1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 Red Hat, Inc.
4 *
5 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 *
7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8 *
9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11 * hash device. Setting this greatly improves performance when data and hash
12 * are on the same disk on different partitions on devices with poor random
13 * access behavior.
14 */
15
16#include "dm-verity.h"
17#include "dm-verity-fec.h"
18#include "dm-verity-verify-sig.h"
19#include "dm-audit.h"
20#include <linux/module.h>
21#include <linux/reboot.h>
22#include <linux/scatterlist.h>
23#include <linux/string.h>
24#include <linux/jump_label.h>
25
26#define DM_MSG_PREFIX			"verity"
27
28#define DM_VERITY_ENV_LENGTH		42
29#define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
30
31#define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
32
33#define DM_VERITY_MAX_CORRUPTED_ERRS	100
34
35#define DM_VERITY_OPT_LOGGING		"ignore_corruption"
36#define DM_VERITY_OPT_RESTART		"restart_on_corruption"
37#define DM_VERITY_OPT_PANIC		"panic_on_corruption"
38#define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
39#define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
40#define DM_VERITY_OPT_TASKLET_VERIFY	"try_verify_in_tasklet"
41
42#define DM_VERITY_OPTS_MAX		(4 + DM_VERITY_OPTS_FEC + \
43					 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
44
45static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
46
47module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, 0644);
48
49static DEFINE_STATIC_KEY_FALSE(use_bh_wq_enabled);
50
51struct dm_verity_prefetch_work {
52	struct work_struct work;
53	struct dm_verity *v;
54	unsigned short ioprio;
55	sector_t block;
56	unsigned int n_blocks;
57};
58
59/*
60 * Auxiliary structure appended to each dm-bufio buffer. If the value
61 * hash_verified is nonzero, hash of the block has been verified.
62 *
63 * The variable hash_verified is set to 0 when allocating the buffer, then
64 * it can be changed to 1 and it is never reset to 0 again.
65 *
66 * There is no lock around this value, a race condition can at worst cause
67 * that multiple processes verify the hash of the same buffer simultaneously
68 * and write 1 to hash_verified simultaneously.
69 * This condition is harmless, so we don't need locking.
70 */
71struct buffer_aux {
72	int hash_verified;
73};
74
75/*
76 * Initialize struct buffer_aux for a freshly created buffer.
77 */
78static void dm_bufio_alloc_callback(struct dm_buffer *buf)
79{
80	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
81
82	aux->hash_verified = 0;
83}
84
85/*
86 * Translate input sector number to the sector number on the target device.
87 */
88static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
89{
90	return v->data_start + dm_target_offset(v->ti, bi_sector);
91}
92
93/*
94 * Return hash position of a specified block at a specified tree level
95 * (0 is the lowest level).
96 * The lowest "hash_per_block_bits"-bits of the result denote hash position
97 * inside a hash block. The remaining bits denote location of the hash block.
98 */
99static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
100					 int level)
101{
102	return block >> (level * v->hash_per_block_bits);
103}
104
105static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
106				const u8 *data, size_t len,
107				struct crypto_wait *wait)
108{
109	struct scatterlist sg;
110
111	if (likely(!is_vmalloc_addr(data))) {
112		sg_init_one(&sg, data, len);
113		ahash_request_set_crypt(req, &sg, NULL, len);
114		return crypto_wait_req(crypto_ahash_update(req), wait);
115	}
116
117	do {
118		int r;
119		size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
120
121		flush_kernel_vmap_range((void *)data, this_step);
122		sg_init_table(&sg, 1);
123		sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
124		ahash_request_set_crypt(req, &sg, NULL, this_step);
125		r = crypto_wait_req(crypto_ahash_update(req), wait);
126		if (unlikely(r))
127			return r;
128		data += this_step;
129		len -= this_step;
130	} while (len);
131
132	return 0;
133}
134
135/*
136 * Wrapper for crypto_ahash_init, which handles verity salting.
137 */
138static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
139				struct crypto_wait *wait, bool may_sleep)
140{
141	int r;
142
143	ahash_request_set_tfm(req, v->tfm);
144	ahash_request_set_callback(req,
145		may_sleep ? CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG : 0,
146		crypto_req_done, (void *)wait);
147	crypto_init_wait(wait);
148
149	r = crypto_wait_req(crypto_ahash_init(req), wait);
150
151	if (unlikely(r < 0)) {
152		if (r != -ENOMEM)
153			DMERR("crypto_ahash_init failed: %d", r);
154		return r;
155	}
156
157	if (likely(v->salt_size && (v->version >= 1)))
158		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
159
160	return r;
161}
162
163static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
164			     u8 *digest, struct crypto_wait *wait)
165{
166	int r;
167
168	if (unlikely(v->salt_size && (!v->version))) {
169		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
170
171		if (r < 0) {
172			DMERR("%s failed updating salt: %d", __func__, r);
173			goto out;
174		}
175	}
176
177	ahash_request_set_crypt(req, NULL, digest, 0);
178	r = crypto_wait_req(crypto_ahash_final(req), wait);
179out:
180	return r;
181}
182
183int verity_hash(struct dm_verity *v, struct ahash_request *req,
184		const u8 *data, size_t len, u8 *digest, bool may_sleep)
185{
186	int r;
187	struct crypto_wait wait;
188
189	r = verity_hash_init(v, req, &wait, may_sleep);
190	if (unlikely(r < 0))
191		goto out;
192
193	r = verity_hash_update(v, req, data, len, &wait);
194	if (unlikely(r < 0))
195		goto out;
196
197	r = verity_hash_final(v, req, digest, &wait);
198
199out:
200	return r;
201}
202
203static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
204				 sector_t *hash_block, unsigned int *offset)
205{
206	sector_t position = verity_position_at_level(v, block, level);
207	unsigned int idx;
208
209	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
210
211	if (!offset)
212		return;
213
214	idx = position & ((1 << v->hash_per_block_bits) - 1);
215	if (!v->version)
216		*offset = idx * v->digest_size;
217	else
218		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
219}
220
221/*
222 * Handle verification errors.
