1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Partial Parity Log for closing the RAID5 write hole
4 * Copyright (c) 2017, Intel Corporation.
5 */
6
7#include <linux/kernel.h>
8#include <linux/blkdev.h>
9#include <linux/slab.h>
10#include <linux/crc32c.h>
11#include <linux/async_tx.h>
12#include <linux/raid/md_p.h>
13#include "md.h"
14#include "raid5.h"
15#include "raid5-log.h"
16
17/*
18 * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for
19 * partial parity data. The header contains an array of entries
20 * (struct ppl_header_entry) which describe the logged write requests.
21 * Partial parity for the entries comes after the header, written in the same
22 * sequence as the entries:
23 *
24 * Header
25 *   entry0
26 *   ...
27 *   entryN
28 * PP data
29 *   PP for entry0
30 *   ...
31 *   PP for entryN
32 *
33 * An entry describes one or more consecutive stripe_heads, up to a full
34 * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the
35 * number of stripe_heads in the entry and n is the number of modified data
36 * disks. Every stripe_head in the entry must write to the same data disks.
37 * An example of a valid case described by a single entry (writes to the first
38 * stripe of a 4 disk array, 16k chunk size):
39 *
40 * sh->sector   dd0   dd1   dd2    ppl
41 *            +-----+-----+-----+
42 * 0          | --- | --- | --- | +----+
43 * 8          | -W- | -W- | --- | | pp |   data_sector = 8
44 * 16         | -W- | -W- | --- | | pp |   data_size = 3 * 2 * 4k
45 * 24         | -W- | -W- | --- | | pp |   pp_size = 3 * 4k
46 *            +-----+-----+-----+ +----+
47 *
48 * data_sector is the first raid sector of the modified data, data_size is the
49 * total size of modified data and pp_size is the size of partial parity for
50 * this entry. Entries for full stripe writes contain no partial parity
51 * (pp_size = 0), they only mark the stripes for which parity should be
52 * recalculated after an unclean shutdown. Every entry holds a checksum of its
53 * partial parity, the header also has a checksum of the header itself.
54 *
55 * A write request is always logged to the PPL instance stored on the parity
56 * disk of the corresponding stripe. For each member disk there is one ppl_log
57 * used to handle logging for this disk, independently from others. They are
58 * grouped in child_logs array in struct ppl_conf, which is assigned to
59 * r5conf->log_private.
60 *
61 * ppl_io_unit represents a full PPL write, header_page contains the ppl_header.
62 * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head
63 * can be appended to the last entry if it meets the conditions for a valid
64 * entry described above, otherwise a new entry is added. Checksums of entries
65 * are calculated incrementally as stripes containing partial parity are being
66 * added. ppl_submit_iounit() calculates the checksum of the header and submits
67 * a bio containing the header page and partial parity pages (sh->ppl_page) for
68 * all stripes of the io_unit. When the PPL write completes, the stripes
69 * associated with the io_unit are released and raid5d starts writing their data
70 * and parity. When all stripes are written, the io_unit is freed and the next
71 * can be submitted.
72 *
73 * An io_unit is used to gather stripes until it is submitted or becomes full
74 * (if the maximum number of entries or size of PPL is reached). Another io_unit
75 * can't be submitted until the previous has completed (PPL and stripe
76 * data+parity is written). The log->io_list tracks all io_units of a log
77 * (for a single member disk). New io_units are added to the end of the list
78 * and the first io_unit is submitted, if it is not submitted already.
79 * The current io_unit accepting new stripes is always at the end of the list.
80 *
81 * If write-back cache is enabled for any of the disks in the array, its data
82 * must be flushed before next io_unit is submitted.
83 */
84
85#define PPL_SPACE_SIZE (128 * 1024)
86
87struct ppl_conf {
88	struct mddev *mddev;
89
90	/* array of child logs, one for each raid disk */
91	struct ppl_log *child_logs;
92	int count;
93
94	int block_size;		/* the logical block size used for data_sector
95				 * in ppl_header_entry */
96	u32 signature;		/* raid array identifier */
97	atomic64_t seq;		/* current log write sequence number */
98
99	struct kmem_cache *io_kc;
100	mempool_t io_pool;
101	struct bio_set bs;
102	struct bio_set flush_bs;
103
104	/* used only for recovery */
105	int recovered_entries;
106	int mismatch_count;
107
108	/* stripes to retry if failed to allocate io_unit */
109	struct list_head no_mem_stripes;
110	spinlock_t no_mem_stripes_lock;
111
112	unsigned short write_hint;
113};
114
115struct ppl_log {
116	struct ppl_conf *ppl_conf;	/* shared between all log instances */
117
118	struct md_rdev *rdev;		/* array member disk associated with
119					 * this log instance */
120	struct mutex io_mutex;
121	struct ppl_io_unit *current_io;	/* current io_unit accepting new data
122					 * always at the end of io_list */
123	spinlock_t io_list_lock;
124	struct list_head io_list;	/* all io_units of this log */
125
126	sector_t next_io_sector;
127	unsigned int entry_space;
128	bool use_multippl;
129	bool wb_cache_on;
130	unsigned long disk_flush_bitmap;
131};
132
133#define PPL_IO_INLINE_BVECS 32
134
135struct ppl_io_unit {
136	struct ppl_log *log;
137
138	struct page *header_page;	/* for ppl_header */
139
140	unsigned int entries_count;	/* number of entries in ppl_header */
141	unsigned int pp_size;		/* total size current of partial parity */
142
143	u64 seq;			/* sequence number of this log write */
144	struct list_head log_sibling;	/* log->io_list */
145
146	struct list_head stripe_list;	/* stripes added to the io_unit */
147	atomic_t pending_stripes;	/* how many stripes not written to raid */
148	atomic_t pending_flushes;	/* how many disk flushes are in progress */
149
150	bool submitted;			/* true if write to log started */
151
152	/* inline bio and its biovec for submitting the iounit */
153	struct bio bio;
154	struct bio_vec biovec[PPL_IO_INLINE_BVECS];
155};
156
157struct dma_async_tx_descriptor *
158ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu,
159		       struct dma_async_tx_descriptor *tx)
160{
161	int disks = sh->disks;
162	struct page **srcs = percpu->scribble;
163	int count = 0, pd_idx = sh->pd_idx, i;
164	struct async_submit_ctl submit;
165
166	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
167
168	/*
169	 * Partial parity is the XOR of stripe data chunks that are not changed
170	 * during the write request. Depending on available data
171	 * (read-modify-write vs. reconstruct-write case) we calculate it
172	 * differently.
173	 */
174	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
175		/*
176		 * rmw: xor old data and parity from updated disks
177		 * This is calculated earlier by ops_run_prexor5() so just copy
178		 * the parity dev page.
