1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9#include "dm-core.h"
10#include "dm-rq.h"
11#include "dm-uevent.h"
12#include "dm-ima.h"
13
14#include <linux/init.h>
15#include <linux/module.h>
16#include <linux/mutex.h>
17#include <linux/sched/mm.h>
18#include <linux/sched/signal.h>
19#include <linux/blkpg.h>
20#include <linux/bio.h>
21#include <linux/mempool.h>
22#include <linux/dax.h>
23#include <linux/slab.h>
24#include <linux/idr.h>
25#include <linux/uio.h>
26#include <linux/hdreg.h>
27#include <linux/delay.h>
28#include <linux/wait.h>
29#include <linux/pr.h>
30#include <linux/refcount.h>
31#include <linux/part_stat.h>
32#include <linux/blk-crypto.h>
33#include <linux/blk-crypto-profile.h>
34
35#define DM_MSG_PREFIX "core"
36
37/*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42#define DM_COOKIE_LENGTH 24
43
44/*
45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
46 * dm_io into one list, and reuse bio->bi_private as the list head. Before
47 * ending this fs bio, we will recover its ->bi_private.
48 */
49#define REQ_DM_POLL_LIST	REQ_DRV
50
51static const char *_name = DM_NAME;
52
53static unsigned int major;
54static unsigned int _major;
55
56static DEFINE_IDR(_minor_idr);
57
58static DEFINE_SPINLOCK(_minor_lock);
59
60static void do_deferred_remove(struct work_struct *w);
61
62static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
63
64static struct workqueue_struct *deferred_remove_workqueue;
65
66atomic_t dm_global_event_nr = ATOMIC_INIT(0);
67DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
68
69void dm_issue_global_event(void)
70{
71	atomic_inc(&dm_global_event_nr);
72	wake_up(&dm_global_eventq);
73}
74
75DEFINE_STATIC_KEY_FALSE(stats_enabled);
76DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
77DEFINE_STATIC_KEY_FALSE(zoned_enabled);
78
79/*
80 * One of these is allocated (on-stack) per original bio.
81 */
82struct clone_info {
83	struct dm_table *map;
84	struct bio *bio;
85	struct dm_io *io;
86	sector_t sector;
87	unsigned int sector_count;
88	bool is_abnormal_io:1;
89	bool submit_as_polled:1;
90};
91
92static inline struct dm_target_io *clone_to_tio(struct bio *clone)
93{
94	return container_of(clone, struct dm_target_io, clone);
95}
96
97void *dm_per_bio_data(struct bio *bio, size_t data_size)
98{
99	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
100		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
101	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
102}
103EXPORT_SYMBOL_GPL(dm_per_bio_data);
104
105struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
106{
107	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
108
109	if (io->magic == DM_IO_MAGIC)
110		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
111	BUG_ON(io->magic != DM_TIO_MAGIC);
112	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
113}
114EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
115
116unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
117{
118	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
119}
120EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
121
122#define MINOR_ALLOCED ((void *)-1)
123
124#define DM_NUMA_NODE NUMA_NO_NODE
125static int dm_numa_node = DM_NUMA_NODE;
126
127#define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
128static int swap_bios = DEFAULT_SWAP_BIOS;
129static int get_swap_bios(void)
130{
131	int latch = READ_ONCE(swap_bios);
132
133	if (unlikely(latch <= 0))
134		latch = DEFAULT_SWAP_BIOS;
135	return latch;
136}
137
138struct table_device {
139	struct list_head list;
140	refcount_t count;
141	struct dm_dev dm_dev;
142};
143
144/*
145 * Bio-based DM's mempools' reserved IOs set by the user.
146 */
147#define RESERVED_BIO_BASED_IOS		16
148static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
149
150static int __dm_get_module_param_int(int *module_param, int min, int max)
151{
152	int param = READ_ONCE(*module_param);
153	int modified_param = 0;
154	bool modified = true;
155
156	if (param < min)
157		modified_param = min;
158	else if (param > max)
159		modified_param = max;
160	else
161		modified = false;
162
163	if (modified) {
164		(void)cmpxchg(module_param, param, modified_param);
165		param = modified_param;
166	}
167
168	return param;
169}
170
171unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
172{
173	unsigned int param = READ_ONCE(*module_param);
174	unsigned int modified_param = 0;
175
176	if (!param)
177		modified_param = def;
178	else if (param > max)
179		modified_param = max;
180
181	if (modified_param) {
182		(void)cmpxchg(module_param, param, modified_param);
183		param = modified_param;
184	}
185
186	return param;
187}
188
189unsigned int dm_get_reserved_bio_based_ios(void)
190{
191	return __dm_get_module_param(&reserved_bio_based_ios,
192				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
193}
194EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
195
196static unsigned int dm_get_numa_node(void)
197{
198	return __dm_get_module_param_int(&dm_numa_node,
199					 DM_NUMA_NODE, num_online_nodes() - 1);
200}
201
202static int __init local_init(void)
203{
204	int r;
205
206	r = dm_uevent_init();
207	if (r)
208		return r;
209
210	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
211	if (!deferred_remove_workqueue) {
212		r = -ENOMEM;
213		goto out_uevent_exit;
214	}
215
216	_major = major;
217	r = register_blkdev(_major, _name);
218	if (r < 0)
219		goto out_free_workqueue;
220
221	if (!_major)
222		_major = r;
223
224	return 0;
225
226out_free_workqueue:
227	destroy_workqueue(deferred_remove_workqueue);
228out_uevent_exit:
229	dm_uevent_exit();
230
231	return r;
232}
233
234static void local_exit(void)
235{
236	destroy_workqueue(deferred_remove_workqueue);
237
238	unregister_blkdev(_major, _name);
239	dm_uevent_exit();
240
241	_major = 0;
242
243	DMINFO("cleaned up");
244}
245
246static int (*_inits[])(void) __initdata = {
247	local_init,
248	dm_target_init,
249	dm_linear_init,
250	dm_stripe_init,
251	dm_io_init,
252	dm_kcopyd_init,
253	dm_interface_init,
254	dm_statistics_init,
255};
256
257static void (*_exits[])(void) = {
258	local_exit,
259	dm_target_exit,
260	dm_linear_exit,
261	dm_stripe_exit,
262	dm_io_exit,
263	dm_kcopyd_exit,
264	dm_interface_exit,
265	dm_statistics_exit,
266};
267
268static int __init dm_init(void)
269{
270	const int count = ARRAY_SIZE(_inits);
271	int r, i;
272
273#if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
274	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
275	       " Duplicate IMA measurements will not be recorded in the IMA log.");
276#endif
277
278	for (i = 0; i < count; i++) {
279		r = _inits[i]();
280		if (r)
281			goto bad;
282	}
283
284	return 0;
285bad:
286	while (i--)
287		_exits[i]();
288
289	return r;
290}
291
292static void __exit dm_exit(void)
293{
294	int i = ARRAY_SIZE(_exits);
295
296	while (i--)
297		_exits[i]();
298
299	/*
300	 * Should be empty by this point.
301	 */
302	idr_destroy(&_minor_idr);
303}
304
305/*
306 * Block device functions
307 */
308int dm_deleting_md(struct mapped_device *md)
309{
310	return test_bit(DMF_DELETING, &md->flags);
311}
312
313static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
314{
315	struct mapped_device *md;
316
317	spin_lock(&_minor_lock);
318
319	md = disk->private_data;
320	if (!md)
321		goto out;
322
323	if (test_bit(DMF_FREEING, &md->flags) ||
324	    dm_deleting_md(md)) {
325		md = NULL;
326		goto out;
327	}
328
329	dm_get(md);
330	atomic_inc(&md->open_count);
331out:
332	spin_unlock(&_minor_lock);
333
334	return md ? 0 : -ENXIO;
335}
336
337static void dm_blk_close(struct gendisk *disk)
338{
339	struct mapped_device *md;
340
341	spin_lock(&_minor_lock);
342
343	md = disk->private_data;
344	if (WARN_ON(!md))
345		goto out;
346
347	if (atomic_dec_and_test(&md->open_count) &&
348	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
349		queue_work(deferred_remove_workqueue, &deferred_remove_work);
350
351	dm_put(md);
352out:
353	spin_unlock(&_minor_lock);
354}
355
356int dm_open_count(struct mapped_device *md)
357{
358	return atomic_read(&md->open_count);
359}
360
361/*
362 * Guarantees nothing is using the device before it's deleted.
363 */
364int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
365{
366	int r = 0;
367
368	spin_lock(&_minor_lock);
369
370	if (dm_open_count(md)) {
371		r = -EBUSY;
372		if (mark_deferred)
373			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
374	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
375		r = -EEXIST;
376	else
377		set_bit(DMF_DELETING, &md->flags);
378
379	spin_unlock(&_minor_lock);
380
381	return r;
382}
383
384int dm_cancel_deferred_remove(struct mapped_device *md)
385{
386	int r = 0;
387
388	spin_lock(&_minor_lock);
389
390	if (test_bit(DMF_DELETING, &md->flags))
391		r = -EBUSY;
392	else
393		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
394
395	spin_unlock(&_minor_lock);
396
397	return r;
398}
399
400static void do_deferred_remove(struct work_struct *w)
401{
402	dm_deferred_remove();
403}
404
405static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
406{
407	struct mapped_device *md = bdev->bd_disk->private_data;
408
409	return dm_get_geometry(md, geo);
410}
411
412static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
413			    struct block_device **bdev)
414{
415	struct dm_target *ti;
416	struct dm_table *map;
417	int r;
418
419retry:
420	r = -ENOTTY;
421	map = dm_get_live_table(md, srcu_idx);
422	if (!map || !dm_table_get_size(map))
423		return r;
424
425	/* We only support devices that have a single target */
426	if (map->num_targets != 1)
427		return r;
428
429	ti = dm_table_get_target(map, 0);
430	if (!ti->type->prepare_ioctl)
431		return r;
432
433	if (dm_suspended_md(md))
434		return -EAGAIN;
435
436	r = ti->type->prepare_ioctl(ti, bdev);
437	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
438		dm_put_live_table(md, *srcu_idx);
439		fsleep(10000);
440		goto retry;
441	}
442
443	return r;
444}
445
446static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
447{
448	dm_put_live_table(md, srcu_idx);
449}
450
451static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
452			unsigned int cmd, unsigned long arg)
453{
454	struct mapped_device *md = bdev->bd_disk->private_data;
455	int r, srcu_idx;
456
457	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
458	if (r < 0)
459		goto out;
460
461	if (r > 0) {
462		/*
463		 * Target determined this ioctl is being issued against a
464		 * subset of the parent bdev; require extra privileges.
465		 */
466		if (!capable(CAP_SYS_RAWIO)) {
467			DMDEBUG_LIMIT(
468	"%s: sending ioctl %x to DM device without required privilege.",
469				current->comm, cmd);
470			r = -ENOIOCTLCMD;
471			goto out;
472		}
473	}
474
475	if (!bdev->bd_disk->fops->ioctl)
476		r = -ENOTTY;
477	else
478		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
479out:
480	dm_unprepare_ioctl(md, srcu_idx);
481	return r;
482}
483
484u64 dm_start_time_ns_from_clone(struct bio *bio)
485{
486	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
487}
488EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
489
490static inline bool bio_is_flush_with_data(struct bio *bio)
491{
492	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
493}
494
495static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
496{
497	/*
498	 * If REQ_PREFLUSH set, don't account payload, it will be
499	 * submitted (and accounted) after this flush completes.
500	 */
501	if (bio_is_flush_with_data(bio))
502		return 0;
503	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
504		return io->sectors;
505	return bio_sectors(bio);
506}
507
508static void dm_io_acct(struct dm_io *io, bool end)
509{
510	struct bio *bio = io->orig_bio;
511
512	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
513		if (!end)
514			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
515					   io->start_time);
516		else
517			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
518					 dm_io_sectors(io, bio),
519					 io->start_time);
520	}
521
522	if (static_branch_unlikely(&stats_enabled) &&
523	    unlikely(dm_stats_used(&io->md->stats))) {
524		sector_t sector;
525
526		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
527			sector = bio_end_sector(bio) - io->sector_offset;
528		else
529			sector = bio->bi_iter.bi_sector;
530
531		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
532				    sector, dm_io_sectors(io, bio),
533				    end, io->start_time, &io->stats_aux);
534	}
535}
536
537static void __dm_start_io_acct(struct dm_io *io)
538{
539	dm_io_acct(io, false);
540}
541
542static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
543{
544	/*
545	 * Ensure IO accounting is only ever started once.
