1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid10.c : Multiple Devices driver for Linux
4 *
5 * Copyright (C) 2000-2004 Neil Brown
6 *
7 * RAID-10 support for md.
8 *
9 * Base on code in raid1.c.  See raid1.c for further copyright information.
10 */
11
12#include <linux/slab.h>
13#include <linux/delay.h>
14#include <linux/blkdev.h>
15#include <linux/module.h>
16#include <linux/seq_file.h>
17#include <linux/ratelimit.h>
18#include <linux/kthread.h>
19#include <linux/raid/md_p.h>
20#include <trace/events/block.h>
21#include "md.h"
22
23#define RAID_1_10_NAME "raid10"
24#include "raid10.h"
25#include "raid0.h"
26#include "md-bitmap.h"
27
28/*
29 * RAID10 provides a combination of RAID0 and RAID1 functionality.
30 * The layout of data is defined by
31 *    chunk_size
32 *    raid_disks
33 *    near_copies (stored in low byte of layout)
34 *    far_copies (stored in second byte of layout)
35 *    far_offset (stored in bit 16 of layout )
36 *    use_far_sets (stored in bit 17 of layout )
37 *    use_far_sets_bugfixed (stored in bit 18 of layout )
38 *
39 * The data to be stored is divided into chunks using chunksize.  Each device
40 * is divided into far_copies sections.   In each section, chunks are laid out
41 * in a style similar to raid0, but near_copies copies of each chunk is stored
42 * (each on a different drive).  The starting device for each section is offset
43 * near_copies from the starting device of the previous section.  Thus there
44 * are (near_copies * far_copies) of each chunk, and each is on a different
45 * drive.  near_copies and far_copies must be at least one, and their product
46 * is at most raid_disks.
47 *
48 * If far_offset is true, then the far_copies are handled a bit differently.
49 * The copies are still in different stripes, but instead of being very far
50 * apart on disk, there are adjacent stripes.
51 *
52 * The far and offset algorithms are handled slightly differently if
53 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
54 * sets that are (near_copies * far_copies) in size.  The far copied stripes
55 * are still shifted by 'near_copies' devices, but this shifting stays confined
56 * to the set rather than the entire array.  This is done to improve the number
57 * of device combinations that can fail without causing the array to fail.
58 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
59 * on a device):
60 *    A B C D    A B C D E
61 *      ...         ...
62 *    D A B C    E A B C D
63 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
64 *    [A B] [C D]    [A B] [C D E]
65 *    |...| |...|    |...| | ... |
66 *    [B A] [D C]    [B A] [E C D]
67 */
68
69static void allow_barrier(struct r10conf *conf);
70static void lower_barrier(struct r10conf *conf);
71static int _enough(struct r10conf *conf, int previous, int ignore);
72static int enough(struct r10conf *conf, int ignore);
73static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
74				int *skipped);
75static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
76static void end_reshape_write(struct bio *bio);
77static void end_reshape(struct r10conf *conf);
78
79#include "raid1-10.c"
80
81#define NULL_CMD
82#define cmd_before(conf, cmd) \
83	do { \
84		write_sequnlock_irq(&(conf)->resync_lock); \
85		cmd; \
86	} while (0)
87#define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
88
89#define wait_event_barrier_cmd(conf, cond, cmd) \
90	wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
91		       cmd_after(conf))
92
93#define wait_event_barrier(conf, cond) \
94	wait_event_barrier_cmd(conf, cond, NULL_CMD)
95
96/*
97 * for resync bio, r10bio pointer can be retrieved from the per-bio
98 * 'struct resync_pages'.
99 */
100static inline struct r10bio *get_resync_r10bio(struct bio *bio)
101{
102	return get_resync_pages(bio)->raid_bio;
103}
104
105static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
106{
107	struct r10conf *conf = data;
108	int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
109
110	/* allocate a r10bio with room for raid_disks entries in the
111	 * bios array */
112	return kzalloc(size, gfp_flags);
113}
114
115#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
116/* amount of memory to reserve for resync requests */
117#define RESYNC_WINDOW (1024*1024)
118/* maximum number of concurrent requests, memory permitting */
119#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
120#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
121#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
122
123/*
124 * When performing a resync, we need to read and compare, so
125 * we need as many pages are there are copies.
126 * When performing a recovery, we need 2 bios, one for read,
127 * one for write (we recover only one drive per r10buf)
128 *
129 */
130static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
131{
132	struct r10conf *conf = data;
133	struct r10bio *r10_bio;
134	struct bio *bio;
135	int j;
136	int nalloc, nalloc_rp;
137	struct resync_pages *rps;
138
139	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
140	if (!r10_bio)
141		return NULL;
142
143	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
144	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
145		nalloc = conf->copies; /* resync */
146	else
147		nalloc = 2; /* recovery */
148
149	/* allocate once for all bios */
150	if (!conf->have_replacement)
151		nalloc_rp = nalloc;
152	else
153		nalloc_rp = nalloc * 2;
154	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
155	if (!rps)
156		goto out_free_r10bio;
157
158	/*
159	 * Allocate bios.
160	 */
161	for (j = nalloc ; j-- ; ) {
162		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
163		if (!bio)
164			goto out_free_bio;
165		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
166		r10_bio->devs[j].bio = bio;
167		if (!conf->have_replacement)
168			continue;
169		bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
170		if (!bio)
171			goto out_free_bio;
172		bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
173		r10_bio->devs[j].repl_bio = bio;
174	}
175	/*
176	 * Allocate RESYNC_PAGES data pages and attach them
177	 * where needed.
178	 */
179	for (j = 0; j < nalloc; j++) {
180		struct bio *rbio = r10_bio->devs[j].repl_bio;
181		struct resync_pages *rp, *rp_repl;
182
183		rp = &rps[j];
184		if (rbio)
185			rp_repl = &rps[nalloc + j];
186
187		bio = r10_bio->devs[j].bio;
188
189		if (!j || test_bit(MD_RECOVERY_SYNC,
190				   &conf->mddev->recovery)) {
191			if (resync_alloc_pages(rp, gfp_flags))
192				goto out_free_pages;
193		} else {
194			memcpy(rp, &rps[0], sizeof(*rp));
195			resync_get_all_pages(rp);
196		}
197
198		rp->raid_bio = r10_bio;
199		bio->bi_private = rp;
200		if (rbio) {
201			memcpy(rp_repl, rp, sizeof(*rp));
202			rbio->bi_private = rp_repl;
203		}
204	}
205
206	return r10_bio;
207
208out_free_pages:
209	while (--j >= 0)
210		resync_free_pages(&rps[j]);
211
212	j = 0;
213out_free_bio:
214	for ( ; j < nalloc; j++) {
215		if (r10_bio->devs[j].bio)
216			bio_uninit(r10_bio->devs[j].bio);
217		kfree(r10_bio->devs[j].bio);
218		if (r10_bio->devs[j].repl_bio)
219			bio_uninit(r10_bio->devs[j].repl_bio);
220		kfree(r10_bio->devs[j].repl_bio);
221	}
222	kfree(rps);
223out_free_r10bio:
224	rbio_pool_free(r10_bio, conf);
225	return NULL;
226}
227
228static void r10buf_pool_free(void *__r10_bio, void *data)
229{
230	struct r10conf *conf = data;
231	struct r10bio *r10bio = __r10_bio;
232	int j;
233	struct resync_pages *rp = NULL;
234
235	for (j = conf->copies; j--; ) {
236		struct bio *bio = r10bio->devs[j].bio;
237
238		if (bio) {
239			rp = get_resync_pages(bio);
240			resync_free_pages(rp);
241			bio_uninit(bio);
242			kfree(bio);
243		}
244
245		bio = r10bio->devs[j].repl_bio;
246		if (bio) {
247			bio_uninit(bio);
248			kfree(bio);
249		}
250	}
251
252	/* resync pages array stored in the 1st bio's .bi_private */
253	kfree(rp);
254
255	rbio_pool_free(r10bio, conf);
256}
257
258static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
259{
260	int i;
261
262	for (i = 0; i < conf->geo.raid_disks; i++) {
263		struct bio **bio = & r10_bio->devs[i].bio;
264		if (!BIO_SPECIAL(*bio))
265			bio_put(*bio);
266		*bio = NULL;
267		bio = &r10_bio->devs[i].repl_bio;
268		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
269			bio_put(*bio);
270		*bio = NULL;
271	}
272}
273
274static void free_r10bio(struct r10bio *r10_bio)
275{
276	struct r10conf *conf = r10_bio->mddev->private;
277
278	put_all_bios(conf, r10_bio);
279	mempool_free(r10_bio, &conf->r10bio_pool);
280}
281
282static void put_buf(struct r10bio *r10_bio)
283{
284	struct r10conf *conf = r10_bio->mddev->private;
285
286	mempool_free(r10_bio, &conf->r10buf_pool);
287
288	lower_barrier(conf);
289}
290
291static void wake_up_barrier(struct r10conf *conf)
292{
293	if (wq_has_sleeper(&conf->wait_barrier))
294		wake_up(&conf->wait_barrier);
295}
296
297static void reschedule_retry(struct r10bio *r10_bio)
298{
299	unsigned long flags;
300	struct mddev *mddev = r10_bio->mddev;
301	struct r10conf *conf = mddev->private;
302
303	spin_lock_irqsave(&conf->device_lock, flags);
304	list_add(&r10_bio->retry_list, &conf->retry_list);
305	conf->nr_queued ++;
306	spin_unlock_irqrestore(&conf->device_lock, flags);
307
308	/* wake up frozen array... */
309	wake_up(&conf->wait_barrier);
310
311	md_wakeup_thread(mddev->thread);
312}
313
314/*
315 * raid_end_bio_io() is called when we have finished servicing a mirrored
316 * operation and are ready to return a success/failure code to the buffer
317 * cache layer.
318 */
319static void raid_end_bio_io(struct r10bio *r10_bio)
320{
321	struct bio *bio = r10_bio->master_bio;
322	struct r10conf *conf = r10_bio->mddev->private;
323
324	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
325		bio->bi_status = BLK_STS_IOERR;
326
327	bio_endio(bio);
328	/*
329	 * Wake up any possible resync thread that waits for the device
330	 * to go idle.
331	 */
332	allow_barrier(conf);
333
334	free_r10bio(r10_bio);
335}
336
337/*
338 * Update disk head position estimator based on IRQ completion info.
339 */
340static inline void update_head_pos(int slot, struct r10bio *r10_bio)
341{
342	struct r10conf *conf = r10_bio->mddev->private;
343
344	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
345		r10_bio->devs[slot].addr + (r10_bio->sectors);
346}
347
348/*
349 * Find the disk number which triggered given bio
350 */
351static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
352			 struct bio *bio, int *slotp, int *replp)
353{
354	int slot;
355	int repl = 0;
356
357	for (slot = 0; slot < conf->geo.raid_disks; slot++) {
358		if (r10_bio->devs[slot].bio == bio)
359			break;
360		if (r10_bio->devs[slot].repl_bio == bio) {
361			repl = 1;
362			break;
363		}
364	}
365
366	update_head_pos(slot, r10_bio);
367
368	if (slotp)
369		*slotp = slot;
370	if (replp)
371		*replp = repl;
372	return r10_bio->devs[slot].devnum;
373}
374
375static void raid10_end_read_request(struct bio *bio)
376{
377	int uptodate = !bio->bi_status;
378	struct r10bio *r10_bio = bio->bi_private;
379	int slot;
380	struct md_rdev *rdev;
381	struct r10conf *conf = r10_bio->mddev->private;
382
383	slot = r10_bio->read_slot;
384	rdev = r10_bio->devs[slot].rdev;
385	/*
386	 * this branch is our 'one mirror IO has finished' event handler:
387	 */
388	update_head_pos(slot, r10_bio);
389
390	if (uptodate) {
391		/*
392		 * Set R10BIO_Uptodate in our master bio, so that
393		 * we will return a good error code to the higher
394		 * levels even if IO on some other mirrored buffer fails.
395		 *
396		 * The 'master' represents the composite IO operation to
397		 * user-side. So if something waits for IO, then it will
398		 * wait for the 'master' bio.
399		 */
400		set_bit(R10BIO_Uptodate, &r10_bio->state);
401	} else {
402		/* If all other devices that store this block have
403		 * failed, we want to return the error upwards rather
404		 * than fail the last device.  Here we redefine
405		 * "uptodate" to mean "Don't want to retry"
406		 */
407		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
408			     rdev->raid_disk))
409			uptodate = 1;
410	}
411	if (uptodate) {
412		raid_end_bio_io(r10_bio);
413		rdev_dec_pending(rdev, conf->mddev);
414	} else {
415		/*
416		 * oops, read error - keep the refcount on the rdev
417		 */
418		pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
419				   mdname(conf->mddev),
420				   rdev->bdev,
421				   (unsigned long long)r10_bio->sector);
422		set_bit(R10BIO_ReadError, &r10_bio->state);
423		reschedule_retry(r10_bio);
424	}
425}
426
427static void close_write(struct r10bio *r10_bio)
428{
429	/* clear the bitmap if all writes complete successfully */
430	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
431			   r10_bio->sectors,
432			   !test_bit(R10BIO_Degraded, &r10_bio->state),
433			   0);
434	md_write_end(r10_bio->mddev);
435}
436
437static void one_write_done(struct r10bio *r10_bio)
438{
439	if (atomic_dec_and_test(&r10_bio->remaining)) {
440		if (test_bit(R10BIO_WriteError, &r10_bio->state))
441			reschedule_retry(r10_bio);
442		else {
443			close_write(r10_bio);
444			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
445				reschedule_retry(r10_bio);
446			else
447				raid_end_bio_io(r10_bio);
448		}
449	}
450}
451
452static void raid10_end_write_request(struct bio *bio)
453{
454	struct r10bio *r10_bio = bio->bi_private;
455	int dev;
456	int dec_rdev = 1;
457	struct r10conf *conf = r10_bio->mddev->private;
458	int slot, repl;
459	struct md_rdev *rdev = NULL;
460	struct bio *to_put = NULL;
461	bool discard_error;
462
463	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
464
465	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
466
467	if (repl)
468		rdev = conf->mirrors[dev].replacement;
469	if (!rdev) {
470		smp_rmb();
471		repl = 0;
472		rdev = conf->mirrors[dev].rdev;
473	}
474	/*
475	 * this branch is our 'one mirror IO has finished' event handler:
476	 */
477	if (bio->bi_status && !discard_error) {
478		if (repl)
479			/* Never record new bad blocks to replacement,
480			 * just fail it.
481			 */
482			md_error(rdev->mddev, rdev);
483		else {
484			set_bit(WriteErrorSeen,	&rdev->flags);
485			if (!test_and_set_bit(WantReplacement, &rdev->flags))
486				set_bit(MD_RECOVERY_NEEDED,
487					&rdev->mddev->recovery);
488
489			dec_rdev = 0;
490			if (test_bit(FailFast, &rdev->flags) &&
491			    (bio->bi_opf & MD_FAILFAST)) {
492				md_error(rdev->mddev, rdev);
493			}
494
495			/*
496			 * When the device is faulty, it is not necessary to
497			 * handle write error.
498			 */
499			if (!test_bit(Faulty, &rdev->flags))
500				set_bit(R10BIO_WriteError, &r10_bio->state);
501			else {
502				/* Fail the request */
503				set_bit(R10BIO_Degraded, &r10_bio->state);
504				r10_bio->devs[slot].bio = NULL;
505				to_put = bio;
506				dec_rdev = 1;
507			}
508		}
509	} else {
510		/*
511		 * Set R10BIO_Uptodate in our master bio, so that
512		 * we will return a good error code for to the higher
513		 * levels even if IO on some other mirrored buffer fails.
514		 *
515		 * The 'master' represents the composite IO operation to
516		 * user-side. So if something waits for IO, then it will
517		 * wait for the 'master' bio.
518		 *
519		 * Do not set R10BIO_Uptodate if the current device is
520		 * rebuilding or Faulty. This is because we cannot use
521		 * such device for properly reading the data back (we could
522		 * potentially use it, if the current write would have felt
523		 * before rdev->recovery_offset, but for simplicity we don't
524		 * check this here.
525		 */
526		if (test_bit(In_sync, &rdev->flags) &&
527		    !test_bit(Faulty, &rdev->flags))
528			set_bit(R10BIO_Uptodate, &r10_bio->state);
529
530		/* Maybe we can clear some bad blocks. */
531		if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
532				      r10_bio->sectors) &&
533		    !discard_error) {
534			bio_put(bio);
535			if (repl)
536				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
537			else
538				r10_bio->devs[slot].bio = IO_MADE_GOOD;
539			dec_rdev = 0;
540			set_bit(R10BIO_MadeGood, &r10_bio->state);
541		}
542	}
543
544	/*
545	 *
546	 * Let's see if all mirrored write operations have finished
547	 * already.
548	 */
549	one_write_done(r10_bio);
550	if (dec_rdev)
551		rdev_dec_pending(rdev, conf->mddev);
552	if (to_put)
553		bio_put(to_put);
554}
555
556/*
557 * RAID10 layout manager
558 * As well as the chunksize and raid_disks count, there are two
559 * parameters: near_copies and far_copies.
560 * near_copies * far_copies must be <= raid_disks.
561 * Normally one of these will be 1.
562 * If both are 1, we get raid0.
563 * If near_copies == raid_disks, we get raid1.
564 *
565 * Chunks are laid out in raid0 style with near_copies copies of the
566 * first chunk, followed by near_copies copies of the next chunk and
567 * so on.
568 * If far_copies > 1, then after 1/far_copies of the array has been assigned
569 * as described above, we start again with a device offset of near_copies.
570 * So we effectively have another copy of the whole array further down all
571 * the drives, but with blocks on different drives.
572 * With this layout, and block is never stored twice on the one device.
573 *
574 * raid10_find_phys finds the sector offset of a given virtual sector
575 * on each device that it is on.
576 *
577 * raid10_find_virt does the reverse mapping, from a device and a
578 * sector offset to a virtual address
579 */
580
581static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
582{
583	int n,f;
584	sector_t sector;
585	sector_t chunk;
586	sector_t stripe;
587	int dev;
588	int slot = 0;
589	int last_far_set_start, last_far_set_size;
590
591	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
592	last_far_set_start *= geo->far_set_size;
593
594	last_far_set_size = geo->far_set_size;
595	last_far_set_size += (geo->raid_disks % geo->far_set_size);
596
597	/* now calculate first sector/dev */
598	chunk = r10bio->sector >> geo->chunk_shift;
599	sector = r10bio->sector & geo->chunk_mask;
600
601	chunk *= geo->near_copies;
602	stripe = chunk;
603	dev = sector_div(stripe, geo->raid_disks);
604	if (geo->far_offset)
605		stripe *= geo->far_copies;
606
607	sector += stripe << geo->chunk_shift;
608
609	/* and calculate all the others */
610	for (n = 0; n < geo->near_copies; n++) {
611		int d = dev;
612		int set;
613		sector_t s = sector;
614		r10bio->devs[slot].devnum = d;
615		r10bio->devs[slot].addr = s;
616		slot++;
617
618		for (f = 1; f < geo->far_copies; f++) {
619			set = d / geo->far_set_size;
620			d += geo->near_copies;
621
622			if ((geo->raid_disks % geo->far_set_size) &&
623			    (d > last_far_set_start)) {
624				d -= last_far_set_start;
625				d %= last_far_set_size;
626				d += last_far_set_start;
627			} else {
628				d %= geo->far_set_size;
629				d += geo->far_set_size * set;
630			}
631			s += geo->stride;
632			r10bio->devs[slot].devnum = d;
633			r10bio->devs[slot].addr = s;
634			slot++;
635		}
636		dev++;
637		if (dev >= geo->raid_disks) {
638			dev = 0;
639			sector += (geo->chunk_mask + 1);
640		}
641	}
642}
643
644static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
645{
646	struct geom *geo = &conf->geo;
647
648	if (conf->reshape_progress != MaxSector &&
649	    ((r10bio->sector >= conf->reshape_progress) !=
650	     conf->mddev->reshape_backwards)) {
651		set_bit(R10BIO_Previous, &r10bio->state);
652		geo = &conf->prev;
653	} else
654		clear_bit(R10BIO_Previous, &r10bio->state);
655
656	__raid10_find_phys(geo, r10bio);
657}
658
659static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
660{
661	sector_t offset, chunk, vchunk;
662	/* Never use conf->prev as this is only called during resync
663	 * or recovery, so reshape isn't happening
664	 */
665	struct geom *geo = &conf->geo;
666	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
667	int far_set_size = geo->far_set_size;
668	int last_far_set_start;
669
670	if (geo->raid_disks % geo->far_set_size) {
671		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
672		last_far_set_start *= geo->far_set_size;
673
674		if (dev >= last_far_set_start) {
675			far_set_size = geo->far_set_size;
676			far_set_size += (geo->raid_disks % geo->far_set_size);
677			far_set_start = last_far_set_start;
678		}
679	}
680
681	offset = sector & geo->chunk_mask;
682	if (geo->far_offset) {
683		int fc;
684		chunk = sector >> geo->chunk_shift;
685		fc = sector_div(chunk, geo->far_copies);
686		dev -= fc * geo->near_copies;
687		if (dev < far_set_start)
688			dev += far_set_size;
689	} else {
690		while (sector >= geo->stride) {
691			sector -= geo->stride;
692			if (dev < (geo->near_copies + far_set_start))
693				dev += far_set_size - geo->near_copies;
694			else
695				dev -= geo->near_copies;
696		}
697		chunk = sector >> geo->chunk_shift;
698	}
699	vchunk = chunk * geo->raid_disks + dev;
700	sector_div(vchunk, geo->near_copies);
701	return (vchunk << geo->chunk_shift) + offset;
702}
703
704/*
705 * This routine returns the disk from which the requested read should
706 * be done. There is a per-array 'next expected sequential IO' sector
707 * number - if this matches on the next IO then we use the last disk.