179		 */
180		srcs[count++] = sh->dev[pd_idx].page;
181	} else if (sh->reconstruct_state == reconstruct_state_drain_run) {
182		/* rcw: xor data from all not updated disks */
183		for (i = disks; i--;) {
184			struct r5dev *dev = &sh->dev[i];
185			if (test_bit(R5_UPTODATE, &dev->flags))
186				srcs[count++] = dev->page;
187		}
188	} else {
189		return tx;
190	}
191
192	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx,
193			  NULL, sh, (void *) (srcs + sh->disks + 2));
194
195	if (count == 1)
196		tx = async_memcpy(sh->ppl_page, srcs[0], 0, 0, PAGE_SIZE,
197				  &submit);
198	else
199		tx = async_xor(sh->ppl_page, srcs, 0, count, PAGE_SIZE,
200			       &submit);
201
202	return tx;
203}
204
205static void *ppl_io_pool_alloc(gfp_t gfp_mask, void *pool_data)
206{
207	struct kmem_cache *kc = pool_data;
208	struct ppl_io_unit *io;
209
210	io = kmem_cache_alloc(kc, gfp_mask);
211	if (!io)
212		return NULL;
213
214	io->header_page = alloc_page(gfp_mask);
215	if (!io->header_page) {
216		kmem_cache_free(kc, io);
217		return NULL;
218	}
219
220	return io;
221}
222
223static void ppl_io_pool_free(void *element, void *pool_data)
224{
225	struct kmem_cache *kc = pool_data;
226	struct ppl_io_unit *io = element;
227
228	__free_page(io->header_page);
229	kmem_cache_free(kc, io);
230}
231
232static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log,
233					  struct stripe_head *sh)
234{
235	struct ppl_conf *ppl_conf = log->ppl_conf;
236	struct ppl_io_unit *io;
237	struct ppl_header *pplhdr;
238	struct page *header_page;
239
240	io = mempool_alloc(&ppl_conf->io_pool, GFP_NOWAIT);
241	if (!io)
242		return NULL;
243
244	header_page = io->header_page;
245	memset(io, 0, sizeof(*io));
246	io->header_page = header_page;
247
248	io->log = log;
249	INIT_LIST_HEAD(&io->log_sibling);
250	INIT_LIST_HEAD(&io->stripe_list);
251	atomic_set(&io->pending_stripes, 0);
252	atomic_set(&io->pending_flushes, 0);
253	bio_init(&io->bio, log->rdev->bdev, io->biovec, PPL_IO_INLINE_BVECS,
254		 REQ_OP_WRITE | REQ_FUA);
255
256	pplhdr = page_address(io->header_page);
257	clear_page(pplhdr);
258	memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
259	pplhdr->signature = cpu_to_le32(ppl_conf->signature);
260
261	io->seq = atomic64_add_return(1, &ppl_conf->seq);
262	pplhdr->generation = cpu_to_le64(io->seq);
263
264	return io;
265}
266
267static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh)
268{
269	struct ppl_io_unit *io = log->current_io;
270	struct ppl_header_entry *e = NULL;
271	struct ppl_header *pplhdr;
272	int i;
273	sector_t data_sector = 0;
274	int data_disks = 0;
275	struct r5conf *conf = sh->raid_conf;
276
277	pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector);
278
279	/* check if current io_unit is full */
280	if (io && (io->pp_size == log->entry_space ||
281		   io->entries_count == PPL_HDR_MAX_ENTRIES)) {
282		pr_debug("%s: add io_unit blocked by seq: %llu\n",
283			 __func__, io->seq);
284		io = NULL;
285	}
286
287	/* add a new unit if there is none or the current is full */
288	if (!io) {
289		io = ppl_new_iounit(log, sh);
290		if (!io)
291			return -ENOMEM;
292		spin_lock_irq(&log->io_list_lock);
293		list_add_tail(&io->log_sibling, &log->io_list);
294		spin_unlock_irq(&log->io_list_lock);
295
296		log->current_io = io;
297	}
298
299	for (i = 0; i < sh->disks; i++) {
300		struct r5dev *dev = &sh->dev[i];
301
302		if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) {
303			if (!data_disks || dev->sector < data_sector)
304				data_sector = dev->sector;
305			data_disks++;
306		}
307	}
308	BUG_ON(!data_disks);
309
310	pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__,
311		 io->seq, (unsigned long long)data_sector, data_disks);
312
313	pplhdr = page_address(io->header_page);
314
315	if (io->entries_count > 0) {
316		struct ppl_header_entry *last =
317				&pplhdr->entries[io->entries_count - 1];
318		struct stripe_head *sh_last = list_last_entry(
319				&io->stripe_list, struct stripe_head, log_list);
320		u64 data_sector_last = le64_to_cpu(last->data_sector);
321		u32 data_size_last = le32_to_cpu(last->data_size);
322
323		/*
324		 * Check if we can append the stripe to the last entry. It must
325		 * be just after the last logged stripe and write to the same
326		 * disks. Use bit shift and logarithm to avoid 64-bit division.