546	 */
547	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
548		return;
549
550	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
551	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
552		dm_io_set_flag(io, DM_IO_ACCOUNTED);
553	} else {
554		unsigned long flags;
555		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
556		spin_lock_irqsave(&io->lock, flags);
557		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
558			spin_unlock_irqrestore(&io->lock, flags);
559			return;
560		}
561		dm_io_set_flag(io, DM_IO_ACCOUNTED);
562		spin_unlock_irqrestore(&io->lock, flags);
563	}
564
565	__dm_start_io_acct(io);
566}
567
568static void dm_end_io_acct(struct dm_io *io)
569{
570	dm_io_acct(io, true);
571}
572
573static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
574{
575	struct dm_io *io;
576	struct dm_target_io *tio;
577	struct bio *clone;
578
579	clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
580	if (unlikely(!clone))
581		return NULL;
582	tio = clone_to_tio(clone);
583	tio->flags = 0;
584	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
585	tio->io = NULL;
586
587	io = container_of(tio, struct dm_io, tio);
588	io->magic = DM_IO_MAGIC;
589	io->status = BLK_STS_OK;
590
591	/* one ref is for submission, the other is for completion */
592	atomic_set(&io->io_count, 2);
593	this_cpu_inc(*md->pending_io);
594	io->orig_bio = bio;
595	io->md = md;
596	spin_lock_init(&io->lock);
597	io->start_time = jiffies;
598	io->flags = 0;
599	if (blk_queue_io_stat(md->queue))
600		dm_io_set_flag(io, DM_IO_BLK_STAT);
601
602	if (static_branch_unlikely(&stats_enabled) &&
603	    unlikely(dm_stats_used(&md->stats)))
604		dm_stats_record_start(&md->stats, &io->stats_aux);
605
606	return io;
607}
608
609static void free_io(struct dm_io *io)
610{
611	bio_put(&io->tio.clone);
612}
613
614static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
615			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
616{
617	struct mapped_device *md = ci->io->md;
618	struct dm_target_io *tio;
619	struct bio *clone;
620
621	if (!ci->io->tio.io) {
622		/* the dm_target_io embedded in ci->io is available */
623		tio = &ci->io->tio;
624		/* alloc_io() already initialized embedded clone */
625		clone = &tio->clone;
626	} else {
627		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
628					&md->mempools->bs);
629		if (!clone)
630			return NULL;
631
632		/* REQ_DM_POLL_LIST shouldn't be inherited */
633		clone->bi_opf &= ~REQ_DM_POLL_LIST;
634
635		tio = clone_to_tio(clone);
636		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
637	}
638
639	tio->magic = DM_TIO_MAGIC;
640	tio->io = ci->io;
641	tio->ti = ti;
642	tio->target_bio_nr = target_bio_nr;
643	tio->len_ptr = len;
644	tio->old_sector = 0;
645
646	/* Set default bdev, but target must bio_set_dev() before issuing IO */
647	clone->bi_bdev = md->disk->part0;
648	if (unlikely(ti->needs_bio_set_dev))
649		bio_set_dev(clone, md->disk->part0);
650
651	if (len) {
652		clone->bi_iter.bi_size = to_bytes(*len);
653		if (bio_integrity(clone))
654			bio_integrity_trim(clone);
655	}
656
657	return clone;
658}
659
660static void free_tio(struct bio *clone)
661{
662	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
663		return;
664	bio_put(clone);
665}
666
667/*
668 * Add the bio to the list of deferred io.
669 */
670static void queue_io(struct mapped_device *md, struct bio *bio)
671{
672	unsigned long flags;
673
674	spin_lock_irqsave(&md->deferred_lock, flags);
675	bio_list_add(&md->deferred, bio);
676	spin_unlock_irqrestore(&md->deferred_lock, flags);
677	queue_work(md->wq, &md->work);
678}
679
680/*
681 * Everyone (including functions in this file), should use this
682 * function to access the md->map field, and make sure they call
683 * dm_put_live_table() when finished.
684 */
685struct dm_table *dm_get_live_table(struct mapped_device *md,
686				   int *srcu_idx) __acquires(md->io_barrier)
687{
688	*srcu_idx = srcu_read_lock(&md->io_barrier);
689
690	return srcu_dereference(md->map, &md->io_barrier);
691}
692
693void dm_put_live_table(struct mapped_device *md,
694		       int srcu_idx) __releases(md->io_barrier)
695{
696	srcu_read_unlock(&md->io_barrier, srcu_idx);
697}
698
699void dm_sync_table(struct mapped_device *md)
700{
701	synchronize_srcu(&md->io_barrier);
702	synchronize_rcu_expedited();
703}
704
705/*
706 * A fast alternative to dm_get_live_table/dm_put_live_table.
707 * The caller must not block between these two functions.
708 */
709static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
710{
711	rcu_read_lock();
712	return rcu_dereference(md->map);
713}
714
715static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
716{
717	rcu_read_unlock();
718}
719
720static char *_dm_claim_ptr = "I belong to device-mapper";
721
722/*
723 * Open a table device so we can use it as a map destination.
724 */
725static struct table_device *open_table_device(struct mapped_device *md,
726		dev_t dev, blk_mode_t mode)
727{
728	struct table_device *td;
729	struct file *bdev_file;
730	struct block_device *bdev;
731	u64 part_off;
732	int r;
733
734	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
735	if (!td)
736		return ERR_PTR(-ENOMEM);
737	refcount_set(&td->count, 1);
738
739	bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
740	if (IS_ERR(bdev_file)) {
741		r = PTR_ERR(bdev_file);
742		goto out_free_td;
743	}
744
745	bdev = file_bdev(bdev_file);
746
747	/*
748	 * We can be called before the dm disk is added.  In that case we can't
749	 * register the holder relation here.  It will be done once add_disk was
750	 * called.
751	 */
752	if (md->disk->slave_dir) {
753		r = bd_link_disk_holder(bdev, md->disk);
754		if (r)
755			goto out_blkdev_put;
756	}
757
758	td->dm_dev.mode = mode;
759	td->dm_dev.bdev = bdev;
760	td->dm_dev.bdev_file = bdev_file;
761	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
762						NULL, NULL);
763	format_dev_t(td->dm_dev.name, dev);
764	list_add(&td->list, &md->table_devices);
765	return td;
766
767out_blkdev_put:
768	fput(bdev_file);
769out_free_td:
770	kfree(td);
771	return ERR_PTR(r);
772}
773
774/*
775 * Close a table device that we've been using.
776 */
777static void close_table_device(struct table_device *td, struct mapped_device *md)
778{
779	if (md->disk->slave_dir)
780		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
781	fput(td->dm_dev.bdev_file);
782	put_dax(td->dm_dev.dax_dev);
783	list_del(&td->list);
784	kfree(td);
785}
786
787static struct table_device *find_table_device(struct list_head *l, dev_t dev,
788					      blk_mode_t mode)
789{
790	struct table_device *td;
791
792	list_for_each_entry(td, l, list)
793		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
794			return td;
795
796	return NULL;
797}
798
799int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
800			struct dm_dev **result)
801{
802	struct table_device *td;
803
804	mutex_lock(&md->table_devices_lock);
805	td = find_table_device(&md->table_devices, dev, mode);
806	if (!td) {
807		td = open_table_device(md, dev, mode);
808		if (IS_ERR(td)) {
809			mutex_unlock(&md->table_devices_lock);
810			return PTR_ERR(td);
811		}
812	} else {
813		refcount_inc(&td->count);
814	}
815	mutex_unlock(&md->table_devices_lock);
816
817	*result = &td->dm_dev;
818	return 0;
819}
820
821void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
822{
823	struct table_device *td = container_of(d, struct table_device, dm_dev);
824
825	mutex_lock(&md->table_devices_lock);
826	if (refcount_dec_and_test(&td->count))
827		close_table_device(td, md);
828	mutex_unlock(&md->table_devices_lock);
829}
830
831/*
832 * Get the geometry associated with a dm device
833 */
834int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
835{
836	*geo = md->geometry;
837
838	return 0;
839}
840
841/*
842 * Set the geometry of a device.
843 */
844int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
845{
846	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
847
848	if (geo->start > sz) {
849		DMERR("Start sector is beyond the geometry limits.");
850		return -EINVAL;
851	}
852
853	md->geometry = *geo;
854
855	return 0;
856}
857
858static int __noflush_suspending(struct mapped_device *md)
859{
860	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
861}
862
863static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
864{
865	struct mapped_device *md = io->md;
866
867	if (first_stage) {
868		struct dm_io *next = md->requeue_list;
869
870		md->requeue_list = io;
871		io->next = next;
872	} else {
873		bio_list_add_head(&md->deferred, io->orig_bio);
874	}
875}
876
877static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
878{
879	if (first_stage)
880		queue_work(md->wq, &md->requeue_work);
881	else
882		queue_work(md->wq, &md->work);
883}
884
885/*
886 * Return true if the dm_io's original bio is requeued.
887 * io->status is updated with error if requeue disallowed.
888 */
889static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
890{
891	struct bio *bio = io->orig_bio;
892	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
893	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
894				     (bio->bi_opf & REQ_POLLED));
895	struct mapped_device *md = io->md;
896	bool requeued = false;
897
898	if (handle_requeue || handle_polled_eagain) {
899		unsigned long flags;
900
901		if (bio->bi_opf & REQ_POLLED) {
902			/*
903			 * Upper layer won't help us poll split bio
904			 * (io->orig_bio may only reflect a subset of the
905			 * pre-split original) so clear REQ_POLLED.
906			 */
907			bio_clear_polled(bio);
908		}
909
910		/*
911		 * Target requested pushing back the I/O or
912		 * polled IO hit BLK_STS_AGAIN.
913		 */
914		spin_lock_irqsave(&md->deferred_lock, flags);
915		if ((__noflush_suspending(md) &&
916		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
917		    handle_polled_eagain || first_stage) {
918			dm_requeue_add_io(io, first_stage);
919			requeued = true;
920		} else {
921			/*
922			 * noflush suspend was interrupted or this is
923			 * a write to a zoned target.
924			 */
925			io->status = BLK_STS_IOERR;
926		}
927		spin_unlock_irqrestore(&md->deferred_lock, flags);
928	}
929
930	if (requeued)
931		dm_kick_requeue(md, first_stage);
932
933	return requeued;
934}
935
936static void __dm_io_complete(struct dm_io *io, bool first_stage)
937{
938	struct bio *bio = io->orig_bio;
939	struct mapped_device *md = io->md;
940	blk_status_t io_error;
941	bool requeued;
942
943	requeued = dm_handle_requeue(io, first_stage);
944	if (requeued && first_stage)
945		return;
946
947	io_error = io->status;
948	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
949		dm_end_io_acct(io);
950	else if (!io_error) {
951		/*
952		 * Must handle target that DM_MAPIO_SUBMITTED only to
953		 * then bio_endio() rather than dm_submit_bio_remap()
954		 */
955		__dm_start_io_acct(io);
956		dm_end_io_acct(io);
957	}
958	free_io(io);
959	smp_wmb();
960	this_cpu_dec(*md->pending_io);
961
962	/* nudge anyone waiting on suspend queue */
963	if (unlikely(wq_has_sleeper(&md->wait)))
964		wake_up(&md->wait);
965
966	/* Return early if the original bio was requeued */
967	if (requeued)
968		return;
969
970	if (bio_is_flush_with_data(bio)) {
971		/*
972		 * Preflush done for flush with data, reissue
973		 * without REQ_PREFLUSH.