708 * There is also a per-disk 'last know head position' sector that is
709 * maintained from IRQ contexts, both the normal and the resync IO
710 * completion handlers update this position correctly. If there is no
711 * perfect sequential match then we pick the disk whose head is closest.
712 *
713 * If there are 2 mirrors in the same 2 devices, performance degrades
714 * because position is mirror, not device based.
715 *
716 * The rdev for the device selected will have nr_pending incremented.
717 */
718
719/*
720 * FIXME: possibly should rethink readbalancing and do it differently
721 * depending on near_copies / far_copies geometry.
722 */
723static struct md_rdev *read_balance(struct r10conf *conf,
724				    struct r10bio *r10_bio,
725				    int *max_sectors)
726{
727	const sector_t this_sector = r10_bio->sector;
728	int disk, slot;
729	int sectors = r10_bio->sectors;
730	int best_good_sectors;
731	sector_t new_distance, best_dist;
732	struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
733	int do_balance;
734	int best_dist_slot, best_pending_slot;
735	bool has_nonrot_disk = false;
736	unsigned int min_pending;
737	struct geom *geo = &conf->geo;
738
739	raid10_find_phys(conf, r10_bio);
740	best_dist_slot = -1;
741	min_pending = UINT_MAX;
742	best_dist_rdev = NULL;
743	best_pending_rdev = NULL;
744	best_dist = MaxSector;
745	best_good_sectors = 0;
746	do_balance = 1;
747	clear_bit(R10BIO_FailFast, &r10_bio->state);
748
749	if (raid1_should_read_first(conf->mddev, this_sector, sectors))
750		do_balance = 0;
751
752	for (slot = 0; slot < conf->copies ; slot++) {
753		sector_t first_bad;
754		int bad_sectors;
755		sector_t dev_sector;
756		unsigned int pending;
757		bool nonrot;
758
759		if (r10_bio->devs[slot].bio == IO_BLOCKED)
760			continue;
761		disk = r10_bio->devs[slot].devnum;
762		rdev = conf->mirrors[disk].replacement;
763		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
764		    r10_bio->devs[slot].addr + sectors >
765		    rdev->recovery_offset)
766			rdev = conf->mirrors[disk].rdev;
767		if (rdev == NULL ||
768		    test_bit(Faulty, &rdev->flags))
769			continue;
770		if (!test_bit(In_sync, &rdev->flags) &&
771		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
772			continue;
773
774		dev_sector = r10_bio->devs[slot].addr;
775		if (is_badblock(rdev, dev_sector, sectors,
776				&first_bad, &bad_sectors)) {
777			if (best_dist < MaxSector)
778				/* Already have a better slot */
779				continue;
780			if (first_bad <= dev_sector) {
781				/* Cannot read here.  If this is the
782				 * 'primary' device, then we must not read
783				 * beyond 'bad_sectors' from another device.
784				 */
785				bad_sectors -= (dev_sector - first_bad);
786				if (!do_balance && sectors > bad_sectors)
787					sectors = bad_sectors;
788				if (best_good_sectors > sectors)
789					best_good_sectors = sectors;
790			} else {
791				sector_t good_sectors =
792					first_bad - dev_sector;
793				if (good_sectors > best_good_sectors) {
794					best_good_sectors = good_sectors;
795					best_dist_slot = slot;
796					best_dist_rdev = rdev;
797				}
798				if (!do_balance)
799					/* Must read from here */
800					break;
801			}
802			continue;
803		} else
804			best_good_sectors = sectors;
805
806		if (!do_balance)
807			break;
808
809		nonrot = bdev_nonrot(rdev->bdev);
810		has_nonrot_disk |= nonrot;
811		pending = atomic_read(&rdev->nr_pending);
812		if (min_pending > pending && nonrot) {
813			min_pending = pending;
814			best_pending_slot = slot;
815			best_pending_rdev = rdev;
816		}
817
818		if (best_dist_slot >= 0)
819			/* At least 2 disks to choose from so failfast is OK */
820			set_bit(R10BIO_FailFast, &r10_bio->state);
821		/* This optimisation is debatable, and completely destroys
822		 * sequential read speed for 'far copies' arrays.  So only
823		 * keep it for 'near' arrays, and review those later.
824		 */
825		if (geo->near_copies > 1 && !pending)
826			new_distance = 0;
827
828		/* for far > 1 always use the lowest address */
829		else if (geo->far_copies > 1)
830			new_distance = r10_bio->devs[slot].addr;
831		else
832			new_distance = abs(r10_bio->devs[slot].addr -
833					   conf->mirrors[disk].head_position);
834
835		if (new_distance < best_dist) {
836			best_dist = new_distance;
837			best_dist_slot = slot;
838			best_dist_rdev = rdev;
839		}
840	}
841	if (slot >= conf->copies) {
842		if (has_nonrot_disk) {
843			slot = best_pending_slot;
844			rdev = best_pending_rdev;
845		} else {
846			slot = best_dist_slot;
847			rdev = best_dist_rdev;
848		}
849	}
850
851	if (slot >= 0) {
852		atomic_inc(&rdev->nr_pending);
853		r10_bio->read_slot = slot;
854	} else
855		rdev = NULL;
856	*max_sectors = best_good_sectors;
857
858	return rdev;
859}
860
861static void flush_pending_writes(struct r10conf *conf)
862{
863	/* Any writes that have been queued but are awaiting
864	 * bitmap updates get flushed here.
865	 */
866	spin_lock_irq(&conf->device_lock);
867
868	if (conf->pending_bio_list.head) {
869		struct blk_plug plug;
870		struct bio *bio;
871
872		bio = bio_list_get(&conf->pending_bio_list);
873		spin_unlock_irq(&conf->device_lock);
874
875		/*
876		 * As this is called in a wait_event() loop (see freeze_array),
877		 * current->state might be TASK_UNINTERRUPTIBLE which will
878		 * cause a warning when we prepare to wait again.  As it is
879		 * rare that this path is taken, it is perfectly safe to force
880		 * us to go around the wait_event() loop again, so the warning
881		 * is a false-positive. Silence the warning by resetting
882		 * thread state
883		 */
884		__set_current_state(TASK_RUNNING);
885
886		blk_start_plug(&plug);
887		raid1_prepare_flush_writes(conf->mddev->bitmap);
888		wake_up(&conf->wait_barrier);
889
890		while (bio) { /* submit pending writes */
891			struct bio *next = bio->bi_next;
892
893			raid1_submit_write(bio);
894			bio = next;
895			cond_resched();
896		}
897		blk_finish_plug(&plug);
898	} else
899		spin_unlock_irq(&conf->device_lock);
900}
901
902/* Barriers....
903 * Sometimes we need to suspend IO while we do something else,
904 * either some resync/recovery, or reconfigure the array.
905 * To do this we raise a 'barrier'.
906 * The 'barrier' is a counter that can be raised multiple times
907 * to count how many activities are happening which preclude
908 * normal IO.
909 * We can only raise the barrier if there is no pending IO.
910 * i.e. if nr_pending == 0.
911 * We choose only to raise the barrier if no-one is waiting for the
912 * barrier to go down.  This means that as soon as an IO request
913 * is ready, no other operations which require a barrier will start
914 * until the IO request has had a chance.
915 *
916 * So: regular IO calls 'wait_barrier'.  When that returns there
917 *    is no backgroup IO happening,  It must arrange to call
918 *    allow_barrier when it has finished its IO.
919 * backgroup IO calls must call raise_barrier.  Once that returns
920 *    there is no normal IO happeing.  It must arrange to call
921 *    lower_barrier when the particular background IO completes.
922 */
923
924static void raise_barrier(struct r10conf *conf, int force)
925{
926	write_seqlock_irq(&conf->resync_lock);
927
928	if (WARN_ON_ONCE(force && !conf->barrier))
929		force = false;
930
931	/* Wait until no block IO is waiting (unless 'force') */
932	wait_event_barrier(conf, force || !conf->nr_waiting);
933
934	/* block any new IO from starting */
935	WRITE_ONCE(conf->barrier, conf->barrier + 1);
936
937	/* Now wait for all pending IO to complete */
938	wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
939				 conf->barrier < RESYNC_DEPTH);
940
941	write_sequnlock_irq(&conf->resync_lock);
942}
943
944static void lower_barrier(struct r10conf *conf)
945{
946	unsigned long flags;
947
948	write_seqlock_irqsave(&conf->resync_lock, flags);
949	WRITE_ONCE(conf->barrier, conf->barrier - 1);
950	write_sequnlock_irqrestore(&conf->resync_lock, flags);
951	wake_up(&conf->wait_barrier);
952}
953
954static bool stop_waiting_barrier(struct r10conf *conf)
955{
956	struct bio_list *bio_list = current->bio_list;
957	struct md_thread *thread;
958
959	/* barrier is dropped */
960	if (!conf->barrier)
961		return true;
962
963	/*
964	 * If there are already pending requests (preventing the barrier from
965	 * rising completely), and the pre-process bio queue isn't empty, then
966	 * don't wait, as we need to empty that queue to get the nr_pending
967	 * count down.
968	 */
969	if (atomic_read(&conf->nr_pending) && bio_list &&
970	    (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
971		return true;
972
973	/* daemon thread must exist while handling io */
974	thread = rcu_dereference_protected(conf->mddev->thread, true);
975	/*
976	 * move on if io is issued from raid10d(), nr_pending is not released
977	 * from original io(see handle_read_error()). All raise barrier is
978	 * blocked until this io is done.
979	 */
980	if (thread->tsk == current) {
981		WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
982		return true;
983	}
984
985	return false;
986}
987
988static bool wait_barrier_nolock(struct r10conf *conf)
989{
990	unsigned int seq = read_seqbegin(&conf->resync_lock);
991
992	if (READ_ONCE(conf->barrier))
993		return false;
994
995	atomic_inc(&conf->nr_pending);
996	if (!read_seqretry(&conf->resync_lock, seq))
997		return true;
998
999	if (atomic_dec_and_test(&conf->nr_pending))
1000		wake_up_barrier(conf);
1001
1002	return false;
1003}
1004
1005static bool wait_barrier(struct r10conf *conf, bool nowait)
1006{
1007	bool ret = true;
1008
1009	if (wait_barrier_nolock(conf))
1010		return true;
1011
1012	write_seqlock_irq(&conf->resync_lock);
1013	if (conf->barrier) {
1014		/* Return false when nowait flag is set */
1015		if (nowait) {
1016			ret = false;
1017		} else {
1018			conf->nr_waiting++;
1019			mddev_add_trace_msg(conf->mddev, "raid10 wait barrier");
1020			wait_event_barrier(conf, stop_waiting_barrier(conf));
1021			conf->nr_waiting--;
1022		}
1023		if (!conf->nr_waiting)
1024			wake_up(&conf->wait_barrier);
1025	}
1026	/* Only increment nr_pending when we wait */
1027	if (ret)
1028		atomic_inc(&conf->nr_pending);
1029	write_sequnlock_irq(&conf->resync_lock);
1030	return ret;
1031}
1032
1033static void allow_barrier(struct r10conf *conf)
1034{
1035	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1036			(conf->array_freeze_pending))
1037		wake_up_barrier(conf);
1038}
1039
1040static void freeze_array(struct r10conf *conf, int extra)
1041{
1042	/* stop syncio and normal IO and wait for everything to
1043	 * go quiet.
1044	 * We increment barrier and nr_waiting, and then
1045	 * wait until nr_pending match nr_queued+extra
1046	 * This is called in the context of one normal IO request
1047	 * that has failed. Thus any sync request that might be pending
1048	 * will be blocked by nr_pending, and we need to wait for
1049	 * pending IO requests to complete or be queued for re-try.
1050	 * Thus the number queued (nr_queued) plus this request (extra)
1051	 * must match the number of pending IOs (nr_pending) before
1052	 * we continue.
1053	 */
1054	write_seqlock_irq(&conf->resync_lock);
1055	conf->array_freeze_pending++;
1056	WRITE_ONCE(conf->barrier, conf->barrier + 1);
1057	conf->nr_waiting++;
1058	wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1059			conf->nr_queued + extra, flush_pending_writes(conf));
1060	conf->array_freeze_pending--;
1061	write_sequnlock_irq(&conf->resync_lock);
1062}
1063
1064static void unfreeze_array(struct r10conf *conf)
1065{
1066	/* reverse the effect of the freeze */
1067	write_seqlock_irq(&conf->resync_lock);
1068	WRITE_ONCE(conf->barrier, conf->barrier - 1);
1069	conf->nr_waiting--;
1070	wake_up(&conf->wait_barrier);
1071	write_sequnlock_irq(&conf->resync_lock);
1072}
1073
1074static sector_t choose_data_offset(struct r10bio *r10_bio,
1075				   struct md_rdev *rdev)
1076{
1077	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1078	    test_bit(R10BIO_Previous, &r10_bio->state))
1079		return rdev->data_offset;
1080	else
1081		return rdev->new_data_offset;
1082}
1083
1084static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1085{
1086	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1087	struct mddev *mddev = plug->cb.data;
1088	struct r10conf *conf = mddev->private;
1089	struct bio *bio;
1090
1091	if (from_schedule) {
1092		spin_lock_irq(&conf->device_lock);
1093		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1094		spin_unlock_irq(&conf->device_lock);
1095		wake_up_barrier(conf);
1096		md_wakeup_thread(mddev->thread);
1097		kfree(plug);
1098		return;
1099	}
1100
1101	/* we aren't scheduling, so we can do the write-out directly. */
1102	bio = bio_list_get(&plug->pending);
1103	raid1_prepare_flush_writes(mddev->bitmap);
1104	wake_up_barrier(conf);
1105
1106	while (bio) { /* submit pending writes */
1107		struct bio *next = bio->bi_next;
1108
1109		raid1_submit_write(bio);
1110		bio = next;
1111		cond_resched();
1112	}
1113	kfree(plug);
1114}
1115
1116/*
1117 * 1. Register the new request and wait if the reconstruction thread has put
1118 * up a bar for new requests. Continue immediately if no resync is active
1119 * currently.
1120 * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1121 */
1122static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1123				 struct bio *bio, sector_t sectors)
1124{
1125	/* Bail out if REQ_NOWAIT is set for the bio */
1126	if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1127		bio_wouldblock_error(bio);
1128		return false;
1129	}
1130	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1131	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1132	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1133		allow_barrier(conf);
1134		if (bio->bi_opf & REQ_NOWAIT) {
1135			bio_wouldblock_error(bio);
1136			return false;
1137		}
1138		mddev_add_trace_msg(conf->mddev, "raid10 wait reshape");
1139		wait_event(conf->wait_barrier,
1140			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1141			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1142			   sectors);
1143		wait_barrier(conf, false);
1144	}
1145	return true;
1146}
1147
1148static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1149				struct r10bio *r10_bio, bool io_accounting)
1150{
1151	struct r10conf *conf = mddev->private;
1152	struct bio *read_bio;
1153	const enum req_op op = bio_op(bio);
1154	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1155	int max_sectors;
1156	struct md_rdev *rdev;
1157	char b[BDEVNAME_SIZE];
1158	int slot = r10_bio->read_slot;
1159	struct md_rdev *err_rdev = NULL;
1160	gfp_t gfp = GFP_NOIO;
1161
1162	if (slot >= 0 && r10_bio->devs[slot].rdev) {
1163		/*
1164		 * This is an error retry, but we cannot
1165		 * safely dereference the rdev in the r10_bio,
1166		 * we must use the one in conf.
1167		 * If it has already been disconnected (unlikely)
1168		 * we lose the device name in error messages.
1169		 */
1170		int disk;
1171		/*
1172		 * As we are blocking raid10, it is a little safer to
1173		 * use __GFP_HIGH.
1174		 */
1175		gfp = GFP_NOIO | __GFP_HIGH;
1176
1177		disk = r10_bio->devs[slot].devnum;
1178		err_rdev = conf->mirrors[disk].rdev;
1179		if (err_rdev)
1180			snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1181		else {
1182			strcpy(b, "???");
1183			/* This never gets dereferenced */
1184			err_rdev = r10_bio->devs[slot].rdev;
1185		}
1186	}
1187
1188	if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1189		return;
1190	rdev = read_balance(conf, r10_bio, &max_sectors);
1191	if (!rdev) {
1192		if (err_rdev) {
1193			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1194					    mdname(mddev), b,
1195					    (unsigned long long)r10_bio->sector);
1196		}
1197		raid_end_bio_io(r10_bio);
1198		return;
1199	}
1200	if (err_rdev)
1201		pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1202				   mdname(mddev),
1203				   rdev->bdev,
1204				   (unsigned long long)r10_bio->sector);
1205	if (max_sectors < bio_sectors(bio)) {
1206		struct bio *split = bio_split(bio, max_sectors,
1207					      gfp, &conf->bio_split);
1208		bio_chain(split, bio);
1209		allow_barrier(conf);
1210		submit_bio_noacct(bio);
1211		wait_barrier(conf, false);
1212		bio = split;
1213		r10_bio->master_bio = bio;
1214		r10_bio->sectors = max_sectors;
1215	}
1216	slot = r10_bio->read_slot;
1217
1218	if (io_accounting) {
1219		md_account_bio(mddev, &bio);
1220		r10_bio->master_bio = bio;
1221	}
1222	read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1223
1224	r10_bio->devs[slot].bio = read_bio;
1225	r10_bio->devs[slot].rdev = rdev;
1226
1227	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1228		choose_data_offset(r10_bio, rdev);
1229	read_bio->bi_end_io = raid10_end_read_request;
1230	read_bio->bi_opf = op | do_sync;
1231	if (test_bit(FailFast, &rdev->flags) &&
1232	    test_bit(R10BIO_FailFast, &r10_bio->state))
1233	        read_bio->bi_opf |= MD_FAILFAST;
1234	read_bio->bi_private = r10_bio;
1235	mddev_trace_remap(mddev, read_bio, r10_bio->sector);
1236	submit_bio_noacct(read_bio);
1237	return;
1238}
1239
1240static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1241				  struct bio *bio, bool replacement,
1242				  int n_copy)
1243{
1244	const enum req_op op = bio_op(bio);
1245	const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1246	const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1247	unsigned long flags;
1248	struct r10conf *conf = mddev->private;
1249	struct md_rdev *rdev;
1250	int devnum = r10_bio->devs[n_copy].devnum;
1251	struct bio *mbio;
1252
1253	rdev = replacement ? conf->mirrors[devnum].replacement :
1254			     conf->mirrors[devnum].rdev;
1255
1256	mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1257	if (replacement)
1258		r10_bio->devs[n_copy].repl_bio = mbio;
1259	else
1260		r10_bio->devs[n_copy].bio = mbio;
1261
1262	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1263				   choose_data_offset(r10_bio, rdev));
1264	mbio->bi_end_io	= raid10_end_write_request;
1265	mbio->bi_opf = op | do_sync | do_fua;
1266	if (!replacement && test_bit(FailFast,
1267				     &conf->mirrors[devnum].rdev->flags)
1268			 && enough(conf, devnum))
1269		mbio->bi_opf |= MD_FAILFAST;
1270	mbio->bi_private = r10_bio;
1271	mddev_trace_remap(mddev, mbio, r10_bio->sector);
1272	/* flush_pending_writes() needs access to the rdev so...*/
1273	mbio->bi_bdev = (void *)rdev;
1274
1275	atomic_inc(&r10_bio->remaining);
1276
1277	if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1278		spin_lock_irqsave(&conf->device_lock, flags);
1279		bio_list_add(&conf->pending_bio_list, mbio);
1280		spin_unlock_irqrestore(&conf->device_lock, flags);
1281		md_wakeup_thread(mddev->thread);
1282	}
1283}
1284
1285static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1286{
1287	int i;
1288	struct r10conf *conf = mddev->private;
1289	struct md_rdev *blocked_rdev;
1290
1291retry_wait:
1292	blocked_rdev = NULL;
1293	for (i = 0; i < conf->copies; i++) {
1294		struct md_rdev *rdev, *rrdev;
1295
1296		rdev = conf->mirrors[i].rdev;
1297		rrdev = conf->mirrors[i].replacement;
1298		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1299			atomic_inc(&rdev->nr_pending);
1300			blocked_rdev = rdev;
1301			break;
1302		}
1303		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1304			atomic_inc(&rrdev->nr_pending);
1305			blocked_rdev = rrdev;
1306			break;
1307		}
1308
1309		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1310			sector_t dev_sector = r10_bio->devs[i].addr;
1311
1312			/*
1313			 * Discard request doesn't care the write result
1314			 * so it doesn't need to wait blocked disk here.
