddev);
8668	if (!IS_ERR(ret))
8669		mddev_clear_unsupported_flags(mddev,
8670			UNSUPPORTED_MDDEV_FLAGS);
8671	return ret;
8672}
8673
8674static void *raid5_takeover_raid6(struct mddev *mddev)
8675{
8676	int new_layout;
8677
8678	switch (mddev->layout) {
8679	case ALGORITHM_LEFT_ASYMMETRIC_6:
8680		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8681		break;
8682	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8683		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8684		break;
8685	case ALGORITHM_LEFT_SYMMETRIC_6:
8686		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8687		break;
8688	case ALGORITHM_RIGHT_SYMMETRIC_6:
8689		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8690		break;
8691	case ALGORITHM_PARITY_0_6:
8692		new_layout = ALGORITHM_PARITY_0;
8693		break;
8694	case ALGORITHM_PARITY_N:
8695		new_layout = ALGORITHM_PARITY_N;
8696		break;
8697	default:
8698		return ERR_PTR(-EINVAL);
8699	}
8700	mddev->new_level = 5;
8701	mddev->new_layout = new_layout;
8702	mddev->delta_disks = -1;
8703	mddev->raid_disks -= 1;
8704	return setup_conf(mddev);
8705}
8706
8707static int raid5_check_reshape(struct mddev *mddev)
8708{
8709	/* For a 2-drive array, the layout and chunk size can be changed
8710	 * immediately as not restriping is needed.
8711	 * For larger arrays we record the new value - after validation
8712	 * to be used by a reshape pass.
8713	 */
8714	struct r5conf *conf = mddev->private;
8715	int new_chunk = mddev->new_chunk_sectors;
8716
8717	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8718		return -EINVAL;
8719	if (new_chunk > 0) {
8720		if (!is_power_of_2(new_chunk))
8721			return -EINVAL;
8722		if (new_chunk < (PAGE_SIZE>>9))
8723			return -EINVAL;
8724		if (mddev->array_sectors & (new_chunk-1))
8725			/* not factor of array size */
8726			return -EINVAL;
8727	}
8728
8729	/* They look valid */
8730
8731	if (mddev->raid_disks == 2) {
8732		/* can make the change immediately */
8733		if (mddev->new_layout >= 0) {
8734			conf->algorithm = mddev->new_layout;
8735			mddev->layout = mddev->new_layout;
8736		}
8737		if (new_chunk > 0) {
8738			conf->chunk_sectors = new_chunk ;
8739			mddev->chunk_sectors = new_chunk;
8740		}
8741		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8742		md_wakeup_thread(mddev->thread);
8743	}
8744	return check_reshape(mddev);
8745}
8746
8747static int raid6_check_reshape(struct mddev *mddev)
8748{
8749	int new_chunk = mddev->new_chunk_sectors;
8750
8751	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8752		return -EINVAL;
8753	if (new_chunk > 0) {
8754		if (!is_power_of_2(new_chunk))
8755			return -EINVAL;
8756		if (new_chunk < (PAGE_SIZE >> 9))
8757			return -EINVAL;
8758		if (mddev->array_sectors & (new_chunk-1))
8759			/* not factor of array size */
8760			return -EINVAL;
8761	}
8762
8763	/* They look valid */
8764	return check_reshape(mddev);
8765}
8766
8767static void *raid5_takeover(struct mddev *mddev)
8768{
8769	/* raid5 can take over:
8770	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8771	 *  raid1 - if there are two drives.  We need to know the chunk size
8772	 *  raid4 - trivial - just use a raid4 layout.
8773	 *  raid6 - Providing it is a *_6 layout
8774	 */
8775	if (mddev->level == 0)
8776		return raid45_takeover_raid0(mddev, 5);
8777	if (mddev->level == 1)
8778		return raid5_takeover_raid1(mddev);
8779	if (mddev->level == 4) {
8780		mddev->new_layout = ALGORITHM_PARITY_N;
8781		mddev->new_level = 5;
8782		return setup_conf(mddev);
8783	}
8784	if (mddev->level == 6)
8785		return raid5_takeover_raid6(mddev);
8786
8787	return ERR_PTR(-EINVAL);
8788}
8789
8790static void *raid4_takeover(struct mddev *mddev)
8791{
8792	/* raid4 can take over:
8793	 *  raid0 - if there is only one strip zone
8794	 *  raid5 - if layout is right
8795	 */
8796	if (mddev->level == 0)
8797		return raid45_takeover_raid0(mddev, 4);
8798	if (mddev->level == 5 &&
8799	    mddev->layout == ALGORITHM_PARITY_N) {
8800		mddev->new_layout = 0;
8801		mddev->new_level = 4;
8802		return setup_conf(mddev);
8803	}
8804	return ERR_PTR(-EINVAL);
8805}
8806
8807static struct md_personality raid5_personality;
8808
8809static void *raid6_takeover(struct mddev *mddev)
8810{
8811	/* Currently can only take over a raid5.  We map the
8812	 * personality to an equivalent raid6 personality
8813	 * with the Q block at the end.