223 */
224static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
225			     unsigned long long block)
226{
227	char verity_env[DM_VERITY_ENV_LENGTH];
228	char *envp[] = { verity_env, NULL };
229	const char *type_str = "";
230	struct mapped_device *md = dm_table_get_md(v->ti->table);
231
232	/* Corruption should be visible in device status in all modes */
233	v->hash_failed = true;
234
235	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
236		goto out;
237
238	v->corrupted_errs++;
239
240	switch (type) {
241	case DM_VERITY_BLOCK_TYPE_DATA:
242		type_str = "data";
243		break;
244	case DM_VERITY_BLOCK_TYPE_METADATA:
245		type_str = "metadata";
246		break;
247	default:
248		BUG();
249	}
250
251	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
252		    type_str, block);
253
254	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) {
255		DMERR("%s: reached maximum errors", v->data_dev->name);
256		dm_audit_log_target(DM_MSG_PREFIX, "max-corrupted-errors", v->ti, 0);
257	}
258
259	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
260		DM_VERITY_ENV_VAR_NAME, type, block);
261
262	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
263
264out:
265	if (v->mode == DM_VERITY_MODE_LOGGING)
266		return 0;
267
268	if (v->mode == DM_VERITY_MODE_RESTART)
269		kernel_restart("dm-verity device corrupted");
270
271	if (v->mode == DM_VERITY_MODE_PANIC)
272		panic("dm-verity device corrupted");
273
274	return 1;
275}
276
277/*
278 * Verify hash of a metadata block pertaining to the specified data block
279 * ("block" argument) at a specified level ("level" argument).
280 *
281 * On successful return, verity_io_want_digest(v, io) contains the hash value
282 * for a lower tree level or for the data block (if we're at the lowest level).
283 *
284 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
285 * If "skip_unverified" is false, unverified buffer is hashed and verified
286 * against current value of verity_io_want_digest(v, io).
287 */
288static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
289			       sector_t block, int level, bool skip_unverified,
290			       u8 *want_digest)
291{
292	struct dm_buffer *buf;
293	struct buffer_aux *aux;
294	u8 *data;
295	int r;
296	sector_t hash_block;
297	unsigned int offset;
298	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
299
300	verity_hash_at_level(v, block, level, &hash_block, &offset);
301
302	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
303		data = dm_bufio_get(v->bufio, hash_block, &buf);
304		if (data == NULL) {
305			/*
306			 * In tasklet and the hash was not in the bufio cache.
307			 * Return early and resume execution from a work-queue
308			 * to read the hash from disk.
309			 */
310			return -EAGAIN;
311		}
312	} else {
313		data = dm_bufio_read_with_ioprio(v->bufio, hash_block,
314						&buf, bio_prio(bio));
315	}
316
317	if (IS_ERR(data))
318		return PTR_ERR(data);
319
320	aux = dm_bufio_get_aux_data(buf);
321
322	if (!aux->hash_verified) {
323		if (skip_unverified) {
324			r = 1;
325			goto release_ret_r;
326		}
327
328		r = verity_hash(v, verity_io_hash_req(v, io),
329				data, 1 << v->hash_dev_block_bits,
330				verity_io_real_digest(v, io), !io->in_bh);
331		if (unlikely(r < 0))
332			goto release_ret_r;
333
334		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
335				  v->digest_size) == 0))
336			aux->hash_verified = 1;
337		else if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
338			/*
339			 * Error handling code (FEC included) cannot be run in a
340			 * tasklet since it may sleep, so fallback to work-queue.
341			 */
342			r = -EAGAIN;
343			goto release_ret_r;
344		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA,
345					     hash_block, data, NULL) == 0)
346			aux->hash_verified = 1;
347		else if (verity_handle_err(v,
348					   DM_VERITY_BLOCK_TYPE_METADATA,
349					   hash_block)) {
350			struct bio *bio =
351				dm_bio_from_per_bio_data(io,
352							 v->ti->per_io_data_size);
353			dm_audit_log_bio(DM_MSG_PREFIX, "verify-metadata", bio,
354					 block, 0);
355			r = -EIO;
356			goto release_ret_r;
357		}
358	}
359
360	data += offset;
361	memcpy(want_digest, data, v->digest_size);
362	r = 0;
363
364release_ret_r:
365	dm_bufio_release(buf);
366	return r;
367}
368
369/*
370 * Find a hash for a given block, write it to digest and verify the integrity
371 * of the hash tree if necessary.
