1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
4 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
5 */
6#include <linux/kernel.h>
7#include <linux/wait.h>
8#include <linux/blkdev.h>
9#include <linux/slab.h>
10#include <linux/raid/md_p.h>
11#include <linux/crc32c.h>
12#include <linux/random.h>
13#include <linux/kthread.h>
14#include <linux/types.h>
15#include "md.h"
16#include "raid5.h"
17#include "md-bitmap.h"
18#include "raid5-log.h"
19
20/*
21 * metadata/data stored in disk with 4k size unit (a block) regardless
22 * underneath hardware sector size. only works with PAGE_SIZE == 4096
23 */
24#define BLOCK_SECTORS (8)
25#define BLOCK_SECTOR_SHIFT (3)
26
27/*
28 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
29 *
30 * In write through mode, the reclaim runs every log->max_free_space.
31 * This can prevent the recovery scans for too long
32 */
33#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
34#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
35
36/* wake up reclaim thread periodically */
37#define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
38/* start flush with these full stripes */
39#define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
40/* reclaim stripes in groups */
41#define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
42
43/*
44 * We only need 2 bios per I/O unit to make progress, but ensure we
45 * have a few more available to not get too tight.
46 */
47#define R5L_POOL_SIZE	4
48
49static char *r5c_journal_mode_str[] = {"write-through",
50				       "write-back"};
51/*
52 * raid5 cache state machine
53 *
54 * With the RAID cache, each stripe works in two phases:
55 *	- caching phase
56 *	- writing-out phase
57 *
58 * These two phases are controlled by bit STRIPE_R5C_CACHING:
59 *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
60 *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
61 *
62 * When there is no journal, or the journal is in write-through mode,
63 * the stripe is always in writing-out phase.
64 *
65 * For write-back journal, the stripe is sent to caching phase on write
66 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
67 * the write-out phase by clearing STRIPE_R5C_CACHING.
68 *
69 * Stripes in caching phase do not write the raid disks. Instead, all
70 * writes are committed from the log device. Therefore, a stripe in
71 * caching phase handles writes as:
72 *	- write to log device
73 *	- return IO
74 *
75 * Stripes in writing-out phase handle writes as:
76 *	- calculate parity
77 *	- write pending data and parity to journal
78 *	- write data and parity to raid disks
79 *	- return IO for pending writes
80 */
81
82struct r5l_log {
83	struct md_rdev *rdev;
84
85	u32 uuid_checksum;
86
87	sector_t device_size;		/* log device size, round to
88					 * BLOCK_SECTORS */
89	sector_t max_free_space;	/* reclaim run if free space is at
90					 * this size */
91
92	sector_t last_checkpoint;	/* log tail. where recovery scan
93					 * starts from */
94	u64 last_cp_seq;		/* log tail sequence */
95
96	sector_t log_start;		/* log head. where new data appends */
97	u64 seq;			/* log head sequence */
98
99	sector_t next_checkpoint;
100
101	struct mutex io_mutex;
102	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */
103
104	spinlock_t io_list_lock;
105	struct list_head running_ios;	/* io_units which are still running,
106					 * and have not yet been completely
107					 * written to the log */
108	struct list_head io_end_ios;	/* io_units which have been completely
109					 * written to the log but not yet written
110					 * to the RAID */
111	struct list_head flushing_ios;	/* io_units which are waiting for log
112					 * cache flush */
113	struct list_head finished_ios;	/* io_units which settle down in log disk */
114	struct bio flush_bio;
115
116	struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
117
118	struct kmem_cache *io_kc;
119	mempool_t io_pool;
120	struct bio_set bs;
121	mempool_t meta_pool;
122
123	struct md_thread __rcu *reclaim_thread;
124	unsigned long reclaim_target;	/* number of space that need to be
125					 * reclaimed.  if it's 0, reclaim spaces
126					 * used by io_units which are in
127					 * IO_UNIT_STRIPE_END state (eg, reclaim
128					 * doesn't wait for specific io_unit
129					 * switching to IO_UNIT_STRIPE_END
130					 * state) */
131	wait_queue_head_t iounit_wait;
132
133	struct list_head no_space_stripes; /* pending stripes, log has no space */
134	spinlock_t no_space_stripes_lock;
135
136	bool need_cache_flush;
137
138	/* for r5c_cache */
139	enum r5c_journal_mode r5c_journal_mode;
140
141	/* all stripes in r5cache, in the order of seq at sh->log_start */
142	struct list_head stripe_in_journal_list;
143
144	spinlock_t stripe_in_journal_lock;
145	atomic_t stripe_in_journal_count;
146
147	/* to submit async io_units, to fulfill ordering of flush */
148	struct work_struct deferred_io_work;
149	/* to disable write back during in degraded mode */
150	struct work_struct disable_writeback_work;
151
152	/* to for chunk_aligned_read in writeback mode, details below */
153	spinlock_t tree_lock;
154	struct radix_tree_root big_stripe_tree;
155};
156
157/*
158 * Enable chunk_aligned_read() with write back cache.
159 *
160 * Each chunk may contain more than one stripe (for example, a 256kB
161 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
162 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
163 * For each big_stripe, we count how many stripes of this big_stripe
164 * are in the write back cache. These data are tracked in a radix tree
165 * (big_stripe_tree). We use radix_tree item pointer as the counter.
166 * r5c_tree_index() is used to calculate keys for the radix tree.
167 *
168 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
169 * big_stripe of each chunk in the tree. If this big_stripe is in the
170 * tree, chunk_aligned_read() aborts. This look up is protected by
171 * rcu_read_lock().
172 *
173 * It is necessary to remember whether a stripe is counted in
174 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
175 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
176 * two flags are set, the stripe is counted in big_stripe_tree. This
177 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
178 * r5c_try_caching_write(); and moving clear_bit of
179 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
180 * r5c_finish_stripe_write_out().
181 */
182
183/*
184 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
185 * So it is necessary to left shift the counter by 2 bits before using it
186 * as data pointer of the tree.
187 */
188#define R5C_RADIX_COUNT_SHIFT 2
189
190/*
191 * calculate key for big_stripe_tree
192 *
193 * sect: align_bi->bi_iter.bi_sector or sh->sector
194 */
195static inline sector_t r5c_tree_index(struct r5conf *conf,
196				      sector_t sect)
197{
198	sector_div(sect, conf->chunk_sectors);
199	return sect;
200}
201
202/*
203 * an IO range starts from a meta data block and end at the next meta data
204 * block. The io unit's the meta data block tracks data/parity followed it. io
205 * unit is written to log disk with normal write, as we always flush log disk
206 * first and then start move data to raid disks, there is no requirement to
207 * write io unit with FLUSH/FUA
208 */
209struct r5l_io_unit {
210	struct r5l_log *log;
211
212	struct page *meta_page;	/* store meta block */
213	int meta_offset;	/* current offset in meta_page */
214
215	struct bio *current_bio;/* current_bio accepting new data */
216
217	atomic_t pending_stripe;/* how many stripes not flushed to raid */
218	u64 seq;		/* seq number of the metablock */
219	sector_t log_start;	/* where the io_unit starts */
220	sector_t log_end;	/* where the io_unit ends */
221	struct list_head log_sibling; /* log->running_ios */
222	struct list_head stripe_list; /* stripes added to the io_unit */
223
224	int state;
225	bool need_split_bio;
226	struct bio *split_bio;
227
228	unsigned int has_flush:1;		/* include flush request */
229	unsigned int has_fua:1;			/* include fua request */
230	unsigned int has_null_flush:1;		/* include null flush request */
231	unsigned int has_flush_payload:1;	/* include flush payload  */
232	/*
233	 * io isn't sent yet, flush/fua request can only be submitted till it's
234	 * the first IO in running_ios list
235	 */
236	unsigned int io_deferred:1;
237
238	struct bio_list flush_barriers;   /* size == 0 flush bios */
239};
240
241/* r5l_io_unit state */
242enum r5l_io_unit_state {
243	IO_UNIT_RUNNING = 0,	/* accepting new IO */
244	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
245				 * don't accepting new bio */
246	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
247	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
248};
249
250bool r5c_is_writeback(struct r5l_log *log)
251{
252	return (log != NULL &&
253		log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
254}
255
256static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
257{
258	start += inc;
259	if (start >= log->device_size)
260		start = start - log->device_size;
261	return start;
262}
263
264static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
265				  sector_t end)
266{
267	if (end >= start)
268		return end - start;
269	else
270		return end + log->device_size - start;
271}
272
273static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
274{
275	sector_t used_size;
276
277	used_size = r5l_ring_distance(log, log->last_checkpoint,
278					log->log_start);
279
280	return log->device_size > used_size + size;
281}
282
283static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
284				    enum r5l_io_unit_state state)
285{
286	if (WARN_ON(io->state >= state))
287		return;
288	io->state = state;
289}
290
291static void
292r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
293{
294	struct bio *wbi, *wbi2;
295
296	wbi = dev->written;
297	dev->written = NULL;
298	while (wbi && wbi->bi_iter.bi_sector <
299	       dev->sector + RAID5_STRIPE_SECTORS(conf)) {
300		wbi2 = r5_next_bio(conf, wbi, dev->sector);
301		md_write_end(conf->mddev);
302		bio_endio(wbi);
303		wbi = wbi2;
304	}
305}
306
307void r5c_handle_cached_data_endio(struct r5conf *conf,
308				  struct stripe_head *sh, int disks)
309{
310	int i;
311
312	for (i = sh->disks; i--; ) {
313		if (sh->dev[i].written) {
314			set_bit(R5_UPTODATE, &sh->dev[i].flags);
315			r5c_return_dev_pending_writes(conf, &sh->dev[i]);
316			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
317					   RAID5_STRIPE_SECTORS(conf),
318					   !test_bit(STRIPE_DEGRADED, &sh->state),
319					   0);
320		}
321	}
322}
323
324void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
325
326/* Check whether we should flush some stripes to free up stripe cache */
327void r5c_check_stripe_cache_usage(struct r5conf *conf)
328{
329	int total_cached;
330	struct r5l_log *log = READ_ONCE(conf->log);
331
332	if (!r5c_is_writeback(log))
333		return;
334
335	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
336		atomic_read(&conf->r5c_cached_full_stripes);
337
338	/*
339	 * The following condition is true for either of the following:
340	 *   - stripe cache pressure high:
341	 *          total_cached > 3/4 min_nr_stripes ||
342	 *          empty_inactive_list_nr > 0
343	 *   - stripe cache pressure moderate:
344	 *          total_cached > 1/2 min_nr_stripes
345	 */
346	if (total_cached > conf->min_nr_stripes * 1 / 2 ||
347	    atomic_read(&conf->empty_inactive_list_nr) > 0)
348		r5l_wake_reclaim(log, 0);
349}
350
351/*
352 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
353 * stripes in the cache
354 */
355void r5c_check_cached_full_stripe(struct r5conf *conf)
356{
357	struct r5l_log *log = READ_ONCE(conf->log);
358
359	if (!r5c_is_writeback(log))
360		return;
361
362	/*
363	 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
364	 * or a full stripe (chunk size / 4k stripes).
365	 */
366	if (atomic_read(&conf->r5c_cached_full_stripes) >=
367	    min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
368		conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf)))
369		r5l_wake_reclaim(log, 0);
370}
371
372/*
373 * Total log space (in sectors) needed to flush all data in cache
374 *
375 * To avoid deadlock due to log space, it is necessary to reserve log
376 * space to flush critical stripes (stripes that occupying log space near
377 * last_checkpoint). This function helps check how much log space is
378 * required to flush all cached stripes.
379 *
380 * To reduce log space requirements, two mechanisms are used to give cache
381 * flush higher priorities:
382 *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
383 *       stripes ALREADY in journal can be flushed w/o pending writes;
384 *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
385 *       can be delayed (r5l_add_no_space_stripe).
386 *
387 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
388 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
389 * pages of journal space. For stripes that has not passed 1, flushing it
390 * requires (conf->raid_disks + 1) pages of journal space. There are at
391 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
392 * required to flush all cached stripes (in pages) is:
393 *
394 *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
395 *     (group_cnt + 1) * (raid_disks + 1)
396 * or
397 *     (stripe_in_journal_count) * (max_degraded + 1) +
398 *     (group_cnt + 1) * (raid_disks - max_degraded)
399 */
400static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
401{
402	struct r5l_log *log = READ_ONCE(conf->log);
403
404	if (!r5c_is_writeback(log))
405		return 0;
406
407	return BLOCK_SECTORS *
408		((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
409		 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
410}
411
412/*
413 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
414 *
415 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
416 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
417 * device is less than 2x of reclaim_required_space.