327		 */
328		if ((sh->sector == sh_last->sector + RAID5_STRIPE_SECTORS(conf)) &&
329		    (data_sector >> ilog2(conf->chunk_sectors) ==
330		     data_sector_last >> ilog2(conf->chunk_sectors)) &&
331		    ((data_sector - data_sector_last) * data_disks ==
332		     data_size_last >> 9))
333			e = last;
334	}
335
336	if (!e) {
337		e = &pplhdr->entries[io->entries_count++];
338		e->data_sector = cpu_to_le64(data_sector);
339		e->parity_disk = cpu_to_le32(sh->pd_idx);
340		e->checksum = cpu_to_le32(~0);
341	}
342
343	le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT);
344
345	/* don't write any PP if full stripe write */
346	if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) {
347		le32_add_cpu(&e->pp_size, PAGE_SIZE);
348		io->pp_size += PAGE_SIZE;
349		e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum),
350						    page_address(sh->ppl_page),
351						    PAGE_SIZE));
352	}
353
354	list_add_tail(&sh->log_list, &io->stripe_list);
355	atomic_inc(&io->pending_stripes);
356	sh->ppl_io = io;
357
358	return 0;
359}
360
361int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh)
362{
363	struct ppl_conf *ppl_conf = conf->log_private;
364	struct ppl_io_unit *io = sh->ppl_io;
365	struct ppl_log *log;
366
367	if (io || test_bit(STRIPE_SYNCING, &sh->state) || !sh->ppl_page ||
368	    !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
369	    !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) {
370		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
371		return -EAGAIN;
372	}
373
374	log = &ppl_conf->child_logs[sh->pd_idx];
375
376	mutex_lock(&log->io_mutex);
377
378	if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
379		mutex_unlock(&log->io_mutex);
380		return -EAGAIN;
381	}
382
383	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
384	clear_bit(STRIPE_DELAYED, &sh->state);
385	atomic_inc(&sh->count);
386
387	if (ppl_log_stripe(log, sh)) {
388		spin_lock_irq(&ppl_conf->no_mem_stripes_lock);
389		list_add_tail(&sh->log_list, &ppl_conf->no_mem_stripes);
390		spin_unlock_irq(&ppl_conf->no_mem_stripes_lock);
391	}
392
393	mutex_unlock(&log->io_mutex);
394
395	return 0;
396}
397
398static void ppl_log_endio(struct bio *bio)
399{
400	struct ppl_io_unit *io = bio->bi_private;
401	struct ppl_log *log = io->log;
402	struct ppl_conf *ppl_conf = log->ppl_conf;
403	struct stripe_head *sh, *next;
404
405	pr_debug("%s: seq: %llu\n", __func__, io->seq);
406
407	if (bio->bi_status)
408		md_error(ppl_conf->mddev, log->rdev);
409
410	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
411		list_del_init(&sh->log_list);
412
413		set_bit(STRIPE_HANDLE, &sh->state);
414		raid5_release_stripe(sh);
415	}
416}
417
418static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio)
419{
420	pr_debug("%s: seq: %llu size: %u sector: %llu dev: %pg\n",
421		 __func__, io->seq, bio->bi_iter.bi_size,
422		 (unsigned long long)bio->bi_iter.bi_sector,
423		 bio->bi_bdev);
424
425	submit_bio(bio);
426}
427
428static void ppl_submit_iounit(struct ppl_io_unit *io)
429{
430	struct ppl_log *log = io->log;
431	struct ppl_conf *ppl_conf = log->ppl_conf;
432	struct ppl_header *pplhdr = page_address(io->header_page);
433	struct bio *bio = &io->bio;
434	struct stripe_head *sh;
435	int i;
436
437	bio->bi_private = io;
438
439	if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
440		ppl_log_endio(bio);
441		return;
442	}
443
444	for (i = 0; i < io->entries_count; i++) {
445		struct ppl_header_entry *e = &pplhdr->entries[i];
446
447		pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n",
448			 __func__, io->seq, i, le64_to_cpu(e->data_sector),
449			 le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size));
450
451		e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >>
452					     ilog2(ppl_conf->block_size >> 9));
453		e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum));
454	}
455
456	pplhdr->entries_count = cpu_to_le32(io->entries_count);
457	pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE));
458
459	/* Rewind the buffer if current PPL is larger then remaining space */
460	if (log->use_multippl &&
461	    log->rdev->ppl.sector + log->rdev->ppl.size - log->next_io_sector <
462	    (PPL_HEADER_SIZE + io->pp_size) >> 9)
463		log->next_io_sector = log->rdev->ppl.sector;
464
465
466	bio->bi_end_io = ppl_log_endio;
467	bio->bi_iter.bi_sector = log->next_io_sector;
468	__bio_add_page(bio, io->header_page, PAGE_SIZE, 0);
469
470	pr_debug("%s: log->current_io_sector: %llu\n", __func__,
471	    (unsigned long long)log->next_io_sector);
472
473	if (log->use_multippl)
474		log->next_io_sector += (PPL_HEADER_SIZE + io->pp_size) >> 9;
475
476	WARN_ON(log->disk_flush_bitmap != 0);
477
478	list_for_each_entry(sh, &io->stripe_list, log_list) {
479		for (i = 0; i < sh->disks; i++) {
480			struct r5dev *dev = &sh->dev[i];
481
482			if ((ppl_conf->child_logs[i].wb_cache_on) &&
483			    (test_bit(R5_Wantwrite, &dev->flags))) {
484				set_bit(i, &log->disk_flush_bitmap);
485			}
486		}
487
488		/* entries for full stripe writes have no partial parity */
489		if (test_bit(STRIPE_FULL_WRITE, &sh->state))
490			continue;
491
492		if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) {
493			struct bio *prev = bio;
494
495			bio = bio_alloc_bioset(prev->bi_bdev, BIO_MAX_VECS,
496					       prev->bi_opf, GFP_NOIO,
497					       &ppl_conf->bs);
498			bio->bi_iter.bi_sector = bio_end_sector(prev);
499			__bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0);
500
501			bio_chain(bio, prev);
502			ppl_submit_iounit_bio(io, prev);
503		}
504	}
505
506	ppl_submit_iounit_bio(io, bio);
507}
508
509static void ppl_submit_current_io(struct ppl_log *log)