1315			 */
1316			if (!r10_bio->sectors)
1317				continue;
1318
1319			if (rdev_has_badblock(rdev, dev_sector,
1320					      r10_bio->sectors) < 0) {
1321				/*
1322				 * Mustn't write here until the bad block
1323				 * is acknowledged
1324				 */
1325				atomic_inc(&rdev->nr_pending);
1326				set_bit(BlockedBadBlocks, &rdev->flags);
1327				blocked_rdev = rdev;
1328				break;
1329			}
1330		}
1331	}
1332
1333	if (unlikely(blocked_rdev)) {
1334		/* Have to wait for this device to get unblocked, then retry */
1335		allow_barrier(conf);
1336		mddev_add_trace_msg(conf->mddev,
1337			"raid10 %s wait rdev %d blocked",
1338			__func__, blocked_rdev->raid_disk);
1339		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1340		wait_barrier(conf, false);
1341		goto retry_wait;
1342	}
1343}
1344
1345static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1346				 struct r10bio *r10_bio)
1347{
1348	struct r10conf *conf = mddev->private;
1349	int i;
1350	sector_t sectors;
1351	int max_sectors;
1352
1353	if ((mddev_is_clustered(mddev) &&
1354	     md_cluster_ops->area_resyncing(mddev, WRITE,
1355					    bio->bi_iter.bi_sector,
1356					    bio_end_sector(bio)))) {
1357		DEFINE_WAIT(w);
1358		/* Bail out if REQ_NOWAIT is set for the bio */
1359		if (bio->bi_opf & REQ_NOWAIT) {
1360			bio_wouldblock_error(bio);
1361			return;
1362		}
1363		for (;;) {
1364			prepare_to_wait(&conf->wait_barrier,
1365					&w, TASK_IDLE);
1366			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1367				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1368				break;
1369			schedule();
1370		}
1371		finish_wait(&conf->wait_barrier, &w);
1372	}
1373
1374	sectors = r10_bio->sectors;
1375	if (!regular_request_wait(mddev, conf, bio, sectors))
1376		return;
1377	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1378	    (mddev->reshape_backwards
1379	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1380		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1381	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1382		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1383		/* Need to update reshape_position in metadata */
1384		mddev->reshape_position = conf->reshape_progress;
1385		set_mask_bits(&mddev->sb_flags, 0,
1386			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1387		md_wakeup_thread(mddev->thread);
1388		if (bio->bi_opf & REQ_NOWAIT) {
1389			allow_barrier(conf);
1390			bio_wouldblock_error(bio);
1391			return;
1392		}
1393		mddev_add_trace_msg(conf->mddev,
1394			"raid10 wait reshape metadata");
1395		wait_event(mddev->sb_wait,
1396			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1397
1398		conf->reshape_safe = mddev->reshape_position;
1399	}
1400
1401	/* first select target devices under rcu_lock and
1402	 * inc refcount on their rdev.  Record them by setting
1403	 * bios[x] to bio
1404	 * If there are known/acknowledged bad blocks on any device
1405	 * on which we have seen a write error, we want to avoid
1406	 * writing to those blocks.  This potentially requires several
1407	 * writes to write around the bad blocks.  Each set of writes
1408	 * gets its own r10_bio with a set of bios attached.
1409	 */
1410
1411	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1412	raid10_find_phys(conf, r10_bio);
1413
1414	wait_blocked_dev(mddev, r10_bio);
1415
1416	max_sectors = r10_bio->sectors;
1417
1418	for (i = 0;  i < conf->copies; i++) {
1419		int d = r10_bio->devs[i].devnum;
1420		struct md_rdev *rdev, *rrdev;
1421
1422		rdev = conf->mirrors[d].rdev;
1423		rrdev = conf->mirrors[d].replacement;
1424		if (rdev && (test_bit(Faulty, &rdev->flags)))
1425			rdev = NULL;
1426		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1427			rrdev = NULL;
1428
1429		r10_bio->devs[i].bio = NULL;
1430		r10_bio->devs[i].repl_bio = NULL;
1431
1432		if (!rdev && !rrdev) {
1433			set_bit(R10BIO_Degraded, &r10_bio->state);
1434			continue;
1435		}
1436		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1437			sector_t first_bad;
1438			sector_t dev_sector = r10_bio->devs[i].addr;
1439			int bad_sectors;
1440			int is_bad;
1441
1442			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1443					     &first_bad, &bad_sectors);
1444			if (is_bad && first_bad <= dev_sector) {
1445				/* Cannot write here at all */
1446				bad_sectors -= (dev_sector - first_bad);
1447				if (bad_sectors < max_sectors)
1448					/* Mustn't write more than bad_sectors
1449					 * to other devices yet
1450					 */
1451					max_sectors = bad_sectors;
1452				/* We don't set R10BIO_Degraded as that
1453				 * only applies if the disk is missing,
1454				 * so it might be re-added, and we want to
1455				 * know to recover this chunk.
1456				 * In this case the device is here, and the
1457				 * fact that this chunk is not in-sync is
1458				 * recorded in the bad block log.
1459				 */
1460				continue;
1461			}
1462			if (is_bad) {
1463				int good_sectors = first_bad - dev_sector;
1464				if (good_sectors < max_sectors)
1465					max_sectors = good_sectors;
1466			}
1467		}
1468		if (rdev) {
1469			r10_bio->devs[i].bio = bio;
1470			atomic_inc(&rdev->nr_pending);
1471		}
1472		if (rrdev) {
1473			r10_bio->devs[i].repl_bio = bio;
1474			atomic_inc(&rrdev->nr_pending);
1475		}
1476	}
1477
1478	if (max_sectors < r10_bio->sectors)
1479		r10_bio->sectors = max_sectors;
1480
1481	if (r10_bio->sectors < bio_sectors(bio)) {
1482		struct bio *split = bio_split(bio, r10_bio->sectors,
1483					      GFP_NOIO, &conf->bio_split);
1484		bio_chain(split, bio);
1485		allow_barrier(conf);
1486		submit_bio_noacct(bio);
1487		wait_barrier(conf, false);
1488		bio = split;
1489		r10_bio->master_bio = bio;
1490	}
1491
1492	md_account_bio(mddev, &bio);
1493	r10_bio->master_bio = bio;
1494	atomic_set(&r10_bio->remaining, 1);
1495	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1496
1497	for (i = 0; i < conf->copies; i++) {
1498		if (r10_bio->devs[i].bio)
1499			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1500		if (r10_bio->devs[i].repl_bio)
1501			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1502	}
1503	one_write_done(r10_bio);
1504}
1505
1506static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1507{
1508	struct r10conf *conf = mddev->private;
1509	struct r10bio *r10_bio;
1510
1511	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1512
1513	r10_bio->master_bio = bio;
1514	r10_bio->sectors = sectors;
1515
1516	r10_bio->mddev = mddev;
1517	r10_bio->sector = bio->bi_iter.bi_sector;
1518	r10_bio->state = 0;
1519	r10_bio->read_slot = -1;
1520	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1521			conf->geo.raid_disks);
1522
1523	if (bio_data_dir(bio) == READ)
1524		raid10_read_request(mddev, bio, r10_bio, true);
1525	else
1526		raid10_write_request(mddev, bio, r10_bio);
1527}
1528
1529static void raid_end_discard_bio(struct r10bio *r10bio)
1530{
1531	struct r10conf *conf = r10bio->mddev->private;
1532	struct r10bio *first_r10bio;
1533
1534	while (atomic_dec_and_test(&r10bio->remaining)) {
1535
1536		allow_barrier(conf);
1537
1538		if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1539			first_r10bio = (struct r10bio *)r10bio->master_bio;
1540			free_r10bio(r10bio);
1541			r10bio = first_r10bio;
1542		} else {
1543			md_write_end(r10bio->mddev);
1544			bio_endio(r10bio->master_bio);
1545			free_r10bio(r10bio);
1546			break;
1547		}
1548	}
1549}
1550
1551static void raid10_end_discard_request(struct bio *bio)
1552{
1553	struct r10bio *r10_bio = bio->bi_private;
1554	struct r10conf *conf = r10_bio->mddev->private;
1555	struct md_rdev *rdev = NULL;
1556	int dev;
1557	int slot, repl;
1558
1559	/*
1560	 * We don't care the return value of discard bio
1561	 */
1562	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1563		set_bit(R10BIO_Uptodate, &r10_bio->state);
1564
1565	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1566	rdev = repl ? conf->mirrors[dev].replacement :
1567		      conf->mirrors[dev].rdev;
1568
1569	raid_end_discard_bio(r10_bio);
1570	rdev_dec_pending(rdev, conf->mddev);
1571}
1572
1573/*
1574 * There are some limitations to handle discard bio
1575 * 1st, the discard size is bigger than stripe_size*2.
1576 * 2st, if the discard bio spans reshape progress, we use the old way to
1577 * handle discard bio
1578 */
1579static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1580{
1581	struct r10conf *conf = mddev->private;
1582	struct geom *geo = &conf->geo;
1583	int far_copies = geo->far_copies;
1584	bool first_copy = true;
1585	struct r10bio *r10_bio, *first_r10bio;
1586	struct bio *split;
1587	int disk;
1588	sector_t chunk;
1589	unsigned int stripe_size;
1590	unsigned int stripe_data_disks;
1591	sector_t split_size;
1592	sector_t bio_start, bio_end;
1593	sector_t first_stripe_index, last_stripe_index;
1594	sector_t start_disk_offset;
1595	unsigned int start_disk_index;
1596	sector_t end_disk_offset;
1597	unsigned int end_disk_index;
1598	unsigned int remainder;
1599
1600	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1601		return -EAGAIN;
1602
1603	if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1604		bio_wouldblock_error(bio);
1605		return 0;
1606	}
1607	wait_barrier(conf, false);
1608
1609	/*
1610	 * Check reshape again to avoid reshape happens after checking
1611	 * MD_RECOVERY_RESHAPE and before wait_barrier
1612	 */
1613	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1614		goto out;
1615
1616	if (geo->near_copies)
1617		stripe_data_disks = geo->raid_disks / geo->near_copies +
1618					geo->raid_disks % geo->near_copies;
1619	else
1620		stripe_data_disks = geo->raid_disks;
1621
1622	stripe_size = stripe_data_disks << geo->chunk_shift;
1623
1624	bio_start = bio->bi_iter.bi_sector;
1625	bio_end = bio_end_sector(bio);
1626
1627	/*
1628	 * Maybe one discard bio is smaller than strip size or across one
1629	 * stripe and discard region is larger than one stripe size. For far
1630	 * offset layout, if the discard region is not aligned with stripe
1631	 * size, there is hole when we submit discard bio to member disk.
1632	 * For simplicity, we only handle discard bio which discard region
1633	 * is bigger than stripe_size * 2
1634	 */
1635	if (bio_sectors(bio) < stripe_size*2)
1636		goto out;
1637
1638	/*
1639	 * Keep bio aligned with strip size.
1640	 */
1641	div_u64_rem(bio_start, stripe_size, &remainder);
1642	if (remainder) {
1643		split_size = stripe_size - remainder;
1644		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1645		bio_chain(split, bio);
1646		allow_barrier(conf);
1647		/* Resend the fist split part */
1648		submit_bio_noacct(split);
1649		wait_barrier(conf, false);
1650	}
1651	div_u64_rem(bio_end, stripe_size, &remainder);
1652	if (remainder) {
1653		split_size = bio_sectors(bio) - remainder;
1654		split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1655		bio_chain(split, bio);
1656		allow_barrier(conf);
1657		/* Resend the second split part */
1658		submit_bio_noacct(bio);
1659		bio = split;
1660		wait_barrier(conf, false);
1661	}
1662
1663	bio_start = bio->bi_iter.bi_sector;
1664	bio_end = bio_end_sector(bio);
1665
1666	/*
1667	 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1668	 * One stripe contains the chunks from all member disk (one chunk from
1669	 * one disk at the same HBA address). For layout detail, see 'man md 4'
1670	 */
1671	chunk = bio_start >> geo->chunk_shift;
1672	chunk *= geo->near_copies;
1673	first_stripe_index = chunk;
1674	start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1675	if (geo->far_offset)
1676		first_stripe_index *= geo->far_copies;
1677	start_disk_offset = (bio_start & geo->chunk_mask) +
1678				(first_stripe_index << geo->chunk_shift);
1679
1680	chunk = bio_end >> geo->chunk_shift;
1681	chunk *= geo->near_copies;
1682	last_stripe_index = chunk;
1683	end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1684	if (geo->far_offset)
1685		last_stripe_index *= geo->far_copies;
1686	end_disk_offset = (bio_end & geo->chunk_mask) +
1687				(last_stripe_index << geo->chunk_shift);
1688
1689retry_discard:
1690	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1691	r10_bio->mddev = mddev;
1692	r10_bio->state = 0;
1693	r10_bio->sectors = 0;
1694	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1695	wait_blocked_dev(mddev, r10_bio);
1696
1697	/*
1698	 * For far layout it needs more than one r10bio to cover all regions.
1699	 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1700	 * to record the discard bio. Other r10bio->master_bio record the first
1701	 * r10bio. The first r10bio only release after all other r10bios finish.
1702	 * The discard bio returns only first r10bio finishes
1703	 */
1704	if (first_copy) {
1705		r10_bio->master_bio = bio;
1706		set_bit(R10BIO_Discard, &r10_bio->state);
1707		first_copy = false;
1708		first_r10bio = r10_bio;
1709	} else
1710		r10_bio->master_bio = (struct bio *)first_r10bio;
1711
1712	/*
1713	 * first select target devices under rcu_lock and
1714	 * inc refcount on their rdev.  Record them by setting
1715	 * bios[x] to bio
1716	 */
1717	for (disk = 0; disk < geo->raid_disks; disk++) {
1718		struct md_rdev *rdev, *rrdev;
1719
1720		rdev = conf->mirrors[disk].rdev;
1721		rrdev = conf->mirrors[disk].replacement;
1722		r10_bio->devs[disk].bio = NULL;
1723		r10_bio->devs[disk].repl_bio = NULL;
1724
1725		if (rdev && (test_bit(Faulty, &rdev->flags)))
1726			rdev = NULL;
1727		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1728			rrdev = NULL;
1729		if (!rdev && !rrdev)
1730			continue;
1731
1732		if (rdev) {
1733			r10_bio->devs[disk].bio = bio;
1734			atomic_inc(&rdev->nr_pending);
1735		}
1736		if (rrdev) {
1737			r10_bio->devs[disk].repl_bio = bio;
1738			atomic_inc(&rrdev->nr_pending);
1739		}
1740	}
1741
1742	atomic_set(&r10_bio->remaining, 1);
1743	for (disk = 0; disk < geo->raid_disks; disk++) {
1744		sector_t dev_start, dev_end;
1745		struct bio *mbio, *rbio = NULL;
1746
1747		/*
1748		 * Now start to calculate the start and end address for each disk.
1749		 * The space between dev_start and dev_end is the discard region.
1750		 *
1751		 * For dev_start, it needs to consider three conditions:
1752		 * 1st, the disk is before start_disk, you can imagine the disk in
1753		 * the next stripe. So the dev_start is the start address of next
1754		 * stripe.
1755		 * 2st, the disk is after start_disk, it means the disk is at the
1756		 * same stripe of first disk
1757		 * 3st, the first disk itself, we can use start_disk_offset directly
1758		 */
1759		if (disk < start_disk_index)
1760			dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1761		else if (disk > start_disk_index)
1762			dev_start = first_stripe_index * mddev->chunk_sectors;
1763		else
1764			dev_start = start_disk_offset;
1765
1766		if (disk < end_disk_index)
1767			dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1768		else if (disk > end_disk_index)
1769			dev_end = last_stripe_index * mddev->chunk_sectors;
1770		else
1771			dev_end = end_disk_offset;
1772
1773		/*
1774		 * It only handles discard bio which size is >= stripe size, so
1775		 * dev_end > dev_start all the time.
1776		 * It doesn't need to use rcu lock to get rdev here. We already
1777		 * add rdev->nr_pending in the first loop.
1778		 */
1779		if (r10_bio->devs[disk].bio) {
1780			struct md_rdev *rdev = conf->mirrors[disk].rdev;
1781			mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1782					       &mddev->bio_set);
1783			mbio->bi_end_io = raid10_end_discard_request;
1784			mbio->bi_private = r10_bio;
1785			r10_bio->devs[disk].bio = mbio;
1786			r10_bio->devs[disk].devnum = disk;
1787			atomic_inc(&r10_bio->remaining);
1788			md_submit_discard_bio(mddev, rdev, mbio,
1789					dev_start + choose_data_offset(r10_bio, rdev),
1790					dev_end - dev_start);
1791			bio_endio(mbio);
1792		}
1793		if (r10_bio->devs[disk].repl_bio) {
1794			struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1795			rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1796					       &mddev->bio_set);
1797			rbio->bi_end_io = raid10_end_discard_request;
1798			rbio->bi_private = r10_bio;
1799			r10_bio->devs[disk].repl_bio = rbio;
1800			r10_bio->devs[disk].devnum = disk;
1801			atomic_inc(&r10_bio->remaining);
1802			md_submit_discard_bio(mddev, rrdev, rbio,
1803					dev_start + choose_data_offset(r10_bio, rrdev),
1804					dev_end - dev_start);
1805			bio_endio(rbio);
1806		}
1807	}
1808
1809	if (!geo->far_offset && --far_copies) {
1810		first_stripe_index += geo->stride >> geo->chunk_shift;
1811		start_disk_offset += geo->stride;
1812		last_stripe_index += geo->stride >> geo->chunk_shift;
1813		end_disk_offset += geo->stride;
1814		atomic_inc(&first_r10bio->remaining);
1815		raid_end_discard_bio(r10_bio);
1816		wait_barrier(conf, false);
1817		goto retry_discard;
1818	}
1819
1820	raid_end_discard_bio(r10_bio);
1821
1822	return 0;
1823out:
1824	allow_barrier(conf);
1825	return -EAGAIN;
1826}
1827
1828static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1829{
1830	struct r10conf *conf = mddev->private;
1831	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1832	int chunk_sects = chunk_mask + 1;
1833	int sectors = bio_sectors(bio);
1834
1835	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1836	    && md_flush_request(mddev, bio))
1837		return true;
1838
1839	if (!md_write_start(mddev, bio))
1840		return false;
1841
1842	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1843		if (!raid10_handle_discard(mddev, bio))
1844			return true;
1845
1846	/*
1847	 * If this request crosses a chunk boundary, we need to split
1848	 * it.
1849	 */
1850	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1851		     sectors > chunk_sects
1852		     && (conf->geo.near_copies < conf->geo.raid_disks
1853			 || conf->prev.near_copies <
1854			 conf->prev.raid_disks)))
1855		sectors = chunk_sects -
1856			(bio->bi_iter.bi_sector &
1857			 (chunk_sects - 1));
1858	__make_request(mddev, bio, sectors);
1859
1860	/* In case raid10d snuck in to freeze_array */
1861	wake_up_barrier(conf);
1862	return true;
1863}
1864
1865static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1866{
1867	struct r10conf *conf = mddev->private;
1868	int i;
1869
1870	lockdep_assert_held(&mddev->lock);
1871
1872	if (conf->geo.near_copies < conf->geo.raid_disks)
1873		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1874	if (conf->geo.near_copies > 1)
1875		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1876	if (conf->geo.far_copies > 1) {
1877		if (conf->geo.far_offset)
1878			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1879		else
1880			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1881		if (conf->geo.far_set_size != conf->geo.raid_disks)
1882			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1883	}
1884	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1885					conf->geo.raid_disks - mddev->degraded);
1886	for (i = 0; i < conf->geo.raid_disks; i++) {
1887		struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1888
1889		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1890	}
1891	seq_printf(seq, "]");
1892}
1893
1894/* check if there are enough drives for
1895 * every block to appear on atleast one.
1896 * Don't consider the device numbered 'ignore'
1897 * as we might be about to remove it.
1898 */
1899static int _enough(struct r10conf *conf, int previous, int ignore)
1900{
1901	int first = 0;
1902	int has_enough = 0;
1903	int disks, ncopies;
1904	if (previous) {
1905		disks = conf->prev.raid_disks;
1906		ncopies = conf->prev.near_copies;
1907	} else {
1908		disks = conf->geo.raid_disks;
1909		ncopies = conf->geo.near_copies;
1910	}
1911
1912	do {
1913		int n = conf->copies;
1914		int cnt = 0;
1915		int this = first;
1916		while (n--) {
1917			struct md_rdev *rdev;
1918			if (this != ignore &&
1919			    (rdev = conf->mirrors[this].rdev) &&
1920			    test_bit(In_sync, &rdev->flags))
1921				cnt++;
1922			this = (this+1) % disks;
1923		}
1924		if (cnt == 0)
1925			goto out;
1926		first = (first + ncopies) % disks;
1927	} while (first != 0);
1928	has_enough = 1;
1929out:
1930	return has_enough;
1931}
1932
1933static int enough(struct r10conf *conf, int ignore)
1934{
1935	/* when calling 'enough', both 'prev' and 'geo' must
1936	 * be stable.
1937	 * This is ensured if ->reconfig_mutex or ->device_lock
1938	 * is held.
1939	 */
1940	return _enough(conf, 0, ignore) &&
1941		_enough(conf, 1, ignore);
1942}
1943
1944/**
1945 * raid10_error() - RAID10 error handler.
1946 * @mddev: affected md device.
1947 * @rdev: member device to fail.
1948 *
1949 * The routine acknowledges &rdev failure and determines new @mddev state.
1950 * If it failed, then:
1951 *	- &MD_BROKEN flag is set in &mddev->flags.