418 */
419static inline void r5c_update_log_state(struct r5l_log *log)
420{
421	struct r5conf *conf = log->rdev->mddev->private;
422	sector_t free_space;
423	sector_t reclaim_space;
424	bool wake_reclaim = false;
425
426	if (!r5c_is_writeback(log))
427		return;
428
429	free_space = r5l_ring_distance(log, log->log_start,
430				       log->last_checkpoint);
431	reclaim_space = r5c_log_required_to_flush_cache(conf);
432	if (free_space < 2 * reclaim_space)
433		set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
434	else {
435		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
436			wake_reclaim = true;
437		clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
438	}
439	if (free_space < 3 * reclaim_space)
440		set_bit(R5C_LOG_TIGHT, &conf->cache_state);
441	else
442		clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
443
444	if (wake_reclaim)
445		r5l_wake_reclaim(log, 0);
446}
447
448/*
449 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
450 * This function should only be called in write-back mode.
451 */
452void r5c_make_stripe_write_out(struct stripe_head *sh)
453{
454	struct r5conf *conf = sh->raid_conf;
455	struct r5l_log *log = READ_ONCE(conf->log);
456
457	BUG_ON(!r5c_is_writeback(log));
458
459	WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
460	clear_bit(STRIPE_R5C_CACHING, &sh->state);
461
462	if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
463		atomic_inc(&conf->preread_active_stripes);
464}
465
466static void r5c_handle_data_cached(struct stripe_head *sh)
467{
468	int i;
469
470	for (i = sh->disks; i--; )
471		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
472			set_bit(R5_InJournal, &sh->dev[i].flags);
473			clear_bit(R5_LOCKED, &sh->dev[i].flags);
474		}
475	clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
476}
477
478/*
479 * this journal write must contain full parity,
480 * it may also contain some data pages
481 */
482static void r5c_handle_parity_cached(struct stripe_head *sh)
483{
484	int i;
485
486	for (i = sh->disks; i--; )
487		if (test_bit(R5_InJournal, &sh->dev[i].flags))
488			set_bit(R5_Wantwrite, &sh->dev[i].flags);
489}
490
491/*
492 * Setting proper flags after writing (or flushing) data and/or parity to the
493 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
494 */
495static void r5c_finish_cache_stripe(struct stripe_head *sh)
496{
497	struct r5l_log *log = READ_ONCE(sh->raid_conf->log);
498
499	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
500		BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
501		/*
502		 * Set R5_InJournal for parity dev[pd_idx]. This means
503		 * all data AND parity in the journal. For RAID 6, it is
504		 * NOT necessary to set the flag for dev[qd_idx], as the
505		 * two parities are written out together.
506		 */
507		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
508	} else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
509		r5c_handle_data_cached(sh);
510	} else {
511		r5c_handle_parity_cached(sh);
512		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
513	}
514}
515
516static void r5l_io_run_stripes(struct r5l_io_unit *io)
517{
518	struct stripe_head *sh, *next;
519
520	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
521		list_del_init(&sh->log_list);
522
523		r5c_finish_cache_stripe(sh);
524
525		set_bit(STRIPE_HANDLE, &sh->state);
526		raid5_release_stripe(sh);
527	}
528}
529
530static void r5l_log_run_stripes(struct r5l_log *log)
531{
532	struct r5l_io_unit *io, *next;
533
534	lockdep_assert_held(&log->io_list_lock);
535
536	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
537		/* don't change list order */
538		if (io->state < IO_UNIT_IO_END)
539			break;
540
541		list_move_tail(&io->log_sibling, &log->finished_ios);
542		r5l_io_run_stripes(io);
543	}
544}
545
546static void r5l_move_to_end_ios(struct r5l_log *log)
547{
548	struct r5l_io_unit *io, *next;
549
550	lockdep_assert_held(&log->io_list_lock);
551
552	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
553		/* don't change list order */
554		if (io->state < IO_UNIT_IO_END)
555			break;
556		list_move_tail(&io->log_sibling, &log->io_end_ios);
557	}
558}
559
560static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
561static void r5l_log_endio(struct bio *bio)
562{
563	struct r5l_io_unit *io = bio->bi_private;
564	struct r5l_io_unit *io_deferred;
565	struct r5l_log *log = io->log;
566	unsigned long flags;
567	bool has_null_flush;
568	bool has_flush_payload;
569
570	if (bio->bi_status)
571		md_error(log->rdev->mddev, log->rdev);
572
573	bio_put(bio);
574	mempool_free(io->meta_page, &log->meta_pool);
575
576	spin_lock_irqsave(&log->io_list_lock, flags);
577	__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
578
579	/*
580	 * if the io doesn't not have null_flush or flush payload,
581	 * it is not safe to access it after releasing io_list_lock.
582	 * Therefore, it is necessary to check the condition with
583	 * the lock held.
584	 */
585	has_null_flush = io->has_null_flush;
586	has_flush_payload = io->has_flush_payload;
587
588	if (log->need_cache_flush && !list_empty(&io->stripe_list))
589		r5l_move_to_end_ios(log);
590	else
591		r5l_log_run_stripes(log);
592	if (!list_empty(&log->running_ios)) {
593		/*
594		 * FLUSH/FUA io_unit is deferred because of ordering, now we
595		 * can dispatch it
596		 */
597		io_deferred = list_first_entry(&log->running_ios,
598					       struct r5l_io_unit, log_sibling);
599		if (io_deferred->io_deferred)
600			schedule_work(&log->deferred_io_work);
601	}
602
603	spin_unlock_irqrestore(&log->io_list_lock, flags);
604
605	if (log->need_cache_flush)
606		md_wakeup_thread(log->rdev->mddev->thread);
607
608	/* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
609	if (has_null_flush) {
610		struct bio *bi;
611
612		WARN_ON(bio_list_empty(&io->flush_barriers));
613		while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
614			bio_endio(bi);
615			if (atomic_dec_and_test(&io->pending_stripe)) {
616				__r5l_stripe_write_finished(io);
617				return;
618			}
619		}
620	}
621	/* decrease pending_stripe for flush payload */
622	if (has_flush_payload)
623		if (atomic_dec_and_test(&io->pending_stripe))
624			__r5l_stripe_write_finished(io);
625}
626
627static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
628{
629	unsigned long flags;
630
631	spin_lock_irqsave(&log->io_list_lock, flags);
632	__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
633	spin_unlock_irqrestore(&log->io_list_lock, flags);
634
635	/*
636	 * In case of journal device failures, submit_bio will get error
637	 * and calls endio, then active stripes will continue write
638	 * process. Therefore, it is not necessary to check Faulty bit
639	 * of journal device here.
640	 *
641	 * We can't check split_bio after current_bio is submitted. If
642	 * io->split_bio is null, after current_bio is submitted, current_bio
643	 * might already be completed and the io_unit is freed. We submit
644	 * split_bio first to avoid the issue.
645	 */
646	if (io->split_bio) {
647		if (io->has_flush)
648			io->split_bio->bi_opf |= REQ_PREFLUSH;
649		if (io->has_fua)
650			io->split_bio->bi_opf |= REQ_FUA;
651		submit_bio(io->split_bio);
652	}
653
654	if (io->has_flush)
655		io->current_bio->bi_opf |= REQ_PREFLUSH;
656	if (io->has_fua)
657		io->current_bio->bi_opf |= REQ_FUA;
658	submit_bio(io->current_bio);
659}
660
661/* deferred io_unit will be dispatched here */
662static void r5l_submit_io_async(struct work_struct *work)
663{
664	struct r5l_log *log = container_of(work, struct r5l_log,
665					   deferred_io_work);
666	struct r5l_io_unit *io = NULL;
667	unsigned long flags;
668
669	spin_lock_irqsave(&log->io_list_lock, flags);
670	if (!list_empty(&log->running_ios)) {
671		io = list_first_entry(&log->running_ios, struct r5l_io_unit,
672				      log_sibling);
673		if (!io->io_deferred)
674			io = NULL;
675		else
676			io->io_deferred = 0;
677	}
678	spin_unlock_irqrestore(&log->io_list_lock, flags);
679	if (io)
680		r5l_do_submit_io(log, io);
681}
682
683static void r5c_disable_writeback_async(struct work_struct *work)
684{
685	struct r5l_log *log = container_of(work, struct r5l_log,
686					   disable_writeback_work);
687	struct mddev *mddev = log->rdev->mddev;
688	struct r5conf *conf = mddev->private;
689
690	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
691		return;
692	pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
693		mdname(mddev));
694
695	/* wait superblock change before suspend */
696	wait_event(mddev->sb_wait,
697		   !READ_ONCE(conf->log) ||
698		   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
699
700	log = READ_ONCE(conf->log);
701	if (log) {
702		mddev_suspend(mddev, false);
703		log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
704		mddev_resume(mddev);
705	}
706}
707
708static void r5l_submit_current_io(struct r5l_log *log)
709{
710	struct r5l_io_unit *io = log->current_io;
711	struct r5l_meta_block *block;
712	unsigned long flags;
713	u32 crc;
714	bool do_submit = true;
715
716	if (!io)
717		return;
718
719	block = page_address(io->meta_page);
720	block->meta_size = cpu_to_le32(io->meta_offset);
721	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
722	block->checksum = cpu_to_le32(crc);
723
724	log->current_io = NULL;
725	spin_lock_irqsave(&log->io_list_lock, flags);
726	if (io->has_flush || io->has_fua) {
727		if (io != list_first_entry(&log->running_ios,
728					   struct r5l_io_unit, log_sibling)) {
729			io->io_deferred = 1;
730			do_submit = false;
731		}
732	}
733	spin_unlock_irqrestore(&log->io_list_lock, flags);
734	if (do_submit)
735		r5l_do_submit_io(log, io);
736}
737
738static struct bio *r5l_bio_alloc(struct r5l_log *log)
739{
740	struct bio *bio = bio_alloc_bioset(log->rdev->bdev, BIO_MAX_VECS,
741					   REQ_OP_WRITE, GFP_NOIO, &log->bs);
742
743	bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
744
745	return bio;
746}
747
748static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
749{
750	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
751
752	r5c_update_log_state(log);
753	/*
754	 * If we filled up the log device start from the beginning again,
755	 * which will require a new bio.
756	 *
757	 * Note: for this to work properly the log size needs to me a multiple
758	 * of BLOCK_SECTORS.
759	 */
760	if (log->log_start == 0)
761		io->need_split_bio = true;
762
763	io->log_end = log->log_start;
764}
765
766static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
767{
768	struct r5l_io_unit *io;
769	struct r5l_meta_block *block;
770
771	io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
772	if (!io)
773		return NULL;
774	memset(io, 0, sizeof(*io));
775
776	io->log = log;
777	INIT_LIST_HEAD(&io->log_sibling);
778	INIT_LIST_HEAD(&io->stripe_list);
779	bio_list_init(&io->flush_barriers);
780	io->state = IO_UNIT_RUNNING;
781
782	io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
783	block = page_address(io->meta_page);
784	clear_page(block);
785	block->magic = cpu_to_le32(R5LOG_MAGIC);
786	block->version = R5LOG_VERSION;
787	block->seq = cpu_to_le64(log->seq);
788	block->position = cpu_to_le64(log->log_start);
789
790	io->log_start = log->log_start;
791	io->meta_offset = sizeof(struct r5l_meta_block);
792	io->seq = log->seq++;
793
794	io->current_bio = r5l_bio_alloc(log);
795	io->current_bio->bi_end_io = r5l_log_endio;
796	io->current_bio->bi_private = io;
797	__bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
798
799	r5_reserve_log_entry(log, io);
800
801	spin_lock_irq(&log->io_list_lock);
802	list_add_tail(&io->log_sibling, &log->running_ios);
803	spin_unlock_irq(&log->io_list_lock);
804
805	return io;
806}
807
808static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
809{
810	if (log->current_io &&
811	    log->current_io->meta_offset + payload_size > PAGE_SIZE)
812		r5l_submit_current_io(log);
813
814	if (!log->current_io) {
815		log->current_io = r5l_new_meta(log);
816		if (!log->current_io)
817			return -ENOMEM;
818	}
819
820	return 0;
821}
822
823static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
824				    sector_t location,
825				    u32 checksum1, u32 checksum2,
826				    bool checksum2_valid)
827{
828	struct r5l_io_unit *io = log->current_io;
829	struct r5l_payload_data_parity *payload;
830
831	payload = page_address(io->meta_page) + io->meta_offset;
832	payload->header.type = cpu_to_le16(type);
833	payload->header.flags = cpu_to_le16(0);
834	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
835				    (PAGE_SHIFT - 9));
836	payload->location = cpu_to_le64(location);
837	payload->checksum[0] = cpu_to_le32(checksum1);
838	if (checksum2_valid)
839		payload->checksum[1] = cpu_to_le32(checksum2);
840
841	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
842		sizeof(__le32) * (1 + !!checksum2_valid);
843}
844
845static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
846{
847	struct r5l_io_unit *io = log->current_io;
848
849	if (io->need_split_bio) {
850		BUG_ON(io->split_bio);
851		io->split_bio = io->current_bio;
852		io->current_bio = r5l_bio_alloc(log);
853		bio_chain(io->current_bio, io->split_bio);
854		io->need_split_bio = false;
855	}
856
857	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
858		BUG();
859
860	r5_reserve_log_entry(log, io);
861}
862
863static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
864{
865	struct mddev *mddev = log->rdev->mddev;
866	struct r5conf *conf = mddev->private;
867	struct r5l_io_unit *io;
868	struct r5l_payload_flush *payload;
869	int meta_size;
870
871	/*
872	 * payload_flush requires extra writes to the journal.