974		 */
975		bio->bi_opf &= ~REQ_PREFLUSH;
976		queue_io(md, bio);
977	} else {
978		/* done with normal IO or empty flush */
979		if (io_error)
980			bio->bi_status = io_error;
981		bio_endio(bio);
982	}
983}
984
985static void dm_wq_requeue_work(struct work_struct *work)
986{
987	struct mapped_device *md = container_of(work, struct mapped_device,
988						requeue_work);
989	unsigned long flags;
990	struct dm_io *io;
991
992	/* reuse deferred lock to simplify dm_handle_requeue */
993	spin_lock_irqsave(&md->deferred_lock, flags);
994	io = md->requeue_list;
995	md->requeue_list = NULL;
996	spin_unlock_irqrestore(&md->deferred_lock, flags);
997
998	while (io) {
999		struct dm_io *next = io->next;
1000
1001		dm_io_rewind(io, &md->disk->bio_split);
1002
1003		io->next = NULL;
1004		__dm_io_complete(io, false);
1005		io = next;
1006		cond_resched();
1007	}
1008}
1009
1010/*
1011 * Two staged requeue:
1012 *
1013 * 1) io->orig_bio points to the real original bio, and the part mapped to
1014 *    this io must be requeued, instead of other parts of the original bio.
1015 *
1016 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1017 */
1018static void dm_io_complete(struct dm_io *io)
1019{
1020	bool first_requeue;
1021
1022	/*
1023	 * Only dm_io that has been split needs two stage requeue, otherwise
1024	 * we may run into long bio clone chain during suspend and OOM could
1025	 * be triggered.
1026	 *
1027	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1028	 * also aren't handled via the first stage requeue.
1029	 */
1030	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1031		first_requeue = true;
1032	else
1033		first_requeue = false;
1034
1035	__dm_io_complete(io, first_requeue);
1036}
1037
1038/*
1039 * Decrements the number of outstanding ios that a bio has been
1040 * cloned into, completing the original io if necc.
1041 */
1042static inline void __dm_io_dec_pending(struct dm_io *io)
1043{
1044	if (atomic_dec_and_test(&io->io_count))
1045		dm_io_complete(io);
1046}
1047
1048static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1049{
1050	unsigned long flags;
1051
1052	/* Push-back supersedes any I/O errors */
1053	spin_lock_irqsave(&io->lock, flags);
1054	if (!(io->status == BLK_STS_DM_REQUEUE &&
1055	      __noflush_suspending(io->md))) {
1056		io->status = error;
1057	}
1058	spin_unlock_irqrestore(&io->lock, flags);
1059}
1060
1061static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1062{
1063	if (unlikely(error))
1064		dm_io_set_error(io, error);
1065
1066	__dm_io_dec_pending(io);
1067}
1068
1069/*
1070 * The queue_limits are only valid as long as you have a reference
1071 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1072 */
1073static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1074{
1075	return &md->queue->limits;
1076}
1077
1078void disable_discard(struct mapped_device *md)
1079{
1080	struct queue_limits *limits = dm_get_queue_limits(md);
1081
1082	/* device doesn't really support DISCARD, disable it */
1083	limits->max_discard_sectors = 0;
1084}
1085
1086void disable_write_zeroes(struct mapped_device *md)
1087{
1088	struct queue_limits *limits = dm_get_queue_limits(md);
1089
1090	/* device doesn't really support WRITE ZEROES, disable it */
1091	limits->max_write_zeroes_sectors = 0;
1092}
1093
1094static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1095{
1096	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1097}
1098
1099static void clone_endio(struct bio *bio)
1100{
1101	blk_status_t error = bio->bi_status;
1102	struct dm_target_io *tio = clone_to_tio(bio);
1103	struct dm_target *ti = tio->ti;
1104	dm_endio_fn endio = ti->type->end_io;
1105	struct dm_io *io = tio->io;
1106	struct mapped_device *md = io->md;
1107
1108	if (unlikely(error == BLK_STS_TARGET)) {
1109		if (bio_op(bio) == REQ_OP_DISCARD &&
1110		    !bdev_max_discard_sectors(bio->bi_bdev))
1111			disable_discard(md);
1112		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1113			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1114			disable_write_zeroes(md);
1115	}
1116
1117	if (static_branch_unlikely(&zoned_enabled) &&
1118	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1119		dm_zone_endio(io, bio);
1120
1121	if (endio) {
1122		int r = endio(ti, bio, &error);
1123
1124		switch (r) {
1125		case DM_ENDIO_REQUEUE:
1126			if (static_branch_unlikely(&zoned_enabled)) {
1127				/*
1128				 * Requeuing writes to a sequential zone of a zoned
1129				 * target will break the sequential write pattern:
1130				 * fail such IO.
1131				 */
1132				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1133					error = BLK_STS_IOERR;
1134				else
1135					error = BLK_STS_DM_REQUEUE;
1136			} else
1137				error = BLK_STS_DM_REQUEUE;
1138			fallthrough;
1139		case DM_ENDIO_DONE:
1140			break;
1141		case DM_ENDIO_INCOMPLETE:
1142			/* The target will handle the io */
1143			return;
1144		default:
1145			DMCRIT("unimplemented target endio return value: %d", r);
1146			BUG();
1147		}
1148	}
1149
1150	if (static_branch_unlikely(&swap_bios_enabled) &&
1151	    unlikely(swap_bios_limit(ti, bio)))
1152		up(&md->swap_bios_semaphore);
1153
1154	free_tio(bio);
1155	dm_io_dec_pending(io, error);
1156}
1157
1158/*
1159 * Return maximum size of I/O possible at the supplied sector up to the current
1160 * target boundary.
1161 */
1162static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1163						  sector_t target_offset)
1164{
1165	return ti->len - target_offset;
1166}
1167
1168static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1169			     unsigned int max_granularity,
1170			     unsigned int max_sectors)
1171{
1172	sector_t target_offset = dm_target_offset(ti, sector);
1173	sector_t len = max_io_len_target_boundary(ti, target_offset);
1174
1175	/*
1176	 * Does the target need to split IO even further?
1177	 * - varied (per target) IO splitting is a tenet of DM; this
1178	 *   explains why stacked chunk_sectors based splitting via
1179	 *   bio_split_to_limits() isn't possible here.
1180	 */
1181	if (!max_granularity)
1182		return len;
1183	return min_t(sector_t, len,
1184		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1185		    blk_chunk_sectors_left(target_offset, max_granularity)));
1186}
1187
1188static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1189{
1190	return __max_io_len(ti, sector, ti->max_io_len, 0);
1191}
1192
1193int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1194{
1195	if (len > UINT_MAX) {
1196		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1197		      (unsigned long long)len, UINT_MAX);
1198		ti->error = "Maximum size of target IO is too large";
1199		return -EINVAL;
1200	}
1201
1202	ti->max_io_len = (uint32_t) len;
1203
1204	return 0;
1205}
1206EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1207
1208static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1209						sector_t sector, int *srcu_idx)
1210	__acquires(md->io_barrier)
1211{
1212	struct dm_table *map;
1213	struct dm_target *ti;
1214
1215	map = dm_get_live_table(md, srcu_idx);
1216	if (!map)
1217		return NULL;
1218
1219	ti = dm_table_find_target(map, sector);
1220	if (!ti)
1221		return NULL;
1222
1223	return ti;
1224}
1225
1226static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1227		long nr_pages, enum dax_access_mode mode, void **kaddr,
1228		pfn_t *pfn)
1229{
1230	struct mapped_device *md = dax_get_private(dax_dev);
1231	sector_t sector = pgoff * PAGE_SECTORS;
1232	struct dm_target *ti;
1233	long len, ret = -EIO;
1234	int srcu_idx;
1235
1236	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1237
1238	if (!ti)
1239		goto out;
1240	if (!ti->type->direct_access)
1241		goto out;
1242	len = max_io_len(ti, sector) / PAGE_SECTORS;
1243	if (len < 1)
1244		goto out;
1245	nr_pages = min(len, nr_pages);
1246	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1247
1248 out:
1249	dm_put_live_table(md, srcu_idx);
1250
1251	return ret;
1252}
1253
1254static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1255				  size_t nr_pages)
1256{
1257	struct mapped_device *md = dax_get_private(dax_dev);
1258	sector_t sector = pgoff * PAGE_SECTORS;
1259	struct dm_target *ti;
1260	int ret = -EIO;
1261	int srcu_idx;
1262
1263	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1264
1265	if (!ti)
1266		goto out;
1267	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1268		/*
1269		 * ->zero_page_range() is mandatory dax operation. If we are
1270		 *  here, something is wrong.
1271		 */
1272		goto out;
1273	}
1274	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1275 out:
1276	dm_put_live_table(md, srcu_idx);
1277
1278	return ret;
1279}
1280
1281static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1282		void *addr, size_t bytes, struct iov_iter *i)
1283{
1284	struct mapped_device *md = dax_get_private(dax_dev);
1285	sector_t sector = pgoff * PAGE_SECTORS;
1286	struct dm_target *ti;
1287	int srcu_idx;
1288	long ret = 0;
1289
1290	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1291	if (!ti || !ti->type->dax_recovery_write)
1292		goto out;
1293
1294	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1295out:
1296	dm_put_live_table(md, srcu_idx);
1297	return ret;
1298}
1299
1300/*
1301 * A target may call dm_accept_partial_bio only from the map routine.  It is
1302 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1303 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1304 * __send_duplicate_bios().
1305 *
1306 * dm_accept_partial_bio informs the dm that the target only wants to process
1307 * additional n_sectors sectors of the bio and the rest of the data should be
1308 * sent in a next bio.
1309 *
1310 * A diagram that explains the arithmetics:
1311 * +--------------------+---------------+-------+
1312 * |         1          |       2       |   3   |
1313 * +--------------------+---------------+-------+
1314 *
1315 * <-------------- *tio->len_ptr --------------->
1316 *                      <----- bio_sectors ----->
1317 *                      <-- n_sectors -->
1318 *
1319 * Region 1 was already iterated over with bio_advance or similar function.
1320 *	(it may be empty if the target doesn't use bio_advance)
1321 * Region 2 is the remaining bio size that the target wants to process.
1322 *	(it may be empty if region 1 is non-empty, although there is no reason
1323 *	 to make it empty)
1324 * The target requires that region 3 is to be sent in the next bio.
1325 *
1326 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1327 * the partially processed part (the sum of regions 1+2) must be the same for all
1328 * copies of the bio.
1329 */
1330void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1331{
1332	struct dm_target_io *tio = clone_to_tio(bio);
1333	struct dm_io *io = tio->io;
1334	unsigned int bio_sectors = bio_sectors(bio);
1335
1336	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1337	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1338	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1339	BUG_ON(bio_sectors > *tio->len_ptr);
1340	BUG_ON(n_sectors > bio_sectors);
1341
1342	*tio->len_ptr -= bio_sectors - n_sectors;
1343	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1344
1345	/*
1346	 * __split_and_process_bio() may have already saved mapped part
1347	 * for accounting but it is being reduced so update accordingly.
1348	 */
1349	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1350	io->sectors = n_sectors;
1351	io->sector_offset = bio_sectors(io->orig_bio);
1352}
1353EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1354
1355/*
1356 * @clone: clone bio that DM core passed to target's .map function
1357 * @tgt_clone: clone of @clone bio that target needs submitted
1358 *
1359 * Targets should use this interface to submit bios they take
1360 * ownership of when returning DM_MAPIO_SUBMITTED.
1361 *
1362 * Target should also enable ti->accounts_remapped_io
1363 */
1364void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1365{
1366	struct dm_target_io *tio = clone_to_tio(clone);
1367	struct dm_io *io = tio->io;
1368
1369	/* establish bio that will get submitted */
1370	if (!tgt_clone)
1371		tgt_clone = clone;
1372
1373	/*
1374	 * Account io->origin_bio to DM dev on behalf of target
1375	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1376	 */
1377	dm_start_io_acct(io, clone);
1378
1379	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1380			      tio->old_sector);
1381	submit_bio_noacct(tgt_clone);
1382}
1383EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1384
1385static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1386{
1387	mutex_lock(&md->swap_bios_lock);
1388	while (latch < md->swap_bios) {
1389		cond_resched();
1390		down(&md->swap_bios_semaphore);
1391		md->swap_bios--;
1392	}
1393	while (latch > md->swap_bios) {
1394		cond_resched();
1395		up(&md->swap_bios_semaphore);
1396		md->swap_bios++;
1397	}
1398	mutex_unlock(&md->swap_bios_lock);
1399}
1400
1401static void __map_bio(struct bio *clone)
1402{
1403	struct dm_target_io *tio = clone_to_tio(clone);
1404	struct dm_target *ti = tio->ti;
1405	struct dm_io *io = tio->io;
1406	struct mapped_device *md = io->md;
1407	int r;
1408
1409	clone->bi_end_io = clone_endio;
1410
1411	/*
1412	 * Map the clone.