510{
511	struct ppl_io_unit *io;
512
513	spin_lock_irq(&log->io_list_lock);
514
515	io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
516				      log_sibling);
517	if (io && io->submitted)
518		io = NULL;
519
520	spin_unlock_irq(&log->io_list_lock);
521
522	if (io) {
523		io->submitted = true;
524
525		if (io == log->current_io)
526			log->current_io = NULL;
527
528		ppl_submit_iounit(io);
529	}
530}
531
532void ppl_write_stripe_run(struct r5conf *conf)
533{
534	struct ppl_conf *ppl_conf = conf->log_private;
535	struct ppl_log *log;
536	int i;
537
538	for (i = 0; i < ppl_conf->count; i++) {
539		log = &ppl_conf->child_logs[i];
540
541		mutex_lock(&log->io_mutex);
542		ppl_submit_current_io(log);
543		mutex_unlock(&log->io_mutex);
544	}
545}
546
547static void ppl_io_unit_finished(struct ppl_io_unit *io)
548{
549	struct ppl_log *log = io->log;
550	struct ppl_conf *ppl_conf = log->ppl_conf;
551	struct r5conf *conf = ppl_conf->mddev->private;
552	unsigned long flags;
553
554	pr_debug("%s: seq: %llu\n", __func__, io->seq);
555
556	local_irq_save(flags);
557
558	spin_lock(&log->io_list_lock);
559	list_del(&io->log_sibling);
560	spin_unlock(&log->io_list_lock);
561
562	mempool_free(io, &ppl_conf->io_pool);
563
564	spin_lock(&ppl_conf->no_mem_stripes_lock);
565	if (!list_empty(&ppl_conf->no_mem_stripes)) {
566		struct stripe_head *sh;
567
568		sh = list_first_entry(&ppl_conf->no_mem_stripes,
569				      struct stripe_head, log_list);
570		list_del_init(&sh->log_list);
571		set_bit(STRIPE_HANDLE, &sh->state);
572		raid5_release_stripe(sh);
573	}
574	spin_unlock(&ppl_conf->no_mem_stripes_lock);
575
576	local_irq_restore(flags);
577
578	wake_up(&conf->wait_for_quiescent);
579}
580
581static void ppl_flush_endio(struct bio *bio)
582{
583	struct ppl_io_unit *io = bio->bi_private;
584	struct ppl_log *log = io->log;
585	struct ppl_conf *ppl_conf = log->ppl_conf;
586	struct r5conf *conf = ppl_conf->mddev->private;
587
588	pr_debug("%s: dev: %pg\n", __func__, bio->bi_bdev);
589
590	if (bio->bi_status) {
591		struct md_rdev *rdev;
592
593		rcu_read_lock();
594		rdev = md_find_rdev_rcu(conf->mddev, bio_dev(bio));
595		if (rdev)
596			md_error(rdev->mddev, rdev);
597		rcu_read_unlock();
598	}
599
600	bio_put(bio);
601
602	if (atomic_dec_and_test(&io->pending_flushes)) {
603		ppl_io_unit_finished(io);
604		md_wakeup_thread(conf->mddev->thread);
605	}
606}
607
608static void ppl_do_flush(struct ppl_io_unit *io)
609{
610	struct ppl_log *log = io->log;
611	struct ppl_conf *ppl_conf = log->ppl_conf;
612	struct r5conf *conf = ppl_conf->mddev->private;
613	int raid_disks = conf->raid_disks;
614	int flushed_disks = 0;
615	int i;
616
617	atomic_set(&io->pending_flushes, raid_disks);
618
619	for_each_set_bit(i, &log->disk_flush_bitmap, raid_disks) {
620		struct md_rdev *rdev;
621		struct block_device *bdev = NULL;
622
623		rdev = conf->disks[i].rdev;
624		if (rdev && !test_bit(Faulty, &rdev->flags))
625			bdev = rdev->bdev;
626
627		if (bdev) {
628			struct bio *bio;
629
630			bio = bio_alloc_bioset(bdev, 0,
631					       REQ_OP_WRITE | REQ_PREFLUSH,
632					       GFP_NOIO, &ppl_conf->flush_bs);
633			bio->bi_private = io;
634			bio->bi_end_io = ppl_flush_endio;
635
636			pr_debug("%s: dev: %ps\n", __func__, bio->bi_bdev);
637
638			submit_bio(bio);
639			flushed_disks++;
640		}
641	}
642
643	log->disk_flush_bitmap = 0;
644
645	for (i = flushed_disks ; i < raid_disks; i++) {
646		if (atomic_dec_and_test(&io->pending_flushes))
647			ppl_io_unit_finished(io);
648	}
649}
650
651static inline bool ppl_no_io_unit_submitted(struct r5conf *conf,
652					    struct ppl_log *log)
653{
654	struct ppl_io_unit *io;
655
656	io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
657				      log_sibling);
658
659	return !io || !io->submitted;
660}
661
662void ppl_quiesce(struct r5conf *conf, int quiesce)
663{
664	struct ppl_conf *ppl_conf = conf->log_private;
665	int i;
666
667	if (quiesce) {
668		for (i = 0; i < ppl_conf->count; i++) {
669			struct ppl_log *log = &ppl_conf->child_logs[i];
670
671			spin_lock_irq(&log->io_list_lock);
672			wait_event_lock_irq(conf->wait_for_quiescent,
673					    ppl_no_io_unit_submitted(conf, log),
674					    log->io_list_lock);
675			spin_unlock_irq(&log->io_list_lock);
676		}
677	}
678}
679
680int ppl_handle_flush_request(struct bio *bio)
681{
682	if (bio->bi_iter.bi_size == 0) {
683		bio_endio(bio);
684		return 0;
685	}
686	bio->bi_opf &= ~REQ_PREFLUSH;
687	return -EAGAIN;
688}
689
690void ppl_stripe_write_finished(struct stripe_head *sh)
691{
692	struct ppl_io_unit *io;
693
694	io = sh->ppl_io;
695	sh->ppl_io = NULL;
696
697	if (io && atomic_dec_and_test(&io->pending_stripes)) {
698		if (io->log->disk_flush_bitmap)
699			ppl_do_flush(io);
700		else
701			ppl_io_unit_finished(io);
702	}
703}
704
705static void ppl_xor(int size, struct page *page1, struct page *page2)
706{
707	struct async_submit_ctl submit;
708	struct dma_async_tx_descriptor *tx;
709	struct page *xor_srcs[] = { page1, page2 };
710
711	init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST,
712			  NULL, NULL, NULL, NULL);
713	tx = async_xor(page1, xor_srcs, 0, 2, size, &submit);
714
715	async_tx_quiesce(&tx);
716}
717
718/*
719 * PPL recovery strategy: xor partial parity and data from all modified data
720 * disks within a stripe and write the result as the new stripe parity. If all
721 * stripe data disks are modified (full stripe write), no partial parity is
722 * available, so just xor the data disks.
723 *
724 * Recovery of a PPL entry shall occur only if all modified data disks are
725 * available and read from all of them succeeds.