873	 * To avoid handling the extra IO in quiesce, just skip
874	 * flush_payload
875	 */
876	if (conf->quiesce)
877		return;
878
879	mutex_lock(&log->io_mutex);
880	meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
881
882	if (r5l_get_meta(log, meta_size)) {
883		mutex_unlock(&log->io_mutex);
884		return;
885	}
886
887	/* current implementation is one stripe per flush payload */
888	io = log->current_io;
889	payload = page_address(io->meta_page) + io->meta_offset;
890	payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
891	payload->header.flags = cpu_to_le16(0);
892	payload->size = cpu_to_le32(sizeof(__le64));
893	payload->flush_stripes[0] = cpu_to_le64(sect);
894	io->meta_offset += meta_size;
895	/* multiple flush payloads count as one pending_stripe */
896	if (!io->has_flush_payload) {
897		io->has_flush_payload = 1;
898		atomic_inc(&io->pending_stripe);
899	}
900	mutex_unlock(&log->io_mutex);
901}
902
903static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
904			   int data_pages, int parity_pages)
905{
906	int i;
907	int meta_size;
908	int ret;
909	struct r5l_io_unit *io;
910
911	meta_size =
912		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
913		 * data_pages) +
914		sizeof(struct r5l_payload_data_parity) +
915		sizeof(__le32) * parity_pages;
916
917	ret = r5l_get_meta(log, meta_size);
918	if (ret)
919		return ret;
920
921	io = log->current_io;
922
923	if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
924		io->has_flush = 1;
925
926	for (i = 0; i < sh->disks; i++) {
927		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
928		    test_bit(R5_InJournal, &sh->dev[i].flags))
929			continue;
930		if (i == sh->pd_idx || i == sh->qd_idx)
931			continue;
932		if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
933		    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
934			io->has_fua = 1;
935			/*
936			 * we need to flush journal to make sure recovery can
937			 * reach the data with fua flag
938			 */
939			io->has_flush = 1;
940		}
941		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
942					raid5_compute_blocknr(sh, i, 0),
943					sh->dev[i].log_checksum, 0, false);
944		r5l_append_payload_page(log, sh->dev[i].page);
945	}
946
947	if (parity_pages == 2) {
948		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
949					sh->sector, sh->dev[sh->pd_idx].log_checksum,
950					sh->dev[sh->qd_idx].log_checksum, true);
951		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
952		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
953	} else if (parity_pages == 1) {
954		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
955					sh->sector, sh->dev[sh->pd_idx].log_checksum,
956					0, false);
957		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
958	} else  /* Just writing data, not parity, in caching phase */
959		BUG_ON(parity_pages != 0);
960
961	list_add_tail(&sh->log_list, &io->stripe_list);
962	atomic_inc(&io->pending_stripe);
963	sh->log_io = io;
964
965	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
966		return 0;
967
968	if (sh->log_start == MaxSector) {
969		BUG_ON(!list_empty(&sh->r5c));
970		sh->log_start = io->log_start;
971		spin_lock_irq(&log->stripe_in_journal_lock);
972		list_add_tail(&sh->r5c,
973			      &log->stripe_in_journal_list);
974		spin_unlock_irq(&log->stripe_in_journal_lock);
975		atomic_inc(&log->stripe_in_journal_count);
976	}
977	return 0;
978}
979
980/* add stripe to no_space_stripes, and then wake up reclaim */
981static inline void r5l_add_no_space_stripe(struct r5l_log *log,
982					   struct stripe_head *sh)
983{
984	spin_lock(&log->no_space_stripes_lock);
985	list_add_tail(&sh->log_list, &log->no_space_stripes);
986	spin_unlock(&log->no_space_stripes_lock);
987}
988
989/*
990 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
991 * data from log to raid disks), so we shouldn't wait for reclaim here
992 */
993int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
994{
995	struct r5conf *conf = sh->raid_conf;
996	int write_disks = 0;
997	int data_pages, parity_pages;
998	int reserve;
999	int i;
1000	int ret = 0;
1001	bool wake_reclaim = false;
1002
1003	if (!log)
1004		return -EAGAIN;
1005	/* Don't support stripe batch */
1006	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1007	    test_bit(STRIPE_SYNCING, &sh->state)) {
1008		/* the stripe is written to log, we start writing it to raid */
1009		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1010		return -EAGAIN;
1011	}
1012
1013	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1014
1015	for (i = 0; i < sh->disks; i++) {
1016		void *addr;
1017
1018		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1019		    test_bit(R5_InJournal, &sh->dev[i].flags))
1020			continue;
1021
1022		write_disks++;
1023		/* checksum is already calculated in last run */
1024		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1025			continue;
1026		addr = kmap_atomic(sh->dev[i].page);
1027		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1028						    addr, PAGE_SIZE);
1029		kunmap_atomic(addr);
1030	}
1031	parity_pages = 1 + !!(sh->qd_idx >= 0);
1032	data_pages = write_disks - parity_pages;
1033
1034	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1035	/*
1036	 * The stripe must enter state machine again to finish the write, so
1037	 * don't delay.
1038	 */
1039	clear_bit(STRIPE_DELAYED, &sh->state);
1040	atomic_inc(&sh->count);
1041
1042	mutex_lock(&log->io_mutex);
1043	/* meta + data */
1044	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1045
1046	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1047		if (!r5l_has_free_space(log, reserve)) {
1048			r5l_add_no_space_stripe(log, sh);
1049			wake_reclaim = true;
1050		} else {
1051			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1052			if (ret) {
1053				spin_lock_irq(&log->io_list_lock);
1054				list_add_tail(&sh->log_list,
1055					      &log->no_mem_stripes);
1056				spin_unlock_irq(&log->io_list_lock);
1057			}
1058		}
1059	} else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1060		/*
1061		 * log space critical, do not process stripes that are
1062		 * not in cache yet (sh->log_start == MaxSector).
1063		 */
1064		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1065		    sh->log_start == MaxSector) {
1066			r5l_add_no_space_stripe(log, sh);
1067			wake_reclaim = true;
1068			reserve = 0;
1069		} else if (!r5l_has_free_space(log, reserve)) {
1070			if (sh->log_start == log->last_checkpoint)
1071				BUG();
1072			else
1073				r5l_add_no_space_stripe(log, sh);
1074		} else {
1075			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1076			if (ret) {
1077				spin_lock_irq(&log->io_list_lock);
1078				list_add_tail(&sh->log_list,
1079					      &log->no_mem_stripes);
1080				spin_unlock_irq(&log->io_list_lock);
1081			}
1082		}
1083	}
1084
1085	mutex_unlock(&log->io_mutex);
1086	if (wake_reclaim)
1087		r5l_wake_reclaim(log, reserve);
1088	return 0;
1089}
1090
1091void r5l_write_stripe_run(struct r5l_log *log)
1092{
1093	if (!log)
1094		return;
1095	mutex_lock(&log->io_mutex);
1096	r5l_submit_current_io(log);
1097	mutex_unlock(&log->io_mutex);
1098}
1099
1100int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1101{
1102	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1103		/*
1104		 * in write through (journal only)
1105		 * we flush log disk cache first, then write stripe data to
1106		 * raid disks. So if bio is finished, the log disk cache is
1107		 * flushed already. The recovery guarantees we can recovery
1108		 * the bio from log disk, so we don't need to flush again
1109		 */
1110		if (bio->bi_iter.bi_size == 0) {
1111			bio_endio(bio);
1112			return 0;
1113		}
1114		bio->bi_opf &= ~REQ_PREFLUSH;
1115	} else {
1116		/* write back (with cache) */
1117		if (bio->bi_iter.bi_size == 0) {
1118			mutex_lock(&log->io_mutex);
1119			r5l_get_meta(log, 0);
1120			bio_list_add(&log->current_io->flush_barriers, bio);
1121			log->current_io->has_flush = 1;
1122			log->current_io->has_null_flush = 1;
1123			atomic_inc(&log->current_io->pending_stripe);
1124			r5l_submit_current_io(log);
1125			mutex_unlock(&log->io_mutex);
1126			return 0;
1127		}
1128	}
1129	return -EAGAIN;
1130}
1131
1132/* This will run after log space is reclaimed */
1133static void r5l_run_no_space_stripes(struct r5l_log *log)
1134{
1135	struct stripe_head *sh;
1136
1137	spin_lock(&log->no_space_stripes_lock);
1138	while (!list_empty(&log->no_space_stripes)) {
1139		sh = list_first_entry(&log->no_space_stripes,
1140				      struct stripe_head, log_list);
1141		list_del_init(&sh->log_list);
1142		set_bit(STRIPE_HANDLE, &sh->state);
1143		raid5_release_stripe(sh);
1144	}
1145	spin_unlock(&log->no_space_stripes_lock);
1146}
1147
1148/*
1149 * calculate new last_checkpoint
1150 * for write through mode, returns log->next_checkpoint
1151 * for write back, returns log_start of first sh in stripe_in_journal_list
1152 */
1153static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1154{
1155	struct stripe_head *sh;
1156	struct r5l_log *log = READ_ONCE(conf->log);
1157	sector_t new_cp;
1158	unsigned long flags;
1159
1160	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1161		return log->next_checkpoint;
1162
1163	spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1164	if (list_empty(&log->stripe_in_journal_list)) {
1165		/* all stripes flushed */
1166		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1167		return log->next_checkpoint;
1168	}
1169	sh = list_first_entry(&log->stripe_in_journal_list,
1170			      struct stripe_head, r5c);
1171	new_cp = sh->log_start;
1172	spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1173	return new_cp;
1174}
1175
1176static sector_t r5l_reclaimable_space(struct r5l_log *log)
1177{
1178	struct r5conf *conf = log->rdev->mddev->private;
1179
1180	return r5l_ring_distance(log, log->last_checkpoint,
1181				 r5c_calculate_new_cp(conf));
1182}
1183
1184static void r5l_run_no_mem_stripe(struct r5l_log *log)
1185{
1186	struct stripe_head *sh;
1187
1188	lockdep_assert_held(&log->io_list_lock);
1189
1190	if (!list_empty(&log->no_mem_stripes)) {
1191		sh = list_first_entry(&log->no_mem_stripes,
1192				      struct stripe_head, log_list);
1193		list_del_init(&sh->log_list);
1194		set_bit(STRIPE_HANDLE, &sh->state);
1195		raid5_release_stripe(sh);
1196	}
1197}
1198
1199static bool r5l_complete_finished_ios(struct r5l_log *log)
1200{
1201	struct r5l_io_unit *io, *next;
1202	bool found = false;
1203
1204	lockdep_assert_held(&log->io_list_lock);
1205
1206	list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1207		/* don't change list order */
1208		if (io->state < IO_UNIT_STRIPE_END)
1209			break;
1210
1211		log->next_checkpoint = io->log_start;
1212
1213		list_del(&io->log_sibling);
1214		mempool_free(io, &log->io_pool);
1215		r5l_run_no_mem_stripe(log);
1216
1217		found = true;
1218	}
1219
1220	return found;
1221}
1222
1223static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1224{
1225	struct r5l_log *log = io->log;
1226	struct r5conf *conf = log->rdev->mddev->private;
1227	unsigned long flags;
1228
1229	spin_lock_irqsave(&log->io_list_lock, flags);
1230	__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1231
1232	if (!r5l_complete_finished_ios(log)) {
1233		spin_unlock_irqrestore(&log->io_list_lock, flags);
1234		return;
1235	}
1236
1237	if (r5l_reclaimable_space(log) > log->max_free_space ||
1238	    test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1239		r5l_wake_reclaim(log, 0);
1240
1241	spin_unlock_irqrestore(&log->io_list_lock, flags);
1242	wake_up(&log->iounit_wait);
1243}
1244
1245void r5l_stripe_write_finished(struct stripe_head *sh)
1246{
1247	struct r5l_io_unit *io;
1248
1249	io = sh->log_io;
1250	sh->log_io = NULL;
1251
1252	if (io && atomic_dec_and_test(&io->pending_stripe))
1253		__r5l_stripe_write_finished(io);
1254}
1255
1256static void r5l_log_flush_endio(struct bio *bio)
1257{
1258	struct r5l_log *log = container_of(bio, struct r5l_log,
1259		flush_bio);
1260	unsigned long flags;
1261	struct r5l_io_unit *io;
1262
1263	if (bio->bi_status)
1264		md_error(log->rdev->mddev, log->rdev);
1265	bio_uninit(bio);
1266
1267	spin_lock_irqsave(&log->io_list_lock, flags);
1268	list_for_each_entry(io, &log->flushing_ios, log_sibling)
1269		r5l_io_run_stripes(io);
1270	list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1271	spin_unlock_irqrestore(&log->io_list_lock, flags);
1272}
1273
1274/*
1275 * Starting dispatch IO to raid.