1413	 */
1414	tio->old_sector = clone->bi_iter.bi_sector;
1415
1416	if (static_branch_unlikely(&swap_bios_enabled) &&
1417	    unlikely(swap_bios_limit(ti, clone))) {
1418		int latch = get_swap_bios();
1419
1420		if (unlikely(latch != md->swap_bios))
1421			__set_swap_bios_limit(md, latch);
1422		down(&md->swap_bios_semaphore);
1423	}
1424
1425	if (static_branch_unlikely(&zoned_enabled)) {
1426		/*
1427		 * Check if the IO needs a special mapping due to zone append
1428		 * emulation on zoned target. In this case, dm_zone_map_bio()
1429		 * calls the target map operation.
1430		 */
1431		if (unlikely(dm_emulate_zone_append(md)))
1432			r = dm_zone_map_bio(tio);
1433		else
1434			goto do_map;
1435	} else {
1436do_map:
1437		if (likely(ti->type->map == linear_map))
1438			r = linear_map(ti, clone);
1439		else if (ti->type->map == stripe_map)
1440			r = stripe_map(ti, clone);
1441		else
1442			r = ti->type->map(ti, clone);
1443	}
1444
1445	switch (r) {
1446	case DM_MAPIO_SUBMITTED:
1447		/* target has assumed ownership of this io */
1448		if (!ti->accounts_remapped_io)
1449			dm_start_io_acct(io, clone);
1450		break;
1451	case DM_MAPIO_REMAPPED:
1452		dm_submit_bio_remap(clone, NULL);
1453		break;
1454	case DM_MAPIO_KILL:
1455	case DM_MAPIO_REQUEUE:
1456		if (static_branch_unlikely(&swap_bios_enabled) &&
1457		    unlikely(swap_bios_limit(ti, clone)))
1458			up(&md->swap_bios_semaphore);
1459		free_tio(clone);
1460		if (r == DM_MAPIO_KILL)
1461			dm_io_dec_pending(io, BLK_STS_IOERR);
1462		else
1463			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1464		break;
1465	default:
1466		DMCRIT("unimplemented target map return value: %d", r);
1467		BUG();
1468	}
1469}
1470
1471static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1472{
1473	struct dm_io *io = ci->io;
1474
1475	if (ci->sector_count > len) {
1476		/*
1477		 * Split needed, save the mapped part for accounting.
1478		 * NOTE: dm_accept_partial_bio() will update accordingly.
1479		 */
1480		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1481		io->sectors = len;
1482		io->sector_offset = bio_sectors(ci->bio);
1483	}
1484}
1485
1486static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1487				struct dm_target *ti, unsigned int num_bios,
1488				unsigned *len, gfp_t gfp_flag)
1489{
1490	struct bio *bio;
1491	int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
1492
1493	for (; try < 2; try++) {
1494		int bio_nr;
1495
1496		if (try && num_bios > 1)
1497			mutex_lock(&ci->io->md->table_devices_lock);
1498		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1499			bio = alloc_tio(ci, ti, bio_nr, len,
1500					try ? GFP_NOIO : GFP_NOWAIT);
1501			if (!bio)
1502				break;
1503
1504			bio_list_add(blist, bio);
1505		}
1506		if (try && num_bios > 1)
1507			mutex_unlock(&ci->io->md->table_devices_lock);
1508		if (bio_nr == num_bios)
1509			return;
1510
1511		while ((bio = bio_list_pop(blist)))
1512			free_tio(bio);
1513	}
1514}
1515
1516static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1517					  unsigned int num_bios, unsigned int *len,
1518					  gfp_t gfp_flag)
1519{
1520	struct bio_list blist = BIO_EMPTY_LIST;
1521	struct bio *clone;
1522	unsigned int ret = 0;
1523
1524	if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1525		return 0;
1526
1527	/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1528	if (len)
1529		setup_split_accounting(ci, *len);
1530
1531	/*
1532	 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1533	 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1534	 */
1535	alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
1536	while ((clone = bio_list_pop(&blist))) {
1537		if (num_bios > 1)
1538			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1539		__map_bio(clone);
1540		ret += 1;
1541	}
1542
1543	return ret;
1544}
1545
1546static void __send_empty_flush(struct clone_info *ci)
1547{
1548	struct dm_table *t = ci->map;
1549	struct bio flush_bio;
1550
1551	/*
1552	 * Use an on-stack bio for this, it's safe since we don't
1553	 * need to reference it after submit. It's just used as
1554	 * the basis for the clone(s).
1555	 */
1556	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1557		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1558
1559	ci->bio = &flush_bio;
1560	ci->sector_count = 0;
1561	ci->io->tio.clone.bi_iter.bi_size = 0;
1562
1563	for (unsigned int i = 0; i < t->num_targets; i++) {
1564		unsigned int bios;
1565		struct dm_target *ti = dm_table_get_target(t, i);
1566
1567		if (unlikely(ti->num_flush_bios == 0))
1568			continue;
1569
1570		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1571		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1572					     NULL, GFP_NOWAIT);
1573		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1574	}
1575
1576	/*
1577	 * alloc_io() takes one extra reference for submission, so the
1578	 * reference won't reach 0 without the following subtraction
1579	 */
1580	atomic_sub(1, &ci->io->io_count);
1581
1582	bio_uninit(ci->bio);
1583}
1584
1585static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1586			       unsigned int num_bios, unsigned int max_granularity,
1587			       unsigned int max_sectors)
1588{
1589	unsigned int len, bios;
1590
1591	len = min_t(sector_t, ci->sector_count,
1592		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1593
1594	atomic_add(num_bios, &ci->io->io_count);
1595	bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
1596	/*
1597	 * alloc_io() takes one extra reference for submission, so the
1598	 * reference won't reach 0 without the following (+1) subtraction
1599	 */
1600	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1601
1602	ci->sector += len;
1603	ci->sector_count -= len;
1604}
1605
1606static bool is_abnormal_io(struct bio *bio)
1607{
1608	enum req_op op = bio_op(bio);
1609
1610	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1611		switch (op) {
1612		case REQ_OP_DISCARD:
1613		case REQ_OP_SECURE_ERASE:
1614		case REQ_OP_WRITE_ZEROES:
1615			return true;
1616		default:
1617			break;
1618		}
1619	}
1620
1621	return false;
1622}
1623
1624static blk_status_t __process_abnormal_io(struct clone_info *ci,
1625					  struct dm_target *ti)
1626{
1627	unsigned int num_bios = 0;
1628	unsigned int max_granularity = 0;
1629	unsigned int max_sectors = 0;
1630	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1631
1632	switch (bio_op(ci->bio)) {
1633	case REQ_OP_DISCARD:
1634		num_bios = ti->num_discard_bios;
1635		max_sectors = limits->max_discard_sectors;
1636		if (ti->max_discard_granularity)
1637			max_granularity = max_sectors;
1638		break;
1639	case REQ_OP_SECURE_ERASE:
1640		num_bios = ti->num_secure_erase_bios;
1641		max_sectors = limits->max_secure_erase_sectors;
1642		if (ti->max_secure_erase_granularity)
1643			max_granularity = max_sectors;
1644		break;
1645	case REQ_OP_WRITE_ZEROES:
1646		num_bios = ti->num_write_zeroes_bios;
1647		max_sectors = limits->max_write_zeroes_sectors;
1648		if (ti->max_write_zeroes_granularity)
1649			max_granularity = max_sectors;
1650		break;
1651	default:
1652		break;
1653	}
1654
1655	/*
1656	 * Even though the device advertised support for this type of
1657	 * request, that does not mean every target supports it, and
1658	 * reconfiguration might also have changed that since the
1659	 * check was performed.
1660	 */
1661	if (unlikely(!num_bios))
1662		return BLK_STS_NOTSUPP;
1663
1664	__send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1665
1666	return BLK_STS_OK;
1667}
1668
1669/*
1670 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1671 * associated with this bio, and this bio's bi_private needs to be
1672 * stored in dm_io->data before the reuse.
1673 *
1674 * bio->bi_private is owned by fs or upper layer, so block layer won't
1675 * touch it after splitting. Meantime it won't be changed by anyone after
1676 * bio is submitted. So this reuse is safe.
1677 */
1678static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1679{
1680	return (struct dm_io **)&bio->bi_private;
1681}
1682
1683static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1684{
1685	struct dm_io **head = dm_poll_list_head(bio);
1686
1687	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1688		bio->bi_opf |= REQ_DM_POLL_LIST;
1689		/*
1690		 * Save .bi_private into dm_io, so that we can reuse
1691		 * .bi_private as dm_io list head for storing dm_io list
1692		 */
1693		io->data = bio->bi_private;
1694
1695		/* tell block layer to poll for completion */
1696		bio->bi_cookie = ~BLK_QC_T_NONE;
1697
1698		io->next = NULL;
1699	} else {
1700		/*
1701		 * bio recursed due to split, reuse original poll list,
1702		 * and save bio->bi_private too.
1703		 */
1704		io->data = (*head)->data;
1705		io->next = *head;
1706	}
1707
1708	*head = io;
1709}
1710
1711/*
1712 * Select the correct strategy for processing a non-flush bio.
1713 */
1714static blk_status_t __split_and_process_bio(struct clone_info *ci)
1715{
1716	struct bio *clone;
1717	struct dm_target *ti;
1718	unsigned int len;
1719
1720	ti = dm_table_find_target(ci->map, ci->sector);
1721	if (unlikely(!ti))
1722		return BLK_STS_IOERR;
1723
1724	if (unlikely(ci->is_abnormal_io))
1725		return __process_abnormal_io(ci, ti);
1726
1727	/*
1728	 * Only support bio polling for normal IO, and the target io is
1729	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1730	 */
1731	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1732
1733	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1734	setup_split_accounting(ci, len);
1735
1736	if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1737		if (unlikely(!dm_target_supports_nowait(ti->type)))
1738			return BLK_STS_NOTSUPP;
1739
1740		clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1741		if (unlikely(!clone))
1742			return BLK_STS_AGAIN;
1743	} else {
1744		clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1745	}
1746	__map_bio(clone);
1747
1748	ci->sector += len;
1749	ci->sector_count -= len;
1750
1751	return BLK_STS_OK;
1752}
1753
1754static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1755			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1756{
1757	ci->map = map;
1758	ci->io = io;
1759	ci->bio = bio;
1760	ci->is_abnormal_io = is_abnormal;
1761	ci->submit_as_polled = false;
1762	ci->sector = bio->bi_iter.bi_sector;
1763	ci->sector_count = bio_sectors(bio);
1764
1765	/* Shouldn't happen but sector_count was being set to 0 so... */
1766	if (static_branch_unlikely(&zoned_enabled) &&
1767	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1768		ci->sector_count = 0;
1769}
1770
1771/*
1772 * Entry point to split a bio into clones and submit them to the targets.
1773 */
1774static void dm_split_and_process_bio(struct mapped_device *md,
1775				     struct dm_table *map, struct bio *bio)
1776{
1777	struct clone_info ci;
1778	struct dm_io *io;
1779	blk_status_t error = BLK_STS_OK;
1780	bool is_abnormal;
1781
1782	is_abnormal = is_abnormal_io(bio);
1783	if (unlikely(is_abnormal)) {
1784		/*
1785		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1786		 * otherwise associated queue_limits won't be imposed.