1952 * Otherwise, it must be degraded:
1953 *	- recovery is interrupted.
1954 *	- &mddev->degraded is bumped.
1955 *
1956 * @rdev is marked as &Faulty excluding case when array is failed and
1957 * &mddev->fail_last_dev is off.
1958 */
1959static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1960{
1961	struct r10conf *conf = mddev->private;
1962	unsigned long flags;
1963
1964	spin_lock_irqsave(&conf->device_lock, flags);
1965
1966	if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
1967		set_bit(MD_BROKEN, &mddev->flags);
1968
1969		if (!mddev->fail_last_dev) {
1970			spin_unlock_irqrestore(&conf->device_lock, flags);
1971			return;
1972		}
1973	}
1974	if (test_and_clear_bit(In_sync, &rdev->flags))
1975		mddev->degraded++;
1976
1977	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1978	set_bit(Blocked, &rdev->flags);
1979	set_bit(Faulty, &rdev->flags);
1980	set_mask_bits(&mddev->sb_flags, 0,
1981		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1982	spin_unlock_irqrestore(&conf->device_lock, flags);
1983	pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
1984		"md/raid10:%s: Operation continuing on %d devices.\n",
1985		mdname(mddev), rdev->bdev,
1986		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1987}
1988
1989static void print_conf(struct r10conf *conf)
1990{
1991	int i;
1992	struct md_rdev *rdev;
1993
1994	pr_debug("RAID10 conf printout:\n");
1995	if (!conf) {
1996		pr_debug("(!conf)\n");
1997		return;
1998	}
1999	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2000		 conf->geo.raid_disks);
2001
2002	lockdep_assert_held(&conf->mddev->reconfig_mutex);
2003	for (i = 0; i < conf->geo.raid_disks; i++) {
2004		rdev = conf->mirrors[i].rdev;
2005		if (rdev)
2006			pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2007				 i, !test_bit(In_sync, &rdev->flags),
2008				 !test_bit(Faulty, &rdev->flags),
2009				 rdev->bdev);
2010	}
2011}
2012
2013static void close_sync(struct r10conf *conf)
2014{
2015	wait_barrier(conf, false);
2016	allow_barrier(conf);
2017
2018	mempool_exit(&conf->r10buf_pool);
2019}
2020
2021static int raid10_spare_active(struct mddev *mddev)
2022{
2023	int i;
2024	struct r10conf *conf = mddev->private;
2025	struct raid10_info *tmp;
2026	int count = 0;
2027	unsigned long flags;
2028
2029	/*
2030	 * Find all non-in_sync disks within the RAID10 configuration
2031	 * and mark them in_sync
2032	 */
2033	for (i = 0; i < conf->geo.raid_disks; i++) {
2034		tmp = conf->mirrors + i;
2035		if (tmp->replacement
2036		    && tmp->replacement->recovery_offset == MaxSector
2037		    && !test_bit(Faulty, &tmp->replacement->flags)
2038		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2039			/* Replacement has just become active */
2040			if (!tmp->rdev
2041			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2042				count++;
2043			if (tmp->rdev) {
2044				/* Replaced device not technically faulty,
2045				 * but we need to be sure it gets removed
2046				 * and never re-added.
2047				 */
2048				set_bit(Faulty, &tmp->rdev->flags);
2049				sysfs_notify_dirent_safe(
2050					tmp->rdev->sysfs_state);
2051			}
2052			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2053		} else if (tmp->rdev
2054			   && tmp->rdev->recovery_offset == MaxSector
2055			   && !test_bit(Faulty, &tmp->rdev->flags)
2056			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2057			count++;
2058			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2059		}
2060	}
2061	spin_lock_irqsave(&conf->device_lock, flags);
2062	mddev->degraded -= count;
2063	spin_unlock_irqrestore(&conf->device_lock, flags);
2064
2065	print_conf(conf);
2066	return count;
2067}
2068
2069static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2070{
2071	struct r10conf *conf = mddev->private;
2072	int err = -EEXIST;
2073	int mirror, repl_slot = -1;
2074	int first = 0;
2075	int last = conf->geo.raid_disks - 1;
2076	struct raid10_info *p;
2077
2078	if (mddev->recovery_cp < MaxSector)
2079		/* only hot-add to in-sync arrays, as recovery is
2080		 * very different from resync
2081		 */
2082		return -EBUSY;
2083	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2084		return -EINVAL;
2085
2086	if (md_integrity_add_rdev(rdev, mddev))
2087		return -ENXIO;
2088
2089	if (rdev->raid_disk >= 0)
2090		first = last = rdev->raid_disk;
2091
2092	if (rdev->saved_raid_disk >= first &&
2093	    rdev->saved_raid_disk < conf->geo.raid_disks &&
2094	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2095		mirror = rdev->saved_raid_disk;
2096	else
2097		mirror = first;
2098	for ( ; mirror <= last ; mirror++) {
2099		p = &conf->mirrors[mirror];
2100		if (p->recovery_disabled == mddev->recovery_disabled)
2101			continue;
2102		if (p->rdev) {
2103			if (test_bit(WantReplacement, &p->rdev->flags) &&
2104			    p->replacement == NULL && repl_slot < 0)
2105				repl_slot = mirror;
2106			continue;
2107		}
2108
2109		err = mddev_stack_new_rdev(mddev, rdev);
2110		if (err)
2111			return err;
2112		p->head_position = 0;
2113		p->recovery_disabled = mddev->recovery_disabled - 1;
2114		rdev->raid_disk = mirror;
2115		err = 0;
2116		if (rdev->saved_raid_disk != mirror)
2117			conf->fullsync = 1;
2118		WRITE_ONCE(p->rdev, rdev);
2119		break;
2120	}
2121
2122	if (err && repl_slot >= 0) {
2123		p = &conf->mirrors[repl_slot];
2124		clear_bit(In_sync, &rdev->flags);
2125		set_bit(Replacement, &rdev->flags);
2126		rdev->raid_disk = repl_slot;
2127		err = mddev_stack_new_rdev(mddev, rdev);
2128		if (err)
2129			return err;
2130		conf->fullsync = 1;
2131		WRITE_ONCE(p->replacement, rdev);
2132	}
2133
2134	print_conf(conf);
2135	return err;
2136}
2137
2138static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2139{
2140	struct r10conf *conf = mddev->private;
2141	int err = 0;
2142	int number = rdev->raid_disk;
2143	struct md_rdev **rdevp;
2144	struct raid10_info *p;
2145
2146	print_conf(conf);
2147	if (unlikely(number >= mddev->raid_disks))
2148		return 0;
2149	p = conf->mirrors + number;
2150	if (rdev == p->rdev)
2151		rdevp = &p->rdev;
2152	else if (rdev == p->replacement)
2153		rdevp = &p->replacement;
2154	else
2155		return 0;
2156
2157	if (test_bit(In_sync, &rdev->flags) ||
2158	    atomic_read(&rdev->nr_pending)) {
2159		err = -EBUSY;
2160		goto abort;
2161	}
2162	/* Only remove non-faulty devices if recovery
2163	 * is not possible.
2164	 */
2165	if (!test_bit(Faulty, &rdev->flags) &&
2166	    mddev->recovery_disabled != p->recovery_disabled &&
2167	    (!p->replacement || p->replacement == rdev) &&
2168	    number < conf->geo.raid_disks &&
2169	    enough(conf, -1)) {
2170		err = -EBUSY;
2171		goto abort;
2172	}
2173	WRITE_ONCE(*rdevp, NULL);
2174	if (p->replacement) {
2175		/* We must have just cleared 'rdev' */
2176		WRITE_ONCE(p->rdev, p->replacement);
2177		clear_bit(Replacement, &p->replacement->flags);
2178		WRITE_ONCE(p->replacement, NULL);
2179	}
2180
2181	clear_bit(WantReplacement, &rdev->flags);
2182	err = md_integrity_register(mddev);
2183
2184abort:
2185
2186	print_conf(conf);
2187	return err;
2188}
2189
2190static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2191{
2192	struct r10conf *conf = r10_bio->mddev->private;
2193
2194	if (!bio->bi_status)
2195		set_bit(R10BIO_Uptodate, &r10_bio->state);
2196	else
2197		/* The write handler will notice the lack of
2198		 * R10BIO_Uptodate and record any errors etc
2199		 */
2200		atomic_add(r10_bio->sectors,
2201			   &conf->mirrors[d].rdev->corrected_errors);
2202
2203	/* for reconstruct, we always reschedule after a read.
2204	 * for resync, only after all reads
2205	 */
2206	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2207	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2208	    atomic_dec_and_test(&r10_bio->remaining)) {
2209		/* we have read all the blocks,
2210		 * do the comparison in process context in raid10d
2211		 */
2212		reschedule_retry(r10_bio);
2213	}
2214}
2215
2216static void end_sync_read(struct bio *bio)
2217{
2218	struct r10bio *r10_bio = get_resync_r10bio(bio);
2219	struct r10conf *conf = r10_bio->mddev->private;
2220	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2221
2222	__end_sync_read(r10_bio, bio, d);
2223}
2224
2225static void end_reshape_read(struct bio *bio)
2226{
2227	/* reshape read bio isn't allocated from r10buf_pool */
2228	struct r10bio *r10_bio = bio->bi_private;
2229
2230	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
2231}
2232
2233static void end_sync_request(struct r10bio *r10_bio)
2234{
2235	struct mddev *mddev = r10_bio->mddev;
2236
2237	while (atomic_dec_and_test(&r10_bio->remaining)) {
2238		if (r10_bio->master_bio == NULL) {
2239			/* the primary of several recovery bios */
2240			sector_t s = r10_bio->sectors;
2241			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2242			    test_bit(R10BIO_WriteError, &r10_bio->state))
2243				reschedule_retry(r10_bio);
2244			else
2245				put_buf(r10_bio);
2246			md_done_sync(mddev, s, 1);
2247			break;
2248		} else {
2249			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2250			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2251			    test_bit(R10BIO_WriteError, &r10_bio->state))
2252				reschedule_retry(r10_bio);
2253			else
2254				put_buf(r10_bio);
2255			r10_bio = r10_bio2;
2256		}
2257	}
2258}
2259
2260static void end_sync_write(struct bio *bio)
2261{
2262	struct r10bio *r10_bio = get_resync_r10bio(bio);
2263	struct mddev *mddev = r10_bio->mddev;
2264	struct r10conf *conf = mddev->private;
2265	int d;
2266	int slot;
2267	int repl;
2268	struct md_rdev *rdev = NULL;
2269
2270	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2271	if (repl)
2272		rdev = conf->mirrors[d].replacement;
2273	else
2274		rdev = conf->mirrors[d].rdev;
2275
2276	if (bio->bi_status) {
2277		if (repl)
2278			md_error(mddev, rdev);
2279		else {
2280			set_bit(WriteErrorSeen, &rdev->flags);
2281			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2282				set_bit(MD_RECOVERY_NEEDED,
2283					&rdev->mddev->recovery);
2284			set_bit(R10BIO_WriteError, &r10_bio->state);
2285		}
2286	} else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
2287				     r10_bio->sectors)) {
2288		set_bit(R10BIO_MadeGood, &r10_bio->state);
2289	}
2290
2291	rdev_dec_pending(rdev, mddev);
2292
2293	end_sync_request(r10_bio);
2294}
2295
2296/*
2297 * Note: sync and recover and handled very differently for raid10
2298 * This code is for resync.
2299 * For resync, we read through virtual addresses and read all blocks.
2300 * If there is any error, we schedule a write.  The lowest numbered
2301 * drive is authoritative.
2302 * However requests come for physical address, so we need to map.
2303 * For every physical address there are raid_disks/copies virtual addresses,
2304 * which is always are least one, but is not necessarly an integer.
2305 * This means that a physical address can span multiple chunks, so we may
2306 * have to submit multiple io requests for a single sync request.
2307 */
2308/*
2309 * We check if all blocks are in-sync and only write to blocks that
2310 * aren't in sync
2311 */
2312static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2313{
2314	struct r10conf *conf = mddev->private;
2315	int i, first;
2316	struct bio *tbio, *fbio;
2317	int vcnt;
2318	struct page **tpages, **fpages;
2319
2320	atomic_set(&r10_bio->remaining, 1);
2321
2322	/* find the first device with a block */
2323	for (i=0; i<conf->copies; i++)
2324		if (!r10_bio->devs[i].bio->bi_status)
2325			break;
2326
2327	if (i == conf->copies)
2328		goto done;
2329
2330	first = i;
2331	fbio = r10_bio->devs[i].bio;
2332	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2333	fbio->bi_iter.bi_idx = 0;
2334	fpages = get_resync_pages(fbio)->pages;
2335
2336	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2337	/* now find blocks with errors */
2338	for (i=0 ; i < conf->copies ; i++) {
2339		int  j, d;
2340		struct md_rdev *rdev;
2341		struct resync_pages *rp;
2342
2343		tbio = r10_bio->devs[i].bio;
2344
2345		if (tbio->bi_end_io != end_sync_read)
2346			continue;
2347		if (i == first)
2348			continue;
2349
2350		tpages = get_resync_pages(tbio)->pages;
2351		d = r10_bio->devs[i].devnum;
2352		rdev = conf->mirrors[d].rdev;
2353		if (!r10_bio->devs[i].bio->bi_status) {
2354			/* We know that the bi_io_vec layout is the same for
2355			 * both 'first' and 'i', so we just compare them.
2356			 * All vec entries are PAGE_SIZE;
2357			 */
2358			int sectors = r10_bio->sectors;
2359			for (j = 0; j < vcnt; j++) {
2360				int len = PAGE_SIZE;
2361				if (sectors < (len / 512))
2362					len = sectors * 512;
2363				if (memcmp(page_address(fpages[j]),
2364					   page_address(tpages[j]),
2365					   len))
2366					break;
2367				sectors -= len/512;
2368			}
2369			if (j == vcnt)
2370				continue;
2371			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2372			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2373				/* Don't fix anything. */
2374				continue;
2375		} else if (test_bit(FailFast, &rdev->flags)) {
2376			/* Just give up on this device */
2377			md_error(rdev->mddev, rdev);
2378			continue;
2379		}
2380		/* Ok, we need to write this bio, either to correct an
2381		 * inconsistency or to correct an unreadable block.
2382		 * First we need to fixup bv_offset, bv_len and
2383		 * bi_vecs, as the read request might have corrupted these
2384		 */
2385		rp = get_resync_pages(tbio);
2386		bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2387
2388		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2389
2390		rp->raid_bio = r10_bio;
2391		tbio->bi_private = rp;
2392		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2393		tbio->bi_end_io = end_sync_write;
2394
2395		bio_copy_data(tbio, fbio);
2396
2397		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2398		atomic_inc(&r10_bio->remaining);
2399		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2400
2401		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2402			tbio->bi_opf |= MD_FAILFAST;
2403		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2404		submit_bio_noacct(tbio);
2405	}
2406
2407	/* Now write out to any replacement devices
2408	 * that are active
2409	 */
2410	for (i = 0; i < conf->copies; i++) {
2411		int d;
2412
2413		tbio = r10_bio->devs[i].repl_bio;
2414		if (!tbio || !tbio->bi_end_io)
2415			continue;
2416		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2417		    && r10_bio->devs[i].bio != fbio)
2418			bio_copy_data(tbio, fbio);
2419		d = r10_bio->devs[i].devnum;
2420		atomic_inc(&r10_bio->remaining);
2421		md_sync_acct(conf->mirrors[d].replacement->bdev,
2422			     bio_sectors(tbio));
2423		submit_bio_noacct(tbio);
2424	}
2425
2426done:
2427	if (atomic_dec_and_test(&r10_bio->remaining)) {
2428		md_done_sync(mddev, r10_bio->sectors, 1);
2429		put_buf(r10_bio);
2430	}
2431}
2432
2433/*
2434 * Now for the recovery code.
2435 * Recovery happens across physical sectors.
2436 * We recover all non-is_sync drives by finding the virtual address of
2437 * each, and then choose a working drive that also has that virt address.
2438 * There is a separate r10_bio for each non-in_sync drive.
2439 * Only the first two slots are in use. The first for reading,
2440 * The second for writing.
2441 *
2442 */
2443static void fix_recovery_read_error(struct r10bio *r10_bio)
2444{
2445	/* We got a read error during recovery.
2446	 * We repeat the read in smaller page-sized sections.
2447	 * If a read succeeds, write it to the new device or record
2448	 * a bad block if we cannot.
2449	 * If a read fails, record a bad block on both old and
2450	 * new devices.
2451	 */
2452	struct mddev *mddev = r10_bio->mddev;
2453	struct r10conf *conf = mddev->private;
2454	struct bio *bio = r10_bio->devs[0].bio;
2455	sector_t sect = 0;
2456	int sectors = r10_bio->sectors;
2457	int idx = 0;
2458	int dr = r10_bio->devs[0].devnum;
2459	int dw = r10_bio->devs[1].devnum;
2460	struct page **pages = get_resync_pages(bio)->pages;
2461
2462	while (sectors) {
2463		int s = sectors;
2464		struct md_rdev *rdev;
2465		sector_t addr;
2466		int ok;
2467
2468		if (s > (PAGE_SIZE>>9))
2469			s = PAGE_SIZE >> 9;
2470
2471		rdev = conf->mirrors[dr].rdev;
2472		addr = r10_bio->devs[0].addr + sect,
2473		ok = sync_page_io(rdev,
2474				  addr,
2475				  s << 9,
2476				  pages[idx],
2477				  REQ_OP_READ, false);
2478		if (ok) {
2479			rdev = conf->mirrors[dw].rdev;
2480			addr = r10_bio->devs[1].addr + sect;
2481			ok = sync_page_io(rdev,
2482					  addr,
2483					  s << 9,
2484					  pages[idx],
2485					  REQ_OP_WRITE, false);
2486			if (!ok) {
2487				set_bit(WriteErrorSeen, &rdev->flags);
2488				if (!test_and_set_bit(WantReplacement,
2489						      &rdev->flags))
2490					set_bit(MD_RECOVERY_NEEDED,
2491						&rdev->mddev->recovery);
2492			}
2493		}
2494		if (!ok) {
2495			/* We don't worry if we cannot set a bad block -
2496			 * it really is bad so there is no loss in not
2497			 * recording it yet
2498			 */
2499			rdev_set_badblocks(rdev, addr, s, 0);
2500
2501			if (rdev != conf->mirrors[dw].rdev) {
2502				/* need bad block on destination too */
2503				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2504				addr = r10_bio->devs[1].addr + sect;
2505				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2506				if (!ok) {
2507					/* just abort the recovery */
2508					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2509						  mdname(mddev));
2510
2511					conf->mirrors[dw].recovery_disabled
2512						= mddev->recovery_disabled;
2513					set_bit(MD_RECOVERY_INTR,
2514						&mddev->recovery);
2515					break;
2516				}
2517			}
2518		}
2519
2520		sectors -= s;
2521		sect += s;
2522		idx++;
2523	}
2524}
2525
2526static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2527{
2528	struct r10conf *conf = mddev->private;
2529	int d;
2530	struct bio *wbio = r10_bio->devs[1].bio;
2531	struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2532
2533	/* Need to test wbio2->bi_end_io before we call
2534	 * submit_bio_noacct as if the former is NULL,
2535	 * the latter is free to free wbio2.
2536	 */
2537	if (wbio2 && !wbio2->bi_end_io)
2538		wbio2 = NULL;
2539
2540	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2541		fix_recovery_read_error(r10_bio);
2542		if (wbio->bi_end_io)
2543			end_sync_request(r10_bio);
2544		if (wbio2)
2545			end_sync_request(r10_bio);
2546		return;
2547	}
2548
2549	/*
2550	 * share the pages with the first bio
2551	 * and submit the write request
2552	 */
2553	d = r10_bio->devs[1].devnum;
2554	if (wbio->bi_end_io) {
2555		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2556		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2557		submit_bio_noacct(wbio);
2558	}
2559	if (wbio2) {
2560		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2561		md_sync_acct(conf->mirrors[d].replacement->bdev,
2562			     bio_sectors(wbio2));
2563		submit_bio_noacct(wbio2);
2564	}
2565}
2566
2567static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2568			    int sectors, struct page *page, enum req_op op)
2569{
2570	if (rdev_has_badblock(rdev, sector, sectors) &&
2571	    (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2572		return -1;
2573	if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2574		/* success */
2575		return 1;
2576	if (op == REQ_OP_WRITE) {
2577		set_bit(WriteErrorSeen, &rdev->flags);
2578		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2579			set_bit(MD_RECOVERY_NEEDED,
2580				&rdev->mddev->recovery);
2581	}
2582	/* need to record an error - either for the block or the device */
2583	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2584		md_error(rdev->mddev, rdev);
2585	return 0;
2586}
2587
2588/*
2589 * This is a kernel thread which:
2590 *
2591 *	1.	Retries failed read operations on working mirrors.
2592 *	2.	Updates the raid superblock when problems encounter.
2593 *	3.	Performs writes following reads for array synchronising.
2594 */
2595
2596static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2597{
2598	int sect = 0; /* Offset from r10_bio->sector */
2599	int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2600	struct md_rdev *rdev;
2601	int d = r10_bio->devs[slot].devnum;
2602
2603	/* still own a reference to this rdev, so it cannot
2604	 * have been cleared recently.