1276 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1277 * broken meta in the middle of a log causes recovery can't find meta at the
1278 * head of log. If operations require meta at the head persistent in log, we
1279 * must make sure meta before it persistent in log too. A case is:
1280 *
1281 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1282 * data/parity must be persistent in log before we do the write to raid disks.
1283 *
1284 * The solution is we restrictly maintain io_unit list order. In this case, we
1285 * only write stripes of an io_unit to raid disks till the io_unit is the first
1286 * one whose data/parity is in log.
1287 */
1288void r5l_flush_stripe_to_raid(struct r5l_log *log)
1289{
1290	bool do_flush;
1291
1292	if (!log || !log->need_cache_flush)
1293		return;
1294
1295	spin_lock_irq(&log->io_list_lock);
1296	/* flush bio is running */
1297	if (!list_empty(&log->flushing_ios)) {
1298		spin_unlock_irq(&log->io_list_lock);
1299		return;
1300	}
1301	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1302	do_flush = !list_empty(&log->flushing_ios);
1303	spin_unlock_irq(&log->io_list_lock);
1304
1305	if (!do_flush)
1306		return;
1307	bio_init(&log->flush_bio, log->rdev->bdev, NULL, 0,
1308		  REQ_OP_WRITE | REQ_PREFLUSH);
1309	log->flush_bio.bi_end_io = r5l_log_flush_endio;
1310	submit_bio(&log->flush_bio);
1311}
1312
1313static void r5l_write_super(struct r5l_log *log, sector_t cp);
1314static void r5l_write_super_and_discard_space(struct r5l_log *log,
1315	sector_t end)
1316{
1317	struct block_device *bdev = log->rdev->bdev;
1318	struct mddev *mddev;
1319
1320	r5l_write_super(log, end);
1321
1322	if (!bdev_max_discard_sectors(bdev))
1323		return;
1324
1325	mddev = log->rdev->mddev;
1326	/*
1327	 * Discard could zero data, so before discard we must make sure
1328	 * superblock is updated to new log tail. Updating superblock (either
1329	 * directly call md_update_sb() or depend on md thread) must hold
1330	 * reconfig mutex. On the other hand, raid5_quiesce is called with
1331	 * reconfig_mutex hold. The first step of raid5_quiesce() is waiting
1332	 * for all IO finish, hence waiting for reclaim thread, while reclaim
1333	 * thread is calling this function and waiting for reconfig mutex. So
1334	 * there is a deadlock. We workaround this issue with a trylock.
1335	 * FIXME: we could miss discard if we can't take reconfig mutex
1336	 */
1337	set_mask_bits(&mddev->sb_flags, 0,
1338		BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1339	if (!mddev_trylock(mddev))
1340		return;
1341	md_update_sb(mddev, 1);
1342	mddev_unlock(mddev);
1343
1344	/* discard IO error really doesn't matter, ignore it */
1345	if (log->last_checkpoint < end) {
1346		blkdev_issue_discard(bdev,
1347				log->last_checkpoint + log->rdev->data_offset,
1348				end - log->last_checkpoint, GFP_NOIO);
1349	} else {
1350		blkdev_issue_discard(bdev,
1351				log->last_checkpoint + log->rdev->data_offset,
1352				log->device_size - log->last_checkpoint,
1353				GFP_NOIO);
1354		blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1355				GFP_NOIO);
1356	}
1357}
1358
1359/*
1360 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1361 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1362 *
1363 * must hold conf->device_lock
1364 */
1365static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1366{
1367	BUG_ON(list_empty(&sh->lru));
1368	BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1369	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1370
1371	/*
1372	 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1373	 * raid5_release_stripe() while holding conf->device_lock
1374	 */
1375	BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1376	lockdep_assert_held(&conf->device_lock);
1377
1378	list_del_init(&sh->lru);
1379	atomic_inc(&sh->count);
1380
1381	set_bit(STRIPE_HANDLE, &sh->state);
1382	atomic_inc(&conf->active_stripes);
1383	r5c_make_stripe_write_out(sh);
1384
1385	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1386		atomic_inc(&conf->r5c_flushing_partial_stripes);
1387	else
1388		atomic_inc(&conf->r5c_flushing_full_stripes);
1389	raid5_release_stripe(sh);
1390}
1391
1392/*
1393 * if num == 0, flush all full stripes
1394 * if num > 0, flush all full stripes. If less than num full stripes are
1395 *             flushed, flush some partial stripes until totally num stripes are
1396 *             flushed or there is no more cached stripes.
1397 */
1398void r5c_flush_cache(struct r5conf *conf, int num)
1399{
1400	int count;
1401	struct stripe_head *sh, *next;
1402
1403	lockdep_assert_held(&conf->device_lock);
1404	if (!READ_ONCE(conf->log))
1405		return;
1406
1407	count = 0;
1408	list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1409		r5c_flush_stripe(conf, sh);
1410		count++;
1411	}
1412
1413	if (count >= num)
1414		return;
1415	list_for_each_entry_safe(sh, next,
1416				 &conf->r5c_partial_stripe_list, lru) {
1417		r5c_flush_stripe(conf, sh);
1418		if (++count >= num)
1419			break;
1420	}
1421}
1422
1423static void r5c_do_reclaim(struct r5conf *conf)
1424{
1425	struct r5l_log *log = READ_ONCE(conf->log);
1426	struct stripe_head *sh;
1427	int count = 0;
1428	unsigned long flags;
1429	int total_cached;
1430	int stripes_to_flush;
1431	int flushing_partial, flushing_full;
1432
1433	if (!r5c_is_writeback(log))
1434		return;
1435
1436	flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1437	flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1438	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1439		atomic_read(&conf->r5c_cached_full_stripes) -
1440		flushing_full - flushing_partial;
1441
1442	if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1443	    atomic_read(&conf->empty_inactive_list_nr) > 0)
1444		/*
1445		 * if stripe cache pressure high, flush all full stripes and
1446		 * some partial stripes
1447		 */
1448		stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1449	else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1450		 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1451		 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1452		/*
1453		 * if stripe cache pressure moderate, or if there is many full
1454		 * stripes,flush all full stripes
1455		 */
1456		stripes_to_flush = 0;
1457	else
1458		/* no need to flush */
1459		stripes_to_flush = -1;
1460
1461	if (stripes_to_flush >= 0) {
1462		spin_lock_irqsave(&conf->device_lock, flags);
1463		r5c_flush_cache(conf, stripes_to_flush);
1464		spin_unlock_irqrestore(&conf->device_lock, flags);
1465	}
1466
1467	/* if log space is tight, flush stripes on stripe_in_journal_list */
1468	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1469		spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1470		spin_lock(&conf->device_lock);
1471		list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1472			/*
1473			 * stripes on stripe_in_journal_list could be in any
1474			 * state of the stripe_cache state machine. In this
1475			 * case, we only want to flush stripe on
1476			 * r5c_cached_full/partial_stripes. The following
1477			 * condition makes sure the stripe is on one of the
1478			 * two lists.
1479			 */
1480			if (!list_empty(&sh->lru) &&
1481			    !test_bit(STRIPE_HANDLE, &sh->state) &&
1482			    atomic_read(&sh->count) == 0) {
1483				r5c_flush_stripe(conf, sh);
1484				if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1485					break;
1486			}
1487		}
1488		spin_unlock(&conf->device_lock);
1489		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1490	}
1491
1492	if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1493		r5l_run_no_space_stripes(log);
1494
1495	md_wakeup_thread(conf->mddev->thread);
1496}
1497
1498static void r5l_do_reclaim(struct r5l_log *log)
1499{
1500	struct r5conf *conf = log->rdev->mddev->private;
1501	sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1502	sector_t reclaimable;
1503	sector_t next_checkpoint;
1504	bool write_super;
1505
1506	spin_lock_irq(&log->io_list_lock);
1507	write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1508		reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1509	/*
1510	 * move proper io_unit to reclaim list. We should not change the order.
1511	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1512	 * shouldn't reuse space of an unreclaimable io_unit
1513	 */
1514	while (1) {
1515		reclaimable = r5l_reclaimable_space(log);
1516		if (reclaimable >= reclaim_target ||
1517		    (list_empty(&log->running_ios) &&
1518		     list_empty(&log->io_end_ios) &&
1519		     list_empty(&log->flushing_ios) &&
1520		     list_empty(&log->finished_ios)))
1521			break;
1522
1523		md_wakeup_thread(log->rdev->mddev->thread);
1524		wait_event_lock_irq(log->iounit_wait,
1525				    r5l_reclaimable_space(log) > reclaimable,
1526				    log->io_list_lock);
1527	}
1528
1529	next_checkpoint = r5c_calculate_new_cp(conf);
1530	spin_unlock_irq(&log->io_list_lock);
1531
1532	if (reclaimable == 0 || !write_super)
1533		return;
1534
1535	/*
1536	 * write_super will flush cache of each raid disk. We must write super
1537	 * here, because the log area might be reused soon and we don't want to
1538	 * confuse recovery
1539	 */
1540	r5l_write_super_and_discard_space(log, next_checkpoint);
1541
1542	mutex_lock(&log->io_mutex);
1543	log->last_checkpoint = next_checkpoint;
1544	r5c_update_log_state(log);
1545	mutex_unlock(&log->io_mutex);
1546
1547	r5l_run_no_space_stripes(log);
1548}
1549
1550static void r5l_reclaim_thread(struct md_thread *thread)
1551{
1552	struct mddev *mddev = thread->mddev;
1553	struct r5conf *conf = mddev->private;
1554	struct r5l_log *log = READ_ONCE(conf->log);
1555
1556	if (!log)
1557		return;
1558	r5c_do_reclaim(conf);
1559	r5l_do_reclaim(log);
1560}
1561
1562void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1563{
1564	unsigned long target;
1565	unsigned long new = (unsigned long)space; /* overflow in theory */
1566
1567	if (!log)
1568		return;
1569
1570	target = READ_ONCE(log->reclaim_target);
1571	do {
1572		if (new < target)
1573			return;
1574	} while (!try_cmpxchg(&log->reclaim_target, &target, new));
1575	md_wakeup_thread(log->reclaim_thread);
1576}
1577
1578void r5l_quiesce(struct r5l_log *log, int quiesce)
1579{
1580	struct mddev *mddev = log->rdev->mddev;
1581	struct md_thread *thread = rcu_dereference_protected(
1582		log->reclaim_thread, lockdep_is_held(&mddev->reconfig_mutex));
1583
1584	if (quiesce) {
1585		/* make sure r5l_write_super_and_discard_space exits */
1586		wake_up(&mddev->sb_wait);
1587		kthread_park(thread->tsk);
1588		r5l_wake_reclaim(log, MaxSector);
1589		r5l_do_reclaim(log);
1590	} else
1591		kthread_unpark(thread->tsk);
1592}
1593
1594bool r5l_log_disk_error(struct r5conf *conf)
1595{
1596	struct r5l_log *log = READ_ONCE(conf->log);
1597
1598	/* don't allow write if journal disk is missing */
1599	if (!log)
1600		return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1601	else
1602		return test_bit(Faulty, &log->rdev->flags);
1603}
1604
1605#define R5L_RECOVERY_PAGE_POOL_SIZE 256
1606
1607struct r5l_recovery_ctx {
1608	struct page *meta_page;		/* current meta */
1609	sector_t meta_total_blocks;	/* total size of current meta and data */
1610	sector_t pos;			/* recovery position */
1611	u64 seq;			/* recovery position seq */
1612	int data_parity_stripes;	/* number of data_parity stripes */
1613	int data_only_stripes;		/* number of data_only stripes */
1614	struct list_head cached_list;
1615
1616	/*
1617	 * read ahead page pool (ra_pool)
1618	 * in recovery, log is read sequentially. It is not efficient to
1619	 * read every page with sync_page_io(). The read ahead page pool
1620	 * reads multiple pages with one IO, so further log read can
1621	 * just copy data from the pool.