726 *
727 * A PPL entry applies to a stripe, partial parity size for an entry is at most
728 * the size of the chunk. Examples of possible cases for a single entry:
729 *
730 * case 0: single data disk write:
731 *   data0    data1    data2     ppl        parity
732 * +--------+--------+--------+           +--------------------+
733 * | ------ | ------ | ------ | +----+    | (no change)        |
734 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
735 * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
736 * | ------ | ------ | ------ | +----+    | (no change)        |
737 * +--------+--------+--------+           +--------------------+
738 * pp_size = data_size
739 *
740 * case 1: more than one data disk write:
741 *   data0    data1    data2     ppl        parity
742 * +--------+--------+--------+           +--------------------+
743 * | ------ | ------ | ------ | +----+    | (no change)        |
744 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
745 * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
746 * | ------ | ------ | ------ | +----+    | (no change)        |
747 * +--------+--------+--------+           +--------------------+
748 * pp_size = data_size / modified_data_disks
749 *
750 * case 2: write to all data disks (also full stripe write):
751 *   data0    data1    data2                parity
752 * +--------+--------+--------+           +--------------------+
753 * | ------ | ------ | ------ |           | (no change)        |
754 * | -data- | -data- | -data- | --------> | xor all data       |
755 * | ------ | ------ | ------ | --------> | (no change)        |
756 * | ------ | ------ | ------ |           | (no change)        |
757 * +--------+--------+--------+           +--------------------+
758 * pp_size = 0
759 *
760 * The following cases are possible only in other implementations. The recovery
761 * code can handle them, but they are not generated at runtime because they can
762 * be reduced to cases 0, 1 and 2:
763 *
764 * case 3:
765 *   data0    data1    data2     ppl        parity
766 * +--------+--------+--------+ +----+    +--------------------+
767 * | ------ | -data- | -data- | | pp |    | data1 ^ data2 ^ pp |
768 * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp |
769 * | -data- | -data- | -data- | | -- | -> | xor all data       |
770 * | -data- | -data- | ------ | | pp |    | data0 ^ data1 ^ pp |
771 * +--------+--------+--------+ +----+    +--------------------+
772 * pp_size = chunk_size
773 *
774 * case 4:
775 *   data0    data1    data2     ppl        parity
776 * +--------+--------+--------+ +----+    +--------------------+
777 * | ------ | -data- | ------ | | pp |    | data1 ^ pp         |
778 * | ------ | ------ | ------ | | -- | -> | (no change)        |
779 * | ------ | ------ | ------ | | -- | -> | (no change)        |
780 * | -data- | ------ | ------ | | pp |    | data0 ^ pp         |
781 * +--------+--------+--------+ +----+    +--------------------+
782 * pp_size = chunk_size
783 */
784static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e,
785			     sector_t ppl_sector)
786{
787	struct ppl_conf *ppl_conf = log->ppl_conf;
788	struct mddev *mddev = ppl_conf->mddev;
789	struct r5conf *conf = mddev->private;
790	int block_size = ppl_conf->block_size;
791	struct page *page1;
792	struct page *page2;
793	sector_t r_sector_first;
794	sector_t r_sector_last;
795	int strip_sectors;
796	int data_disks;
797	int i;
798	int ret = 0;
799	unsigned int pp_size = le32_to_cpu(e->pp_size);
800	unsigned int data_size = le32_to_cpu(e->data_size);
801
802	page1 = alloc_page(GFP_KERNEL);
803	page2 = alloc_page(GFP_KERNEL);
804
805	if (!page1 || !page2) {
806		ret = -ENOMEM;
807		goto out;
808	}
809
810	r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9);
811
812	if ((pp_size >> 9) < conf->chunk_sectors) {
813		if (pp_size > 0) {
814			data_disks = data_size / pp_size;
815			strip_sectors = pp_size >> 9;
816		} else {
817			data_disks = conf->raid_disks - conf->max_degraded;
818			strip_sectors = (data_size >> 9) / data_disks;
819		}
820		r_sector_last = r_sector_first +
821				(data_disks - 1) * conf->chunk_sectors +
822				strip_sectors;
823	} else {
824		data_disks = conf->raid_disks - conf->max_degraded;
825		strip_sectors = conf->chunk_sectors;
826		r_sector_last = r_sector_first + (data_size >> 9);
827	}
828
829	pr_debug("%s: array sector first: %llu last: %llu\n", __func__,
830		 (unsigned long long)r_sector_first,
831		 (unsigned long long)r_sector_last);
832
833	/* if start and end is 4k aligned, use a 4k block */
834	if (block_size == 512 &&
835	    (r_sector_first & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0 &&
836	    (r_sector_last & (RAID5_STRIPE_SECTORS(conf) - 1)) == 0)
837		block_size = RAID5_STRIPE_SIZE(conf);
838
839	/* iterate through blocks in strip */
840	for (i = 0; i < strip_sectors; i += (block_size >> 9)) {
841		bool update_parity = false;
842		sector_t parity_sector;
843		struct md_rdev *parity_rdev;
844		struct stripe_head sh;
845		int disk;
846		int indent = 0;
847
848		pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i);
849		indent += 2;
850
851		memset(page_address(page1), 0, PAGE_SIZE);
852
853		/* iterate through data member disks */
854		for (disk = 0; disk < data_disks; disk++) {
855			int dd_idx;
856			struct md_rdev *rdev;
857			sector_t sector;
858			sector_t r_sector = r_sector_first + i +
859					    (disk * conf->chunk_sectors);
860
861			pr_debug("%s:%*s data member disk %d start\n",
862				 __func__, indent, "", disk);
863			indent += 2;
864
865			if (r_sector >= r_sector_last) {
866				pr_debug("%s:%*s array sector %llu doesn't need parity update\n",
867					 __func__, indent, "",
868					 (unsigned long long)r_sector);
869				indent -= 2;
870				continue;
871			}
872
873			update_parity = true;
874
875			/* map raid sector to member disk */
876			sector = raid5_compute_sector(conf, r_sector, 0,
877						      &dd_idx, NULL);
878			pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n",
879				 __func__, indent, "",
880				 (unsigned long long)r_sector, dd_idx,
881				 (unsigned long long)sector);
882
883			rdev = conf->disks[dd_idx].rdev;
884			if (!rdev || (!test_bit(In_sync, &rdev->flags) &&
885				      sector >= rdev->recovery_offset)) {
886				pr_debug("%s:%*s data member disk %d missing\n",
887					 __func__, indent, "", dd_idx);
888				update_parity = false;
889				break;
890			}
891
892			pr_debug("%s:%*s reading data member disk %pg sector %llu\n",
893				 __func__, indent, "", rdev->bdev,
894				 (unsigned long long)sector);
895			if (!sync_page_io(rdev, sector, block_size, page2,
896					REQ_OP_READ, false)) {
897				md_error(mddev, rdev);