372 */
373int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
374			  sector_t block, u8 *digest, bool *is_zero)
375{
376	int r = 0, i;
377
378	if (likely(v->levels)) {
379		/*
380		 * First, we try to get the requested hash for
381		 * the current block. If the hash block itself is
382		 * verified, zero is returned. If it isn't, this
383		 * function returns 1 and we fall back to whole
384		 * chain verification.
385		 */
386		r = verity_verify_level(v, io, block, 0, true, digest);
387		if (likely(r <= 0))
388			goto out;
389	}
390
391	memcpy(digest, v->root_digest, v->digest_size);
392
393	for (i = v->levels - 1; i >= 0; i--) {
394		r = verity_verify_level(v, io, block, i, false, digest);
395		if (unlikely(r))
396			goto out;
397	}
398out:
399	if (!r && v->zero_digest)
400		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
401	else
402		*is_zero = false;
403
404	return r;
405}
406
407/*
408 * Calculates the digest for the given bio
409 */
410static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
411			       struct bvec_iter *iter, struct crypto_wait *wait)
412{
413	unsigned int todo = 1 << v->data_dev_block_bits;
414	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
415	struct scatterlist sg;
416	struct ahash_request *req = verity_io_hash_req(v, io);
417
418	do {
419		int r;
420		unsigned int len;
421		struct bio_vec bv = bio_iter_iovec(bio, *iter);
422
423		sg_init_table(&sg, 1);
424
425		len = bv.bv_len;
426
427		if (likely(len >= todo))
428			len = todo;
429		/*
430		 * Operating on a single page at a time looks suboptimal
431		 * until you consider the typical block size is 4,096B.
432		 * Going through this loops twice should be very rare.
433		 */
434		sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
435		ahash_request_set_crypt(req, &sg, NULL, len);
436		r = crypto_wait_req(crypto_ahash_update(req), wait);
437
438		if (unlikely(r < 0)) {
439			DMERR("%s crypto op failed: %d", __func__, r);
440			return r;
441		}
442
443		bio_advance_iter(bio, iter, len);
444		todo -= len;
445	} while (todo);
446
447	return 0;
448}
449
450/*
451 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
452 * starting from iter.
453 */
454int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
455			struct bvec_iter *iter,
456			int (*process)(struct dm_verity *v,
457				       struct dm_verity_io *io, u8 *data,
458				       size_t len))
459{
460	unsigned int todo = 1 << v->data_dev_block_bits;
461	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
462
463	do {
464		int r;
465		u8 *page;
466		unsigned int len;
467		struct bio_vec bv = bio_iter_iovec(bio, *iter);
468
469		page = bvec_kmap_local(&bv);
470		len = bv.bv_len;
471
472		if (likely(len >= todo))
473			len = todo;
474
475		r = process(v, io, page, len);
476		kunmap_local(page);
477
478		if (r < 0)
479			return r;
480
481		bio_advance_iter(bio, iter, len);
482		todo -= len;
483	} while (todo);
484
485	return 0;
486}
487
488static int verity_recheck_copy(struct dm_verity *v, struct dm_verity_io *io,
489			       u8 *data, size_t len)
490{
491	memcpy(data, io->recheck_buffer, len);
492	io->recheck_buffer += len;
493
494	return 0;
495}
496
497static noinline int verity_recheck(struct dm_verity *v, struct dm_verity_io *io,
498				   struct bvec_iter start, sector_t cur_block)
499{
500	struct page *page;
501	void *buffer;
502	int r;
503	struct dm_io_request io_req;
504	struct dm_io_region io_loc;
505
506	page = mempool_alloc(&v->recheck_pool, GFP_NOIO);
507	buffer = page_to_virt(page);
508
509	io_req.bi_opf = REQ_OP_READ;
510	io_req.mem.type = DM_IO_KMEM;
511	io_req.mem.ptr.addr = buffer;
512	io_req.notify.fn = NULL;
513	io_req.client = v->io;
514	io_loc.bdev = v->data_dev->bdev;
515	io_loc.sector = cur_block << (v->data_dev_block_bits - SECTOR_SHIFT);
516	io_loc.count = 1 << (v->data_dev_block_bits - SECTOR_SHIFT);
517	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
518	if (unlikely(r))
519		goto free_ret;
520
521	r = verity_hash(v, verity_io_hash_req(v, io), buffer,
522			1 << v->data_dev_block_bits,
523			verity_io_real_digest(v, io), true);
524	if (unlikely(r))
525		goto free_ret;
526
527	if (memcmp(verity_io_real_digest(v, io),
528		   verity_io_want_digest(v, io), v->digest_size)) {
529		r = -EIO;
530		goto free_ret;
531	}
532
533	io->recheck_buffer = buffer;
534	r = verity_for_bv_block(v, io, &start, verity_recheck_copy);
535	if (unlikely(r))
536		goto free_ret;
537
538	r = 0;
539free_ret:
540	mempool_free(page, &v->recheck_pool);
541
542	return r;
543}
544
545static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
546			  u8 *data, size_t len)
547{
548	memset(data, 0, len);
549	return 0;
550}
551
552/*
553 * Moves the bio iter one data block forward.