1622	 */
1623	struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1624	struct bio_vec ra_bvec[R5L_RECOVERY_PAGE_POOL_SIZE];
1625	sector_t pool_offset;	/* offset of first page in the pool */
1626	int total_pages;	/* total allocated pages */
1627	int valid_pages;	/* pages with valid data */
1628};
1629
1630static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1631					    struct r5l_recovery_ctx *ctx)
1632{
1633	struct page *page;
1634
1635	ctx->valid_pages = 0;
1636	ctx->total_pages = 0;
1637	while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1638		page = alloc_page(GFP_KERNEL);
1639
1640		if (!page)
1641			break;
1642		ctx->ra_pool[ctx->total_pages] = page;
1643		ctx->total_pages += 1;
1644	}
1645
1646	if (ctx->total_pages == 0)
1647		return -ENOMEM;
1648
1649	ctx->pool_offset = 0;
1650	return 0;
1651}
1652
1653static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1654					struct r5l_recovery_ctx *ctx)
1655{
1656	int i;
1657
1658	for (i = 0; i < ctx->total_pages; ++i)
1659		put_page(ctx->ra_pool[i]);
1660}
1661
1662/*
1663 * fetch ctx->valid_pages pages from offset
1664 * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1665 * However, if the offset is close to the end of the journal device,
1666 * ctx->valid_pages could be smaller than ctx->total_pages
1667 */
1668static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1669				      struct r5l_recovery_ctx *ctx,
1670				      sector_t offset)
1671{
1672	struct bio bio;
1673	int ret;
1674
1675	bio_init(&bio, log->rdev->bdev, ctx->ra_bvec,
1676		 R5L_RECOVERY_PAGE_POOL_SIZE, REQ_OP_READ);
1677	bio.bi_iter.bi_sector = log->rdev->data_offset + offset;
1678
1679	ctx->valid_pages = 0;
1680	ctx->pool_offset = offset;
1681
1682	while (ctx->valid_pages < ctx->total_pages) {
1683		__bio_add_page(&bio, ctx->ra_pool[ctx->valid_pages], PAGE_SIZE,
1684			       0);
1685		ctx->valid_pages += 1;
1686
1687		offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1688
1689		if (offset == 0)  /* reached end of the device */
1690			break;
1691	}
1692
1693	ret = submit_bio_wait(&bio);
1694	bio_uninit(&bio);
1695	return ret;
1696}
1697
1698/*
1699 * try read a page from the read ahead page pool, if the page is not in the
1700 * pool, call r5l_recovery_fetch_ra_pool
1701 */
1702static int r5l_recovery_read_page(struct r5l_log *log,
1703				  struct r5l_recovery_ctx *ctx,
1704				  struct page *page,
1705				  sector_t offset)
1706{
1707	int ret;
1708
1709	if (offset < ctx->pool_offset ||
1710	    offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1711		ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1712		if (ret)
1713			return ret;
1714	}
1715
1716	BUG_ON(offset < ctx->pool_offset ||
1717	       offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1718
1719	memcpy(page_address(page),
1720	       page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1721					 BLOCK_SECTOR_SHIFT]),
1722	       PAGE_SIZE);
1723	return 0;
1724}
1725
1726static int r5l_recovery_read_meta_block(struct r5l_log *log,
1727					struct r5l_recovery_ctx *ctx)
1728{
1729	struct page *page = ctx->meta_page;
1730	struct r5l_meta_block *mb;
1731	u32 crc, stored_crc;
1732	int ret;
1733
1734	ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1735	if (ret != 0)
1736		return ret;
1737
1738	mb = page_address(page);
1739	stored_crc = le32_to_cpu(mb->checksum);
1740	mb->checksum = 0;
1741
1742	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1743	    le64_to_cpu(mb->seq) != ctx->seq ||
1744	    mb->version != R5LOG_VERSION ||
1745	    le64_to_cpu(mb->position) != ctx->pos)
1746		return -EINVAL;
1747
1748	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1749	if (stored_crc != crc)
1750		return -EINVAL;
1751
1752	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1753		return -EINVAL;
1754
1755	ctx->meta_total_blocks = BLOCK_SECTORS;
1756
1757	return 0;
1758}
1759
1760static void
1761r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1762				     struct page *page,
1763				     sector_t pos, u64 seq)
1764{
1765	struct r5l_meta_block *mb;
1766
1767	mb = page_address(page);
1768	clear_page(mb);
1769	mb->magic = cpu_to_le32(R5LOG_MAGIC);
1770	mb->version = R5LOG_VERSION;
1771	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1772	mb->seq = cpu_to_le64(seq);
1773	mb->position = cpu_to_le64(pos);
1774}
1775
1776static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1777					  u64 seq)
1778{
1779	struct page *page;
1780	struct r5l_meta_block *mb;
1781
1782	page = alloc_page(GFP_KERNEL);
1783	if (!page)
1784		return -ENOMEM;
1785	r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1786	mb = page_address(page);
1787	mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1788					     mb, PAGE_SIZE));
1789	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE |
1790			  REQ_SYNC | REQ_FUA, false)) {
1791		__free_page(page);
1792		return -EIO;
1793	}
1794	__free_page(page);
1795	return 0;
1796}
1797
1798/*
1799 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1800 * to mark valid (potentially not flushed) data in the journal.
1801 *
1802 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1803 * so there should not be any mismatch here.
1804 */
1805static void r5l_recovery_load_data(struct r5l_log *log,
1806				   struct stripe_head *sh,
1807				   struct r5l_recovery_ctx *ctx,
1808				   struct r5l_payload_data_parity *payload,
1809				   sector_t log_offset)
1810{
1811	struct mddev *mddev = log->rdev->mddev;
1812	struct r5conf *conf = mddev->private;
1813	int dd_idx;
1814
1815	raid5_compute_sector(conf,
1816			     le64_to_cpu(payload->location), 0,
1817			     &dd_idx, sh);
1818	r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1819	sh->dev[dd_idx].log_checksum =
1820		le32_to_cpu(payload->checksum[0]);
1821	ctx->meta_total_blocks += BLOCK_SECTORS;
1822
1823	set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1824	set_bit(STRIPE_R5C_CACHING, &sh->state);
1825}
1826
1827static void r5l_recovery_load_parity(struct r5l_log *log,
1828				     struct stripe_head *sh,
1829				     struct r5l_recovery_ctx *ctx,
1830				     struct r5l_payload_data_parity *payload,
1831				     sector_t log_offset)
1832{
1833	struct mddev *mddev = log->rdev->mddev;
1834	struct r5conf *conf = mddev->private;
1835
1836	ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1837	r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1838	sh->dev[sh->pd_idx].log_checksum =
1839		le32_to_cpu(payload->checksum[0]);
1840	set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1841
1842	if (sh->qd_idx >= 0) {
1843		r5l_recovery_read_page(
1844			log, ctx, sh->dev[sh->qd_idx].page,
1845			r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1846		sh->dev[sh->qd_idx].log_checksum =
1847			le32_to_cpu(payload->checksum[1]);
1848		set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1849	}
1850	clear_bit(STRIPE_R5C_CACHING, &sh->state);
1851}
1852
1853static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1854{
1855	int i;
1856
1857	sh->state = 0;
1858	sh->log_start = MaxSector;
1859	for (i = sh->disks; i--; )
1860		sh->dev[i].flags = 0;
1861}
1862
1863static void
1864r5l_recovery_replay_one_stripe(struct r5conf *conf,
1865			       struct stripe_head *sh,
1866			       struct r5l_recovery_ctx *ctx)
1867{
1868	struct md_rdev *rdev, *rrdev;
1869	int disk_index;
1870	int data_count = 0;
1871
1872	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1873		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1874			continue;
1875		if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1876			continue;
1877		data_count++;
1878	}
1879
1880	/*
1881	 * stripes that only have parity must have been flushed
1882	 * before the crash that we are now recovering from, so
1883	 * there is nothing more to recovery.