1787		 */
1788		bio = bio_split_to_limits(bio);
1789		if (!bio)
1790			return;
1791	}
1792
1793	/* Only support nowait for normal IO */
1794	if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1795		io = alloc_io(md, bio, GFP_NOWAIT);
1796		if (unlikely(!io)) {
1797			/* Unable to do anything without dm_io. */
1798			bio_wouldblock_error(bio);
1799			return;
1800		}
1801	} else {
1802		io = alloc_io(md, bio, GFP_NOIO);
1803	}
1804	init_clone_info(&ci, io, map, bio, is_abnormal);
1805
1806	if (bio->bi_opf & REQ_PREFLUSH) {
1807		__send_empty_flush(&ci);
1808		/* dm_io_complete submits any data associated with flush */
1809		goto out;
1810	}
1811
1812	error = __split_and_process_bio(&ci);
1813	if (error || !ci.sector_count)
1814		goto out;
1815	/*
1816	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1817	 * *after* bios already submitted have been completely processed.
1818	 */
1819	bio_trim(bio, io->sectors, ci.sector_count);
1820	trace_block_split(bio, bio->bi_iter.bi_sector);
1821	bio_inc_remaining(bio);
1822	submit_bio_noacct(bio);
1823out:
1824	/*
1825	 * Drop the extra reference count for non-POLLED bio, and hold one
1826	 * reference for POLLED bio, which will be released in dm_poll_bio
1827	 *
1828	 * Add every dm_io instance into the dm_io list head which is stored
1829	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1830	 */
1831	if (error || !ci.submit_as_polled) {
1832		/*
1833		 * In case of submission failure, the extra reference for
1834		 * submitting io isn't consumed yet
1835		 */
1836		if (error)
1837			atomic_dec(&io->io_count);
1838		dm_io_dec_pending(io, error);
1839	} else
1840		dm_queue_poll_io(bio, io);
1841}
1842
1843static void dm_submit_bio(struct bio *bio)
1844{
1845	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1846	int srcu_idx;
1847	struct dm_table *map;
1848
1849	map = dm_get_live_table(md, &srcu_idx);
1850
1851	/* If suspended, or map not yet available, queue this IO for later */
1852	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1853	    unlikely(!map)) {
1854		if (bio->bi_opf & REQ_NOWAIT)
1855			bio_wouldblock_error(bio);
1856		else if (bio->bi_opf & REQ_RAHEAD)
1857			bio_io_error(bio);
1858		else
1859			queue_io(md, bio);
1860		goto out;
1861	}
1862
1863	dm_split_and_process_bio(md, map, bio);
1864out:
1865	dm_put_live_table(md, srcu_idx);
1866}
1867
1868static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1869			  unsigned int flags)
1870{
1871	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1872
1873	/* don't poll if the mapped io is done */
1874	if (atomic_read(&io->io_count) > 1)
1875		bio_poll(&io->tio.clone, iob, flags);
1876
1877	/* bio_poll holds the last reference */
1878	return atomic_read(&io->io_count) == 1;
1879}
1880
1881static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1882		       unsigned int flags)
1883{
1884	struct dm_io **head = dm_poll_list_head(bio);
1885	struct dm_io *list = *head;
1886	struct dm_io *tmp = NULL;
1887	struct dm_io *curr, *next;
1888
1889	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1890	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1891		return 0;
1892
1893	WARN_ON_ONCE(!list);
1894
1895	/*
1896	 * Restore .bi_private before possibly completing dm_io.
1897	 *
1898	 * bio_poll() is only possible once @bio has been completely
1899	 * submitted via submit_bio_noacct()'s depth-first submission.
1900	 * So there is no dm_queue_poll_io() race associated with
1901	 * clearing REQ_DM_POLL_LIST here.
1902	 */
1903	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1904	bio->bi_private = list->data;
1905
1906	for (curr = list, next = curr->next; curr; curr = next, next =
1907			curr ? curr->next : NULL) {
1908		if (dm_poll_dm_io(curr, iob, flags)) {
1909			/*
1910			 * clone_endio() has already occurred, so no
1911			 * error handling is needed here.
1912			 */
1913			__dm_io_dec_pending(curr);
1914		} else {
1915			curr->next = tmp;
1916			tmp = curr;
1917		}
1918	}
1919
1920	/* Not done? */
1921	if (tmp) {
1922		bio->bi_opf |= REQ_DM_POLL_LIST;
1923		/* Reset bio->bi_private to dm_io list head */
1924		*head = tmp;
1925		return 0;
1926	}
1927	return 1;
1928}
1929
1930/*
1931 *---------------------------------------------------------------
1932 * An IDR is used to keep track of allocated minor numbers.
1933 *---------------------------------------------------------------
1934 */
1935static void free_minor(int minor)
1936{
1937	spin_lock(&_minor_lock);
1938	idr_remove(&_minor_idr, minor);
1939	spin_unlock(&_minor_lock);
1940}
1941
1942/*
1943 * See if the device with a specific minor # is free.
1944 */
1945static int specific_minor(int minor)
1946{
1947	int r;
1948
1949	if (minor >= (1 << MINORBITS))
1950		return -EINVAL;
1951
1952	idr_preload(GFP_KERNEL);
1953	spin_lock(&_minor_lock);
1954
1955	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1956
1957	spin_unlock(&_minor_lock);
1958	idr_preload_end();
1959	if (r < 0)
1960		return r == -ENOSPC ? -EBUSY : r;
1961	return 0;
1962}
1963
1964static int next_free_minor(int *minor)
1965{
1966	int r;
1967
1968	idr_preload(GFP_KERNEL);
1969	spin_lock(&_minor_lock);
1970
1971	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1972
1973	spin_unlock(&_minor_lock);
1974	idr_preload_end();
1975	if (r < 0)
1976		return r;
1977	*minor = r;
1978	return 0;
1979}
1980
1981static const struct block_device_operations dm_blk_dops;
1982static const struct block_device_operations dm_rq_blk_dops;
1983static const struct dax_operations dm_dax_ops;
1984
1985static void dm_wq_work(struct work_struct *work);
1986
1987#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1988static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1989{
1990	dm_destroy_crypto_profile(q->crypto_profile);
1991}
1992
1993#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1994
1995static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1996{
1997}
1998#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1999
2000static void cleanup_mapped_device(struct mapped_device *md)
2001{
2002	if (md->wq)
2003		destroy_workqueue(md->wq);
2004	dm_free_md_mempools(md->mempools);
2005
2006	if (md->dax_dev) {
2007		dax_remove_host(md->disk);
2008		kill_dax(md->dax_dev);
2009		put_dax(md->dax_dev);
2010		md->dax_dev = NULL;
2011	}
2012
2013	dm_cleanup_zoned_dev(md);
2014	if (md->disk) {
2015		spin_lock(&_minor_lock);
2016		md->disk->private_data = NULL;
2017		spin_unlock(&_minor_lock);
2018		if (dm_get_md_type(md) != DM_TYPE_NONE) {
2019			struct table_device *td;
2020
2021			dm_sysfs_exit(md);
2022			list_for_each_entry(td, &md->table_devices, list) {
2023				bd_unlink_disk_holder(td->dm_dev.bdev,
2024						      md->disk);
2025			}
2026
2027			/*
2028			 * Hold lock to make sure del_gendisk() won't concurrent
2029			 * with open/close_table_device().
2030			 */
2031			mutex_lock(&md->table_devices_lock);
2032			del_gendisk(md->disk);
2033			mutex_unlock(&md->table_devices_lock);
2034		}
2035		dm_queue_destroy_crypto_profile(md->queue);
2036		put_disk(md->disk);
2037	}
2038
2039	if (md->pending_io) {
2040		free_percpu(md->pending_io);
2041		md->pending_io = NULL;
2042	}
2043
2044	cleanup_srcu_struct(&md->io_barrier);
2045
2046	mutex_destroy(&md->suspend_lock);
2047	mutex_destroy(&md->type_lock);
2048	mutex_destroy(&md->table_devices_lock);
2049	mutex_destroy(&md->swap_bios_lock);
2050
2051	dm_mq_cleanup_mapped_device(md);
2052}
2053
2054/*
2055 * Allocate and initialise a blank device with a given minor.
2056 */
2057static struct mapped_device *alloc_dev(int minor)
2058{
2059	int r, numa_node_id = dm_get_numa_node();
2060	struct dax_device *dax_dev;
2061	struct mapped_device *md;
2062	void *old_md;
2063
2064	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2065	if (!md) {
2066		DMERR("unable to allocate device, out of memory.");
2067		return NULL;
2068	}
2069
2070	if (!try_module_get(THIS_MODULE))
2071		goto bad_module_get;
2072
2073	/* get a minor number for the dev */
2074	if (minor == DM_ANY_MINOR)
2075		r = next_free_minor(&minor);
2076	else
2077		r = specific_minor(minor);
2078	if (r < 0)
2079		goto bad_minor;
2080
2081	r = init_srcu_struct(&md->io_barrier);
2082	if (r < 0)
2083		goto bad_io_barrier;
2084
2085	md->numa_node_id = numa_node_id;
2086	md->init_tio_pdu = false;
2087	md->type = DM_TYPE_NONE;
2088	mutex_init(&md->suspend_lock);
2089	mutex_init(&md->type_lock);
2090	mutex_init(&md->table_devices_lock);
2091	spin_lock_init(&md->deferred_lock);
2092	atomic_set(&md->holders, 1);
2093	atomic_set(&md->open_count, 0);
2094	atomic_set(&md->event_nr, 0);
2095	atomic_set(&md->uevent_seq, 0);
2096	INIT_LIST_HEAD(&md->uevent_list);
2097	INIT_LIST_HEAD(&md->table_devices);
2098	spin_lock_init(&md->uevent_lock);
2099
2100	/*
2101	 * default to bio-based until DM table is loaded and md->type
2102	 * established. If request-based table is loaded: blk-mq will
2103	 * override accordingly.
2104	 */
2105	md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2106	if (IS_ERR(md->disk))
2107		goto bad;
2108	md->queue = md->disk->queue;
2109
2110	init_waitqueue_head(&md->wait);
2111	INIT_WORK(&md->work, dm_wq_work);
2112	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2113	init_waitqueue_head(&md->eventq);
2114	init_completion(&md->kobj_holder.completion);
2115
2116	md->requeue_list = NULL;
2117	md->swap_bios = get_swap_bios();
2118	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2119	mutex_init(&md->swap_bios_lock);
2120
2121	md->disk->major = _major;
2122	md->disk->first_minor = minor;
2123	md->disk->minors = 1;
2124	md->disk->flags |= GENHD_FL_NO_PART;
2125	md->disk->fops = &dm_blk_dops;
2126	md->disk->private_data = md;
2127	sprintf(md->disk->disk_name, "dm-%d", minor);
2128
2129	dax_dev = alloc_dax(md, &dm_dax_ops);
2130	if (IS_ERR(dax_dev)) {
2131		if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
2132			goto bad;
2133	} else {
2134		set_dax_nocache(dax_dev);
2135		set_dax_nomc(dax_dev);
2136		md->dax_dev = dax_dev;
2137		if (dax_add_host(dax_dev, md->disk))
2138			goto bad;
2139	}
2140
2141	format_dev_t(md->name, MKDEV(_major, minor));
2142
2143	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2144	if (!md->wq)
2145		goto bad;
2146
2147	md->pending_io = alloc_percpu(unsigned long);
2148	if (!md->pending_io)
2149		goto bad;
2150
2151	r = dm_stats_init(&md->stats);
2152	if (r < 0)
2153		goto bad;
2154
2155	/* Populate the mapping, nobody knows we exist yet */
2156	spin_lock(&_minor_lock);
2157	old_md = idr_replace(&_minor_idr, md, minor);
2158	spin_unlock(&_minor_lock);
2159
2160	BUG_ON(old_md != MINOR_ALLOCED);
2161
2162	return md;
2163
2164bad:
2165	cleanup_mapped_device(md);
2166bad_io_barrier:
2167	free_minor(minor);
2168bad_minor:
2169	module_put(THIS_MODULE);
2170bad_module_get:
2171	kvfree(md);
2172	return NULL;
2173}
2174
2175static void unlock_fs(struct mapped_device *md);
2176
2177static void free_dev(struct mapped_device *md)
2178{
2179	int minor = MINOR(disk_devt(md->disk));
2180
2181	unlock_fs(md);
2182
2183	cleanup_mapped_device(md);
2184
2185	WARN_ON_ONCE(!list_empty(&md->table_devices));
2186	dm_stats_cleanup(&md->stats);
2187	free_minor(minor);
2188
2189	module_put(THIS_MODULE);
2190	kvfree(md);
2191}
2192
2193/*
2194 * Bind a table to the device.