898				pr_debug("%s:%*s read failed!\n", __func__,
899					 indent, "");
900				ret = -EIO;
901				goto out;
902			}
903
904			ppl_xor(block_size, page1, page2);
905
906			indent -= 2;
907		}
908
909		if (!update_parity)
910			continue;
911
912		if (pp_size > 0) {
913			pr_debug("%s:%*s reading pp disk sector %llu\n",
914				 __func__, indent, "",
915				 (unsigned long long)(ppl_sector + i));
916			if (!sync_page_io(log->rdev,
917					ppl_sector - log->rdev->data_offset + i,
918					block_size, page2, REQ_OP_READ,
919					false)) {
920				pr_debug("%s:%*s read failed!\n", __func__,
921					 indent, "");
922				md_error(mddev, log->rdev);
923				ret = -EIO;
924				goto out;
925			}
926
927			ppl_xor(block_size, page1, page2);
928		}
929
930		/* map raid sector to parity disk */
931		parity_sector = raid5_compute_sector(conf, r_sector_first + i,
932				0, &disk, &sh);
933		BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk));
934
935		parity_rdev = conf->disks[sh.pd_idx].rdev;
936
937		BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev);
938		pr_debug("%s:%*s write parity at sector %llu, disk %pg\n",
939			 __func__, indent, "",
940			 (unsigned long long)parity_sector,
941			 parity_rdev->bdev);
942		if (!sync_page_io(parity_rdev, parity_sector, block_size,
943				  page1, REQ_OP_WRITE, false)) {
944			pr_debug("%s:%*s parity write error!\n", __func__,
945				 indent, "");
946			md_error(mddev, parity_rdev);
947			ret = -EIO;
948			goto out;
949		}
950	}
951out:
952	if (page1)
953		__free_page(page1);
954	if (page2)
955		__free_page(page2);
956	return ret;
957}
958
959static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr,
960		       sector_t offset)
961{
962	struct ppl_conf *ppl_conf = log->ppl_conf;
963	struct md_rdev *rdev = log->rdev;
964	struct mddev *mddev = rdev->mddev;
965	sector_t ppl_sector = rdev->ppl.sector + offset +
966			      (PPL_HEADER_SIZE >> 9);
967	struct page *page;
968	int i;
969	int ret = 0;
970
971	page = alloc_page(GFP_KERNEL);
972	if (!page)
973		return -ENOMEM;
974
975	/* iterate through all PPL entries saved */
976	for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) {
977		struct ppl_header_entry *e = &pplhdr->entries[i];
978		u32 pp_size = le32_to_cpu(e->pp_size);
979		sector_t sector = ppl_sector;
980		int ppl_entry_sectors = pp_size >> 9;
981		u32 crc, crc_stored;
982
983		pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n",
984			 __func__, rdev->raid_disk, i,
985			 (unsigned long long)ppl_sector, pp_size);
986
987		crc = ~0;
988		crc_stored = le32_to_cpu(e->checksum);
989
990		/* read parial parity for this entry and calculate its checksum */
991		while (pp_size) {
992			int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size;
993
994			if (!sync_page_io(rdev, sector - rdev->data_offset,
995					s, page, REQ_OP_READ, false)) {
996				md_error(mddev, rdev);
997				ret = -EIO;
998				goto out;
999			}
1000
1001			crc = crc32c_le(crc, page_address(page), s);
1002
1003			pp_size -= s;
1004			sector += s >> 9;
1005		}
1006
1007		crc = ~crc;
1008
1009		if (crc != crc_stored) {
1010			/*
1011			 * Don't recover this entry if the checksum does not
1012			 * match, but keep going and try to recover other
1013			 * entries.
1014			 */
1015			pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n",
1016				 __func__, crc_stored, crc);
1017			ppl_conf->mismatch_count++;
1018		} else {
1019			ret = ppl_recover_entry(log, e, ppl_sector);
1020			if (ret)
1021				goto out;
1022			ppl_conf->recovered_entries++;
1023		}
1024
1025		ppl_sector += ppl_entry_sectors;
1026	}
1027
1028	/* flush the disk cache after recovery if necessary */
1029	ret = blkdev_issue_flush(rdev->bdev);
1030out:
1031	__free_page(page);
1032	return ret;
1033}
1034
1035static int ppl_write_empty_header(struct ppl_log *log)
1036{
1037	struct page *page;
1038	struct ppl_header *pplhdr;
1039	struct md_rdev *rdev = log->rdev;
1040	int ret = 0;
1041
1042	pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__,
1043		 rdev->raid_disk, (unsigned long long)rdev->ppl.sector);
1044
1045	page = alloc_page(GFP_NOIO | __GFP_ZERO);
1046	if (!page)
1047		return -ENOMEM;
1048
1049	pplhdr = page_address(page);
1050	/* zero out PPL space to avoid collision with old PPLs */
1051	blkdev_issue_zeroout(rdev->bdev, rdev->ppl.sector,
1052			    log->rdev->ppl.size, GFP_NOIO, 0);
1053	memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
1054	pplhdr->signature = cpu_to_le32(log->ppl_conf->signature);
1055	pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE));
1056
1057	if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset,
1058			  PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_SYNC |
1059			  REQ_FUA, false)) {
1060		md_error(rdev->mddev, rdev);
1061		ret = -EIO;
1062	}
1063
1064	__free_page(page);
1065	return ret;
1066}
1067
1068static int ppl_load_distributed(struct ppl_log *log)
1069{
1070	struct ppl_conf *ppl_conf = log->ppl_conf;
1071	struct md_rdev *rdev = log->rdev;
1072	struct mddev *mddev = rdev->mddev;
1073	struct page *page, *page2;
1074	struct ppl_header *pplhdr = NULL, *prev_pplhdr = NULL;
1075	u32 crc, crc_stored;
1076	u32 signature;
1077	int ret = 0, i;
1078	sector_t pplhdr_offset = 0, prev_pplhdr_offset = 0;
1079
1080	pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk);
1081	/* read PPL headers, find the recent one */
1082	page = alloc_page(GFP_KERNEL);
1083	if (!page)
1084		return -ENOMEM;
1085
1086	page2 = alloc_page(GFP_KERNEL);
1087	if (!page2) {
1088		__free_page(page);
1089		return -ENOMEM;
1090	}
1091
1092	/* searching ppl area for latest ppl */
1093	while (pplhdr_offset < rdev->ppl.size - (PPL_HEADER_SIZE >> 9)) {
1094		if (!sync_page_io(rdev,
1095				  rdev->ppl.sector - rdev->data_offset +
1096				  pplhdr_offset, PAGE_SIZE, page, REQ_OP_READ,
1097				  false)) {
1098			md_error(mddev, rdev);
1099			ret = -EIO;
1100			/* if not able to read - don't recover any PPL */
1101			pplhdr = NULL;
1102			break;
1103		}
1104		pplhdr = page_address(page);
1105
1106		/* check header validity */
1107		crc_stored = le32_to_cpu(pplhdr->checksum);
1108		pplhdr->checksum = 0;
1109		crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE);
1110
1111		if (crc_stored != crc) {
1112			pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x (offset: %llu)\n",
1113				 __func__, crc_stored, crc,
1114				 (unsigned long long)pplhdr_offset);
1115			pplhdr = prev_pplhdr;
1116			pplhdr_offset = prev_pplhdr_offset;
1117			break;
1118		}
1119
1120		signature = le32_to_cpu(pplhdr->signature);
1121
1122		if (mddev->external) {
1123			/*
1124			 * For external metadata the header signature is set and
1125			 * validated in userspace.