1884	 */
1885	if (data_count == 0)
1886		goto out;
1887
1888	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1889		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1890			continue;
1891
1892		/* in case device is broken */
1893		rdev = conf->disks[disk_index].rdev;
1894		if (rdev) {
1895			atomic_inc(&rdev->nr_pending);
1896			sync_page_io(rdev, sh->sector, PAGE_SIZE,
1897				     sh->dev[disk_index].page, REQ_OP_WRITE,
1898				     false);
1899			rdev_dec_pending(rdev, rdev->mddev);
1900		}
1901		rrdev = conf->disks[disk_index].replacement;
1902		if (rrdev) {
1903			atomic_inc(&rrdev->nr_pending);
1904			sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1905				     sh->dev[disk_index].page, REQ_OP_WRITE,
1906				     false);
1907			rdev_dec_pending(rrdev, rrdev->mddev);
1908		}
1909	}
1910	ctx->data_parity_stripes++;
1911out:
1912	r5l_recovery_reset_stripe(sh);
1913}
1914
1915static struct stripe_head *
1916r5c_recovery_alloc_stripe(
1917		struct r5conf *conf,
1918		sector_t stripe_sect,
1919		int noblock)
1920{
1921	struct stripe_head *sh;
1922
1923	sh = raid5_get_active_stripe(conf, NULL, stripe_sect,
1924				     noblock ? R5_GAS_NOBLOCK : 0);
1925	if (!sh)
1926		return NULL;  /* no more stripe available */
1927
1928	r5l_recovery_reset_stripe(sh);
1929
1930	return sh;
1931}
1932
1933static struct stripe_head *
1934r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1935{
1936	struct stripe_head *sh;
1937
1938	list_for_each_entry(sh, list, lru)
1939		if (sh->sector == sect)
1940			return sh;
1941	return NULL;
1942}
1943
1944static void
1945r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1946			  struct r5l_recovery_ctx *ctx)
1947{
1948	struct stripe_head *sh, *next;
1949
1950	list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1951		r5l_recovery_reset_stripe(sh);
1952		list_del_init(&sh->lru);
1953		raid5_release_stripe(sh);
1954	}
1955}
1956
1957static void
1958r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1959			    struct r5l_recovery_ctx *ctx)
1960{
1961	struct stripe_head *sh, *next;
1962
1963	list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1964		if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1965			r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1966			list_del_init(&sh->lru);
1967			raid5_release_stripe(sh);
1968		}
1969}
1970
1971/* if matches return 0; otherwise return -EINVAL */
1972static int
1973r5l_recovery_verify_data_checksum(struct r5l_log *log,
1974				  struct r5l_recovery_ctx *ctx,
1975				  struct page *page,
1976				  sector_t log_offset, __le32 log_checksum)
1977{
1978	void *addr;
1979	u32 checksum;
1980
1981	r5l_recovery_read_page(log, ctx, page, log_offset);
1982	addr = kmap_atomic(page);
1983	checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1984	kunmap_atomic(addr);
1985	return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1986}
1987
1988/*
1989 * before loading data to stripe cache, we need verify checksum for all data,
1990 * if there is mismatch for any data page, we drop all data in the mata block
1991 */
1992static int
1993r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1994					 struct r5l_recovery_ctx *ctx)
1995{
1996	struct mddev *mddev = log->rdev->mddev;
1997	struct r5conf *conf = mddev->private;
1998	struct r5l_meta_block *mb = page_address(ctx->meta_page);
1999	sector_t mb_offset = sizeof(struct r5l_meta_block);
2000	sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2001	struct page *page;
2002	struct r5l_payload_data_parity *payload;
2003	struct r5l_payload_flush *payload_flush;
2004
2005	page = alloc_page(GFP_KERNEL);
2006	if (!page)
2007		return -ENOMEM;
2008
2009	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2010		payload = (void *)mb + mb_offset;
2011		payload_flush = (void *)mb + mb_offset;
2012
2013		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2014			if (r5l_recovery_verify_data_checksum(
2015				    log, ctx, page, log_offset,
2016				    payload->checksum[0]) < 0)
2017				goto mismatch;
2018		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2019			if (r5l_recovery_verify_data_checksum(
2020				    log, ctx, page, log_offset,
2021				    payload->checksum[0]) < 0)
2022				goto mismatch;
2023			if (conf->max_degraded == 2 && /* q for RAID 6 */
2024			    r5l_recovery_verify_data_checksum(
2025				    log, ctx, page,
2026				    r5l_ring_add(log, log_offset,
2027						 BLOCK_SECTORS),
2028				    payload->checksum[1]) < 0)
2029				goto mismatch;
2030		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2031			/* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2032		} else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2033			goto mismatch;
2034
2035		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2036			mb_offset += sizeof(struct r5l_payload_flush) +
2037				le32_to_cpu(payload_flush->size);
2038		} else {
2039			/* DATA or PARITY payload */
2040			log_offset = r5l_ring_add(log, log_offset,
2041						  le32_to_cpu(payload->size));
2042			mb_offset += sizeof(struct r5l_payload_data_parity) +
2043				sizeof(__le32) *
2044				(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2045		}
2046
2047	}
2048
2049	put_page(page);
2050	return 0;
2051
2052mismatch:
2053	put_page(page);
2054	return -EINVAL;
2055}
2056
2057/*
2058 * Analyze all data/parity pages in one meta block
2059 * Returns:
2060 * 0 for success
2061 * -EINVAL for unknown playload type
2062 * -EAGAIN for checksum mismatch of data page
2063 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2064 */
2065static int
2066r5c_recovery_analyze_meta_block(struct r5l_log *log,
2067				struct r5l_recovery_ctx *ctx,
2068				struct list_head *cached_stripe_list)
2069{
2070	struct mddev *mddev = log->rdev->mddev;
2071	struct r5conf *conf = mddev->private;
2072	struct r5l_meta_block *mb;
2073	struct r5l_payload_data_parity *payload;
2074	struct r5l_payload_flush *payload_flush;
2075	int mb_offset;
2076	sector_t log_offset;
2077	sector_t stripe_sect;
2078	struct stripe_head *sh;
2079	int ret;
2080
2081	/*
2082	 * for mismatch in data blocks, we will drop all data in this mb, but
2083	 * we will still read next mb for other data with FLUSH flag, as
2084	 * io_unit could finish out of order.
2085	 */
2086	ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2087	if (ret == -EINVAL)
2088		return -EAGAIN;
2089	else if (ret)
2090		return ret;   /* -ENOMEM duo to alloc_page() failed */
2091
2092	mb = page_address(ctx->meta_page);
2093	mb_offset = sizeof(struct r5l_meta_block);
2094	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2095
2096	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2097		int dd;
2098
2099		payload = (void *)mb + mb_offset;
2100		payload_flush = (void *)mb + mb_offset;
2101
2102		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2103			int i, count;
2104
2105			count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2106			for (i = 0; i < count; ++i) {
2107				stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2108				sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2109								stripe_sect);
2110				if (sh) {
2111					WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2112					r5l_recovery_reset_stripe(sh);
2113					list_del_init(&sh->lru);
2114					raid5_release_stripe(sh);
2115				}
2116			}
2117
2118			mb_offset += sizeof(struct r5l_payload_flush) +
2119				le32_to_cpu(payload_flush->size);
2120			continue;
2121		}
2122
2123		/* DATA or PARITY payload */
2124		stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2125			raid5_compute_sector(
2126				conf, le64_to_cpu(payload->location), 0, &dd,
2127				NULL)
2128			: le64_to_cpu(payload->location);
2129
2130		sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2131						stripe_sect);
2132
2133		if (!sh) {
2134			sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1);
2135			/*
2136			 * cannot get stripe from raid5_get_active_stripe
2137			 * try replay some stripes
2138			 */
2139			if (!sh) {
2140				r5c_recovery_replay_stripes(
2141					cached_stripe_list, ctx);
2142				sh = r5c_recovery_alloc_stripe(
2143					conf, stripe_sect, 1);
2144			}
2145			if (!sh) {
2146				int new_size = conf->min_nr_stripes * 2;
2147				pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2148					mdname(mddev),
2149					new_size);
2150				ret = raid5_set_cache_size(mddev, new_size);
2151				if (conf->min_nr_stripes <= new_size / 2) {
2152					pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2153						mdname(mddev),
2154						ret,
2155						new_size,
2156						conf->min_nr_stripes,
2157						conf->max_nr_stripes);
2158					return -ENOMEM;
2159				}
2160				sh = r5c_recovery_alloc_stripe(
2161					conf, stripe_sect, 0);
2162			}
2163			if (!sh) {
2164				pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2165					mdname(mddev));
2166				return -ENOMEM;
2167			}
2168			list_add_tail(&sh->lru, cached_stripe_list);
2169		}
2170
2171		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2172			if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2173			    test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2174				r5l_recovery_replay_one_stripe(conf, sh, ctx);
2175				list_move_tail(&sh->lru, cached_stripe_list);
2176			}
2177			r5l_recovery_load_data(log, sh, ctx, payload,
2178					       log_offset);
2179		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2180			r5l_recovery_load_parity(log, sh, ctx, payload,
2181						 log_offset);
2182		else
2183			return -EINVAL;
2184
2185		log_offset = r5l_ring_add(log, log_offset,
2186					  le32_to_cpu(payload->size));
2187
2188		mb_offset += sizeof(struct r5l_payload_data_parity) +
2189			sizeof(__le32) *
2190			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2191	}
2192
2193	return 0;
2194}
2195
2196/*
2197 * Load the stripe into cache. The stripe will be written out later by
2198 * the stripe cache state machine.
2199 */
2200static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2201					 struct stripe_head *sh)
2202{
2203	struct r5dev *dev;
2204	int i;
2205
2206	for (i = sh->disks; i--; ) {
2207		dev = sh->dev + i;
2208		if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2209			set_bit(R5_InJournal, &dev->flags);
2210			set_bit(R5_UPTODATE, &dev->flags);
2211		}
2212	}
2213}
2214
2215/*
2216 * Scan through the log for all to-be-flushed data
2217 *
2218 * For stripes with data and parity, namely Data-Parity stripe
2219 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2220 *
2221 * For stripes with only data, namely Data-Only stripe
2222 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2223 *
2224 * For a stripe, if we see data after parity, we should discard all previous
2225 * data and parity for this stripe, as these data are already flushed to
2226 * the array.
2227 *
2228 * At the end of the scan, we return the new journal_tail, which points to
2229 * first data-only stripe on the journal device, or next invalid meta block.
2230 */
2231static int r5c_recovery_flush_log(struct r5l_log *log,
2232				  struct r5l_recovery_ctx *ctx)
2233{
2234	struct stripe_head *sh;
2235	int ret = 0;
2236
2237	/* scan through the log */
2238	while (1) {
2239		if (r5l_recovery_read_meta_block(log, ctx))
2240			break;
2241
2242		ret = r5c_recovery_analyze_meta_block(log, ctx,
2243						      &ctx->cached_list);
2244		/*
2245		 * -EAGAIN means mismatch in data block, in this case, we still
2246		 * try scan the next metablock
2247		 */
2248		if (ret && ret != -EAGAIN)
2249			break;   /* ret == -EINVAL or -ENOMEM */
2250		ctx->seq++;
2251		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2252	}
2253
2254	if (ret == -ENOMEM) {
2255		r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2256		return ret;
2257	}
2258
2259	/* replay data-parity stripes */
2260	r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2261
2262	/* load data-only stripes to stripe cache */
2263	list_for_each_entry(sh, &ctx->cached_list, lru) {
2264		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2265		r5c_recovery_load_one_stripe(log, sh);
2266		ctx->data_only_stripes++;
2267	}
2268
2269	return 0;
2270}
2271
2272/*
2273 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2274 * log will start here. but we can't let superblock point to last valid
2275 * meta block. The log might looks like:
2276 * | meta 1| meta 2| meta 3|
2277 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2278 * superblock points to meta 1, we write a new valid meta 2n.  if crash
2279 * happens again, new recovery will start from meta 1. Since meta 2n is
2280 * valid now, recovery will think meta 3 is valid, which is wrong.
2281 * The solution is we create a new meta in meta2 with its seq == meta
2282 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2283 * will not think meta 3 is a valid meta, because its seq doesn't match
2284 */
2285
2286/*
2287 * Before recovery, the log looks like the following
2288 *
2289 *   ---------------------------------------------
2290 *   |           valid log        | invalid log  |
2291 *   ---------------------------------------------
2292 *   ^
2293 *   |- log->last_checkpoint
2294 *   |- log->last_cp_seq
2295 *
2296 * Now we scan through the log until we see invalid entry
2297 *
2298 *   ---------------------------------------------
2299 *   |           valid log        | invalid log  |
2300 *   ---------------------------------------------
2301 *   ^                            ^
2302 *   |- log->last_checkpoint      |- ctx->pos
2303 *   |- log->last_cp_seq          |- ctx->seq
2304 *
2305 * From this point, we need to increase seq number by 10 to avoid
2306 * confusing next recovery.
2307 *
2308 *   ---------------------------------------------
2309 *   |           valid log        | invalid log  |
2310 *   ---------------------------------------------
2311 *   ^                              ^
2312 *   |- log->last_checkpoint        |- ctx->pos+1
2313 *   |- log->last_cp_seq            |- ctx->seq+10001
2314 *
2315 * However, it is not safe to start the state machine yet, because data only
2316 * parities are not yet secured in RAID. To save these data only parities, we
2317 * rewrite them from seq+11.
2318 *
2319 *   -----------------------------------------------------------------
2320 *   |           valid log        | data only stripes | invalid log  |
2321 *   -----------------------------------------------------------------
2322 *   ^                                                ^
2323 *   |- log->last_checkpoint                          |- ctx->pos+n
2324 *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2325 *
2326 * If failure happens again during this process, the recovery can safe start
2327 * again from log->last_checkpoint.
2328 *
2329 * Once data only stripes are rewritten to journal, we move log_tail
2330 *
2331 *   -----------------------------------------------------------------
2332 *   |     old log        |    data only stripes    | invalid log  |
2333 *   -----------------------------------------------------------------
2334 *                        ^                         ^
2335 *                        |- log->last_checkpoint   |- ctx->pos+n
2336 *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2337 *
2338 * Then we can safely start the state machine. If failure happens from this
2339 * point on, the recovery will start from new log->last_checkpoint.