2605	 */
2606	rdev = conf->mirrors[d].rdev;
2607
2608	if (test_bit(Faulty, &rdev->flags))
2609		/* drive has already been failed, just ignore any
2610		   more fix_read_error() attempts */
2611		return;
2612
2613	if (exceed_read_errors(mddev, rdev)) {
2614		r10_bio->devs[slot].bio = IO_BLOCKED;
2615		return;
2616	}
2617
2618	while(sectors) {
2619		int s = sectors;
2620		int sl = slot;
2621		int success = 0;
2622		int start;
2623
2624		if (s > (PAGE_SIZE>>9))
2625			s = PAGE_SIZE >> 9;
2626
2627		do {
2628			d = r10_bio->devs[sl].devnum;
2629			rdev = conf->mirrors[d].rdev;
2630			if (rdev &&
2631			    test_bit(In_sync, &rdev->flags) &&
2632			    !test_bit(Faulty, &rdev->flags) &&
2633			    rdev_has_badblock(rdev,
2634					      r10_bio->devs[sl].addr + sect,
2635					      s) == 0) {
2636				atomic_inc(&rdev->nr_pending);
2637				success = sync_page_io(rdev,
2638						       r10_bio->devs[sl].addr +
2639						       sect,
2640						       s<<9,
2641						       conf->tmppage,
2642						       REQ_OP_READ, false);
2643				rdev_dec_pending(rdev, mddev);
2644				if (success)
2645					break;
2646			}
2647			sl++;
2648			if (sl == conf->copies)
2649				sl = 0;
2650		} while (sl != slot);
2651
2652		if (!success) {
2653			/* Cannot read from anywhere, just mark the block
2654			 * as bad on the first device to discourage future
2655			 * reads.
2656			 */
2657			int dn = r10_bio->devs[slot].devnum;
2658			rdev = conf->mirrors[dn].rdev;
2659
2660			if (!rdev_set_badblocks(
2661				    rdev,
2662				    r10_bio->devs[slot].addr
2663				    + sect,
2664				    s, 0)) {
2665				md_error(mddev, rdev);
2666				r10_bio->devs[slot].bio
2667					= IO_BLOCKED;
2668			}
2669			break;
2670		}
2671
2672		start = sl;
2673		/* write it back and re-read */
2674		while (sl != slot) {
2675			if (sl==0)
2676				sl = conf->copies;
2677			sl--;
2678			d = r10_bio->devs[sl].devnum;
2679			rdev = conf->mirrors[d].rdev;
2680			if (!rdev ||
2681			    test_bit(Faulty, &rdev->flags) ||
2682			    !test_bit(In_sync, &rdev->flags))
2683				continue;
2684
2685			atomic_inc(&rdev->nr_pending);
2686			if (r10_sync_page_io(rdev,
2687					     r10_bio->devs[sl].addr +
2688					     sect,
2689					     s, conf->tmppage, REQ_OP_WRITE)
2690			    == 0) {
2691				/* Well, this device is dead */
2692				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2693					  mdname(mddev), s,
2694					  (unsigned long long)(
2695						  sect +
2696						  choose_data_offset(r10_bio,
2697								     rdev)),
2698					  rdev->bdev);
2699				pr_notice("md/raid10:%s: %pg: failing drive\n",
2700					  mdname(mddev),
2701					  rdev->bdev);
2702			}
2703			rdev_dec_pending(rdev, mddev);
2704		}
2705		sl = start;
2706		while (sl != slot) {
2707			if (sl==0)
2708				sl = conf->copies;
2709			sl--;
2710			d = r10_bio->devs[sl].devnum;
2711			rdev = conf->mirrors[d].rdev;
2712			if (!rdev ||
2713			    test_bit(Faulty, &rdev->flags) ||
2714			    !test_bit(In_sync, &rdev->flags))
2715				continue;
2716
2717			atomic_inc(&rdev->nr_pending);
2718			switch (r10_sync_page_io(rdev,
2719					     r10_bio->devs[sl].addr +
2720					     sect,
2721					     s, conf->tmppage, REQ_OP_READ)) {
2722			case 0:
2723				/* Well, this device is dead */
2724				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2725				       mdname(mddev), s,
2726				       (unsigned long long)(
2727					       sect +
2728					       choose_data_offset(r10_bio, rdev)),
2729				       rdev->bdev);
2730				pr_notice("md/raid10:%s: %pg: failing drive\n",
2731				       mdname(mddev),
2732				       rdev->bdev);
2733				break;
2734			case 1:
2735				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2736				       mdname(mddev), s,
2737				       (unsigned long long)(
2738					       sect +
2739					       choose_data_offset(r10_bio, rdev)),
2740				       rdev->bdev);
2741				atomic_add(s, &rdev->corrected_errors);
2742			}
2743
2744			rdev_dec_pending(rdev, mddev);
2745		}
2746
2747		sectors -= s;
2748		sect += s;
2749	}
2750}
2751
2752static int narrow_write_error(struct r10bio *r10_bio, int i)
2753{
2754	struct bio *bio = r10_bio->master_bio;
2755	struct mddev *mddev = r10_bio->mddev;
2756	struct r10conf *conf = mddev->private;
2757	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2758	/* bio has the data to be written to slot 'i' where
2759	 * we just recently had a write error.
2760	 * We repeatedly clone the bio and trim down to one block,
2761	 * then try the write.  Where the write fails we record
2762	 * a bad block.
2763	 * It is conceivable that the bio doesn't exactly align with
2764	 * blocks.  We must handle this.
2765	 *
2766	 * We currently own a reference to the rdev.
2767	 */
2768
2769	int block_sectors;
2770	sector_t sector;
2771	int sectors;
2772	int sect_to_write = r10_bio->sectors;
2773	int ok = 1;
2774
2775	if (rdev->badblocks.shift < 0)
2776		return 0;
2777
2778	block_sectors = roundup(1 << rdev->badblocks.shift,
2779				bdev_logical_block_size(rdev->bdev) >> 9);
2780	sector = r10_bio->sector;
2781	sectors = ((r10_bio->sector + block_sectors)
2782		   & ~(sector_t)(block_sectors - 1))
2783		- sector;
2784
2785	while (sect_to_write) {
2786		struct bio *wbio;
2787		sector_t wsector;
2788		if (sectors > sect_to_write)
2789			sectors = sect_to_write;
2790		/* Write at 'sector' for 'sectors' */
2791		wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2792				       &mddev->bio_set);
2793		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2794		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2795		wbio->bi_iter.bi_sector = wsector +
2796				   choose_data_offset(r10_bio, rdev);
2797		wbio->bi_opf = REQ_OP_WRITE;
2798
2799		if (submit_bio_wait(wbio) < 0)
2800			/* Failure! */
2801			ok = rdev_set_badblocks(rdev, wsector,
2802						sectors, 0)
2803				&& ok;
2804
2805		bio_put(wbio);
2806		sect_to_write -= sectors;
2807		sector += sectors;
2808		sectors = block_sectors;
2809	}
2810	return ok;
2811}
2812
2813static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2814{
2815	int slot = r10_bio->read_slot;
2816	struct bio *bio;
2817	struct r10conf *conf = mddev->private;
2818	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2819
2820	/* we got a read error. Maybe the drive is bad.  Maybe just
2821	 * the block and we can fix it.
2822	 * We freeze all other IO, and try reading the block from
2823	 * other devices.  When we find one, we re-write
2824	 * and check it that fixes the read error.
2825	 * This is all done synchronously while the array is
2826	 * frozen.
2827	 */
2828	bio = r10_bio->devs[slot].bio;
2829	bio_put(bio);
2830	r10_bio->devs[slot].bio = NULL;
2831
2832	if (mddev->ro)
2833		r10_bio->devs[slot].bio = IO_BLOCKED;
2834	else if (!test_bit(FailFast, &rdev->flags)) {
2835		freeze_array(conf, 1);
2836		fix_read_error(conf, mddev, r10_bio);
2837		unfreeze_array(conf);
2838	} else
2839		md_error(mddev, rdev);
2840
2841	rdev_dec_pending(rdev, mddev);
2842	r10_bio->state = 0;
2843	raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2844	/*
2845	 * allow_barrier after re-submit to ensure no sync io
2846	 * can be issued while regular io pending.
2847	 */
2848	allow_barrier(conf);
2849}
2850
2851static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2852{
2853	/* Some sort of write request has finished and it
2854	 * succeeded in writing where we thought there was a
2855	 * bad block.  So forget the bad block.
2856	 * Or possibly if failed and we need to record
2857	 * a bad block.
2858	 */
2859	int m;
2860	struct md_rdev *rdev;
2861
2862	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2863	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2864		for (m = 0; m < conf->copies; m++) {
2865			int dev = r10_bio->devs[m].devnum;
2866			rdev = conf->mirrors[dev].rdev;
2867			if (r10_bio->devs[m].bio == NULL ||
2868				r10_bio->devs[m].bio->bi_end_io == NULL)
2869				continue;
2870			if (!r10_bio->devs[m].bio->bi_status) {
2871				rdev_clear_badblocks(
2872					rdev,
2873					r10_bio->devs[m].addr,
2874					r10_bio->sectors, 0);
2875			} else {
2876				if (!rdev_set_badblocks(
2877					    rdev,
2878					    r10_bio->devs[m].addr,
2879					    r10_bio->sectors, 0))
2880					md_error(conf->mddev, rdev);
2881			}
2882			rdev = conf->mirrors[dev].replacement;
2883			if (r10_bio->devs[m].repl_bio == NULL ||
2884				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2885				continue;
2886
2887			if (!r10_bio->devs[m].repl_bio->bi_status) {
2888				rdev_clear_badblocks(
2889					rdev,
2890					r10_bio->devs[m].addr,
2891					r10_bio->sectors, 0);
2892			} else {
2893				if (!rdev_set_badblocks(
2894					    rdev,
2895					    r10_bio->devs[m].addr,
2896					    r10_bio->sectors, 0))
2897					md_error(conf->mddev, rdev);
2898			}
2899		}
2900		put_buf(r10_bio);
2901	} else {
2902		bool fail = false;
2903		for (m = 0; m < conf->copies; m++) {
2904			int dev = r10_bio->devs[m].devnum;
2905			struct bio *bio = r10_bio->devs[m].bio;
2906			rdev = conf->mirrors[dev].rdev;
2907			if (bio == IO_MADE_GOOD) {
2908				rdev_clear_badblocks(
2909					rdev,
2910					r10_bio->devs[m].addr,
2911					r10_bio->sectors, 0);
2912				rdev_dec_pending(rdev, conf->mddev);
2913			} else if (bio != NULL && bio->bi_status) {
2914				fail = true;
2915				if (!narrow_write_error(r10_bio, m)) {
2916					md_error(conf->mddev, rdev);
2917					set_bit(R10BIO_Degraded,
2918						&r10_bio->state);
2919				}
2920				rdev_dec_pending(rdev, conf->mddev);
2921			}
2922			bio = r10_bio->devs[m].repl_bio;
2923			rdev = conf->mirrors[dev].replacement;
2924			if (rdev && bio == IO_MADE_GOOD) {
2925				rdev_clear_badblocks(
2926					rdev,
2927					r10_bio->devs[m].addr,
2928					r10_bio->sectors, 0);
2929				rdev_dec_pending(rdev, conf->mddev);
2930			}
2931		}
2932		if (fail) {
2933			spin_lock_irq(&conf->device_lock);
2934			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2935			conf->nr_queued++;
2936			spin_unlock_irq(&conf->device_lock);
2937			/*
2938			 * In case freeze_array() is waiting for condition
2939			 * nr_pending == nr_queued + extra to be true.
2940			 */
2941			wake_up(&conf->wait_barrier);
2942			md_wakeup_thread(conf->mddev->thread);
2943		} else {
2944			if (test_bit(R10BIO_WriteError,
2945				     &r10_bio->state))
2946				close_write(r10_bio);
2947			raid_end_bio_io(r10_bio);
2948		}
2949	}
2950}
2951
2952static void raid10d(struct md_thread *thread)
2953{
2954	struct mddev *mddev = thread->mddev;
2955	struct r10bio *r10_bio;
2956	unsigned long flags;
2957	struct r10conf *conf = mddev->private;
2958	struct list_head *head = &conf->retry_list;
2959	struct blk_plug plug;
2960
2961	md_check_recovery(mddev);
2962
2963	if (!list_empty_careful(&conf->bio_end_io_list) &&
2964	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2965		LIST_HEAD(tmp);
2966		spin_lock_irqsave(&conf->device_lock, flags);
2967		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2968			while (!list_empty(&conf->bio_end_io_list)) {
2969				list_move(conf->bio_end_io_list.prev, &tmp);
2970				conf->nr_queued--;
2971			}
2972		}
2973		spin_unlock_irqrestore(&conf->device_lock, flags);
2974		while (!list_empty(&tmp)) {
2975			r10_bio = list_first_entry(&tmp, struct r10bio,
2976						   retry_list);
2977			list_del(&r10_bio->retry_list);
2978			if (mddev->degraded)
2979				set_bit(R10BIO_Degraded, &r10_bio->state);
2980
2981			if (test_bit(R10BIO_WriteError,
2982				     &r10_bio->state))
2983				close_write(r10_bio);
2984			raid_end_bio_io(r10_bio);
2985		}
2986	}
2987
2988	blk_start_plug(&plug);
2989	for (;;) {
2990
2991		flush_pending_writes(conf);
2992
2993		spin_lock_irqsave(&conf->device_lock, flags);
2994		if (list_empty(head)) {
2995			spin_unlock_irqrestore(&conf->device_lock, flags);
2996			break;
2997		}
2998		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2999		list_del(head->prev);
3000		conf->nr_queued--;
3001		spin_unlock_irqrestore(&conf->device_lock, flags);
3002
3003		mddev = r10_bio->mddev;
3004		conf = mddev->private;
3005		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3006		    test_bit(R10BIO_WriteError, &r10_bio->state))
3007			handle_write_completed(conf, r10_bio);
3008		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3009			reshape_request_write(mddev, r10_bio);
3010		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3011			sync_request_write(mddev, r10_bio);
3012		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3013			recovery_request_write(mddev, r10_bio);
3014		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3015			handle_read_error(mddev, r10_bio);
3016		else
3017			WARN_ON_ONCE(1);
3018
3019		cond_resched();
3020		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3021			md_check_recovery(mddev);
3022	}
3023	blk_finish_plug(&plug);
3024}
3025
3026static int init_resync(struct r10conf *conf)
3027{
3028	int ret, buffs, i;
3029
3030	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3031	BUG_ON(mempool_initialized(&conf->r10buf_pool));
3032	conf->have_replacement = 0;
3033	for (i = 0; i < conf->geo.raid_disks; i++)
3034		if (conf->mirrors[i].replacement)
3035			conf->have_replacement = 1;
3036	ret = mempool_init(&conf->r10buf_pool, buffs,
3037			   r10buf_pool_alloc, r10buf_pool_free, conf);
3038	if (ret)
3039		return ret;
3040	conf->next_resync = 0;
3041	return 0;
3042}
3043
3044static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3045{
3046	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3047	struct rsync_pages *rp;
3048	struct bio *bio;
3049	int nalloc;
3050	int i;
3051
3052	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3053	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3054		nalloc = conf->copies; /* resync */
3055	else
3056		nalloc = 2; /* recovery */
3057
3058	for (i = 0; i < nalloc; i++) {
3059		bio = r10bio->devs[i].bio;
3060		rp = bio->bi_private;
3061		bio_reset(bio, NULL, 0);
3062		bio->bi_private = rp;
3063		bio = r10bio->devs[i].repl_bio;
3064		if (bio) {
3065			rp = bio->bi_private;
3066			bio_reset(bio, NULL, 0);
3067			bio->bi_private = rp;
3068		}
3069	}
3070	return r10bio;
3071}
3072
3073/*
3074 * Set cluster_sync_high since we need other nodes to add the
3075 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3076 */
3077static void raid10_set_cluster_sync_high(struct r10conf *conf)
3078{
3079	sector_t window_size;
3080	int extra_chunk, chunks;
3081
3082	/*
3083	 * First, here we define "stripe" as a unit which across
3084	 * all member devices one time, so we get chunks by use
3085	 * raid_disks / near_copies. Otherwise, if near_copies is
3086	 * close to raid_disks, then resync window could increases
3087	 * linearly with the increase of raid_disks, which means
3088	 * we will suspend a really large IO window while it is not
3089	 * necessary. If raid_disks is not divisible by near_copies,
3090	 * an extra chunk is needed to ensure the whole "stripe" is
3091	 * covered.
3092	 */
3093
3094	chunks = conf->geo.raid_disks / conf->geo.near_copies;
3095	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3096		extra_chunk = 0;
3097	else
3098		extra_chunk = 1;
3099	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3100
3101	/*
3102	 * At least use a 32M window to align with raid1's resync window
3103	 */
3104	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3105			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3106
3107	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3108}
3109
3110/*
3111 * perform a "sync" on one "block"
3112 *
3113 * We need to make sure that no normal I/O request - particularly write
3114 * requests - conflict with active sync requests.
3115 *
3116 * This is achieved by tracking pending requests and a 'barrier' concept
3117 * that can be installed to exclude normal IO requests.
3118 *
3119 * Resync and recovery are handled very differently.
3120 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3121 *
3122 * For resync, we iterate over virtual addresses, read all copies,
3123 * and update if there are differences.  If only one copy is live,
3124 * skip it.
3125 * For recovery, we iterate over physical addresses, read a good
3126 * value for each non-in_sync drive, and over-write.
3127 *
3128 * So, for recovery we may have several outstanding complex requests for a
3129 * given address, one for each out-of-sync device.  We model this by allocating
3130 * a number of r10_bio structures, one for each out-of-sync device.
3131 * As we setup these structures, we collect all bio's together into a list
3132 * which we then process collectively to add pages, and then process again
3133 * to pass to submit_bio_noacct.
3134 *
3135 * The r10_bio structures are linked using a borrowed master_bio pointer.
3136 * This link is counted in ->remaining.  When the r10_bio that points to NULL
3137 * has its remaining count decremented to 0, the whole complex operation
3138 * is complete.
3139 *
3140 */
3141
3142static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3143			     int *skipped)
3144{
3145	struct r10conf *conf = mddev->private;
3146	struct r10bio *r10_bio;
3147	struct bio *biolist = NULL, *bio;
3148	sector_t max_sector, nr_sectors;
3149	int i;
3150	int max_sync;
3151	sector_t sync_blocks;
3152	sector_t sectors_skipped = 0;
3153	int chunks_skipped = 0;
3154	sector_t chunk_mask = conf->geo.chunk_mask;
3155	int page_idx = 0;
3156	int error_disk = -1;
3157
3158	/*
3159	 * Allow skipping a full rebuild for incremental assembly
3160	 * of a clean array, like RAID1 does.
3161	 */
3162	if (mddev->bitmap == NULL &&
3163	    mddev->recovery_cp == MaxSector &&
3164	    mddev->reshape_position == MaxSector &&
3165	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3166	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3167	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3168	    conf->fullsync == 0) {
3169		*skipped = 1;
3170		return mddev->dev_sectors - sector_nr;
3171	}
3172
3173	if (!mempool_initialized(&conf->r10buf_pool))
3174		if (init_resync(conf))
3175			return 0;
3176
3177 skipped:
3178	max_sector = mddev->dev_sectors;
3179	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3180	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3181		max_sector = mddev->resync_max_sectors;
3182	if (sector_nr >= max_sector) {
3183		conf->cluster_sync_low = 0;
3184		conf->cluster_sync_high = 0;
3185
3186		/* If we aborted, we need to abort the
3187		 * sync on the 'current' bitmap chucks (there can
3188		 * be several when recovering multiple devices).
3189		 * as we may have started syncing it but not finished.
3190		 * We can find the current address in
3191		 * mddev->curr_resync, but for recovery,
3192		 * we need to convert that to several
3193		 * virtual addresses.
3194		 */
3195		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3196			end_reshape(conf);
3197			close_sync(conf);
3198			return 0;
3199		}
3200
3201		if (mddev->curr_resync < max_sector) { /* aborted */
3202			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3203				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3204						   &sync_blocks, 1);
3205			else for (i = 0; i < conf->geo.raid_disks; i++) {
3206				sector_t sect =
3207					raid10_find_virt(conf, mddev->curr_resync, i);
3208				md_bitmap_end_sync(mddev->bitmap, sect,
3209						   &sync_blocks, 1);
3210			}
3211		} else {
3212			/* completed sync */
3213			if ((!mddev->bitmap || conf->fullsync)
3214			    && conf->have_replacement
3215			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3216				/* Completed a full sync so the replacements
3217				 * are now fully recovered.
3218				 */
3219				for (i = 0; i < conf->geo.raid_disks; i++) {
3220					struct md_rdev *rdev =
3221						conf->mirrors[i].replacement;
3222
3223					if (rdev)
3224						rdev->recovery_offset = MaxSector;
3225				}
3226			}
3227			conf->fullsync = 0;
3228		}
3229		md_bitmap_close_sync(mddev->bitmap);
3230		close_sync(conf);
3231		*skipped = 1;
3232		return sectors_skipped;
3233	}
3234
3235	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3236		return reshape_request(mddev, sector_nr, skipped);
3237
3238	if (chunks_skipped >= conf->geo.raid_disks) {
3239		pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3240			test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?  "resync" : "recovery");
3241		if (error_disk >= 0 &&
3242		    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3243			/*
3244			 * recovery fails, set mirrors.recovery_disabled,
3245			 * device shouldn't be added to there.