2195 */
2196static void event_callback(void *context)
2197{
2198	unsigned long flags;
2199	LIST_HEAD(uevents);
2200	struct mapped_device *md = context;
2201
2202	spin_lock_irqsave(&md->uevent_lock, flags);
2203	list_splice_init(&md->uevent_list, &uevents);
2204	spin_unlock_irqrestore(&md->uevent_lock, flags);
2205
2206	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2207
2208	atomic_inc(&md->event_nr);
2209	wake_up(&md->eventq);
2210	dm_issue_global_event();
2211}
2212
2213/*
2214 * Returns old map, which caller must destroy.
2215 */
2216static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2217			       struct queue_limits *limits)
2218{
2219	struct dm_table *old_map;
2220	sector_t size;
2221	int ret;
2222
2223	lockdep_assert_held(&md->suspend_lock);
2224
2225	size = dm_table_get_size(t);
2226
2227	/*
2228	 * Wipe any geometry if the size of the table changed.
2229	 */
2230	if (size != dm_get_size(md))
2231		memset(&md->geometry, 0, sizeof(md->geometry));
2232
2233	set_capacity(md->disk, size);
2234
2235	dm_table_event_callback(t, event_callback, md);
2236
2237	if (dm_table_request_based(t)) {
2238		/*
2239		 * Leverage the fact that request-based DM targets are
2240		 * immutable singletons - used to optimize dm_mq_queue_rq.
2241		 */
2242		md->immutable_target = dm_table_get_immutable_target(t);
2243
2244		/*
2245		 * There is no need to reload with request-based dm because the
2246		 * size of front_pad doesn't change.
2247		 *
2248		 * Note for future: If you are to reload bioset, prep-ed
2249		 * requests in the queue may refer to bio from the old bioset,
2250		 * so you must walk through the queue to unprep.
2251		 */
2252		if (!md->mempools) {
2253			md->mempools = t->mempools;
2254			t->mempools = NULL;
2255		}
2256	} else {
2257		/*
2258		 * The md may already have mempools that need changing.
2259		 * If so, reload bioset because front_pad may have changed
2260		 * because a different table was loaded.
2261		 */
2262		dm_free_md_mempools(md->mempools);
2263		md->mempools = t->mempools;
2264		t->mempools = NULL;
2265	}
2266
2267	ret = dm_table_set_restrictions(t, md->queue, limits);
2268	if (ret) {
2269		old_map = ERR_PTR(ret);
2270		goto out;
2271	}
2272
2273	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2274	rcu_assign_pointer(md->map, (void *)t);
2275	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2276
2277	if (old_map)
2278		dm_sync_table(md);
2279out:
2280	return old_map;
2281}
2282
2283/*
2284 * Returns unbound table for the caller to free.
2285 */
2286static struct dm_table *__unbind(struct mapped_device *md)
2287{
2288	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2289
2290	if (!map)
2291		return NULL;
2292
2293	dm_table_event_callback(map, NULL, NULL);
2294	RCU_INIT_POINTER(md->map, NULL);
2295	dm_sync_table(md);
2296
2297	return map;
2298}
2299
2300/*
2301 * Constructor for a new device.
2302 */
2303int dm_create(int minor, struct mapped_device **result)
2304{
2305	struct mapped_device *md;
2306
2307	md = alloc_dev(minor);
2308	if (!md)
2309		return -ENXIO;
2310
2311	dm_ima_reset_data(md);
2312
2313	*result = md;
2314	return 0;
2315}
2316
2317/*
2318 * Functions to manage md->type.
2319 * All are required to hold md->type_lock.
2320 */
2321void dm_lock_md_type(struct mapped_device *md)
2322{
2323	mutex_lock(&md->type_lock);
2324}
2325
2326void dm_unlock_md_type(struct mapped_device *md)
2327{
2328	mutex_unlock(&md->type_lock);
2329}
2330
2331void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2332{
2333	BUG_ON(!mutex_is_locked(&md->type_lock));
2334	md->type = type;
2335}
2336
2337enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2338{
2339	return md->type;
2340}
2341
2342struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2343{
2344	return md->immutable_target_type;
2345}
2346
2347/*
2348 * Setup the DM device's queue based on md's type
2349 */
2350int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2351{
2352	enum dm_queue_mode type = dm_table_get_type(t);
2353	struct queue_limits limits;
2354	struct table_device *td;
2355	int r;
2356
2357	switch (type) {
2358	case DM_TYPE_REQUEST_BASED:
2359		md->disk->fops = &dm_rq_blk_dops;
2360		r = dm_mq_init_request_queue(md, t);
2361		if (r) {
2362			DMERR("Cannot initialize queue for request-based dm mapped device");
2363			return r;
2364		}
2365		break;
2366	case DM_TYPE_BIO_BASED:
2367	case DM_TYPE_DAX_BIO_BASED:
2368		blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue);
2369		break;
2370	case DM_TYPE_NONE:
2371		WARN_ON_ONCE(true);
2372		break;
2373	}
2374
2375	r = dm_calculate_queue_limits(t, &limits);
2376	if (r) {
2377		DMERR("Cannot calculate initial queue limits");
2378		return r;
2379	}
2380	r = dm_table_set_restrictions(t, md->queue, &limits);
2381	if (r)
2382		return r;
2383
2384	/*
2385	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2386	 * with open_table_device() and close_table_device().
2387	 */
2388	mutex_lock(&md->table_devices_lock);
2389	r = add_disk(md->disk);
2390	mutex_unlock(&md->table_devices_lock);
2391	if (r)
2392		return r;
2393
2394	/*
2395	 * Register the holder relationship for devices added before the disk
2396	 * was live.
2397	 */
2398	list_for_each_entry(td, &md->table_devices, list) {
2399		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2400		if (r)
2401			goto out_undo_holders;
2402	}
2403
2404	r = dm_sysfs_init(md);
2405	if (r)
2406		goto out_undo_holders;
2407
2408	md->type = type;
2409	return 0;
2410
2411out_undo_holders:
2412	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2413		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2414	mutex_lock(&md->table_devices_lock);
2415	del_gendisk(md->disk);
2416	mutex_unlock(&md->table_devices_lock);
2417	return r;
2418}
2419
2420struct mapped_device *dm_get_md(dev_t dev)
2421{
2422	struct mapped_device *md;
2423	unsigned int minor = MINOR(dev);
2424
2425	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2426		return NULL;
2427
2428	spin_lock(&_minor_lock);
2429
2430	md = idr_find(&_minor_idr, minor);
2431	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2432	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2433		md = NULL;
2434		goto out;
2435	}
2436	dm_get(md);
2437out:
2438	spin_unlock(&_minor_lock);
2439
2440	return md;
2441}
2442EXPORT_SYMBOL_GPL(dm_get_md);
2443
2444void *dm_get_mdptr(struct mapped_device *md)
2445{
2446	return md->interface_ptr;
2447}
2448
2449void dm_set_mdptr(struct mapped_device *md, void *ptr)
2450{
2451	md->interface_ptr = ptr;
2452}
2453
2454void dm_get(struct mapped_device *md)
2455{
2456	atomic_inc(&md->holders);
2457	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2458}
2459
2460int dm_hold(struct mapped_device *md)
2461{
2462	spin_lock(&_minor_lock);
2463	if (test_bit(DMF_FREEING, &md->flags)) {
2464		spin_unlock(&_minor_lock);
2465		return -EBUSY;
2466	}
2467	dm_get(md);
2468	spin_unlock(&_minor_lock);
2469	return 0;
2470}
2471EXPORT_SYMBOL_GPL(dm_hold);
2472
2473const char *dm_device_name(struct mapped_device *md)
2474{
2475	return md->name;
2476}
2477EXPORT_SYMBOL_GPL(dm_device_name);
2478
2479static void __dm_destroy(struct mapped_device *md, bool wait)
2480{
2481	struct dm_table *map;
2482	int srcu_idx;
2483
2484	might_sleep();
2485
2486	spin_lock(&_minor_lock);
2487	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2488	set_bit(DMF_FREEING, &md->flags);
2489	spin_unlock(&_minor_lock);
2490
2491	blk_mark_disk_dead(md->disk);
2492
2493	/*
2494	 * Take suspend_lock so that presuspend and postsuspend methods
2495	 * do not race with internal suspend.
2496	 */
2497	mutex_lock(&md->suspend_lock);
2498	map = dm_get_live_table(md, &srcu_idx);
2499	if (!dm_suspended_md(md)) {
2500		dm_table_presuspend_targets(map);
2501		set_bit(DMF_SUSPENDED, &md->flags);
2502		set_bit(DMF_POST_SUSPENDING, &md->flags);
2503		dm_table_postsuspend_targets(map);
2504	}
2505	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2506	dm_put_live_table(md, srcu_idx);
2507	mutex_unlock(&md->suspend_lock);
2508
2509	/*
2510	 * Rare, but there may be I/O requests still going to complete,
2511	 * for example.  Wait for all references to disappear.
2512	 * No one should increment the reference count of the mapped_device,
2513	 * after the mapped_device state becomes DMF_FREEING.
2514	 */
2515	if (wait)
2516		while (atomic_read(&md->holders))
2517			fsleep(1000);
2518	else if (atomic_read(&md->holders))
2519		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2520		       dm_device_name(md), atomic_read(&md->holders));
2521
2522	dm_table_destroy(__unbind(md));
2523	free_dev(md);
2524}
2525
2526void dm_destroy(struct mapped_device *md)
2527{
2528	__dm_destroy(md, true);
2529}
2530
2531void dm_destroy_immediate(struct mapped_device *md)
2532{
2533	__dm_destroy(md, false);
2534}
2535
2536void dm_put(struct mapped_device *md)
2537{
2538	atomic_dec(&md->holders);
2539}
2540EXPORT_SYMBOL_GPL(dm_put);
2541
2542static bool dm_in_flight_bios(struct mapped_device *md)
2543{
2544	int cpu;
2545	unsigned long sum = 0;
2546
2547	for_each_possible_cpu(cpu)
2548		sum += *per_cpu_ptr(md->pending_io, cpu);
2549
2550	return sum != 0;
2551}
2552
2553static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2554{
2555	int r = 0;
2556	DEFINE_WAIT(wait);
2557
2558	while (true) {
2559		prepare_to_wait(&md->wait, &wait, task_state);
2560
2561		if (!dm_in_flight_bios(md))
2562			break;
2563
2564		if (signal_pending_state(task_state, current)) {
2565			r = -EINTR;
2566			break;
2567		}
2568
2569		io_schedule();
2570	}
2571	finish_wait(&md->wait, &wait);
2572
2573	smp_rmb();
2574
2575	return r;
2576}
2577
2578static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2579{
2580	int r = 0;
2581
2582	if (!queue_is_mq(md->queue))
2583		return dm_wait_for_bios_completion(md, task_state);
2584
2585	while (true) {
2586		if (!blk_mq_queue_inflight(md->queue))
2587			break;
2588
2589		if (signal_pending_state(task_state, current)) {
2590			r = -EINTR;
2591			break;
2592		}
2593
2594		fsleep(5000);
2595	}
2596
2597	return r;
2598}
2599
2600/*
2601 * Process the deferred bios
2602 */
2603static void dm_wq_work(struct work_struct *work)
2604{
2605	struct mapped_device *md = container_of(work, struct mapped_device, work);
2606	struct bio *bio;
2607
2608	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2609		spin_lock_irq(&md->deferred_lock);
2610		bio = bio_list_pop(&md->deferred);
2611		spin_unlock_irq(&md->deferred_lock);
2612
2613		if (!bio)
2614			break;
2615
2616		submit_bio_noacct(bio);
2617		cond_resched();
2618	}
2619}
2620
2621static void dm_queue_flush(struct mapped_device *md)
2622{
2623	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2624	smp_mb__after_atomic();
2625	queue_work(md->wq, &md->work);
2626}
2627
2628/*
2629 * Swap in a new table, returning the old one for the caller to destroy.