2340 */
2341static int
2342r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2343				       struct r5l_recovery_ctx *ctx)
2344{
2345	struct stripe_head *sh;
2346	struct mddev *mddev = log->rdev->mddev;
2347	struct page *page;
2348	sector_t next_checkpoint = MaxSector;
2349
2350	page = alloc_page(GFP_KERNEL);
2351	if (!page) {
2352		pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2353		       mdname(mddev));
2354		return -ENOMEM;
2355	}
2356
2357	WARN_ON(list_empty(&ctx->cached_list));
2358
2359	list_for_each_entry(sh, &ctx->cached_list, lru) {
2360		struct r5l_meta_block *mb;
2361		int i;
2362		int offset;
2363		sector_t write_pos;
2364
2365		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2366		r5l_recovery_create_empty_meta_block(log, page,
2367						     ctx->pos, ctx->seq);
2368		mb = page_address(page);
2369		offset = le32_to_cpu(mb->meta_size);
2370		write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2371
2372		for (i = sh->disks; i--; ) {
2373			struct r5dev *dev = &sh->dev[i];
2374			struct r5l_payload_data_parity *payload;
2375			void *addr;
2376
2377			if (test_bit(R5_InJournal, &dev->flags)) {
2378				payload = (void *)mb + offset;
2379				payload->header.type = cpu_to_le16(
2380					R5LOG_PAYLOAD_DATA);
2381				payload->size = cpu_to_le32(BLOCK_SECTORS);
2382				payload->location = cpu_to_le64(
2383					raid5_compute_blocknr(sh, i, 0));
2384				addr = kmap_atomic(dev->page);
2385				payload->checksum[0] = cpu_to_le32(
2386					crc32c_le(log->uuid_checksum, addr,
2387						  PAGE_SIZE));
2388				kunmap_atomic(addr);
2389				sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2390					     dev->page, REQ_OP_WRITE, false);
2391				write_pos = r5l_ring_add(log, write_pos,
2392							 BLOCK_SECTORS);
2393				offset += sizeof(__le32) +
2394					sizeof(struct r5l_payload_data_parity);
2395
2396			}
2397		}
2398		mb->meta_size = cpu_to_le32(offset);
2399		mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2400						     mb, PAGE_SIZE));
2401		sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2402			     REQ_OP_WRITE | REQ_SYNC | REQ_FUA, false);
2403		sh->log_start = ctx->pos;
2404		list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2405		atomic_inc(&log->stripe_in_journal_count);
2406		ctx->pos = write_pos;
2407		ctx->seq += 1;
2408		next_checkpoint = sh->log_start;
2409	}
2410	log->next_checkpoint = next_checkpoint;
2411	__free_page(page);
2412	return 0;
2413}
2414
2415static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2416						 struct r5l_recovery_ctx *ctx)
2417{
2418	struct mddev *mddev = log->rdev->mddev;
2419	struct r5conf *conf = mddev->private;
2420	struct stripe_head *sh, *next;
2421	bool cleared_pending = false;
2422
2423	if (ctx->data_only_stripes == 0)
2424		return;
2425
2426	if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2427		cleared_pending = true;
2428		clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2429	}
2430	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2431
2432	list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2433		r5c_make_stripe_write_out(sh);
2434		set_bit(STRIPE_HANDLE, &sh->state);
2435		list_del_init(&sh->lru);
2436		raid5_release_stripe(sh);
2437	}
2438
2439	/* reuse conf->wait_for_quiescent in recovery */
2440	wait_event(conf->wait_for_quiescent,
2441		   atomic_read(&conf->active_stripes) == 0);
2442
2443	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2444	if (cleared_pending)
2445		set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2446}
2447
2448static int r5l_recovery_log(struct r5l_log *log)
2449{
2450	struct mddev *mddev = log->rdev->mddev;
2451	struct r5l_recovery_ctx *ctx;
2452	int ret;
2453	sector_t pos;
2454
2455	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2456	if (!ctx)
2457		return -ENOMEM;
2458
2459	ctx->pos = log->last_checkpoint;
2460	ctx->seq = log->last_cp_seq;
2461	INIT_LIST_HEAD(&ctx->cached_list);
2462	ctx->meta_page = alloc_page(GFP_KERNEL);
2463
2464	if (!ctx->meta_page) {
2465		ret =  -ENOMEM;
2466		goto meta_page;
2467	}
2468
2469	if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2470		ret = -ENOMEM;
2471		goto ra_pool;
2472	}
2473
2474	ret = r5c_recovery_flush_log(log, ctx);
2475
2476	if (ret)
2477		goto error;
2478
2479	pos = ctx->pos;
2480	ctx->seq += 10000;
2481
2482	if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2483		pr_info("md/raid:%s: starting from clean shutdown\n",
2484			 mdname(mddev));
2485	else
2486		pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2487			 mdname(mddev), ctx->data_only_stripes,
2488			 ctx->data_parity_stripes);
2489
2490	if (ctx->data_only_stripes == 0) {
2491		log->next_checkpoint = ctx->pos;
2492		r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2493		ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2494	} else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2495		pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2496		       mdname(mddev));
2497		ret =  -EIO;
2498		goto error;
2499	}
2500
2501	log->log_start = ctx->pos;
2502	log->seq = ctx->seq;
2503	log->last_checkpoint = pos;
2504	r5l_write_super(log, pos);
2505
2506	r5c_recovery_flush_data_only_stripes(log, ctx);
2507	ret = 0;
2508error:
2509	r5l_recovery_free_ra_pool(log, ctx);
2510ra_pool:
2511	__free_page(ctx->meta_page);
2512meta_page:
2513	kfree(ctx);
2514	return ret;
2515}
2516
2517static void r5l_write_super(struct r5l_log *log, sector_t cp)
2518{
2519	struct mddev *mddev = log->rdev->mddev;
2520
2521	log->rdev->journal_tail = cp;
2522	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2523}
2524
2525static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2526{
2527	struct r5conf *conf;
2528	int ret;
2529
2530	ret = mddev_lock(mddev);
2531	if (ret)
2532		return ret;
2533
2534	conf = mddev->private;
2535	if (!conf || !conf->log)
2536		goto out_unlock;
2537
2538	switch (conf->log->r5c_journal_mode) {
2539	case R5C_JOURNAL_MODE_WRITE_THROUGH:
2540		ret = snprintf(
2541			page, PAGE_SIZE, "[%s] %s\n",
2542			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2543			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2544		break;
2545	case R5C_JOURNAL_MODE_WRITE_BACK:
2546		ret = snprintf(
2547			page, PAGE_SIZE, "%s [%s]\n",
2548			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2549			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2550		break;
2551	default:
2552		ret = 0;
2553	}
2554
2555out_unlock:
2556	mddev_unlock(mddev);
2557	return ret;
2558}
2559
2560/*
2561 * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2562 *
2563 * @mode as defined in 'enum r5c_journal_mode'.
2564 *
2565 */
2566int r5c_journal_mode_set(struct mddev *mddev, int mode)
2567{
2568	struct r5conf *conf;
2569
2570	if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2571	    mode > R5C_JOURNAL_MODE_WRITE_BACK)
2572		return -EINVAL;
2573
2574	conf = mddev->private;
2575	if (!conf || !conf->log)
2576		return -ENODEV;
2577
2578	if (raid5_calc_degraded(conf) > 0 &&
2579	    mode == R5C_JOURNAL_MODE_WRITE_BACK)
2580		return -EINVAL;
2581
2582	conf->log->r5c_journal_mode = mode;
2583
2584	pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2585		 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2586	return 0;
2587}
2588EXPORT_SYMBOL(r5c_journal_mode_set);
2589
2590static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2591				      const char *page, size_t length)
2592{
2593	int mode = ARRAY_SIZE(r5c_journal_mode_str);
2594	size_t len = length;
2595	int ret;
2596
2597	if (len < 2)
2598		return -EINVAL;
2599
2600	if (page[len - 1] == '\n')
2601		len--;
2602
2603	while (mode--)
2604		if (strlen(r5c_journal_mode_str[mode]) == len &&
2605		    !strncmp(page, r5c_journal_mode_str[mode], len))
2606			break;
2607	ret = mddev_suspend_and_lock(mddev);
2608	if (ret)
2609		return ret;
2610	ret = r5c_journal_mode_set(mddev, mode);
2611	mddev_unlock_and_resume(mddev);
2612	return ret ?: length;
2613}
2614
2615struct md_sysfs_entry
2616r5c_journal_mode = __ATTR(journal_mode, 0644,
2617			  r5c_journal_mode_show, r5c_journal_mode_store);
2618
2619/*
2620 * Try handle write operation in caching phase. This function should only
2621 * be called in write-back mode.
2622 *
2623 * If all outstanding writes can be handled in caching phase, returns 0
2624 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2625 * and returns -EAGAIN
2626 */
2627int r5c_try_caching_write(struct r5conf *conf,
2628			  struct stripe_head *sh,
2629			  struct stripe_head_state *s,
2630			  int disks)
2631{
2632	struct r5l_log *log = READ_ONCE(conf->log);
2633	int i;
2634	struct r5dev *dev;
2635	int to_cache = 0;
2636	void __rcu **pslot;
2637	sector_t tree_index;
2638	int ret;
2639	uintptr_t refcount;
2640
2641	BUG_ON(!r5c_is_writeback(log));
2642
2643	if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2644		/*
2645		 * There are two different scenarios here:
2646		 *  1. The stripe has some data cached, and it is sent to
2647		 *     write-out phase for reclaim
2648		 *  2. The stripe is clean, and this is the first write
2649		 *
2650		 * For 1, return -EAGAIN, so we continue with
2651		 * handle_stripe_dirtying().
2652		 *
2653		 * For 2, set STRIPE_R5C_CACHING and continue with caching
2654		 * write.
2655		 */
2656
2657		/* case 1: anything injournal or anything in written */
2658		if (s->injournal > 0 || s->written > 0)
2659			return -EAGAIN;
2660		/* case 2 */
2661		set_bit(STRIPE_R5C_CACHING, &sh->state);
2662	}
2663
2664	/*
2665	 * When run in degraded mode, array is set to write-through mode.
2666	 * This check helps drain pending write safely in the transition to
2667	 * write-through mode.
2668	 *
2669	 * When a stripe is syncing, the write is also handled in write
2670	 * through mode.
2671	 */
2672	if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2673		r5c_make_stripe_write_out(sh);
2674		return -EAGAIN;
2675	}
2676
2677	for (i = disks; i--; ) {
2678		dev = &sh->dev[i];
2679		/* if non-overwrite, use writing-out phase */
2680		if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2681		    !test_bit(R5_InJournal, &dev->flags)) {
2682			r5c_make_stripe_write_out(sh);
2683			return -EAGAIN;
2684		}
2685	}
2686
2687	/* if the stripe is not counted in big_stripe_tree, add it now */
2688	if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2689	    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2690		tree_index = r5c_tree_index(conf, sh->sector);
2691		spin_lock(&log->tree_lock);
2692		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2693					       tree_index);
2694		if (pslot) {
2695			refcount = (uintptr_t)radix_tree_deref_slot_protected(
2696				pslot, &log->tree_lock) >>
2697				R5C_RADIX_COUNT_SHIFT;
2698			radix_tree_replace_slot(
2699				&log->big_stripe_tree, pslot,
2700				(void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2701		} else {
2702			/*
2703			 * this radix_tree_insert can fail safely, so no
2704			 * need to call radix_tree_preload()
2705			 */
2706			ret = radix_tree_insert(
2707				&log->big_stripe_tree, tree_index,
2708				(void *)(1 << R5C_RADIX_COUNT_SHIFT));
2709			if (ret) {
2710				spin_unlock(&log->tree_lock);
2711				r5c_make_stripe_write_out(sh);
2712				return -EAGAIN;
2713			}
2714		}
2715		spin_unlock(&log->tree_lock);
2716
2717		/*
2718		 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2719		 * counted in the radix tree
2720		 */
2721		set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2722		atomic_inc(&conf->r5c_cached_partial_stripes);
2723	}
2724
2725	for (i = disks; i--; ) {
2726		dev = &sh->dev[i];
2727		if (dev->towrite) {
2728			set_bit(R5_Wantwrite, &dev->flags);
2729			set_bit(R5_Wantdrain, &dev->flags);
2730			set_bit(R5_LOCKED, &dev->flags);
2731			to_cache++;
2732		}
2733	}
2734
2735	if (to_cache) {
2736		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2737		/*
2738		 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2739		 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2740		 * r5c_handle_data_cached()
2741		 */
2742		set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2743	}
2744
2745	return 0;
2746}
2747
2748/*
2749 * free extra pages (orig_page) we allocated for prexor
2750 */
2751void r5c_release_extra_page(struct stripe_head *sh)
2752{
2753	struct r5conf *conf = sh->raid_conf;
2754	int i;
2755	bool using_disk_info_extra_page;
2756
2757	using_disk_info_extra_page =
2758		sh->dev[0].orig_page == conf->disks[0].extra_page;
2759
2760	for (i = sh->disks; i--; )
2761		if (sh->dev[i].page != sh->dev[i].orig_page) {
2762			struct page *p = sh->dev[i].orig_page;
2763
2764			sh->dev[i].orig_page = sh->dev[i].page;
2765			clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2766
2767			if (!using_disk_info_extra_page)
2768				put_page(p);
2769		}
2770
2771	if (using_disk_info_extra_page) {
2772		clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2773		md_wakeup_thread(conf->mddev->thread);
2774	}
2775}
2776
2777void r5c_use_extra_page(struct stripe_head *sh)
2778{
2779	struct r5conf *conf = sh->raid_conf;
2780	int i;
2781	struct r5dev *dev;
2782
2783	for (i = sh->disks; i--; ) {
2784		dev = &sh->dev[i];
2785		if (dev->orig_page != dev->page)
2786			put_page(dev->orig_page);
2787		dev->orig_page = conf->disks[i].extra_page;
2788	}
2789}
2790
2791/*
2792 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2793 * stripe is committed to RAID disks.