8814	 */
8815	int new_layout;
8816
8817	if (mddev->pers != &raid5_personality)
8818		return ERR_PTR(-EINVAL);
8819	if (mddev->degraded > 1)
8820		return ERR_PTR(-EINVAL);
8821	if (mddev->raid_disks > 253)
8822		return ERR_PTR(-EINVAL);
8823	if (mddev->raid_disks < 3)
8824		return ERR_PTR(-EINVAL);
8825
8826	switch (mddev->layout) {
8827	case ALGORITHM_LEFT_ASYMMETRIC:
8828		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8829		break;
8830	case ALGORITHM_RIGHT_ASYMMETRIC:
8831		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8832		break;
8833	case ALGORITHM_LEFT_SYMMETRIC:
8834		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8835		break;
8836	case ALGORITHM_RIGHT_SYMMETRIC:
8837		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8838		break;
8839	case ALGORITHM_PARITY_0:
8840		new_layout = ALGORITHM_PARITY_0_6;
8841		break;
8842	case ALGORITHM_PARITY_N:
8843		new_layout = ALGORITHM_PARITY_N;
8844		break;
8845	default:
8846		return ERR_PTR(-EINVAL);
8847	}
8848	mddev->new_level = 6;
8849	mddev->new_layout = new_layout;
8850	mddev->delta_disks = 1;
8851	mddev->raid_disks += 1;
8852	return setup_conf(mddev);
8853}
8854
8855static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8856{
8857	struct r5conf *conf;
8858	int err;
8859
8860	err = mddev_suspend_and_lock(mddev);
8861	if (err)
8862		return err;
8863	conf = mddev->private;
8864	if (!conf) {
8865		mddev_unlock_and_resume(mddev);
8866		return -ENODEV;
8867	}
8868
8869	if (strncmp(buf, "ppl", 3) == 0) {
8870		/* ppl only works with RAID 5 */
8871		if (!raid5_has_ppl(conf) && conf->level == 5) {
8872			err = log_init(conf, NULL, true);
8873			if (!err) {
8874				err = resize_stripes(conf, conf->pool_size);
8875				if (err)
8876					log_exit(conf);
8877			}
8878		} else
8879			err = -EINVAL;
8880	} else if (strncmp(buf, "resync", 6) == 0) {
8881		if (raid5_has_ppl(conf)) {
8882			log_exit(conf);
8883			err = resize_stripes(conf, conf->pool_size);
8884		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8885			   r5l_log_disk_error(conf)) {
8886			bool journal_dev_exists = false;
8887			struct md_rdev *rdev;
8888
8889			rdev_for_each(rdev, mddev)
8890				if (test_bit(Journal, &rdev->flags)) {
8891					journal_dev_exists = true;
8892					break;
8893				}
8894
8895			if (!journal_dev_exists)
8896				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8897			else  /* need remove journal device first */
8898				err = -EBUSY;
8899		} else
8900			err = -EINVAL;
8901	} else {
8902		err = -EINVAL;
8903	}
8904
8905	if (!err)
8906		md_update_sb(mddev, 1);
8907
8908	mddev_unlock_and_resume(mddev);
8909
8910	return err;
8911}
8912
8913static int raid5_start(struct mddev *mddev)
8914{
8915	struct r5conf *conf = mddev->private;
8916
8917	return r5l_start(conf->log);
8918}
8919
8920/*
8921 * This is only used for dm-raid456, caller already frozen sync_thread, hence
8922 * if rehsape is still in progress, io that is waiting for reshape can never be
8923 * done now, hence wake up and handle those IO.