3246			 */
3247			conf->mirrors[error_disk].recovery_disabled =
3248						mddev->recovery_disabled;
3249			return 0;
3250		}
3251		/*
3252		 * if there has been nothing to do on any drive,
3253		 * then there is nothing to do at all.
3254		 */
3255		*skipped = 1;
3256		return (max_sector - sector_nr) + sectors_skipped;
3257	}
3258
3259	if (max_sector > mddev->resync_max)
3260		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3261
3262	/* make sure whole request will fit in a chunk - if chunks
3263	 * are meaningful
3264	 */
3265	if (conf->geo.near_copies < conf->geo.raid_disks &&
3266	    max_sector > (sector_nr | chunk_mask))
3267		max_sector = (sector_nr | chunk_mask) + 1;
3268
3269	/*
3270	 * If there is non-resync activity waiting for a turn, then let it
3271	 * though before starting on this new sync request.
3272	 */
3273	if (conf->nr_waiting)
3274		schedule_timeout_uninterruptible(1);
3275
3276	/* Again, very different code for resync and recovery.
3277	 * Both must result in an r10bio with a list of bios that
3278	 * have bi_end_io, bi_sector, bi_bdev set,
3279	 * and bi_private set to the r10bio.
3280	 * For recovery, we may actually create several r10bios
3281	 * with 2 bios in each, that correspond to the bios in the main one.
3282	 * In this case, the subordinate r10bios link back through a
3283	 * borrowed master_bio pointer, and the counter in the master
3284	 * includes a ref from each subordinate.
3285	 */
3286	/* First, we decide what to do and set ->bi_end_io
3287	 * To end_sync_read if we want to read, and
3288	 * end_sync_write if we will want to write.
3289	 */
3290
3291	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3292	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3293		/* recovery... the complicated one */
3294		int j;
3295		r10_bio = NULL;
3296
3297		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3298			int still_degraded;
3299			struct r10bio *rb2;
3300			sector_t sect;
3301			int must_sync;
3302			int any_working;
3303			struct raid10_info *mirror = &conf->mirrors[i];
3304			struct md_rdev *mrdev, *mreplace;
3305
3306			mrdev = mirror->rdev;
3307			mreplace = mirror->replacement;
3308
3309			if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3310			    test_bit(In_sync, &mrdev->flags)))
3311				mrdev = NULL;
3312			if (mreplace && test_bit(Faulty, &mreplace->flags))
3313				mreplace = NULL;
3314
3315			if (!mrdev && !mreplace)
3316				continue;
3317
3318			still_degraded = 0;
3319			/* want to reconstruct this device */
3320			rb2 = r10_bio;
3321			sect = raid10_find_virt(conf, sector_nr, i);
3322			if (sect >= mddev->resync_max_sectors)
3323				/* last stripe is not complete - don't
3324				 * try to recover this sector.
3325				 */
3326				continue;
3327			/* Unless we are doing a full sync, or a replacement
3328			 * we only need to recover the block if it is set in
3329			 * the bitmap
3330			 */
3331			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3332							 &sync_blocks, 1);
3333			if (sync_blocks < max_sync)
3334				max_sync = sync_blocks;
3335			if (!must_sync &&
3336			    mreplace == NULL &&
3337			    !conf->fullsync) {
3338				/* yep, skip the sync_blocks here, but don't assume
3339				 * that there will never be anything to do here
3340				 */
3341				chunks_skipped = -1;
3342				continue;
3343			}
3344			if (mrdev)
3345				atomic_inc(&mrdev->nr_pending);
3346			if (mreplace)
3347				atomic_inc(&mreplace->nr_pending);
3348
3349			r10_bio = raid10_alloc_init_r10buf(conf);
3350			r10_bio->state = 0;
3351			raise_barrier(conf, rb2 != NULL);
3352			atomic_set(&r10_bio->remaining, 0);
3353
3354			r10_bio->master_bio = (struct bio*)rb2;
3355			if (rb2)
3356				atomic_inc(&rb2->remaining);
3357			r10_bio->mddev = mddev;
3358			set_bit(R10BIO_IsRecover, &r10_bio->state);
3359			r10_bio->sector = sect;
3360
3361			raid10_find_phys(conf, r10_bio);
3362
3363			/* Need to check if the array will still be
3364			 * degraded
3365			 */
3366			for (j = 0; j < conf->geo.raid_disks; j++) {
3367				struct md_rdev *rdev = conf->mirrors[j].rdev;
3368
3369				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3370					still_degraded = 1;
3371					break;
3372				}
3373			}
3374
3375			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3376							 &sync_blocks, still_degraded);
3377
3378			any_working = 0;
3379			for (j=0; j<conf->copies;j++) {
3380				int k;
3381				int d = r10_bio->devs[j].devnum;
3382				sector_t from_addr, to_addr;
3383				struct md_rdev *rdev = conf->mirrors[d].rdev;
3384				sector_t sector, first_bad;
3385				int bad_sectors;
3386				if (!rdev ||
3387				    !test_bit(In_sync, &rdev->flags))
3388					continue;
3389				/* This is where we read from */
3390				any_working = 1;
3391				sector = r10_bio->devs[j].addr;
3392
3393				if (is_badblock(rdev, sector, max_sync,
3394						&first_bad, &bad_sectors)) {
3395					if (first_bad > sector)
3396						max_sync = first_bad - sector;
3397					else {
3398						bad_sectors -= (sector
3399								- first_bad);
3400						if (max_sync > bad_sectors)
3401							max_sync = bad_sectors;
3402						continue;
3403					}
3404				}
3405				bio = r10_bio->devs[0].bio;
3406				bio->bi_next = biolist;
3407				biolist = bio;
3408				bio->bi_end_io = end_sync_read;
3409				bio->bi_opf = REQ_OP_READ;
3410				if (test_bit(FailFast, &rdev->flags))
3411					bio->bi_opf |= MD_FAILFAST;
3412				from_addr = r10_bio->devs[j].addr;
3413				bio->bi_iter.bi_sector = from_addr +
3414					rdev->data_offset;
3415				bio_set_dev(bio, rdev->bdev);
3416				atomic_inc(&rdev->nr_pending);
3417				/* and we write to 'i' (if not in_sync) */
3418
3419				for (k=0; k<conf->copies; k++)
3420					if (r10_bio->devs[k].devnum == i)
3421						break;
3422				BUG_ON(k == conf->copies);
3423				to_addr = r10_bio->devs[k].addr;
3424				r10_bio->devs[0].devnum = d;
3425				r10_bio->devs[0].addr = from_addr;
3426				r10_bio->devs[1].devnum = i;
3427				r10_bio->devs[1].addr = to_addr;
3428
3429				if (mrdev) {
3430					bio = r10_bio->devs[1].bio;
3431					bio->bi_next = biolist;
3432					biolist = bio;
3433					bio->bi_end_io = end_sync_write;
3434					bio->bi_opf = REQ_OP_WRITE;
3435					bio->bi_iter.bi_sector = to_addr
3436						+ mrdev->data_offset;
3437					bio_set_dev(bio, mrdev->bdev);
3438					atomic_inc(&r10_bio->remaining);
3439				} else
3440					r10_bio->devs[1].bio->bi_end_io = NULL;
3441
3442				/* and maybe write to replacement */
3443				bio = r10_bio->devs[1].repl_bio;
3444				if (bio)
3445					bio->bi_end_io = NULL;
3446				/* Note: if replace is not NULL, then bio
3447				 * cannot be NULL as r10buf_pool_alloc will
3448				 * have allocated it.
3449				 */
3450				if (!mreplace)
3451					break;
3452				bio->bi_next = biolist;
3453				biolist = bio;
3454				bio->bi_end_io = end_sync_write;
3455				bio->bi_opf = REQ_OP_WRITE;
3456				bio->bi_iter.bi_sector = to_addr +
3457					mreplace->data_offset;
3458				bio_set_dev(bio, mreplace->bdev);
3459				atomic_inc(&r10_bio->remaining);
3460				break;
3461			}
3462			if (j == conf->copies) {
3463				/* Cannot recover, so abort the recovery or
3464				 * record a bad block */
3465				if (any_working) {
3466					/* problem is that there are bad blocks
3467					 * on other device(s)
3468					 */
3469					int k;
3470					for (k = 0; k < conf->copies; k++)
3471						if (r10_bio->devs[k].devnum == i)
3472							break;
3473					if (mrdev && !test_bit(In_sync,
3474						      &mrdev->flags)
3475					    && !rdev_set_badblocks(
3476						    mrdev,
3477						    r10_bio->devs[k].addr,
3478						    max_sync, 0))
3479						any_working = 0;
3480					if (mreplace &&
3481					    !rdev_set_badblocks(
3482						    mreplace,
3483						    r10_bio->devs[k].addr,
3484						    max_sync, 0))
3485						any_working = 0;
3486				}
3487				if (!any_working)  {
3488					if (!test_and_set_bit(MD_RECOVERY_INTR,
3489							      &mddev->recovery))
3490						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3491						       mdname(mddev));
3492					mirror->recovery_disabled
3493						= mddev->recovery_disabled;
3494				} else {
3495					error_disk = i;
3496				}
3497				put_buf(r10_bio);
3498				if (rb2)
3499					atomic_dec(&rb2->remaining);
3500				r10_bio = rb2;
3501				if (mrdev)
3502					rdev_dec_pending(mrdev, mddev);
3503				if (mreplace)
3504					rdev_dec_pending(mreplace, mddev);
3505				break;
3506			}
3507			if (mrdev)
3508				rdev_dec_pending(mrdev, mddev);
3509			if (mreplace)
3510				rdev_dec_pending(mreplace, mddev);
3511			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3512				/* Only want this if there is elsewhere to
3513				 * read from. 'j' is currently the first
3514				 * readable copy.
3515				 */
3516				int targets = 1;
3517				for (; j < conf->copies; j++) {
3518					int d = r10_bio->devs[j].devnum;
3519					if (conf->mirrors[d].rdev &&
3520					    test_bit(In_sync,
3521						      &conf->mirrors[d].rdev->flags))
3522						targets++;
3523				}
3524				if (targets == 1)
3525					r10_bio->devs[0].bio->bi_opf
3526						&= ~MD_FAILFAST;
3527			}
3528		}
3529		if (biolist == NULL) {
3530			while (r10_bio) {
3531				struct r10bio *rb2 = r10_bio;
3532				r10_bio = (struct r10bio*) rb2->master_bio;
3533				rb2->master_bio = NULL;
3534				put_buf(rb2);
3535			}
3536			goto giveup;
3537		}
3538	} else {
3539		/* resync. Schedule a read for every block at this virt offset */
3540		int count = 0;
3541
3542		/*
3543		 * Since curr_resync_completed could probably not update in
3544		 * time, and we will set cluster_sync_low based on it.
3545		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3546		 * safety reason, which ensures curr_resync_completed is
3547		 * updated in bitmap_cond_end_sync.
3548		 */
3549		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3550					mddev_is_clustered(mddev) &&
3551					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3552
3553		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3554					  &sync_blocks, mddev->degraded) &&
3555		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3556						 &mddev->recovery)) {
3557			/* We can skip this block */
3558			*skipped = 1;
3559			return sync_blocks + sectors_skipped;
3560		}
3561		if (sync_blocks < max_sync)
3562			max_sync = sync_blocks;
3563		r10_bio = raid10_alloc_init_r10buf(conf);
3564		r10_bio->state = 0;
3565
3566		r10_bio->mddev = mddev;
3567		atomic_set(&r10_bio->remaining, 0);
3568		raise_barrier(conf, 0);
3569		conf->next_resync = sector_nr;
3570
3571		r10_bio->master_bio = NULL;
3572		r10_bio->sector = sector_nr;
3573		set_bit(R10BIO_IsSync, &r10_bio->state);
3574		raid10_find_phys(conf, r10_bio);
3575		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3576
3577		for (i = 0; i < conf->copies; i++) {
3578			int d = r10_bio->devs[i].devnum;
3579			sector_t first_bad, sector;
3580			int bad_sectors;
3581			struct md_rdev *rdev;
3582
3583			if (r10_bio->devs[i].repl_bio)
3584				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3585
3586			bio = r10_bio->devs[i].bio;
3587			bio->bi_status = BLK_STS_IOERR;
3588			rdev = conf->mirrors[d].rdev;
3589			if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3590				continue;
3591
3592			sector = r10_bio->devs[i].addr;
3593			if (is_badblock(rdev, sector, max_sync,
3594					&first_bad, &bad_sectors)) {
3595				if (first_bad > sector)
3596					max_sync = first_bad - sector;
3597				else {
3598					bad_sectors -= (sector - first_bad);
3599					if (max_sync > bad_sectors)
3600						max_sync = bad_sectors;
3601					continue;
3602				}
3603			}
3604			atomic_inc(&rdev->nr_pending);
3605			atomic_inc(&r10_bio->remaining);
3606			bio->bi_next = biolist;
3607			biolist = bio;
3608			bio->bi_end_io = end_sync_read;
3609			bio->bi_opf = REQ_OP_READ;
3610			if (test_bit(FailFast, &rdev->flags))
3611				bio->bi_opf |= MD_FAILFAST;
3612			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3613			bio_set_dev(bio, rdev->bdev);
3614			count++;
3615
3616			rdev = conf->mirrors[d].replacement;
3617			if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3618				continue;
3619
3620			atomic_inc(&rdev->nr_pending);
3621
3622			/* Need to set up for writing to the replacement */
3623			bio = r10_bio->devs[i].repl_bio;
3624			bio->bi_status = BLK_STS_IOERR;
3625
3626			sector = r10_bio->devs[i].addr;
3627			bio->bi_next = biolist;
3628			biolist = bio;
3629			bio->bi_end_io = end_sync_write;
3630			bio->bi_opf = REQ_OP_WRITE;
3631			if (test_bit(FailFast, &rdev->flags))
3632				bio->bi_opf |= MD_FAILFAST;
3633			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3634			bio_set_dev(bio, rdev->bdev);
3635			count++;
3636		}
3637
3638		if (count < 2) {
3639			for (i=0; i<conf->copies; i++) {
3640				int d = r10_bio->devs[i].devnum;
3641				if (r10_bio->devs[i].bio->bi_end_io)
3642					rdev_dec_pending(conf->mirrors[d].rdev,
3643							 mddev);
3644				if (r10_bio->devs[i].repl_bio &&
3645				    r10_bio->devs[i].repl_bio->bi_end_io)
3646					rdev_dec_pending(
3647						conf->mirrors[d].replacement,
3648						mddev);
3649			}
3650			put_buf(r10_bio);
3651			biolist = NULL;
3652			goto giveup;
3653		}
3654	}
3655
3656	nr_sectors = 0;
3657	if (sector_nr + max_sync < max_sector)
3658		max_sector = sector_nr + max_sync;
3659	do {
3660		struct page *page;
3661		int len = PAGE_SIZE;
3662		if (sector_nr + (len>>9) > max_sector)
3663			len = (max_sector - sector_nr) << 9;
3664		if (len == 0)
3665			break;
3666		for (bio= biolist ; bio ; bio=bio->bi_next) {
3667			struct resync_pages *rp = get_resync_pages(bio);
3668			page = resync_fetch_page(rp, page_idx);
3669			if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3670				bio->bi_status = BLK_STS_RESOURCE;
3671				bio_endio(bio);
3672				goto giveup;
3673			}
3674		}
3675		nr_sectors += len>>9;
3676		sector_nr += len>>9;
3677	} while (++page_idx < RESYNC_PAGES);
3678	r10_bio->sectors = nr_sectors;
3679
3680	if (mddev_is_clustered(mddev) &&
3681	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3682		/* It is resync not recovery */
3683		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3684			conf->cluster_sync_low = mddev->curr_resync_completed;
3685			raid10_set_cluster_sync_high(conf);
3686			/* Send resync message */
3687			md_cluster_ops->resync_info_update(mddev,
3688						conf->cluster_sync_low,
3689						conf->cluster_sync_high);
3690		}
3691	} else if (mddev_is_clustered(mddev)) {
3692		/* This is recovery not resync */
3693		sector_t sect_va1, sect_va2;
3694		bool broadcast_msg = false;
3695
3696		for (i = 0; i < conf->geo.raid_disks; i++) {
3697			/*
3698			 * sector_nr is a device address for recovery, so we
3699			 * need translate it to array address before compare
3700			 * with cluster_sync_high.
3701			 */
3702			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3703
3704			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3705				broadcast_msg = true;
3706				/*
3707				 * curr_resync_completed is similar as
3708				 * sector_nr, so make the translation too.
3709				 */
3710				sect_va2 = raid10_find_virt(conf,
3711					mddev->curr_resync_completed, i);
3712
3713				if (conf->cluster_sync_low == 0 ||
3714				    conf->cluster_sync_low > sect_va2)
3715					conf->cluster_sync_low = sect_va2;
3716			}
3717		}
3718		if (broadcast_msg) {
3719			raid10_set_cluster_sync_high(conf);
3720			md_cluster_ops->resync_info_update(mddev,
3721						conf->cluster_sync_low,
3722						conf->cluster_sync_high);
3723		}
3724	}
3725
3726	while (biolist) {
3727		bio = biolist;
3728		biolist = biolist->bi_next;
3729
3730		bio->bi_next = NULL;
3731		r10_bio = get_resync_r10bio(bio);
3732		r10_bio->sectors = nr_sectors;
3733
3734		if (bio->bi_end_io == end_sync_read) {
3735			md_sync_acct_bio(bio, nr_sectors);
3736			bio->bi_status = 0;
3737			submit_bio_noacct(bio);
3738		}
3739	}
3740
3741	if (sectors_skipped)
3742		/* pretend they weren't skipped, it makes
3743		 * no important difference in this case
3744		 */
3745		md_done_sync(mddev, sectors_skipped, 1);
3746
3747	return sectors_skipped + nr_sectors;
3748 giveup:
3749	/* There is nowhere to write, so all non-sync
3750	 * drives must be failed or in resync, all drives
3751	 * have a bad block, so try the next chunk...
3752	 */
3753	if (sector_nr + max_sync < max_sector)
3754		max_sector = sector_nr + max_sync;
3755
3756	sectors_skipped += (max_sector - sector_nr);
3757	chunks_skipped ++;
3758	sector_nr = max_sector;
3759	goto skipped;
3760}
3761
3762static sector_t
3763raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3764{
3765	sector_t size;
3766	struct r10conf *conf = mddev->private;
3767
3768	if (!raid_disks)
3769		raid_disks = min(conf->geo.raid_disks,
3770				 conf->prev.raid_disks);
3771	if (!sectors)
3772		sectors = conf->dev_sectors;
3773
3774	size = sectors >> conf->geo.chunk_shift;
3775	sector_div(size, conf->geo.far_copies);
3776	size = size * raid_disks;
3777	sector_div(size, conf->geo.near_copies);
3778
3779	return size << conf->geo.chunk_shift;
3780}
3781
3782static void calc_sectors(struct r10conf *conf, sector_t size)
3783{
3784	/* Calculate the number of sectors-per-device that will
3785	 * actually be used, and set conf->dev_sectors and
3786	 * conf->stride
3787	 */
3788
3789	size = size >> conf->geo.chunk_shift;
3790	sector_div(size, conf->geo.far_copies);
3791	size = size * conf->geo.raid_disks;
3792	sector_div(size, conf->geo.near_copies);
3793	/* 'size' is now the number of chunks in the array */
3794	/* calculate "used chunks per device" */
3795	size = size * conf->copies;
3796
3797	/* We need to round up when dividing by raid_disks to
3798	 * get the stride size.