1126			 */
1127			ppl_conf->signature = signature;
1128		} else if (ppl_conf->signature != signature) {
1129			pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x (offset: %llu)\n",
1130				 __func__, signature, ppl_conf->signature,
1131				 (unsigned long long)pplhdr_offset);
1132			pplhdr = prev_pplhdr;
1133			pplhdr_offset = prev_pplhdr_offset;
1134			break;
1135		}
1136
1137		if (prev_pplhdr && le64_to_cpu(prev_pplhdr->generation) >
1138		    le64_to_cpu(pplhdr->generation)) {
1139			/* previous was newest */
1140			pplhdr = prev_pplhdr;
1141			pplhdr_offset = prev_pplhdr_offset;
1142			break;
1143		}
1144
1145		prev_pplhdr_offset = pplhdr_offset;
1146		prev_pplhdr = pplhdr;
1147
1148		swap(page, page2);
1149
1150		/* calculate next potential ppl offset */
1151		for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++)
1152			pplhdr_offset +=
1153			    le32_to_cpu(pplhdr->entries[i].pp_size) >> 9;
1154		pplhdr_offset += PPL_HEADER_SIZE >> 9;
1155	}
1156
1157	/* no valid ppl found */
1158	if (!pplhdr)
1159		ppl_conf->mismatch_count++;
1160	else
1161		pr_debug("%s: latest PPL found at offset: %llu, with generation: %llu\n",
1162		    __func__, (unsigned long long)pplhdr_offset,
1163		    le64_to_cpu(pplhdr->generation));
1164
1165	/* attempt to recover from log if we are starting a dirty array */
1166	if (pplhdr && !mddev->pers && mddev->recovery_cp != MaxSector)
1167		ret = ppl_recover(log, pplhdr, pplhdr_offset);
1168
1169	/* write empty header if we are starting the array */
1170	if (!ret && !mddev->pers)
1171		ret = ppl_write_empty_header(log);
1172
1173	__free_page(page);
1174	__free_page(page2);
1175
1176	pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1177		 __func__, ret, ppl_conf->mismatch_count,
1178		 ppl_conf->recovered_entries);
1179	return ret;
1180}
1181
1182static int ppl_load(struct ppl_conf *ppl_conf)
1183{
1184	int ret = 0;
1185	u32 signature = 0;
1186	bool signature_set = false;
1187	int i;
1188
1189	for (i = 0; i < ppl_conf->count; i++) {
1190		struct ppl_log *log = &ppl_conf->child_logs[i];
1191
1192		/* skip missing drive */
1193		if (!log->rdev)
1194			continue;
1195
1196		ret = ppl_load_distributed(log);
1197		if (ret)
1198			break;
1199
1200		/*
1201		 * For external metadata we can't check if the signature is
1202		 * correct on a single drive, but we can check if it is the same
1203		 * on all drives.
1204		 */
1205		if (ppl_conf->mddev->external) {
1206			if (!signature_set) {
1207				signature = ppl_conf->signature;
1208				signature_set = true;
1209			} else if (signature != ppl_conf->signature) {
1210				pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n",
1211					mdname(ppl_conf->mddev));
1212				ret = -EINVAL;
1213				break;
1214			}
1215		}
1216	}
1217
1218	pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
1219		 __func__, ret, ppl_conf->mismatch_count,
1220		 ppl_conf->recovered_entries);
1221	return ret;
1222}
1223
1224static void __ppl_exit_log(struct ppl_conf *ppl_conf)
1225{
1226	clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1227	clear_bit(MD_HAS_MULTIPLE_PPLS, &ppl_conf->mddev->flags);
1228
1229	kfree(ppl_conf->child_logs);
1230
1231	bioset_exit(&ppl_conf->bs);
1232	bioset_exit(&ppl_conf->flush_bs);
1233	mempool_exit(&ppl_conf->io_pool);
1234	kmem_cache_destroy(ppl_conf->io_kc);
1235
1236	kfree(ppl_conf);
1237}
1238
1239void ppl_exit_log(struct r5conf *conf)
1240{
1241	struct ppl_conf *ppl_conf = conf->log_private;
1242
1243	if (ppl_conf) {
1244		__ppl_exit_log(ppl_conf);
1245		conf->log_private = NULL;
1246	}
1247}
1248
1249static int ppl_validate_rdev(struct md_rdev *rdev)
1250{
1251	int ppl_data_sectors;
1252	int ppl_size_new;
1253
1254	/*
1255	 * The configured PPL size must be enough to store
1256	 * the header and (at the very least) partial parity
1257	 * for one stripe. Round it down to ensure the data
1258	 * space is cleanly divisible by stripe size.
1259	 */
1260	ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9);
1261
1262	if (ppl_data_sectors > 0)
1263		ppl_data_sectors = rounddown(ppl_data_sectors,
1264				RAID5_STRIPE_SECTORS((struct r5conf *)rdev->mddev->private));
1265
1266	if (ppl_data_sectors <= 0) {
1267		pr_warn("md/raid:%s: PPL space too small on %pg\n",
1268			mdname(rdev->mddev), rdev->bdev);
1269		return -ENOSPC;
1270	}
1271
1272	ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9);
1273
1274	if ((rdev->ppl.sector < rdev->data_offset &&
1275	     rdev->ppl.sector + ppl_size_new > rdev->data_offset) ||
1276	    (rdev->ppl.sector >= rdev->data_offset &&
1277	     rdev->data_offset + rdev->sectors > rdev->ppl.sector)) {
1278		pr_warn("md/raid:%s: PPL space overlaps with data on %pg\n",
1279			mdname(rdev->mddev), rdev->bdev);
1280		return -EINVAL;
1281	}
1282
1283	if (!rdev->mddev->external &&
1284	    ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) ||
1285	     (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) {
1286		pr_warn("md/raid:%s: PPL space overlaps with superblock on %pg\n",
1287			mdname(rdev->mddev), rdev->bdev);
1288		return -EINVAL;
1289	}
1290
1291	rdev->ppl.size = ppl_size_new;
1292
1293	return 0;
1294}
1295
1296static void ppl_init_child_log(struct ppl_log *log, struct md_rdev *rdev)
1297{
1298	if ((rdev->ppl.size << 9) >= (PPL_SPACE_SIZE +
1299				      PPL_HEADER_SIZE) * 2) {
1300		log->use_multippl = true;
1301		set_bit(MD_HAS_MULTIPLE_PPLS,
1302			&log->ppl_conf->mddev->flags);
1303		log->entry_space = PPL_SPACE_SIZE;
1304	} else {
1305		log->use_multippl = false;
1306		log->entry_space = (log->rdev->ppl.size << 9) -
1307				   PPL_HEADER_SIZE;
1308	}