554 */
555static inline void verity_bv_skip_block(struct dm_verity *v,
556					struct dm_verity_io *io,
557					struct bvec_iter *iter)
558{
559	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
560
561	bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
562}
563
564/*
565 * Verify one "dm_verity_io" structure.
566 */
567static int verity_verify_io(struct dm_verity_io *io)
568{
569	bool is_zero;
570	struct dm_verity *v = io->v;
571	struct bvec_iter start;
572	struct bvec_iter iter_copy;
573	struct bvec_iter *iter;
574	struct crypto_wait wait;
575	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
576	unsigned int b;
577
578	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
579		/*
580		 * Copy the iterator in case we need to restart
581		 * verification in a work-queue.
582		 */
583		iter_copy = io->iter;
584		iter = &iter_copy;
585	} else
586		iter = &io->iter;
587
588	for (b = 0; b < io->n_blocks; b++) {
589		int r;
590		sector_t cur_block = io->block + b;
591		struct ahash_request *req = verity_io_hash_req(v, io);
592
593		if (v->validated_blocks && bio->bi_status == BLK_STS_OK &&
594		    likely(test_bit(cur_block, v->validated_blocks))) {
595			verity_bv_skip_block(v, io, iter);
596			continue;
597		}
598
599		r = verity_hash_for_block(v, io, cur_block,
600					  verity_io_want_digest(v, io),
601					  &is_zero);
602		if (unlikely(r < 0))
603			return r;
604
605		if (is_zero) {
606			/*
607			 * If we expect a zero block, don't validate, just
608			 * return zeros.
609			 */
610			r = verity_for_bv_block(v, io, iter,
611						verity_bv_zero);
612			if (unlikely(r < 0))
613				return r;
614
615			continue;
616		}
617
618		r = verity_hash_init(v, req, &wait, !io->in_bh);
619		if (unlikely(r < 0))
620			return r;
621
622		start = *iter;
623		r = verity_for_io_block(v, io, iter, &wait);
624		if (unlikely(r < 0))
625			return r;
626
627		r = verity_hash_final(v, req, verity_io_real_digest(v, io),
628					&wait);
629		if (unlikely(r < 0))
630			return r;
631
632		if (likely(memcmp(verity_io_real_digest(v, io),
633				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
634			if (v->validated_blocks)
635				set_bit(cur_block, v->validated_blocks);
636			continue;
637		} else if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
638			/*
639			 * Error handling code (FEC included) cannot be run in a
640			 * tasklet since it may sleep, so fallback to work-queue.
641			 */
642			return -EAGAIN;
643		} else if (verity_recheck(v, io, start, cur_block) == 0) {
644			if (v->validated_blocks)
645				set_bit(cur_block, v->validated_blocks);
646			continue;
647#if defined(CONFIG_DM_VERITY_FEC)
648		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
649					     cur_block, NULL, &start) == 0) {
650			continue;
651#endif
652		} else {
653			if (bio->bi_status) {
654				/*
655				 * Error correction failed; Just return error
656				 */
657				return -EIO;
658			}
659			if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
660					      cur_block)) {
661				dm_audit_log_bio(DM_MSG_PREFIX, "verify-data",
662						 bio, cur_block, 0);
663				return -EIO;
664			}
665		}
666	}
667
668	return 0;
669}
670
671/*
672 * Skip verity work in response to I/O error when system is shutting down.
673 */
674static inline bool verity_is_system_shutting_down(void)
675{
676	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
677		|| system_state == SYSTEM_RESTART;
678}
679
680/*
681 * End one "io" structure with a given error.
682 */
683static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
684{
685	struct dm_verity *v = io->v;
686	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
687
688	bio->bi_end_io = io->orig_bi_end_io;
689	bio->bi_status = status;
690
691	if (!static_branch_unlikely(&use_bh_wq_enabled) || !io->in_bh)
692		verity_fec_finish_io(io);
693
694	bio_endio(bio);
695}
696
697static void verity_work(struct work_struct *w)
698{
699	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
700
701	io->in_bh = false;
702
703	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
704}
705
706static void verity_bh_work(struct work_struct *w)
707{
708	struct dm_verity_io *io = container_of(w, struct dm_verity_io, bh_work);
709	int err;
710
711	io->in_bh = true;
712	err = verity_verify_io(io);
713	if (err == -EAGAIN || err == -ENOMEM) {
714		/* fallback to retrying with work-queue */
715		INIT_WORK(&io->work, verity_work);
716		queue_work(io->v->verify_wq, &io->work);
717		return;
718	}
719
720	verity_finish_io(io, errno_to_blk_status(err));
721}
722
723static void verity_end_io(struct bio *bio)
724{
725	struct dm_verity_io *io = bio->bi_private;
726
727	if (bio->bi_status &&
728	    (!verity_fec_is_enabled(io->v) ||
729	     verity_is_system_shutting_down() ||
730	     (bio->bi_opf & REQ_RAHEAD))) {
731		verity_finish_io(io, bio->bi_status);
732		return;
733	}
734
735	if (static_branch_unlikely(&use_bh_wq_enabled) && io->v->use_bh_wq) {
736		INIT_WORK(&io->bh_work, verity_bh_work);
737		queue_work(system_bh_wq, &io->bh_work);
738	} else {
739		INIT_WORK(&io->work, verity_work);
740		queue_work(io->v->verify_wq, &io->work);
741	}
742}
743
744/*
745 * Prefetch buffers for the specified io.