3799	 */
3800	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3801
3802	conf->dev_sectors = size << conf->geo.chunk_shift;
3803
3804	if (conf->geo.far_offset)
3805		conf->geo.stride = 1 << conf->geo.chunk_shift;
3806	else {
3807		sector_div(size, conf->geo.far_copies);
3808		conf->geo.stride = size << conf->geo.chunk_shift;
3809	}
3810}
3811
3812enum geo_type {geo_new, geo_old, geo_start};
3813static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3814{
3815	int nc, fc, fo;
3816	int layout, chunk, disks;
3817	switch (new) {
3818	case geo_old:
3819		layout = mddev->layout;
3820		chunk = mddev->chunk_sectors;
3821		disks = mddev->raid_disks - mddev->delta_disks;
3822		break;
3823	case geo_new:
3824		layout = mddev->new_layout;
3825		chunk = mddev->new_chunk_sectors;
3826		disks = mddev->raid_disks;
3827		break;
3828	default: /* avoid 'may be unused' warnings */
3829	case geo_start: /* new when starting reshape - raid_disks not
3830			 * updated yet. */
3831		layout = mddev->new_layout;
3832		chunk = mddev->new_chunk_sectors;
3833		disks = mddev->raid_disks + mddev->delta_disks;
3834		break;
3835	}
3836	if (layout >> 19)
3837		return -1;
3838	if (chunk < (PAGE_SIZE >> 9) ||
3839	    !is_power_of_2(chunk))
3840		return -2;
3841	nc = layout & 255;
3842	fc = (layout >> 8) & 255;
3843	fo = layout & (1<<16);
3844	geo->raid_disks = disks;
3845	geo->near_copies = nc;
3846	geo->far_copies = fc;
3847	geo->far_offset = fo;
3848	switch (layout >> 17) {
3849	case 0:	/* original layout.  simple but not always optimal */
3850		geo->far_set_size = disks;
3851		break;
3852	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3853		 * actually using this, but leave code here just in case.*/
3854		geo->far_set_size = disks/fc;
3855		WARN(geo->far_set_size < fc,
3856		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3857		break;
3858	case 2: /* "improved" layout fixed to match documentation */
3859		geo->far_set_size = fc * nc;
3860		break;
3861	default: /* Not a valid layout */
3862		return -1;
3863	}
3864	geo->chunk_mask = chunk - 1;
3865	geo->chunk_shift = ffz(~chunk);
3866	return nc*fc;
3867}
3868
3869static void raid10_free_conf(struct r10conf *conf)
3870{
3871	if (!conf)
3872		return;
3873
3874	mempool_exit(&conf->r10bio_pool);
3875	kfree(conf->mirrors);
3876	kfree(conf->mirrors_old);
3877	kfree(conf->mirrors_new);
3878	safe_put_page(conf->tmppage);
3879	bioset_exit(&conf->bio_split);
3880	kfree(conf);
3881}
3882
3883static struct r10conf *setup_conf(struct mddev *mddev)
3884{
3885	struct r10conf *conf = NULL;
3886	int err = -EINVAL;
3887	struct geom geo;
3888	int copies;
3889
3890	copies = setup_geo(&geo, mddev, geo_new);
3891
3892	if (copies == -2) {
3893		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3894			mdname(mddev), PAGE_SIZE);
3895		goto out;
3896	}
3897
3898	if (copies < 2 || copies > mddev->raid_disks) {
3899		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3900			mdname(mddev), mddev->new_layout);
3901		goto out;
3902	}
3903
3904	err = -ENOMEM;
3905	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3906	if (!conf)
3907		goto out;
3908
3909	/* FIXME calc properly */
3910	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3911				sizeof(struct raid10_info),
3912				GFP_KERNEL);
3913	if (!conf->mirrors)
3914		goto out;
3915
3916	conf->tmppage = alloc_page(GFP_KERNEL);
3917	if (!conf->tmppage)
3918		goto out;
3919
3920	conf->geo = geo;
3921	conf->copies = copies;
3922	err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3923			   rbio_pool_free, conf);
3924	if (err)
3925		goto out;
3926
3927	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3928	if (err)
3929		goto out;
3930
3931	calc_sectors(conf, mddev->dev_sectors);
3932	if (mddev->reshape_position == MaxSector) {
3933		conf->prev = conf->geo;
3934		conf->reshape_progress = MaxSector;
3935	} else {
3936		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3937			err = -EINVAL;
3938			goto out;
3939		}
3940		conf->reshape_progress = mddev->reshape_position;
3941		if (conf->prev.far_offset)
3942			conf->prev.stride = 1 << conf->prev.chunk_shift;
3943		else
3944			/* far_copies must be 1 */
3945			conf->prev.stride = conf->dev_sectors;
3946	}
3947	conf->reshape_safe = conf->reshape_progress;
3948	spin_lock_init(&conf->device_lock);
3949	INIT_LIST_HEAD(&conf->retry_list);
3950	INIT_LIST_HEAD(&conf->bio_end_io_list);
3951
3952	seqlock_init(&conf->resync_lock);
3953	init_waitqueue_head(&conf->wait_barrier);
3954	atomic_set(&conf->nr_pending, 0);
3955
3956	err = -ENOMEM;
3957	rcu_assign_pointer(conf->thread,
3958			   md_register_thread(raid10d, mddev, "raid10"));
3959	if (!conf->thread)
3960		goto out;
3961
3962	conf->mddev = mddev;
3963	return conf;
3964
3965 out:
3966	raid10_free_conf(conf);
3967	return ERR_PTR(err);
3968}
3969
3970static unsigned int raid10_nr_stripes(struct r10conf *conf)
3971{
3972	unsigned int raid_disks = conf->geo.raid_disks;
3973
3974	if (conf->geo.raid_disks % conf->geo.near_copies)
3975		return raid_disks;
3976	return raid_disks / conf->geo.near_copies;
3977}
3978
3979static int raid10_set_queue_limits(struct mddev *mddev)
3980{
3981	struct r10conf *conf = mddev->private;
3982	struct queue_limits lim;
3983
3984	blk_set_stacking_limits(&lim);
3985	lim.max_write_zeroes_sectors = 0;
3986	lim.io_min = mddev->chunk_sectors << 9;
3987	lim.io_opt = lim.io_min * raid10_nr_stripes(conf);
3988	mddev_stack_rdev_limits(mddev, &lim);
3989	return queue_limits_set(mddev->gendisk->queue, &lim);
3990}
3991
3992static int raid10_run(struct mddev *mddev)
3993{
3994	struct r10conf *conf;
3995	int i, disk_idx;
3996	struct raid10_info *disk;
3997	struct md_rdev *rdev;
3998	sector_t size;
3999	sector_t min_offset_diff = 0;
4000	int first = 1;
4001	int ret = -EIO;
4002
4003	if (mddev->private == NULL) {
4004		conf = setup_conf(mddev);
4005		if (IS_ERR(conf))
4006			return PTR_ERR(conf);
4007		mddev->private = conf;
4008	}
4009	conf = mddev->private;
4010	if (!conf)
4011		goto out;
4012
4013	rcu_assign_pointer(mddev->thread, conf->thread);
4014	rcu_assign_pointer(conf->thread, NULL);
4015
4016	if (mddev_is_clustered(conf->mddev)) {
4017		int fc, fo;
4018
4019		fc = (mddev->layout >> 8) & 255;
4020		fo = mddev->layout & (1<<16);
4021		if (fc > 1 || fo > 0) {
4022			pr_err("only near layout is supported by clustered"
4023				" raid10\n");
4024			goto out_free_conf;
4025		}
4026	}
4027
4028	rdev_for_each(rdev, mddev) {
4029		long long diff;
4030
4031		disk_idx = rdev->raid_disk;
4032		if (disk_idx < 0)
4033			continue;
4034		if (disk_idx >= conf->geo.raid_disks &&
4035		    disk_idx >= conf->prev.raid_disks)
4036			continue;
4037		disk = conf->mirrors + disk_idx;
4038
4039		if (test_bit(Replacement, &rdev->flags)) {
4040			if (disk->replacement)
4041				goto out_free_conf;
4042			disk->replacement = rdev;
4043		} else {
4044			if (disk->rdev)
4045				goto out_free_conf;
4046			disk->rdev = rdev;
4047		}
4048		diff = (rdev->new_data_offset - rdev->data_offset);
4049		if (!mddev->reshape_backwards)
4050			diff = -diff;
4051		if (diff < 0)
4052			diff = 0;
4053		if (first || diff < min_offset_diff)
4054			min_offset_diff = diff;
4055
4056		disk->head_position = 0;
4057		first = 0;
4058	}
4059
4060	if (!mddev_is_dm(conf->mddev)) {
4061		ret = raid10_set_queue_limits(mddev);
4062		if (ret)
4063			goto out_free_conf;
4064	}
4065
4066	/* need to check that every block has at least one working mirror */
4067	if (!enough(conf, -1)) {
4068		pr_err("md/raid10:%s: not enough operational mirrors.\n",
4069		       mdname(mddev));
4070		goto out_free_conf;
4071	}
4072
4073	if (conf->reshape_progress != MaxSector) {
4074		/* must ensure that shape change is supported */
4075		if (conf->geo.far_copies != 1 &&
4076		    conf->geo.far_offset == 0)
4077			goto out_free_conf;
4078		if (conf->prev.far_copies != 1 &&
4079		    conf->prev.far_offset == 0)
4080			goto out_free_conf;
4081	}
4082
4083	mddev->degraded = 0;
4084	for (i = 0;
4085	     i < conf->geo.raid_disks
4086		     || i < conf->prev.raid_disks;
4087	     i++) {
4088
4089		disk = conf->mirrors + i;
4090
4091		if (!disk->rdev && disk->replacement) {
4092			/* The replacement is all we have - use it */
4093			disk->rdev = disk->replacement;
4094			disk->replacement = NULL;
4095			clear_bit(Replacement, &disk->rdev->flags);
4096		}
4097
4098		if (!disk->rdev ||
4099		    !test_bit(In_sync, &disk->rdev->flags)) {
4100			disk->head_position = 0;
4101			mddev->degraded++;
4102			if (disk->rdev &&
4103			    disk->rdev->saved_raid_disk < 0)
4104				conf->fullsync = 1;
4105		}
4106
4107		if (disk->replacement &&
4108		    !test_bit(In_sync, &disk->replacement->flags) &&
4109		    disk->replacement->saved_raid_disk < 0) {
4110			conf->fullsync = 1;
4111		}
4112
4113		disk->recovery_disabled = mddev->recovery_disabled - 1;
4114	}
4115
4116	if (mddev->recovery_cp != MaxSector)
4117		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4118			  mdname(mddev));
4119	pr_info("md/raid10:%s: active with %d out of %d devices\n",
4120		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4121		conf->geo.raid_disks);
4122	/*
4123	 * Ok, everything is just fine now
4124	 */
4125	mddev->dev_sectors = conf->dev_sectors;
4126	size = raid10_size(mddev, 0, 0);
4127	md_set_array_sectors(mddev, size);
4128	mddev->resync_max_sectors = size;
4129	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4130
4131	if (md_integrity_register(mddev))
4132		goto out_free_conf;
4133
4134	if (conf->reshape_progress != MaxSector) {
4135		unsigned long before_length, after_length;
4136
4137		before_length = ((1 << conf->prev.chunk_shift) *
4138				 conf->prev.far_copies);
4139		after_length = ((1 << conf->geo.chunk_shift) *
4140				conf->geo.far_copies);
4141
4142		if (max(before_length, after_length) > min_offset_diff) {
4143			/* This cannot work */
4144			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4145			goto out_free_conf;
4146		}
4147		conf->offset_diff = min_offset_diff;
4148
4149		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4150		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4151		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4152		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4153	}
4154
4155	return 0;
4156
4157out_free_conf:
4158	md_unregister_thread(mddev, &mddev->thread);
4159	raid10_free_conf(conf);
4160	mddev->private = NULL;
4161out:
4162	return ret;
4163}
4164
4165static void raid10_free(struct mddev *mddev, void *priv)
4166{
4167	raid10_free_conf(priv);
4168}
4169
4170static void raid10_quiesce(struct mddev *mddev, int quiesce)
4171{
4172	struct r10conf *conf = mddev->private;
4173
4174	if (quiesce)
4175		raise_barrier(conf, 0);
4176	else
4177		lower_barrier(conf);
4178}
4179
4180static int raid10_resize(struct mddev *mddev, sector_t sectors)
4181{
4182	/* Resize of 'far' arrays is not supported.
4183	 * For 'near' and 'offset' arrays we can set the
4184	 * number of sectors used to be an appropriate multiple
4185	 * of the chunk size.
4186	 * For 'offset', this is far_copies*chunksize.
4187	 * For 'near' the multiplier is the LCM of
4188	 * near_copies and raid_disks.
4189	 * So if far_copies > 1 && !far_offset, fail.
4190	 * Else find LCM(raid_disks, near_copy)*far_copies and
4191	 * multiply by chunk_size.  Then round to this number.
4192	 * This is mostly done by raid10_size()
4193	 */
4194	struct r10conf *conf = mddev->private;
4195	sector_t oldsize, size;
4196
4197	if (mddev->reshape_position != MaxSector)
4198		return -EBUSY;
4199
4200	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4201		return -EINVAL;
4202
4203	oldsize = raid10_size(mddev, 0, 0);
4204	size = raid10_size(mddev, sectors, 0);
4205	if (mddev->external_size &&
4206	    mddev->array_sectors > size)
4207		return -EINVAL;
4208	if (mddev->bitmap) {
4209		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4210		if (ret)
4211			return ret;
4212	}
4213	md_set_array_sectors(mddev, size);
4214	if (sectors > mddev->dev_sectors &&
4215	    mddev->recovery_cp > oldsize) {
4216		mddev->recovery_cp = oldsize;
4217		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4218	}
4219	calc_sectors(conf, sectors);
4220	mddev->dev_sectors = conf->dev_sectors;
4221	mddev->resync_max_sectors = size;
4222	return 0;
4223}
4224
4225static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4226{
4227	struct md_rdev *rdev;
4228	struct r10conf *conf;
4229
4230	if (mddev->degraded > 0) {
4231		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4232			mdname(mddev));
4233		return ERR_PTR(-EINVAL);
4234	}
4235	sector_div(size, devs);
4236
4237	/* Set new parameters */
4238	mddev->new_level = 10;
4239	/* new layout: far_copies = 1, near_copies = 2 */
4240	mddev->new_layout = (1<<8) + 2;
4241	mddev->new_chunk_sectors = mddev->chunk_sectors;
4242	mddev->delta_disks = mddev->raid_disks;
4243	mddev->raid_disks *= 2;
4244	/* make sure it will be not marked as dirty */
4245	mddev->recovery_cp = MaxSector;
4246	mddev->dev_sectors = size;
4247
4248	conf = setup_conf(mddev);
4249	if (!IS_ERR(conf)) {
4250		rdev_for_each(rdev, mddev)
4251			if (rdev->raid_disk >= 0) {
4252				rdev->new_raid_disk = rdev->raid_disk * 2;
4253				rdev->sectors = size;
4254			}
4255	}
4256
4257	return conf;
4258}
4259
4260static void *raid10_takeover(struct mddev *mddev)
4261{
4262	struct r0conf *raid0_conf;
4263
4264	/* raid10 can take over:
4265	 *  raid0 - providing it has only two drives
4266	 */
4267	if (mddev->level == 0) {
4268		/* for raid0 takeover only one zone is supported */
4269		raid0_conf = mddev->private;
4270		if (raid0_conf->nr_strip_zones > 1) {
4271			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4272				mdname(mddev));
4273			return ERR_PTR(-EINVAL);
4274		}
4275		return raid10_takeover_raid0(mddev,
4276			raid0_conf->strip_zone->zone_end,
4277			raid0_conf->strip_zone->nb_dev);
4278	}
4279	return ERR_PTR(-EINVAL);
4280}
4281
4282static int raid10_check_reshape(struct mddev *mddev)
4283{
4284	/* Called when there is a request to change
4285	 * - layout (to ->new_layout)
4286	 * - chunk size (to ->new_chunk_sectors)
4287	 * - raid_disks (by delta_disks)
4288	 * or when trying to restart a reshape that was ongoing.
4289	 *
4290	 * We need to validate the request and possibly allocate
4291	 * space if that might be an issue later.
4292	 *
4293	 * Currently we reject any reshape of a 'far' mode array,
4294	 * allow chunk size to change if new is generally acceptable,
4295	 * allow raid_disks to increase, and allow
4296	 * a switch between 'near' mode and 'offset' mode.
4297	 */
4298	struct r10conf *conf = mddev->private;
4299	struct geom geo;
4300
4301	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4302		return -EINVAL;
4303
4304	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4305		/* mustn't change number of copies */
4306		return -EINVAL;
4307	if (geo.far_copies > 1 && !geo.far_offset)
4308		/* Cannot switch to 'far' mode */
4309		return -EINVAL;
4310
4311	if (mddev->array_sectors & geo.chunk_mask)
4312			/* not factor of array size */
4313			return -EINVAL;
4314
4315	if (!enough(conf, -1))
4316		return -EINVAL;
4317
4318	kfree(conf->mirrors_new);
4319	conf->mirrors_new = NULL;
4320	if (mddev->delta_disks > 0) {
4321		/* allocate new 'mirrors' list */
4322		conf->mirrors_new =
4323			kcalloc(mddev->raid_disks + mddev->delta_disks,
4324				sizeof(struct raid10_info),
4325				GFP_KERNEL);
4326		if (!conf->mirrors_new)
4327			return -ENOMEM;
4328	}
4329	return 0;
4330}
4331
4332/*
4333 * Need to check if array has failed when deciding whether to:
4334 *  - start an array
4335 *  - remove non-faulty devices
4336 *  - add a spare
4337 *  - allow a reshape
4338 * This determination is simple when no reshape is happening.
4339 * However if there is a reshape, we need to carefully check
4340 * both the before and after sections.
4341 * This is because some failed devices may only affect one
4342 * of the two sections, and some non-in_sync devices may
4343 * be insync in the section most affected by failed devices.
4344 */
4345static int calc_degraded(struct r10conf *conf)
4346{
4347	int degraded, degraded2;
4348	int i;
4349
4350	degraded = 0;
4351	/* 'prev' section first */
4352	for (i = 0; i < conf->prev.raid_disks; i++) {
4353		struct md_rdev *rdev = conf->mirrors[i].rdev;
4354
4355		if (!rdev || test_bit(Faulty, &rdev->flags))
4356			degraded++;
4357		else if (!test_bit(In_sync, &rdev->flags))
4358			/* When we can reduce the number of devices in
4359			 * an array, this might not contribute to
4360			 * 'degraded'.  It does now.
4361			 */
4362			degraded++;
4363	}
4364	if (conf->geo.raid_disks == conf->prev.raid_disks)
4365		return degraded;
4366	degraded2 = 0;
4367	for (i = 0; i < conf->geo.raid_disks; i++) {
4368		struct md_rdev *rdev = conf->mirrors[i].rdev;
4369
4370		if (!rdev || test_bit(Faulty, &rdev->flags))
4371			degraded2++;
4372		else if (!test_bit(In_sync, &rdev->flags)) {
4373			/* If reshape is increasing the number of devices,
4374			 * this section has already been recovered, so
4375			 * it doesn't contribute to degraded.
4376			 * else it does.
4377			 */
4378			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4379				degraded2++;
4380		}
4381	}
4382	if (degraded2 > degraded)
4383		return degraded2;
4384	return degraded;
4385}
4386
4387static int raid10_start_reshape(struct mddev *mddev)
4388{
4389	/* A 'reshape' has been requested. This commits
4390	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4391	 * This also checks if there are enough spares and adds them
4392	 * to the array.
4393	 * We currently require enough spares to make the final
4394	 * array non-degraded.  We also require that the difference
4395	 * between old and new data_offset - on each device - is
4396	 * enough that we never risk over-writing.
4397	 */
4398
4399	unsigned long before_length, after_length;
4400	sector_t min_offset_diff = 0;
4401	int first = 1;
4402	struct geom new;
4403	struct r10conf *conf = mddev->private;
4404	struct md_rdev *rdev;
4405	int spares = 0;
4406	int ret;
4407
4408	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4409		return -EBUSY;
4410
4411	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4412		return -EINVAL;
4413
4414	before_length = ((1 << conf->prev.chunk_shift) *
4415			 conf->prev.far_copies);
4416	after_length = ((1 << conf->geo.chunk_shift) *
4417			conf->geo.far_copies);
4418
4419	rdev_for_each(rdev, mddev) {
4420		if (!test_bit(In_sync, &rdev->flags)
4421		    && !test_bit(Faulty, &rdev->flags))
4422			spares++;
4423		if (rdev->raid_disk >= 0) {
4424			long long diff = (rdev->new_data_offset
4425					  - rdev->data_offset);
4426			if (!mddev->reshape_backwards)
4427				diff = -diff;
4428			if (diff < 0)
4429				diff = 0;
4430			if (first || diff < min_offset_diff)
4431				min_offset_diff = diff;
4432			first = 0;
4433		}
4434	}
4435
4436	if (max(before_length, after_length) > min_offset_diff)
4437		return -EINVAL;
4438
4439	if (spares < mddev->delta_disks)
4440		return -EINVAL;
4441
4442	conf->offset_diff = min_offset_diff;
4443	spin_lock_irq(&conf->device_lock);
4444	if (conf->mirrors_new) {
4445		memcpy(conf->mirrors_new, conf->mirrors,
4446		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4447		smp_mb();
4448		kfree(conf->mirrors_old);
4449		conf->mirrors_old = conf->mirrors;
4450		conf->mirrors = conf->mirrors_new;
4451		conf->mirrors_new = NULL;
4452	}
4453	setup_geo(&conf->geo, mddev, geo_start);
4454	smp_mb();
4455	if (mddev->reshape_backwards) {
4456		sector_t size = raid10_size(mddev, 0, 0);
4457		if (size < mddev->array_sectors) {
4458			spin_unlock_irq(&conf->device_lock);
4459			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4460				mdname(mddev));
4461			return -EINVAL;
4462		}
4463		mddev->resync_max_sectors = size;
4464		conf->reshape_progress = size;
4465	} else
4466		conf->reshape_progress = 0;
4467	conf->reshape_safe = conf->reshape_progress;
4468	spin_unlock_irq(&conf->device_lock);
4469
4470	if (mddev->delta_disks && mddev->bitmap) {
4471		struct mdp_superblock_1 *sb = NULL;
4472		sector_t oldsize, newsize;
4473
4474		oldsize = raid10_size(mddev, 0, 0);
4475		newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4476
4477		if (!mddev_is_clustered(mddev)) {
4478			ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4479			if (ret)
4480				goto abort;
4481			else
4482				goto out;
4483		}
4484
4485		rdev_for_each(rdev, mddev) {
4486			if (rdev->raid_disk > -1 &&
4487			    !test_bit(Faulty, &rdev->flags))
4488				sb = page_address(rdev->sb_page);
4489		}
4490
4491		/*
4492		 * some node is already performing reshape, and no need to
4493		 * call md_bitmap_resize again since it should be called when
4494		 * receiving BITMAP_RESIZE msg
4495		 */
4496		if ((sb && (le32_to_cpu(sb->feature_map) &
4497			    MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4498			goto out;
4499
4500		ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4501		if (ret)
4502			goto abort;
4503
4504		ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4505		if (ret) {
4506			md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4507			goto abort;
4508		}
4509	}
4510out:
4511	if (mddev->delta_disks > 0) {
4512		rdev_for_each(rdev, mddev)
4513			if (rdev->raid_disk < 0 &&
4514			    !test_bit(Faulty, &rdev->flags)) {
4515				if (raid10_add_disk(mddev, rdev) == 0) {
4516					if (rdev->raid_disk >=
4517					    conf->prev.raid_disks)
4518						set_bit(In_sync, &rdev->flags);
4519					else
4520						rdev->recovery_offset = 0;
4521
4522					/* Failure here is OK */
4523					sysfs_link_rdev(mddev, rdev);
4524				}
4525			} else if (rdev->raid_disk >= conf->prev.raid_disks
4526				   && !test_bit(Faulty, &rdev->flags)) {
4527				/* This is a spare that was manually added */
4528				set_bit(In_sync, &rdev->flags);
4529			}
4530	}
4531	/* When a reshape changes the number of devices,
4532	 * ->degraded is measured against the larger of the
4533	 * pre and  post numbers.