8924 */
8925static void raid5_prepare_suspend(struct mddev *mddev)
8926{
8927	struct r5conf *conf = mddev->private;
8928
8929	wake_up(&conf->wait_for_overlap);
8930}
8931
8932static struct md_personality raid6_personality =
8933{
8934	.name		= "raid6",
8935	.level		= 6,
8936	.owner		= THIS_MODULE,
8937	.make_request	= raid5_make_request,
8938	.run		= raid5_run,
8939	.start		= raid5_start,
8940	.free		= raid5_free,
8941	.status		= raid5_status,
8942	.error_handler	= raid5_error,
8943	.hot_add_disk	= raid5_add_disk,
8944	.hot_remove_disk= raid5_remove_disk,
8945	.spare_active	= raid5_spare_active,
8946	.sync_request	= raid5_sync_request,
8947	.resize		= raid5_resize,
8948	.size		= raid5_size,
8949	.check_reshape	= raid6_check_reshape,
8950	.start_reshape  = raid5_start_reshape,
8951	.finish_reshape = raid5_finish_reshape,
8952	.quiesce	= raid5_quiesce,
8953	.takeover	= raid6_takeover,
8954	.change_consistency_policy = raid5_change_consistency_policy,
8955	.prepare_suspend = raid5_prepare_suspend,
8956};
8957static struct md_personality raid5_personality =
8958{
8959	.name		= "raid5",
8960	.level		= 5,
8961	.owner		= THIS_MODULE,
8962	.make_request	= raid5_make_request,
8963	.run		= raid5_run,
8964	.start		= raid5_start,
8965	.free		= raid5_free,
8966	.status		= raid5_status,
8967	.error_handler	= raid5_error,
8968	.hot_add_disk	= raid5_add_disk,
8969	.hot_remove_disk= raid5_remove_disk,
8970	.spare_active	= raid5_spare_active,
8971	.sync_request	= raid5_sync_request,
8972	.resize		= raid5_resize,
8973	.size		= raid5_size,
8974	.check_reshape	= raid5_check_reshape,
8975	.start_reshape  = raid5_start_reshape,
8976	.finish_reshape = raid5_finish_reshape,
8977	.quiesce	= raid5_quiesce,
8978	.takeover	= raid5_takeover,
8979	.change_consistency_policy = raid5_change_consistency_policy,
8980	.prepare_suspend = raid5_prepare_suspend,
8981};
8982
8983static struct md_personality raid4_personality =
8984{
8985	.name		= "raid4",
8986	.level		= 4,
8987	.owner		= THIS_MODULE,
8988	.make_request	= raid5_make_request,
8989	.run		= raid5_run,
8990	.start		= raid5_start,
8991	.free		= raid5_free,
8992	.status		= raid5_status,
8993	.error_handler	= raid5_error,
8994	.hot_add_disk	= raid5_add_disk,
8995	.hot_remove_disk= raid5_remove_disk,
8996	.spare_active	= raid5_spare_active,
8997	.sync_request	= raid5_sync_request,
8998	.resize		= raid5_resize,
8999	.size		= raid5_size,
9000	.check_reshape	= raid5_check_reshape,
9001	.start_reshape  = raid5_start_reshape,
9002	.finish_reshape = raid5_finish_reshape,
9003	.quiesce	= raid5_quiesce,
9004	.takeover	= raid4_takeover,
9005	.change_consistency_policy = raid5_change_consistency_policy,
9006	.prepare_suspend = raid5_prepare_suspend,
9007};
9008
9009static int __init raid5_init(void)
9010{
9011	int ret;
9012
9013	raid5_wq = alloc_workqueue("raid5wq",
9014		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
9015	if (!raid5_wq)
9016		return -ENOMEM;
9017
9018	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
9019				      "md/raid5:prepare",
9020				      raid456_cpu_up_prepare,
9021				      raid456_cpu_dead);
9022	if (ret) {
9023		destroy_workqueue(raid5_wq);
9024		return ret;
9025	}
9026	register_md_personality(&raid6_personality);
9027	register_md_personality(&raid5_personality);
9028	register_md_personality(&raid4_personality);
9029	return 0;
9030}
9031
9032static void raid5_exit(void)
9033{
9034	unregister_md_personality(&raid6_personality);
9035	unregister_md_personality(&raid5_personality);
9036	unregister_md_personality(&raid4_personality);
9037	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9038	destroy_workqueue(raid5_wq);
9039}
9040
9041module_init(raid5_init);
9042module_exit(raid5_exit);
9043MODULE_LICENSE("GPL");
9044MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
9045MODULE_ALIAS("md-personality-4"); /* RAID5 */
9046MODULE_ALIAS("md-raid5");
9047MODULE_ALIAS("md-raid4");
9048MODULE_ALIAS("md-level-5");
9049MODULE_ALIAS("md-level-4");
9050MODULE_ALIAS("md-personality-8"); /* RAID6 */
9051MODULE_ALIAS("md-raid6");
9052MODULE_ALIAS("md-level-6");
9053
9054/* This used to be two separate modules, they were: */
9055MODULE_ALIAS("raid5");
9056MODULE_ALIAS("raid6");
9057