746 * The root buffer is not prefetched, it is assumed that it will be cached
747 * all the time.
748 */
749static void verity_prefetch_io(struct work_struct *work)
750{
751	struct dm_verity_prefetch_work *pw =
752		container_of(work, struct dm_verity_prefetch_work, work);
753	struct dm_verity *v = pw->v;
754	int i;
755
756	for (i = v->levels - 2; i >= 0; i--) {
757		sector_t hash_block_start;
758		sector_t hash_block_end;
759
760		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
761		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
762
763		if (!i) {
764			unsigned int cluster = READ_ONCE(dm_verity_prefetch_cluster);
765
766			cluster >>= v->data_dev_block_bits;
767			if (unlikely(!cluster))
768				goto no_prefetch_cluster;
769
770			if (unlikely(cluster & (cluster - 1)))
771				cluster = 1 << __fls(cluster);
772
773			hash_block_start &= ~(sector_t)(cluster - 1);
774			hash_block_end |= cluster - 1;
775			if (unlikely(hash_block_end >= v->hash_blocks))
776				hash_block_end = v->hash_blocks - 1;
777		}
778no_prefetch_cluster:
779		dm_bufio_prefetch_with_ioprio(v->bufio, hash_block_start,
780					hash_block_end - hash_block_start + 1,
781					pw->ioprio);
782	}
783
784	kfree(pw);
785}
786
787static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io,
788				   unsigned short ioprio)
789{
790	sector_t block = io->block;
791	unsigned int n_blocks = io->n_blocks;
792	struct dm_verity_prefetch_work *pw;
793
794	if (v->validated_blocks) {
795		while (n_blocks && test_bit(block, v->validated_blocks)) {
796			block++;
797			n_blocks--;
798		}
799		while (n_blocks && test_bit(block + n_blocks - 1,
800					    v->validated_blocks))
801			n_blocks--;
802		if (!n_blocks)
803			return;
804	}
805
806	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
807		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
808
809	if (!pw)
810		return;
811
812	INIT_WORK(&pw->work, verity_prefetch_io);
813	pw->v = v;
814	pw->block = block;
815	pw->n_blocks = n_blocks;
816	pw->ioprio = ioprio;
817	queue_work(v->verify_wq, &pw->work);
818}
819
820/*
821 * Bio map function. It allocates dm_verity_io structure and bio vector and
822 * fills them. Then it issues prefetches and the I/O.
823 */
824static int verity_map(struct dm_target *ti, struct bio *bio)
825{
826	struct dm_verity *v = ti->private;
827	struct dm_verity_io *io;
828
829	bio_set_dev(bio, v->data_dev->bdev);
830	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
831
832	if (((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
833	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
834		DMERR_LIMIT("unaligned io");
835		return DM_MAPIO_KILL;
836	}
837
838	if (bio_end_sector(bio) >>
839	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
840		DMERR_LIMIT("io out of range");
841		return DM_MAPIO_KILL;
842	}
843
844	if (bio_data_dir(bio) == WRITE)
845		return DM_MAPIO_KILL;
846
847	io = dm_per_bio_data(bio, ti->per_io_data_size);
848	io->v = v;
849	io->orig_bi_end_io = bio->bi_end_io;
850	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
851	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
852
853	bio->bi_end_io = verity_end_io;
854	bio->bi_private = io;
855	io->iter = bio->bi_iter;
856
857	verity_fec_init_io(io);
858
859	verity_submit_prefetch(v, io, bio_prio(bio));
860
861	submit_bio_noacct(bio);
862
863	return DM_MAPIO_SUBMITTED;
864}
865
866/*
867 * Status: V (valid) or C (corruption found)
868 */
869static void verity_status(struct dm_target *ti, status_type_t type,
870			  unsigned int status_flags, char *result, unsigned int maxlen)
871{
872	struct dm_verity *v = ti->private;
873	unsigned int args = 0;
874	unsigned int sz = 0;
875	unsigned int x;
876
877	switch (type) {
878	case STATUSTYPE_INFO:
879		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
880		break;
881	case STATUSTYPE_TABLE:
882		DMEMIT("%u %s %s %u %u %llu %llu %s ",
883			v->version,
884			v->data_dev->name,
885			v->hash_dev->name,
886			1 << v->data_dev_block_bits,
887			1 << v->hash_dev_block_bits,
888			(unsigned long long)v->data_blocks,
889			(unsigned long long)v->hash_start,
890			v->alg_name
891			);
892		for (x = 0; x < v->digest_size; x++)
893			DMEMIT("%02x", v->root_digest[x]);
894		DMEMIT(" ");
895		if (!v->salt_size)
896			DMEMIT("-");
897		else
898			for (x = 0; x < v->salt_size; x++)
899				DMEMIT("%02x", v->salt[x]);
900		if (v->mode != DM_VERITY_MODE_EIO)
901			args++;
902		if (verity_fec_is_enabled(v))
903			args += DM_VERITY_OPTS_FEC;
904		if (v->zero_digest)
905			args++;