2630 */
2631struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2632{
2633	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2634	struct queue_limits limits;
2635	int r;
2636
2637	mutex_lock(&md->suspend_lock);
2638
2639	/* device must be suspended */
2640	if (!dm_suspended_md(md))
2641		goto out;
2642
2643	/*
2644	 * If the new table has no data devices, retain the existing limits.
2645	 * This helps multipath with queue_if_no_path if all paths disappear,
2646	 * then new I/O is queued based on these limits, and then some paths
2647	 * reappear.
2648	 */
2649	if (dm_table_has_no_data_devices(table)) {
2650		live_map = dm_get_live_table_fast(md);
2651		if (live_map)
2652			limits = md->queue->limits;
2653		dm_put_live_table_fast(md);
2654	}
2655
2656	if (!live_map) {
2657		r = dm_calculate_queue_limits(table, &limits);
2658		if (r) {
2659			map = ERR_PTR(r);
2660			goto out;
2661		}
2662	}
2663
2664	map = __bind(md, table, &limits);
2665	dm_issue_global_event();
2666
2667out:
2668	mutex_unlock(&md->suspend_lock);
2669	return map;
2670}
2671
2672/*
2673 * Functions to lock and unlock any filesystem running on the
2674 * device.
2675 */
2676static int lock_fs(struct mapped_device *md)
2677{
2678	int r;
2679
2680	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2681
2682	r = bdev_freeze(md->disk->part0);
2683	if (!r)
2684		set_bit(DMF_FROZEN, &md->flags);
2685	return r;
2686}
2687
2688static void unlock_fs(struct mapped_device *md)
2689{
2690	if (!test_bit(DMF_FROZEN, &md->flags))
2691		return;
2692	bdev_thaw(md->disk->part0);
2693	clear_bit(DMF_FROZEN, &md->flags);
2694}
2695
2696/*
2697 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2698 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2699 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2700 *
2701 * If __dm_suspend returns 0, the device is completely quiescent
2702 * now. There is no request-processing activity. All new requests
2703 * are being added to md->deferred list.
2704 */
2705static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2706			unsigned int suspend_flags, unsigned int task_state,
2707			int dmf_suspended_flag)
2708{
2709	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2710	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2711	int r;
2712
2713	lockdep_assert_held(&md->suspend_lock);
2714
2715	/*
2716	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2717	 * This flag is cleared before dm_suspend returns.
2718	 */
2719	if (noflush)
2720		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2721	else
2722		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2723
2724	/*
2725	 * This gets reverted if there's an error later and the targets
2726	 * provide the .presuspend_undo hook.
2727	 */
2728	dm_table_presuspend_targets(map);
2729
2730	/*
2731	 * Flush I/O to the device.
2732	 * Any I/O submitted after lock_fs() may not be flushed.
2733	 * noflush takes precedence over do_lockfs.
2734	 * (lock_fs() flushes I/Os and waits for them to complete.)
2735	 */
2736	if (!noflush && do_lockfs) {
2737		r = lock_fs(md);
2738		if (r) {
2739			dm_table_presuspend_undo_targets(map);
2740			return r;
2741		}
2742	}
2743
2744	/*
2745	 * Here we must make sure that no processes are submitting requests
2746	 * to target drivers i.e. no one may be executing
2747	 * dm_split_and_process_bio from dm_submit_bio.
2748	 *
2749	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2750	 * we take the write lock. To prevent any process from reentering
2751	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2752	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2753	 * flush_workqueue(md->wq).
2754	 */
2755	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2756	if (map)
2757		synchronize_srcu(&md->io_barrier);
2758
2759	/*
2760	 * Stop md->queue before flushing md->wq in case request-based
2761	 * dm defers requests to md->wq from md->queue.
2762	 */
2763	if (dm_request_based(md))
2764		dm_stop_queue(md->queue);
2765
2766	flush_workqueue(md->wq);
2767
2768	/*
2769	 * At this point no more requests are entering target request routines.
2770	 * We call dm_wait_for_completion to wait for all existing requests
2771	 * to finish.
2772	 */
2773	r = dm_wait_for_completion(md, task_state);
2774	if (!r)
2775		set_bit(dmf_suspended_flag, &md->flags);
2776
2777	if (noflush)
2778		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2779	if (map)
2780		synchronize_srcu(&md->io_barrier);
2781
2782	/* were we interrupted ? */
2783	if (r < 0) {
2784		dm_queue_flush(md);
2785
2786		if (dm_request_based(md))
2787			dm_start_queue(md->queue);
2788
2789		unlock_fs(md);
2790		dm_table_presuspend_undo_targets(map);
2791		/* pushback list is already flushed, so skip flush */
2792	}
2793
2794	return r;
2795}
2796
2797/*
2798 * We need to be able to change a mapping table under a mounted
2799 * filesystem.  For example we might want to move some data in
2800 * the background.  Before the table can be swapped with
2801 * dm_bind_table, dm_suspend must be called to flush any in
2802 * flight bios and ensure that any further io gets deferred.
2803 */
2804/*
2805 * Suspend mechanism in request-based dm.
2806 *
2807 * 1. Flush all I/Os by lock_fs() if needed.
2808 * 2. Stop dispatching any I/O by stopping the request_queue.
2809 * 3. Wait for all in-flight I/Os to be completed or requeued.
2810 *
2811 * To abort suspend, start the request_queue.
2812 */
2813int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2814{
2815	struct dm_table *map = NULL;
2816	int r = 0;
2817
2818retry:
2819	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2820
2821	if (dm_suspended_md(md)) {
2822		r = -EINVAL;
2823		goto out_unlock;
2824	}
2825
2826	if (dm_suspended_internally_md(md)) {
2827		/* already internally suspended, wait for internal resume */
2828		mutex_unlock(&md->suspend_lock);
2829		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2830		if (r)
2831			return r;
2832		goto retry;
2833	}
2834
2835	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2836	if (!map) {
2837		/* avoid deadlock with fs/namespace.c:do_mount() */
2838		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
2839	}
2840
2841	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2842	if (r)
2843		goto out_unlock;
2844
2845	set_bit(DMF_POST_SUSPENDING, &md->flags);
2846	dm_table_postsuspend_targets(map);
2847	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2848
2849out_unlock:
2850	mutex_unlock(&md->suspend_lock);
2851	return r;
2852}
2853
2854static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2855{
2856	if (map) {
2857		int r = dm_table_resume_targets(map);
2858
2859		if (r)
2860			return r;
2861	}
2862
2863	dm_queue_flush(md);
2864
2865	/*
2866	 * Flushing deferred I/Os must be done after targets are resumed
2867	 * so that mapping of targets can work correctly.
2868	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2869	 */
2870	if (dm_request_based(md))
2871		dm_start_queue(md->queue);
2872
2873	unlock_fs(md);
2874
2875	return 0;
2876}
2877
2878int dm_resume(struct mapped_device *md)
2879{
2880	int r;
2881	struct dm_table *map = NULL;
2882
2883retry:
2884	r = -EINVAL;
2885	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2886
2887	if (!dm_suspended_md(md))
2888		goto out;
2889
2890	if (dm_suspended_internally_md(md)) {
2891		/* already internally suspended, wait for internal resume */
2892		mutex_unlock(&md->suspend_lock);
2893		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2894		if (r)
2895			return r;
2896		goto retry;
2897	}
2898
2899	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2900	if (!map || !dm_table_get_size(map))
2901		goto out;
2902
2903	r = __dm_resume(md, map);
2904	if (r)
2905		goto out;
2906
2907	clear_bit(DMF_SUSPENDED, &md->flags);
2908out:
2909	mutex_unlock(&md->suspend_lock);
2910
2911	return r;
2912}
2913
2914/*
2915 * Internal suspend/resume works like userspace-driven suspend. It waits
2916 * until all bios finish and prevents issuing new bios to the target drivers.
2917 * It may be used only from the kernel.
2918 */
2919
2920static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2921{
2922	struct dm_table *map = NULL;
2923
2924	lockdep_assert_held(&md->suspend_lock);
2925
2926	if (md->internal_suspend_count++)
2927		return; /* nested internal suspend */
2928
2929	if (dm_suspended_md(md)) {
2930		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2931		return; /* nest suspend */
2932	}
2933
2934	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2935
2936	/*
2937	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2938	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2939	 * would require changing .presuspend to return an error -- avoid this
2940	 * until there is a need for more elaborate variants of internal suspend.
2941	 */
2942	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2943			    DMF_SUSPENDED_INTERNALLY);
2944
2945	set_bit(DMF_POST_SUSPENDING, &md->flags);
2946	dm_table_postsuspend_targets(map);
2947	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2948}
2949
2950static void __dm_internal_resume(struct mapped_device *md)
2951{
2952	int r;
2953	struct dm_table *map;
2954
2955	BUG_ON(!md->internal_suspend_count);
2956
2957	if (--md->internal_suspend_count)
2958		return; /* resume from nested internal suspend */
2959
2960	if (dm_suspended_md(md))
2961		goto done; /* resume from nested suspend */
2962
2963	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2964	r = __dm_resume(md, map);
2965	if (r) {
2966		/*
2967		 * If a preresume method of some target failed, we are in a
2968		 * tricky situation. We can't return an error to the caller. We
2969		 * can't fake success because then the "resume" and
2970		 * "postsuspend" methods would not be paired correctly, and it
2971		 * would break various targets, for example it would cause list
2972		 * corruption in the "origin" target.
2973		 *
2974		 * So, we fake normal suspend here, to make sure that the
2975		 * "resume" and "postsuspend" methods will be paired correctly.
2976		 */
2977		DMERR("Preresume method failed: %d", r);
2978		set_bit(DMF_SUSPENDED, &md->flags);
2979	}
2980done:
2981	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2982	smp_mb__after_atomic();
2983	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2984}
2985
2986void dm_internal_suspend_noflush(struct mapped_device *md)
2987{
2988	mutex_lock(&md->suspend_lock);
2989	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2990	mutex_unlock(&md->suspend_lock);
2991}
2992EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2993
2994void dm_internal_resume(struct mapped_device *md)
2995{
2996	mutex_lock(&md->suspend_lock);
2997	__dm_internal_resume(md);
2998	mutex_unlock(&md->suspend_lock);
2999}
3000EXPORT_SYMBOL_GPL(dm_internal_resume);
3001
3002/*
3003 * Fast variants of internal suspend/resume hold md->suspend_lock,
3004 * which prevents interaction with userspace-driven suspend.
3005 */
3006
3007void dm_internal_suspend_fast(struct mapped_device *md)
3008{
3009	mutex_lock(&md->suspend_lock);
3010	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3011		return;
3012
3013	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3014	synchronize_srcu(&md->io_barrier);
3015	flush_workqueue(md->wq);
3016	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3017}
3018EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3019
3020void dm_internal_resume_fast(struct mapped_device *md)
3021{
3022	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3023		goto done;
3024
3025	dm_queue_flush(md);
3026
3027done:
3028	mutex_unlock(&md->suspend_lock);
3029}
3030EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3031
3032/*
3033 *---------------------------------------------------------------
3034 * Event notification.