1309	log->next_io_sector = rdev->ppl.sector;
1310
1311	if (bdev_write_cache(rdev->bdev))
1312		log->wb_cache_on = true;
1313}
1314
1315int ppl_init_log(struct r5conf *conf)
1316{
1317	struct ppl_conf *ppl_conf;
1318	struct mddev *mddev = conf->mddev;
1319	int ret = 0;
1320	int max_disks;
1321	int i;
1322
1323	pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n",
1324		 mdname(conf->mddev));
1325
1326	if (PAGE_SIZE != 4096)
1327		return -EINVAL;
1328
1329	if (mddev->level != 5) {
1330		pr_warn("md/raid:%s PPL is not compatible with raid level %d\n",
1331			mdname(mddev), mddev->level);
1332		return -EINVAL;
1333	}
1334
1335	if (mddev->bitmap_info.file || mddev->bitmap_info.offset) {
1336		pr_warn("md/raid:%s PPL is not compatible with bitmap\n",
1337			mdname(mddev));
1338		return -EINVAL;
1339	}
1340
1341	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
1342		pr_warn("md/raid:%s PPL is not compatible with journal\n",
1343			mdname(mddev));
1344		return -EINVAL;
1345	}
1346
1347	max_disks = sizeof_field(struct ppl_log, disk_flush_bitmap) *
1348		BITS_PER_BYTE;
1349	if (conf->raid_disks > max_disks) {
1350		pr_warn("md/raid:%s PPL doesn't support over %d disks in the array\n",
1351			mdname(mddev), max_disks);
1352		return -EINVAL;
1353	}
1354
1355	ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL);
1356	if (!ppl_conf)
1357		return -ENOMEM;
1358
1359	ppl_conf->mddev = mddev;
1360
1361	ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0);
1362	if (!ppl_conf->io_kc) {
1363		ret = -ENOMEM;
1364		goto err;
1365	}
1366
1367	ret = mempool_init(&ppl_conf->io_pool, conf->raid_disks, ppl_io_pool_alloc,
1368			   ppl_io_pool_free, ppl_conf->io_kc);
1369	if (ret)
1370		goto err;
1371
1372	ret = bioset_init(&ppl_conf->bs, conf->raid_disks, 0, BIOSET_NEED_BVECS);
1373	if (ret)
1374		goto err;
1375
1376	ret = bioset_init(&ppl_conf->flush_bs, conf->raid_disks, 0, 0);
1377	if (ret)
1378		goto err;
1379
1380	ppl_conf->count = conf->raid_disks;
1381	ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log),
1382				       GFP_KERNEL);
1383	if (!ppl_conf->child_logs) {
1384		ret = -ENOMEM;
1385		goto err;
1386	}
1387
1388	atomic64_set(&ppl_conf->seq, 0);
1389	INIT_LIST_HEAD(&ppl_conf->no_mem_stripes);
1390	spin_lock_init(&ppl_conf->no_mem_stripes_lock);
1391
1392	if (!mddev->external) {
1393		ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid));
1394		ppl_conf->block_size = 512;
1395	} else {
1396		ppl_conf->block_size =
1397			queue_logical_block_size(mddev->gendisk->queue);
1398	}
1399
1400	for (i = 0; i < ppl_conf->count; i++) {
1401		struct ppl_log *log = &ppl_conf->child_logs[i];
1402		struct md_rdev *rdev = conf->disks[i].rdev;
1403
1404		mutex_init(&log->io_mutex);
1405		spin_lock_init(&log->io_list_lock);
1406		INIT_LIST_HEAD(&log->io_list);
1407
1408		log->ppl_conf = ppl_conf;
1409		log->rdev = rdev;
1410
1411		if (rdev) {
1412			ret = ppl_validate_rdev(rdev);
1413			if (ret)
1414				goto err;
1415
1416			ppl_init_child_log(log, rdev);
1417		}
1418	}
1419
1420	/* load and possibly recover the logs from the member disks */
1421	ret = ppl_load(ppl_conf);
1422
1423	if (ret) {
1424		goto err;
1425	} else if (!mddev->pers && mddev->recovery_cp == 0 &&
1426		   ppl_conf->recovered_entries > 0 &&
1427		   ppl_conf->mismatch_count == 0) {
1428		/*
1429		 * If we are starting a dirty array and the recovery succeeds
1430		 * without any issues, set the array as clean.
1431		 */
1432		mddev->recovery_cp = MaxSector;
1433		set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
1434	} else if (mddev->pers && ppl_conf->mismatch_count > 0) {
1435		/* no mismatch allowed when enabling PPL for a running array */
1436		ret = -EINVAL;
1437		goto err;
1438	}
1439
1440	conf->log_private = ppl_conf;
1441	set_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
1442
1443	return 0;
1444err:
1445	__ppl_exit_log(ppl_conf);
1446	return ret;
1447}
1448
1449int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add)
1450{
1451	struct ppl_conf *ppl_conf = conf->log_private;
1452	struct ppl_log *log;
1453	int ret = 0;
1454
1455	if (!rdev)
1456		return -EINVAL;
1457
1458	pr_debug("%s: disk: %d operation: %s dev: %pg\n",
1459		 __func__, rdev->raid_disk, add ? "add" : "remove",
1460		 rdev->bdev);
1461
1462	if (rdev->raid_disk < 0)
1463		return 0;
1464
1465	if (rdev->raid_disk >= ppl_conf->count)
1466		return -ENODEV;
1467
1468	log = &ppl_conf->child_logs[rdev->raid_disk];
1469
1470	mutex_lock(&log->io_mutex);
1471	if (add) {
1472		ret = ppl_validate_rdev(rdev);
1473		if (!ret) {
1474			log->rdev = rdev;
1475			ret = ppl_write_empty_header(log);
1476			ppl_init_child_log(log, rdev);
1477		}
1478	} else {
1479		log->rdev = NULL;
1480	}
1481	mutex_unlock(&log->io_mutex);
1482
1483	return ret;
1484}
1485
1486static ssize_t
1487ppl_write_hint_show(struct mddev *mddev, char *buf)
1488{
1489	return sprintf(buf, "%d\n", 0);
1490}
1491
1492static ssize_t
1493ppl_write_hint_store(struct mddev *mddev, const char *page, size_t len)
1494{
1495	struct r5conf *conf;
1496	int err = 0;
1497	unsigned short new;
1498
1499	if (len >= PAGE_SIZE)
1500		return -EINVAL;
1501	if (kstrtou16(page, 10, &new))
1502		return -EINVAL;
1503
1504	err = mddev_lock(mddev);
1505	if (err)
1506		return err;
1507
1508	conf = mddev->private;
1509	if (!conf)
1510		err = -ENODEV;
1511	else if (!raid5_has_ppl(conf) || !conf->log_private)
1512		err = -EINVAL;
1513
1514	mddev_unlock(mddev);
1515
1516	return err ?: len;
1517}
1518
1519struct md_sysfs_entry
1520ppl_write_hint = __ATTR(ppl_write_hint, S_IRUGO | S_IWUSR,
1521			ppl_write_hint_show,
1522			ppl_write_hint_store);
1523