906		if (v->validated_blocks)
907			args++;
908		if (v->use_bh_wq)
909			args++;
910		if (v->signature_key_desc)
911			args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
912		if (!args)
913			return;
914		DMEMIT(" %u", args);
915		if (v->mode != DM_VERITY_MODE_EIO) {
916			DMEMIT(" ");
917			switch (v->mode) {
918			case DM_VERITY_MODE_LOGGING:
919				DMEMIT(DM_VERITY_OPT_LOGGING);
920				break;
921			case DM_VERITY_MODE_RESTART:
922				DMEMIT(DM_VERITY_OPT_RESTART);
923				break;
924			case DM_VERITY_MODE_PANIC:
925				DMEMIT(DM_VERITY_OPT_PANIC);
926				break;
927			default:
928				BUG();
929			}
930		}
931		if (v->zero_digest)
932			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
933		if (v->validated_blocks)
934			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
935		if (v->use_bh_wq)
936			DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY);
937		sz = verity_fec_status_table(v, sz, result, maxlen);
938		if (v->signature_key_desc)
939			DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
940				" %s", v->signature_key_desc);
941		break;
942
943	case STATUSTYPE_IMA:
944		DMEMIT_TARGET_NAME_VERSION(ti->type);
945		DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
946		DMEMIT(",verity_version=%u", v->version);
947		DMEMIT(",data_device_name=%s", v->data_dev->name);
948		DMEMIT(",hash_device_name=%s", v->hash_dev->name);
949		DMEMIT(",verity_algorithm=%s", v->alg_name);
950
951		DMEMIT(",root_digest=");
952		for (x = 0; x < v->digest_size; x++)
953			DMEMIT("%02x", v->root_digest[x]);
954
955		DMEMIT(",salt=");
956		if (!v->salt_size)
957			DMEMIT("-");
958		else
959			for (x = 0; x < v->salt_size; x++)
960				DMEMIT("%02x", v->salt[x]);
961
962		DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
963		DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
964		if (v->signature_key_desc)
965			DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
966
967		if (v->mode != DM_VERITY_MODE_EIO) {
968			DMEMIT(",verity_mode=");
969			switch (v->mode) {
970			case DM_VERITY_MODE_LOGGING:
971				DMEMIT(DM_VERITY_OPT_LOGGING);
972				break;
973			case DM_VERITY_MODE_RESTART:
974				DMEMIT(DM_VERITY_OPT_RESTART);
975				break;
976			case DM_VERITY_MODE_PANIC:
977				DMEMIT(DM_VERITY_OPT_PANIC);
978				break;
979			default:
980				DMEMIT("invalid");
981			}
982		}
983		DMEMIT(";");
984		break;
985	}
986}
987
988static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
989{
990	struct dm_verity *v = ti->private;
991
992	*bdev = v->data_dev->bdev;
993
994	if (v->data_start || ti->len != bdev_nr_sectors(v->data_dev->bdev))
995		return 1;
996	return 0;
997}
998
999static int verity_iterate_devices(struct dm_target *ti,
1000				  iterate_devices_callout_fn fn, void *data)
1001{
1002	struct dm_verity *v = ti->private;
1003
1004	return fn(ti, v->data_dev, v->data_start, ti->len, data);
1005}
1006
1007static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
1008{
1009	struct dm_verity *v = ti->private;
1010
1011	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
1012		limits->logical_block_size = 1 << v->data_dev_block_bits;
1013
1014	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
1015		limits->physical_block_size = 1 << v->data_dev_block_bits;
1016
1017	blk_limits_io_min(limits, limits->logical_block_size);
1018}
1019
1020static void verity_dtr(struct dm_target *ti)
1021{
1022	struct dm_verity *v = ti->private;
1023
1024	if (v->verify_wq)
1025		destroy_workqueue(v->verify_wq);
1026
1027	mempool_exit(&v->recheck_pool);
1028	if (v->io)
1029		dm_io_client_destroy(v->io);
1030
1031	if (v->bufio)
1032		dm_bufio_client_destroy(v->bufio);
1033
1034	kvfree(v->validated_blocks);
1035	kfree(v->salt);
1036	kfree(v->root_digest);
1037	kfree(v->zero_digest);
1038
1039	if (v->tfm)
1040		crypto_free_ahash(v->tfm);
1041
1042	kfree(v->alg_name);
1043
1044	if (v->hash_dev)
1045		dm_put_device(ti, v->hash_dev);
1046
1047	if (v->data_dev)
1048		dm_put_device(ti, v->data_dev);
1049
1050	verity_fec_dtr(v);
1051
1052	kfree(v->signature_key_desc);
1053
1054	if (v->use_bh_wq)
1055		static_branch_dec(&use_bh_wq_enabled);
1056
1057	kfree(v);
1058
1059	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
1060}
1061
1062static int verity_alloc_most_once(struct dm_verity *v)
1063{
1064	struct dm_target *ti = v->ti;
1065
1066	/* the bitset can only handle INT_MAX blocks */
1067	if (v->data_blocks > INT_MAX) {
1068		ti->error = "device too large to use check_at_most_once";
1069		return -E2BIG;
1070	}
1071
1072	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