2794 */
2795void r5c_finish_stripe_write_out(struct r5conf *conf,
2796				 struct stripe_head *sh,
2797				 struct stripe_head_state *s)
2798{
2799	struct r5l_log *log = READ_ONCE(conf->log);
2800	int i;
2801	int do_wakeup = 0;
2802	sector_t tree_index;
2803	void __rcu **pslot;
2804	uintptr_t refcount;
2805
2806	if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2807		return;
2808
2809	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2810	clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2811
2812	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2813		return;
2814
2815	for (i = sh->disks; i--; ) {
2816		clear_bit(R5_InJournal, &sh->dev[i].flags);
2817		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2818			do_wakeup = 1;
2819	}
2820
2821	/*
2822	 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2823	 * We updated R5_InJournal, so we also update s->injournal.
2824	 */
2825	s->injournal = 0;
2826
2827	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2828		if (atomic_dec_and_test(&conf->pending_full_writes))
2829			md_wakeup_thread(conf->mddev->thread);
2830
2831	if (do_wakeup)
2832		wake_up(&conf->wait_for_overlap);
2833
2834	spin_lock_irq(&log->stripe_in_journal_lock);
2835	list_del_init(&sh->r5c);
2836	spin_unlock_irq(&log->stripe_in_journal_lock);
2837	sh->log_start = MaxSector;
2838
2839	atomic_dec(&log->stripe_in_journal_count);
2840	r5c_update_log_state(log);
2841
2842	/* stop counting this stripe in big_stripe_tree */
2843	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2844	    test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2845		tree_index = r5c_tree_index(conf, sh->sector);
2846		spin_lock(&log->tree_lock);
2847		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2848					       tree_index);
2849		BUG_ON(pslot == NULL);
2850		refcount = (uintptr_t)radix_tree_deref_slot_protected(
2851			pslot, &log->tree_lock) >>
2852			R5C_RADIX_COUNT_SHIFT;
2853		if (refcount == 1)
2854			radix_tree_delete(&log->big_stripe_tree, tree_index);
2855		else
2856			radix_tree_replace_slot(
2857				&log->big_stripe_tree, pslot,
2858				(void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2859		spin_unlock(&log->tree_lock);
2860	}
2861
2862	if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2863		BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2864		atomic_dec(&conf->r5c_flushing_partial_stripes);
2865		atomic_dec(&conf->r5c_cached_partial_stripes);
2866	}
2867
2868	if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2869		BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2870		atomic_dec(&conf->r5c_flushing_full_stripes);
2871		atomic_dec(&conf->r5c_cached_full_stripes);
2872	}
2873
2874	r5l_append_flush_payload(log, sh->sector);
2875	/* stripe is flused to raid disks, we can do resync now */
2876	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2877		set_bit(STRIPE_HANDLE, &sh->state);
2878}
2879
2880int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2881{
2882	struct r5conf *conf = sh->raid_conf;
2883	int pages = 0;
2884	int reserve;
2885	int i;
2886	int ret = 0;
2887
2888	BUG_ON(!log);
2889
2890	for (i = 0; i < sh->disks; i++) {
2891		void *addr;
2892
2893		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2894			continue;
2895		addr = kmap_atomic(sh->dev[i].page);
2896		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2897						    addr, PAGE_SIZE);
2898		kunmap_atomic(addr);
2899		pages++;
2900	}
2901	WARN_ON(pages == 0);
2902
2903	/*
2904	 * The stripe must enter state machine again to call endio, so
2905	 * don't delay.
2906	 */
2907	clear_bit(STRIPE_DELAYED, &sh->state);
2908	atomic_inc(&sh->count);
2909
2910	mutex_lock(&log->io_mutex);
2911	/* meta + data */
2912	reserve = (1 + pages) << (PAGE_SHIFT - 9);
2913
2914	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2915	    sh->log_start == MaxSector)
2916		r5l_add_no_space_stripe(log, sh);
2917	else if (!r5l_has_free_space(log, reserve)) {
2918		if (sh->log_start == log->last_checkpoint)
2919			BUG();
2920		else
2921			r5l_add_no_space_stripe(log, sh);
2922	} else {
2923		ret = r5l_log_stripe(log, sh, pages, 0);
2924		if (ret) {
2925			spin_lock_irq(&log->io_list_lock);
2926			list_add_tail(&sh->log_list, &log->no_mem_stripes);
2927			spin_unlock_irq(&log->io_list_lock);
2928		}
2929	}
2930
2931	mutex_unlock(&log->io_mutex);
2932	return 0;
2933}
2934
2935/* check whether this big stripe is in write back cache. */
2936bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2937{
2938	struct r5l_log *log = READ_ONCE(conf->log);
2939	sector_t tree_index;
2940	void *slot;
2941
2942	if (!log)
2943		return false;
2944
2945	tree_index = r5c_tree_index(conf, sect);
2946	slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2947	return slot != NULL;
2948}
2949
2950static int r5l_load_log(struct r5l_log *log)
2951{
2952	struct md_rdev *rdev = log->rdev;
2953	struct page *page;
2954	struct r5l_meta_block *mb;
2955	sector_t cp = log->rdev->journal_tail;
2956	u32 stored_crc, expected_crc;
2957	bool create_super = false;
2958	int ret = 0;
2959
2960	/* Make sure it's valid */
2961	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2962		cp = 0;
2963	page = alloc_page(GFP_KERNEL);
2964	if (!page)
2965		return -ENOMEM;
2966
2967	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, false)) {
2968		ret = -EIO;
2969		goto ioerr;
2970	}
2971	mb = page_address(page);
2972
2973	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2974	    mb->version != R5LOG_VERSION) {
2975		create_super = true;
2976		goto create;
2977	}
2978	stored_crc = le32_to_cpu(mb->checksum);
2979	mb->checksum = 0;
2980	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2981	if (stored_crc != expected_crc) {
2982		create_super = true;
2983		goto create;
2984	}
2985	if (le64_to_cpu(mb->position) != cp) {
2986		create_super = true;
2987		goto create;
2988	}
2989create:
2990	if (create_super) {
2991		log->last_cp_seq = get_random_u32();
2992		cp = 0;
2993		r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
2994		/*
2995		 * Make sure super points to correct address. Log might have
2996		 * data very soon. If super hasn't correct log tail address,
2997		 * recovery can't find the log
2998		 */
2999		r5l_write_super(log, cp);
3000	} else
3001		log->last_cp_seq = le64_to_cpu(mb->seq);
3002
3003	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3004	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3005	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3006		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3007	log->last_checkpoint = cp;
3008
3009	__free_page(page);
3010
3011	if (create_super) {
3012		log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3013		log->seq = log->last_cp_seq + 1;
3014		log->next_checkpoint = cp;
3015	} else
3016		ret = r5l_recovery_log(log);
3017
3018	r5c_update_log_state(log);
3019	return ret;
3020ioerr:
3021	__free_page(page);
3022	return ret;
3023}
3024
3025int r5l_start(struct r5l_log *log)
3026{
3027	int ret;
3028
3029	if (!log)
3030		return 0;
3031
3032	ret = r5l_load_log(log);
3033	if (ret) {
3034		struct mddev *mddev = log->rdev->mddev;
3035		struct r5conf *conf = mddev->private;
3036
3037		r5l_exit_log(conf);
3038	}
3039	return ret;
3040}
3041
3042void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3043{
3044	struct r5conf *conf = mddev->private;
3045	struct r5l_log *log = READ_ONCE(conf->log);
3046
3047	if (!log)
3048		return;
3049
3050	if ((raid5_calc_degraded(conf) > 0 ||
3051	     test_bit(Journal, &rdev->flags)) &&
3052	    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3053		schedule_work(&log->disable_writeback_work);
3054}
3055
3056int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3057{
3058	struct r5l_log *log;
3059	struct md_thread *thread;
3060	int ret;
3061
3062	pr_debug("md/raid:%s: using device %pg as journal\n",
3063		 mdname(conf->mddev), rdev->bdev);
3064
3065	if (PAGE_SIZE != 4096)
3066		return -EINVAL;
3067
3068	/*
3069	 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3070	 * raid_disks r5l_payload_data_parity.
3071	 *
3072	 * Write journal and cache does not work for very big array
3073	 * (raid_disks > 203)
3074	 */
3075	if (sizeof(struct r5l_meta_block) +
3076	    ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3077	     conf->raid_disks) > PAGE_SIZE) {
3078		pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3079		       mdname(conf->mddev), conf->raid_disks);
3080		return -EINVAL;
3081	}
3082
3083	log = kzalloc(sizeof(*log), GFP_KERNEL);
3084	if (!log)
3085		return -ENOMEM;
3086	log->rdev = rdev;
3087	log->need_cache_flush = bdev_write_cache(rdev->bdev);
3088	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3089				       sizeof(rdev->mddev->uuid));
3090
3091	mutex_init(&log->io_mutex);
3092
3093	spin_lock_init(&log->io_list_lock);
3094	INIT_LIST_HEAD(&log->running_ios);
3095	INIT_LIST_HEAD(&log->io_end_ios);
3096	INIT_LIST_HEAD(&log->flushing_ios);
3097	INIT_LIST_HEAD(&log->finished_ios);
3098
3099	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3100	if (!log->io_kc)
3101		goto io_kc;
3102
3103	ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
3104	if (ret)
3105		goto io_pool;
3106
3107	ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3108	if (ret)
3109		goto io_bs;
3110
3111	ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
3112	if (ret)
3113		goto out_mempool;
3114
3115	spin_lock_init(&log->tree_lock);
3116	INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3117
3118	thread = md_register_thread(r5l_reclaim_thread, log->rdev->mddev,
3119				    "reclaim");
3120	if (!thread)
3121		goto reclaim_thread;
3122
3123	thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3124	rcu_assign_pointer(log->reclaim_thread, thread);
3125
3126	init_waitqueue_head(&log->iounit_wait);
3127
3128	INIT_LIST_HEAD(&log->no_mem_stripes);
3129
3130	INIT_LIST_HEAD(&log->no_space_stripes);
3131	spin_lock_init(&log->no_space_stripes_lock);
3132
3133	INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3134	INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3135
3136	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3137	INIT_LIST_HEAD(&log->stripe_in_journal_list);
3138	spin_lock_init(&log->stripe_in_journal_lock);
3139	atomic_set(&log->stripe_in_journal_count, 0);
3140
3141	WRITE_ONCE(conf->log, log);
3142
3143	set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3144	return 0;
3145
3146reclaim_thread:
3147	mempool_exit(&log->meta_pool);
3148out_mempool:
3149	bioset_exit(&log->bs);
3150io_bs:
3151	mempool_exit(&log->io_pool);
3152io_pool:
3153	kmem_cache_destroy(log->io_kc);
3154io_kc:
3155	kfree(log);
3156	return -EINVAL;
3157}
3158
3159void r5l_exit_log(struct r5conf *conf)
3160{
3161	struct r5l_log *log = conf->log;
3162
3163	md_unregister_thread(conf->mddev, &log->reclaim_thread);
3164
3165	/*
3166	 * 'reconfig_mutex' is held by caller, set 'confg->log' to NULL to
3167	 * ensure disable_writeback_work wakes up and exits.
3168	 */
3169	WRITE_ONCE(conf->log, NULL);
3170	wake_up(&conf->mddev->sb_wait);
3171	flush_work(&log->disable_writeback_work);
3172
3173	mempool_exit(&log->meta_pool);
3174	bioset_exit(&log->bs);
3175	mempool_exit(&log->io_pool);
3176	kmem_cache_destroy(log->io_kc);
3177	kfree(log);
3178}
3179