4534	 */
4535	spin_lock_irq(&conf->device_lock);
4536	mddev->degraded = calc_degraded(conf);
4537	spin_unlock_irq(&conf->device_lock);
4538	mddev->raid_disks = conf->geo.raid_disks;
4539	mddev->reshape_position = conf->reshape_progress;
4540	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4541
4542	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4543	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4544	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4545	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4546	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4547	conf->reshape_checkpoint = jiffies;
4548	md_new_event();
4549	return 0;
4550
4551abort:
4552	mddev->recovery = 0;
4553	spin_lock_irq(&conf->device_lock);
4554	conf->geo = conf->prev;
4555	mddev->raid_disks = conf->geo.raid_disks;
4556	rdev_for_each(rdev, mddev)
4557		rdev->new_data_offset = rdev->data_offset;
4558	smp_wmb();
4559	conf->reshape_progress = MaxSector;
4560	conf->reshape_safe = MaxSector;
4561	mddev->reshape_position = MaxSector;
4562	spin_unlock_irq(&conf->device_lock);
4563	return ret;
4564}
4565
4566/* Calculate the last device-address that could contain
4567 * any block from the chunk that includes the array-address 's'
4568 * and report the next address.
4569 * i.e. the address returned will be chunk-aligned and after
4570 * any data that is in the chunk containing 's'.
4571 */
4572static sector_t last_dev_address(sector_t s, struct geom *geo)
4573{
4574	s = (s | geo->chunk_mask) + 1;
4575	s >>= geo->chunk_shift;
4576	s *= geo->near_copies;
4577	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4578	s *= geo->far_copies;
4579	s <<= geo->chunk_shift;
4580	return s;
4581}
4582
4583/* Calculate the first device-address that could contain
4584 * any block from the chunk that includes the array-address 's'.
4585 * This too will be the start of a chunk
4586 */
4587static sector_t first_dev_address(sector_t s, struct geom *geo)
4588{
4589	s >>= geo->chunk_shift;
4590	s *= geo->near_copies;
4591	sector_div(s, geo->raid_disks);
4592	s *= geo->far_copies;
4593	s <<= geo->chunk_shift;
4594	return s;
4595}
4596
4597static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4598				int *skipped)
4599{
4600	/* We simply copy at most one chunk (smallest of old and new)
4601	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4602	 * or we hit a bad block or something.
4603	 * This might mean we pause for normal IO in the middle of
4604	 * a chunk, but that is not a problem as mddev->reshape_position
4605	 * can record any location.
4606	 *
4607	 * If we will want to write to a location that isn't
4608	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4609	 * we need to flush all reshape requests and update the metadata.
4610	 *
4611	 * When reshaping forwards (e.g. to more devices), we interpret
4612	 * 'safe' as the earliest block which might not have been copied
4613	 * down yet.  We divide this by previous stripe size and multiply
4614	 * by previous stripe length to get lowest device offset that we
4615	 * cannot write to yet.
4616	 * We interpret 'sector_nr' as an address that we want to write to.
4617	 * From this we use last_device_address() to find where we might
4618	 * write to, and first_device_address on the  'safe' position.
4619	 * If this 'next' write position is after the 'safe' position,
4620	 * we must update the metadata to increase the 'safe' position.
4621	 *
4622	 * When reshaping backwards, we round in the opposite direction
4623	 * and perform the reverse test:  next write position must not be
4624	 * less than current safe position.
4625	 *
4626	 * In all this the minimum difference in data offsets
4627	 * (conf->offset_diff - always positive) allows a bit of slack,
4628	 * so next can be after 'safe', but not by more than offset_diff
4629	 *
4630	 * We need to prepare all the bios here before we start any IO
4631	 * to ensure the size we choose is acceptable to all devices.
4632	 * The means one for each copy for write-out and an extra one for
4633	 * read-in.
4634	 * We store the read-in bio in ->master_bio and the others in
4635	 * ->devs[x].bio and ->devs[x].repl_bio.
4636	 */
4637	struct r10conf *conf = mddev->private;
4638	struct r10bio *r10_bio;
4639	sector_t next, safe, last;
4640	int max_sectors;
4641	int nr_sectors;
4642	int s;
4643	struct md_rdev *rdev;
4644	int need_flush = 0;
4645	struct bio *blist;
4646	struct bio *bio, *read_bio;
4647	int sectors_done = 0;
4648	struct page **pages;
4649
4650	if (sector_nr == 0) {
4651		/* If restarting in the middle, skip the initial sectors */
4652		if (mddev->reshape_backwards &&
4653		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4654			sector_nr = (raid10_size(mddev, 0, 0)
4655				     - conf->reshape_progress);
4656		} else if (!mddev->reshape_backwards &&
4657			   conf->reshape_progress > 0)
4658			sector_nr = conf->reshape_progress;
4659		if (sector_nr) {
4660			mddev->curr_resync_completed = sector_nr;
4661			sysfs_notify_dirent_safe(mddev->sysfs_completed);
4662			*skipped = 1;
4663			return sector_nr;
4664		}
4665	}
4666
4667	/* We don't use sector_nr to track where we are up to
4668	 * as that doesn't work well for ->reshape_backwards.
4669	 * So just use ->reshape_progress.
4670	 */
4671	if (mddev->reshape_backwards) {
4672		/* 'next' is the earliest device address that we might
4673		 * write to for this chunk in the new layout
4674		 */
4675		next = first_dev_address(conf->reshape_progress - 1,
4676					 &conf->geo);
4677
4678		/* 'safe' is the last device address that we might read from
4679		 * in the old layout after a restart
4680		 */
4681		safe = last_dev_address(conf->reshape_safe - 1,
4682					&conf->prev);
4683
4684		if (next + conf->offset_diff < safe)
4685			need_flush = 1;
4686
4687		last = conf->reshape_progress - 1;
4688		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4689					       & conf->prev.chunk_mask);
4690		if (sector_nr + RESYNC_SECTORS < last)
4691			sector_nr = last + 1 - RESYNC_SECTORS;
4692	} else {
4693		/* 'next' is after the last device address that we
4694		 * might write to for this chunk in the new layout
4695		 */
4696		next = last_dev_address(conf->reshape_progress, &conf->geo);
4697
4698		/* 'safe' is the earliest device address that we might
4699		 * read from in the old layout after a restart
4700		 */
4701		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4702
4703		/* Need to update metadata if 'next' might be beyond 'safe'
4704		 * as that would possibly corrupt data
4705		 */
4706		if (next > safe + conf->offset_diff)
4707			need_flush = 1;
4708
4709		sector_nr = conf->reshape_progress;
4710		last  = sector_nr | (conf->geo.chunk_mask
4711				     & conf->prev.chunk_mask);
4712
4713		if (sector_nr + RESYNC_SECTORS <= last)
4714			last = sector_nr + RESYNC_SECTORS - 1;
4715	}
4716
4717	if (need_flush ||
4718	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4719		/* Need to update reshape_position in metadata */
4720		wait_barrier(conf, false);
4721		mddev->reshape_position = conf->reshape_progress;
4722		if (mddev->reshape_backwards)
4723			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4724				- conf->reshape_progress;
4725		else
4726			mddev->curr_resync_completed = conf->reshape_progress;
4727		conf->reshape_checkpoint = jiffies;
4728		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4729		md_wakeup_thread(mddev->thread);
4730		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4731			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4732		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4733			allow_barrier(conf);
4734			return sectors_done;
4735		}
4736		conf->reshape_safe = mddev->reshape_position;
4737		allow_barrier(conf);
4738	}
4739
4740	raise_barrier(conf, 0);
4741read_more:
4742	/* Now schedule reads for blocks from sector_nr to last */
4743	r10_bio = raid10_alloc_init_r10buf(conf);
4744	r10_bio->state = 0;
4745	raise_barrier(conf, 1);
4746	atomic_set(&r10_bio->remaining, 0);
4747	r10_bio->mddev = mddev;
4748	r10_bio->sector = sector_nr;
4749	set_bit(R10BIO_IsReshape, &r10_bio->state);
4750	r10_bio->sectors = last - sector_nr + 1;
4751	rdev = read_balance(conf, r10_bio, &max_sectors);
4752	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4753
4754	if (!rdev) {
4755		/* Cannot read from here, so need to record bad blocks
4756		 * on all the target devices.
4757		 */
4758		// FIXME
4759		mempool_free(r10_bio, &conf->r10buf_pool);
4760		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4761		return sectors_done;
4762	}
4763
4764	read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4765				    GFP_KERNEL, &mddev->bio_set);
4766	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4767			       + rdev->data_offset);
4768	read_bio->bi_private = r10_bio;
4769	read_bio->bi_end_io = end_reshape_read;
4770	r10_bio->master_bio = read_bio;
4771	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4772
4773	/*
4774	 * Broadcast RESYNC message to other nodes, so all nodes would not
4775	 * write to the region to avoid conflict.
4776	*/
4777	if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4778		struct mdp_superblock_1 *sb = NULL;
4779		int sb_reshape_pos = 0;
4780
4781		conf->cluster_sync_low = sector_nr;
4782		conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4783		sb = page_address(rdev->sb_page);
4784		if (sb) {
4785			sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4786			/*
4787			 * Set cluster_sync_low again if next address for array
4788			 * reshape is less than cluster_sync_low. Since we can't
4789			 * update cluster_sync_low until it has finished reshape.
4790			 */
4791			if (sb_reshape_pos < conf->cluster_sync_low)
4792				conf->cluster_sync_low = sb_reshape_pos;
4793		}
4794
4795		md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4796							  conf->cluster_sync_high);
4797	}
4798
4799	/* Now find the locations in the new layout */
4800	__raid10_find_phys(&conf->geo, r10_bio);
4801
4802	blist = read_bio;
4803	read_bio->bi_next = NULL;
4804
4805	for (s = 0; s < conf->copies*2; s++) {
4806		struct bio *b;
4807		int d = r10_bio->devs[s/2].devnum;
4808		struct md_rdev *rdev2;
4809		if (s&1) {
4810			rdev2 = conf->mirrors[d].replacement;
4811			b = r10_bio->devs[s/2].repl_bio;
4812		} else {
4813			rdev2 = conf->mirrors[d].rdev;
4814			b = r10_bio->devs[s/2].bio;
4815		}
4816		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4817			continue;
4818
4819		bio_set_dev(b, rdev2->bdev);
4820		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4821			rdev2->new_data_offset;
4822		b->bi_end_io = end_reshape_write;
4823		b->bi_opf = REQ_OP_WRITE;
4824		b->bi_next = blist;
4825		blist = b;
4826	}
4827
4828	/* Now add as many pages as possible to all of these bios. */
4829
4830	nr_sectors = 0;
4831	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4832	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4833		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4834		int len = (max_sectors - s) << 9;
4835		if (len > PAGE_SIZE)
4836			len = PAGE_SIZE;
4837		for (bio = blist; bio ; bio = bio->bi_next) {
4838			if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
4839				bio->bi_status = BLK_STS_RESOURCE;
4840				bio_endio(bio);
4841				return sectors_done;
4842			}
4843		}
4844		sector_nr += len >> 9;
4845		nr_sectors += len >> 9;
4846	}
4847	r10_bio->sectors = nr_sectors;
4848
4849	/* Now submit the read */
4850	md_sync_acct_bio(read_bio, r10_bio->sectors);
4851	atomic_inc(&r10_bio->remaining);
4852	read_bio->bi_next = NULL;
4853	submit_bio_noacct(read_bio);
4854	sectors_done += nr_sectors;
4855	if (sector_nr <= last)
4856		goto read_more;
4857
4858	lower_barrier(conf);
4859
4860	/* Now that we have done the whole section we can
4861	 * update reshape_progress
4862	 */
4863	if (mddev->reshape_backwards)
4864		conf->reshape_progress -= sectors_done;
4865	else
4866		conf->reshape_progress += sectors_done;
4867
4868	return sectors_done;
4869}
4870
4871static void end_reshape_request(struct r10bio *r10_bio);
4872static int handle_reshape_read_error(struct mddev *mddev,
4873				     struct r10bio *r10_bio);
4874static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4875{
4876	/* Reshape read completed.  Hopefully we have a block
4877	 * to write out.
4878	 * If we got a read error then we do sync 1-page reads from
4879	 * elsewhere until we find the data - or give up.
4880	 */
4881	struct r10conf *conf = mddev->private;
4882	int s;
4883
4884	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4885		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4886			/* Reshape has been aborted */
4887			md_done_sync(mddev, r10_bio->sectors, 0);
4888			return;
4889		}
4890
4891	/* We definitely have the data in the pages, schedule the
4892	 * writes.
4893	 */
4894	atomic_set(&r10_bio->remaining, 1);
4895	for (s = 0; s < conf->copies*2; s++) {
4896		struct bio *b;
4897		int d = r10_bio->devs[s/2].devnum;
4898		struct md_rdev *rdev;
4899		if (s&1) {
4900			rdev = conf->mirrors[d].replacement;
4901			b = r10_bio->devs[s/2].repl_bio;
4902		} else {
4903			rdev = conf->mirrors[d].rdev;
4904			b = r10_bio->devs[s/2].bio;
4905		}
4906		if (!rdev || test_bit(Faulty, &rdev->flags))
4907			continue;
4908
4909		atomic_inc(&rdev->nr_pending);
4910		md_sync_acct_bio(b, r10_bio->sectors);
4911		atomic_inc(&r10_bio->remaining);
4912		b->bi_next = NULL;
4913		submit_bio_noacct(b);
4914	}
4915	end_reshape_request(r10_bio);
4916}
4917
4918static void end_reshape(struct r10conf *conf)
4919{
4920	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4921		return;
4922
4923	spin_lock_irq(&conf->device_lock);
4924	conf->prev = conf->geo;
4925	md_finish_reshape(conf->mddev);
4926	smp_wmb();
4927	conf->reshape_progress = MaxSector;
4928	conf->reshape_safe = MaxSector;
4929	spin_unlock_irq(&conf->device_lock);
4930
4931	mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf));
4932	conf->fullsync = 0;
4933}
4934
4935static void raid10_update_reshape_pos(struct mddev *mddev)
4936{
4937	struct r10conf *conf = mddev->private;
4938	sector_t lo, hi;
4939
4940	md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4941	if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4942	    || mddev->reshape_position == MaxSector)
4943		conf->reshape_progress = mddev->reshape_position;
4944	else
4945		WARN_ON_ONCE(1);
4946}
4947
4948static int handle_reshape_read_error(struct mddev *mddev,
4949				     struct r10bio *r10_bio)
4950{
4951	/* Use sync reads to get the blocks from somewhere else */
4952	int sectors = r10_bio->sectors;
4953	struct r10conf *conf = mddev->private;
4954	struct r10bio *r10b;
4955	int slot = 0;
4956	int idx = 0;
4957	struct page **pages;
4958
4959	r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4960	if (!r10b) {
4961		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4962		return -ENOMEM;
4963	}
4964
4965	/* reshape IOs share pages from .devs[0].bio */
4966	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4967
4968	r10b->sector = r10_bio->sector;
4969	__raid10_find_phys(&conf->prev, r10b);
4970
4971	while (sectors) {
4972		int s = sectors;
4973		int success = 0;
4974		int first_slot = slot;
4975
4976		if (s > (PAGE_SIZE >> 9))
4977			s = PAGE_SIZE >> 9;
4978
4979		while (!success) {
4980			int d = r10b->devs[slot].devnum;
4981			struct md_rdev *rdev = conf->mirrors[d].rdev;
4982			sector_t addr;
4983			if (rdev == NULL ||
4984			    test_bit(Faulty, &rdev->flags) ||
4985			    !test_bit(In_sync, &rdev->flags))
4986				goto failed;
4987
4988			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4989			atomic_inc(&rdev->nr_pending);
4990			success = sync_page_io(rdev,
4991					       addr,
4992					       s << 9,
4993					       pages[idx],
4994					       REQ_OP_READ, false);
4995			rdev_dec_pending(rdev, mddev);
4996			if (success)
4997				break;
4998		failed:
4999			slot++;
5000			if (slot >= conf->copies)
5001				slot = 0;
5002			if (slot == first_slot)
5003				break;
5004		}
5005		if (!success) {
5006			/* couldn't read this block, must give up */
5007			set_bit(MD_RECOVERY_INTR,
5008				&mddev->recovery);
5009			kfree(r10b);
5010			return -EIO;
5011		}
5012		sectors -= s;
5013		idx++;
5014	}
5015	kfree(r10b);
5016	return 0;
5017}
5018
5019static void end_reshape_write(struct bio *bio)
5020{
5021	struct r10bio *r10_bio = get_resync_r10bio(bio);
5022	struct mddev *mddev = r10_bio->mddev;
5023	struct r10conf *conf = mddev->private;
5024	int d;
5025	int slot;
5026	int repl;
5027	struct md_rdev *rdev = NULL;
5028
5029	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5030	rdev = repl ? conf->mirrors[d].replacement :
5031		      conf->mirrors[d].rdev;
5032
5033	if (bio->bi_status) {
5034		/* FIXME should record badblock */
5035		md_error(mddev, rdev);
5036	}
5037
5038	rdev_dec_pending(rdev, mddev);
5039	end_reshape_request(r10_bio);
5040}
5041
5042static void end_reshape_request(struct r10bio *r10_bio)
5043{
5044	if (!atomic_dec_and_test(&r10_bio->remaining))
5045		return;
5046	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5047	bio_put(r10_bio->master_bio);
5048	put_buf(r10_bio);
5049}
5050
5051static void raid10_finish_reshape(struct mddev *mddev)
5052{
5053	struct r10conf *conf = mddev->private;
5054
5055	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5056		return;
5057
5058	if (mddev->delta_disks > 0) {
5059		if (mddev->recovery_cp > mddev->resync_max_sectors) {
5060			mddev->recovery_cp = mddev->resync_max_sectors;
5061			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5062		}
5063		mddev->resync_max_sectors = mddev->array_sectors;
5064	} else {
5065		int d;
5066		for (d = conf->geo.raid_disks ;
5067		     d < conf->geo.raid_disks - mddev->delta_disks;
5068		     d++) {
5069			struct md_rdev *rdev = conf->mirrors[d].rdev;
5070			if (rdev)
5071				clear_bit(In_sync, &rdev->flags);
5072			rdev = conf->mirrors[d].replacement;
5073			if (rdev)
5074				clear_bit(In_sync, &rdev->flags);
5075		}
5076	}
5077	mddev->layout = mddev->new_layout;
5078	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5079	mddev->reshape_position = MaxSector;
5080	mddev->delta_disks = 0;
5081	mddev->reshape_backwards = 0;
5082}
5083
5084static struct md_personality raid10_personality =
5085{
5086	.name		= "raid10",
5087	.level		= 10,
5088	.owner		= THIS_MODULE,
5089	.make_request	= raid10_make_request,
5090	.run		= raid10_run,
5091	.free		= raid10_free,
5092	.status		= raid10_status,
5093	.error_handler	= raid10_error,
5094	.hot_add_disk	= raid10_add_disk,
5095	.hot_remove_disk= raid10_remove_disk,
5096	.spare_active	= raid10_spare_active,
5097	.sync_request	= raid10_sync_request,
5098	.quiesce	= raid10_quiesce,
5099	.size		= raid10_size,
5100	.resize		= raid10_resize,
5101	.takeover	= raid10_takeover,
5102	.check_reshape	= raid10_check_reshape,
5103	.start_reshape	= raid10_start_reshape,
5104	.finish_reshape	= raid10_finish_reshape,
5105	.update_reshape_pos = raid10_update_reshape_pos,
5106};
5107
5108static int __init raid_init(void)
5109{
5110	return register_md_personality(&raid10_personality);
5111}
5112
5113static void raid_exit(void)
5114{
5115	unregister_md_personality(&raid10_personality);
5116}
5117
5118module_init(raid_init);
5119module_exit(raid_exit);
5120MODULE_LICENSE("GPL");
5121MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5122MODULE_ALIAS("md-personality-9"); /* RAID10 */
5123MODULE_ALIAS("md-raid10");
5124MODULE_ALIAS("md-level-10");
5125