1073				       sizeof(unsigned long),
1074				       GFP_KERNEL);
1075	if (!v->validated_blocks) {
1076		ti->error = "failed to allocate bitset for check_at_most_once";
1077		return -ENOMEM;
1078	}
1079
1080	return 0;
1081}
1082
1083static int verity_alloc_zero_digest(struct dm_verity *v)
1084{
1085	int r = -ENOMEM;
1086	struct ahash_request *req;
1087	u8 *zero_data;
1088
1089	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
1090
1091	if (!v->zero_digest)
1092		return r;
1093
1094	req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
1095
1096	if (!req)
1097		return r; /* verity_dtr will free zero_digest */
1098
1099	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
1100
1101	if (!zero_data)
1102		goto out;
1103
1104	r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
1105			v->zero_digest, true);
1106
1107out:
1108	kfree(req);
1109	kfree(zero_data);
1110
1111	return r;
1112}
1113
1114static inline bool verity_is_verity_mode(const char *arg_name)
1115{
1116	return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
1117		!strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
1118		!strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
1119}
1120
1121static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
1122{
1123	if (v->mode)
1124		return -EINVAL;
1125
1126	if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
1127		v->mode = DM_VERITY_MODE_LOGGING;
1128	else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
1129		v->mode = DM_VERITY_MODE_RESTART;
1130	else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
1131		v->mode = DM_VERITY_MODE_PANIC;
1132
1133	return 0;
1134}
1135
1136static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
1137				 struct dm_verity_sig_opts *verify_args,
1138				 bool only_modifier_opts)
1139{
1140	int r = 0;
1141	unsigned int argc;
1142	struct dm_target *ti = v->ti;
1143	const char *arg_name;
1144
1145	static const struct dm_arg _args[] = {
1146		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
1147	};
1148
1149	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1150	if (r)
1151		return -EINVAL;
1152
1153	if (!argc)
1154		return 0;
1155
1156	do {
1157		arg_name = dm_shift_arg(as);
1158		argc--;
1159
1160		if (verity_is_verity_mode(arg_name)) {
1161			if (only_modifier_opts)
1162				continue;
1163			r = verity_parse_verity_mode(v, arg_name);
1164			if (r) {
1165				ti->error = "Conflicting error handling parameters";
1166				return r;
1167			}
1168			continue;
1169
1170		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1171			if (only_modifier_opts)
1172				continue;
1173			r = verity_alloc_zero_digest(v);
1174			if (r) {
1175				ti->error = "Cannot allocate zero digest";
1176				return r;
1177			}
1178			continue;
1179
1180		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1181			if (only_modifier_opts)
1182				continue;
1183			r = verity_alloc_most_once(v);
1184			if (r)
1185				return r;
1186			continue;
1187
1188		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) {
1189			v->use_bh_wq = true;
1190			static_branch_inc(&use_bh_wq_enabled);
1191			continue;
1192
1193		} else if (verity_is_fec_opt_arg(arg_name)) {
1194			if (only_modifier_opts)
1195				continue;
1196			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1197			if (r)
1198				return r;
1199			continue;
1200
1201		} else if (verity_verify_is_sig_opt_arg(arg_name)) {
1202			if (only_modifier_opts)
1203				continue;
1204			r = verity_verify_sig_parse_opt_args(as, v,
1205							     verify_args,
1206							     &argc, arg_name);
1207			if (r)
1208				return r;
1209			continue;
1210
1211		} else if (only_modifier_opts) {
1212			/*
1213			 * Ignore unrecognized opt, could easily be an extra
1214			 * argument to an option whose parsing was skipped.
1215			 * Normal parsing (@only_modifier_opts=false) will
1216			 * properly parse all options (and their extra args).
1217			 */
1218			continue;
1219		}
1220
1221		DMERR("Unrecognized verity feature request: %s", arg_name);
1222		ti->error = "Unrecognized verity feature request";
1223		return -EINVAL;
1224	} while (argc && !r);
1225
1226	return r;
1227}
1228
1229/*
1230 * Target parameters:
1231 *	<version>	The current format is version 1.
1232 *			Vsn 0 is compatible with original Chromium OS releases.
1233 *	<data device>
1234 *	<hash device>
1235 *	<data block size>
1236 *	<hash block size>
1237 *	<the number of data blocks>
1238 *	<hash start block>
1239 *	<algorithm>
1240 *	<digest>
1241 *	<salt>		Hex string or "-" if no salt.