3035 *---------------------------------------------------------------
3036 */
3037int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3038		      unsigned int cookie, bool need_resize_uevent)
3039{
3040	int r;
3041	unsigned int noio_flag;
3042	char udev_cookie[DM_COOKIE_LENGTH];
3043	char *envp[3] = { NULL, NULL, NULL };
3044	char **envpp = envp;
3045	if (cookie) {
3046		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3047			 DM_COOKIE_ENV_VAR_NAME, cookie);
3048		*envpp++ = udev_cookie;
3049	}
3050	if (need_resize_uevent) {
3051		*envpp++ = "RESIZE=1";
3052	}
3053
3054	noio_flag = memalloc_noio_save();
3055
3056	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3057
3058	memalloc_noio_restore(noio_flag);
3059
3060	return r;
3061}
3062
3063uint32_t dm_next_uevent_seq(struct mapped_device *md)
3064{
3065	return atomic_add_return(1, &md->uevent_seq);
3066}
3067
3068uint32_t dm_get_event_nr(struct mapped_device *md)
3069{
3070	return atomic_read(&md->event_nr);
3071}
3072
3073int dm_wait_event(struct mapped_device *md, int event_nr)
3074{
3075	return wait_event_interruptible(md->eventq,
3076			(event_nr != atomic_read(&md->event_nr)));
3077}
3078
3079void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3080{
3081	unsigned long flags;
3082
3083	spin_lock_irqsave(&md->uevent_lock, flags);
3084	list_add(elist, &md->uevent_list);
3085	spin_unlock_irqrestore(&md->uevent_lock, flags);
3086}
3087
3088/*
3089 * The gendisk is only valid as long as you have a reference
3090 * count on 'md'.
3091 */
3092struct gendisk *dm_disk(struct mapped_device *md)
3093{
3094	return md->disk;
3095}
3096EXPORT_SYMBOL_GPL(dm_disk);
3097
3098struct kobject *dm_kobject(struct mapped_device *md)
3099{
3100	return &md->kobj_holder.kobj;
3101}
3102
3103struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3104{
3105	struct mapped_device *md;
3106
3107	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3108
3109	spin_lock(&_minor_lock);
3110	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3111		md = NULL;
3112		goto out;
3113	}
3114	dm_get(md);
3115out:
3116	spin_unlock(&_minor_lock);
3117
3118	return md;
3119}
3120
3121int dm_suspended_md(struct mapped_device *md)
3122{
3123	return test_bit(DMF_SUSPENDED, &md->flags);
3124}
3125
3126static int dm_post_suspending_md(struct mapped_device *md)
3127{
3128	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3129}
3130
3131int dm_suspended_internally_md(struct mapped_device *md)
3132{
3133	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3134}
3135
3136int dm_test_deferred_remove_flag(struct mapped_device *md)
3137{
3138	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3139}
3140
3141int dm_suspended(struct dm_target *ti)
3142{
3143	return dm_suspended_md(ti->table->md);
3144}
3145EXPORT_SYMBOL_GPL(dm_suspended);
3146
3147int dm_post_suspending(struct dm_target *ti)
3148{
3149	return dm_post_suspending_md(ti->table->md);
3150}
3151EXPORT_SYMBOL_GPL(dm_post_suspending);
3152
3153int dm_noflush_suspending(struct dm_target *ti)
3154{
3155	return __noflush_suspending(ti->table->md);
3156}
3157EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3158
3159void dm_free_md_mempools(struct dm_md_mempools *pools)
3160{
3161	if (!pools)
3162		return;
3163
3164	bioset_exit(&pools->bs);
3165	bioset_exit(&pools->io_bs);
3166
3167	kfree(pools);
3168}
3169
3170struct dm_pr {
3171	u64	old_key;
3172	u64	new_key;
3173	u32	flags;
3174	bool	abort;
3175	bool	fail_early;
3176	int	ret;
3177	enum pr_type type;
3178	struct pr_keys *read_keys;
3179	struct pr_held_reservation *rsv;
3180};
3181
3182static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3183		      struct dm_pr *pr)
3184{
3185	struct mapped_device *md = bdev->bd_disk->private_data;
3186	struct dm_table *table;
3187	struct dm_target *ti;
3188	int ret = -ENOTTY, srcu_idx;
3189
3190	table = dm_get_live_table(md, &srcu_idx);
3191	if (!table || !dm_table_get_size(table))
3192		goto out;
3193
3194	/* We only support devices that have a single target */
3195	if (table->num_targets != 1)
3196		goto out;
3197	ti = dm_table_get_target(table, 0);
3198
3199	if (dm_suspended_md(md)) {
3200		ret = -EAGAIN;
3201		goto out;
3202	}
3203
3204	ret = -EINVAL;
3205	if (!ti->type->iterate_devices)
3206		goto out;
3207
3208	ti->type->iterate_devices(ti, fn, pr);
3209	ret = 0;
3210out:
3211	dm_put_live_table(md, srcu_idx);
3212	return ret;
3213}
3214
3215/*
3216 * For register / unregister we need to manually call out to every path.
3217 */
3218static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3219			    sector_t start, sector_t len, void *data)
3220{
3221	struct dm_pr *pr = data;
3222	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3223	int ret;
3224
3225	if (!ops || !ops->pr_register) {
3226		pr->ret = -EOPNOTSUPP;
3227		return -1;
3228	}
3229
3230	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3231	if (!ret)
3232		return 0;
3233
3234	if (!pr->ret)
3235		pr->ret = ret;
3236
3237	if (pr->fail_early)
3238		return -1;
3239
3240	return 0;
3241}
3242
3243static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3244			  u32 flags)
3245{
3246	struct dm_pr pr = {
3247		.old_key	= old_key,
3248		.new_key	= new_key,
3249		.flags		= flags,
3250		.fail_early	= true,
3251		.ret		= 0,
3252	};
3253	int ret;
3254
3255	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3256	if (ret) {
3257		/* Didn't even get to register a path */
3258		return ret;
3259	}
3260
3261	if (!pr.ret)
3262		return 0;
3263	ret = pr.ret;
3264
3265	if (!new_key)
3266		return ret;
3267
3268	/* unregister all paths if we failed to register any path */
3269	pr.old_key = new_key;
3270	pr.new_key = 0;
3271	pr.flags = 0;
3272	pr.fail_early = false;
3273	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3274	return ret;
3275}
3276
3277
3278static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3279			   sector_t start, sector_t len, void *data)
3280{
3281	struct dm_pr *pr = data;
3282	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3283
3284	if (!ops || !ops->pr_reserve) {
3285		pr->ret = -EOPNOTSUPP;
3286		return -1;
3287	}
3288
3289	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3290	if (!pr->ret)
3291		return -1;
3292
3293	return 0;
3294}
3295
3296static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3297			 u32 flags)
3298{
3299	struct dm_pr pr = {
3300		.old_key	= key,
3301		.flags		= flags,
3302		.type		= type,
3303		.fail_early	= false,
3304		.ret		= 0,
3305	};
3306	int ret;
3307
3308	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3309	if (ret)
3310		return ret;
3311
3312	return pr.ret;
3313}
3314
3315/*
3316 * If there is a non-All Registrants type of reservation, the release must be
3317 * sent down the holding path. For the cases where there is no reservation or
3318 * the path is not the holder the device will also return success, so we must
3319 * try each path to make sure we got the correct path.
3320 */
3321static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3322			   sector_t start, sector_t len, void *data)
3323{
3324	struct dm_pr *pr = data;
3325	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3326
3327	if (!ops || !ops->pr_release) {
3328		pr->ret = -EOPNOTSUPP;
3329		return -1;
3330	}
3331
3332	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3333	if (pr->ret)
3334		return -1;
3335
3336	return 0;
3337}
3338
3339static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3340{
3341	struct dm_pr pr = {
3342		.old_key	= key,
3343		.type		= type,
3344		.fail_early	= false,
3345	};
3346	int ret;
3347
3348	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3349	if (ret)
3350		return ret;
3351
3352	return pr.ret;
3353}
3354
3355static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3356			   sector_t start, sector_t len, void *data)
3357{
3358	struct dm_pr *pr = data;
3359	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3360
3361	if (!ops || !ops->pr_preempt) {
3362		pr->ret = -EOPNOTSUPP;
3363		return -1;
3364	}
3365
3366	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3367				  pr->abort);
3368	if (!pr->ret)
3369		return -1;
3370
3371	return 0;
3372}
3373
3374static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3375			 enum pr_type type, bool abort)
3376{
3377	struct dm_pr pr = {
3378		.new_key	= new_key,
3379		.old_key	= old_key,
3380		.type		= type,
3381		.fail_early	= false,
3382	};
3383	int ret;
3384
3385	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3386	if (ret)
3387		return ret;
3388
3389	return pr.ret;
3390}
3391
3392static int dm_pr_clear(struct block_device *bdev, u64 key)
3393{
3394	struct mapped_device *md = bdev->bd_disk->private_data;
3395	const struct pr_ops *ops;
3396	int r, srcu_idx;
3397
3398	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3399	if (r < 0)
3400		goto out;
3401
3402	ops = bdev->bd_disk->fops->pr_ops;
3403	if (ops && ops->pr_clear)
3404		r = ops->pr_clear(bdev, key);
3405	else
3406		r = -EOPNOTSUPP;
3407out:
3408	dm_unprepare_ioctl(md, srcu_idx);
3409	return r;
3410}
3411
3412static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3413			     sector_t start, sector_t len, void *data)
3414{
3415	struct dm_pr *pr = data;
3416	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3417
3418	if (!ops || !ops->pr_read_keys) {
3419		pr->ret = -EOPNOTSUPP;
3420		return -1;
3421	}
3422
3423	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3424	if (!pr->ret)
3425		return -1;
3426
3427	return 0;
3428}
3429
3430static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3431{
3432	struct dm_pr pr = {
3433		.read_keys = keys,
3434	};
3435	int ret;
3436
3437	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3438	if (ret)
3439		return ret;
3440
3441	return pr.ret;
3442}
3443
3444static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3445				    sector_t start, sector_t len, void *data)
3446{
3447	struct dm_pr *pr = data;
3448	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3449
3450	if (!ops || !ops->pr_read_reservation) {
3451		pr->ret = -EOPNOTSUPP;
3452		return -1;
3453	}
3454
3455	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3456	if (!pr->ret)
3457		return -1;
3458
3459	return 0;
3460}
3461
3462static int dm_pr_read_reservation(struct block_device *bdev,
3463				  struct pr_held_reservation *rsv)
3464{
3465	struct dm_pr pr = {
3466		.rsv = rsv,
3467	};
3468	int ret;
3469
3470	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3471	if (ret)
3472		return ret;
3473
3474	return pr.ret;
3475}
3476
3477static const struct pr_ops dm_pr_ops = {
3478	.pr_register	= dm_pr_register,
3479	.pr_reserve	= dm_pr_reserve,
3480	.pr_release	= dm_pr_release,
3481	.pr_preempt	= dm_pr_preempt,
3482	.pr_clear	= dm_pr_clear,
3483	.pr_read_keys	= dm_pr_read_keys,
3484	.pr_read_reservation = dm_pr_read_reservation,
3485};
3486
3487static const struct block_device_operations dm_blk_dops = {
3488	.submit_bio = dm_submit_bio,
3489	.poll_bio = dm_poll_bio,
3490	.open = dm_blk_open,
3491	.release = dm_blk_close,
3492	.ioctl = dm_blk_ioctl,
3493	.getgeo = dm_blk_getgeo,
3494	.report_zones = dm_blk_report_zones,
3495	.pr_ops = &dm_pr_ops,
3496	.owner = THIS_MODULE
3497};
3498
3499static const struct block_device_operations dm_rq_blk_dops = {
3500	.open = dm_blk_open,
3501	.release = dm_blk_close,
3502	.ioctl = dm_blk_ioctl,
3503	.getgeo = dm_blk_getgeo,
3504	.pr_ops = &dm_pr_ops,
3505	.owner = THIS_MODULE
3506};
3507
3508static const struct dax_operations dm_dax_ops = {
3509	.direct_access = dm_dax_direct_access,
3510	.zero_page_range = dm_dax_zero_page_range,
3511	.recovery_write = dm_dax_recovery_write,
3512};
3513
3514/*
3515 * module hooks
3516 */
3517module_init(dm_init);
3518module_exit(dm_exit);
3519
3520module_param(major, uint, 0);
3521MODULE_PARM_DESC(major, "The major number of the device mapper");
3522
3523module_param(reserved_bio_based_ios, uint, 0644);
3524MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3525
3526module_param(dm_numa_node, int, 0644);
3527MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3528
3529module_param(swap_bios, int, 0644);
3530MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3531
3532MODULE_DESCRIPTION(DM_NAME " driver");
3533MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3534MODULE_LICENSE("GPL");
3535