1242 */
1243static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1244{
1245	struct dm_verity *v;
1246	struct dm_verity_sig_opts verify_args = {0};
1247	struct dm_arg_set as;
1248	unsigned int num;
1249	unsigned long long num_ll;
1250	int r;
1251	int i;
1252	sector_t hash_position;
1253	char dummy;
1254	char *root_hash_digest_to_validate;
1255
1256	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1257	if (!v) {
1258		ti->error = "Cannot allocate verity structure";
1259		return -ENOMEM;
1260	}
1261	ti->private = v;
1262	v->ti = ti;
1263
1264	r = verity_fec_ctr_alloc(v);
1265	if (r)
1266		goto bad;
1267
1268	if ((dm_table_get_mode(ti->table) & ~BLK_OPEN_READ)) {
1269		ti->error = "Device must be readonly";
1270		r = -EINVAL;
1271		goto bad;
1272	}
1273
1274	if (argc < 10) {
1275		ti->error = "Not enough arguments";
1276		r = -EINVAL;
1277		goto bad;
1278	}
1279
1280	/* Parse optional parameters that modify primary args */
1281	if (argc > 10) {
1282		as.argc = argc - 10;
1283		as.argv = argv + 10;
1284		r = verity_parse_opt_args(&as, v, &verify_args, true);
1285		if (r < 0)
1286			goto bad;
1287	}
1288
1289	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1290	    num > 1) {
1291		ti->error = "Invalid version";
1292		r = -EINVAL;
1293		goto bad;
1294	}
1295	v->version = num;
1296
1297	r = dm_get_device(ti, argv[1], BLK_OPEN_READ, &v->data_dev);
1298	if (r) {
1299		ti->error = "Data device lookup failed";
1300		goto bad;
1301	}
1302
1303	r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &v->hash_dev);
1304	if (r) {
1305		ti->error = "Hash device lookup failed";
1306		goto bad;
1307	}
1308
1309	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1310	    !num || (num & (num - 1)) ||
1311	    num < bdev_logical_block_size(v->data_dev->bdev) ||
1312	    num > PAGE_SIZE) {
1313		ti->error = "Invalid data device block size";
1314		r = -EINVAL;
1315		goto bad;
1316	}
1317	v->data_dev_block_bits = __ffs(num);
1318
1319	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1320	    !num || (num & (num - 1)) ||
1321	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
1322	    num > INT_MAX) {
1323		ti->error = "Invalid hash device block size";
1324		r = -EINVAL;
1325		goto bad;
1326	}
1327	v->hash_dev_block_bits = __ffs(num);
1328
1329	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1330	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1331	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1332		ti->error = "Invalid data blocks";
1333		r = -EINVAL;
1334		goto bad;
1335	}
1336	v->data_blocks = num_ll;
1337
1338	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1339		ti->error = "Data device is too small";
1340		r = -EINVAL;
1341		goto bad;
1342	}
1343
1344	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1345	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1346	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1347		ti->error = "Invalid hash start";
1348		r = -EINVAL;
1349		goto bad;
1350	}
1351	v->hash_start = num_ll;
1352
1353	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1354	if (!v->alg_name) {
1355		ti->error = "Cannot allocate algorithm name";
1356		r = -ENOMEM;
1357		goto bad;
1358	}
1359
1360	v->tfm = crypto_alloc_ahash(v->alg_name, 0,
1361				    v->use_bh_wq ? CRYPTO_ALG_ASYNC : 0);
1362	if (IS_ERR(v->tfm)) {
1363		ti->error = "Cannot initialize hash function";
1364		r = PTR_ERR(v->tfm);
1365		v->tfm = NULL;
1366		goto bad;
1367	}
1368
1369	/*
1370	 * dm-verity performance can vary greatly depending on which hash
1371	 * algorithm implementation is used.  Help people debug performance
1372	 * problems by logging the ->cra_driver_name.
1373	 */
1374	DMINFO("%s using implementation \"%s\"", v->alg_name,
1375	       crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1376
1377	v->digest_size = crypto_ahash_digestsize(v->tfm);
1378	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1379		ti->error = "Digest size too big";
1380		r = -EINVAL;
1381		goto bad;
1382	}
1383	v->ahash_reqsize = sizeof(struct ahash_request) +
1384		crypto_ahash_reqsize(v->tfm);
1385
1386	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1387	if (!v->root_digest) {
1388		ti->error = "Cannot allocate root digest";
1389		r = -ENOMEM;
1390		goto bad;
1391	}
1392	if (strlen(argv[8]) != v->digest_size * 2 ||
1393	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1394		ti->error = "Invalid root digest";
1395		r = -EINVAL;
1396		goto bad;
1397	}
1398	root_hash_digest_to_validate = argv[8];
1399
1400	if (strcmp(argv[9], "-")) {
1401		v->salt_size = strlen(argv[9]) / 2;
1402		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1403		if (!v->salt) {
1404			ti->error = "Cannot allocate salt";
1405			r = -ENOMEM;
1406			goto bad;
1407		}
1408		if (strlen(argv[9]) != v->salt_size * 2 ||
1409		    hex2bin(v->salt, argv[9], v->salt_size)) {
1410			ti->error = "Invalid salt";
1411			r = -EINVAL;
1412			goto bad;
1413		}
1414	}
1415
1416	argv += 10;
1417	argc -= 10;
1418
1419	/* Optional parameters */
1420	if (argc) {
1421		as.argc = argc;
1422		as.argv = argv;
1423		r = verity_parse_opt_args(&as, v, &verify_args, false);
1424		if (r < 0)
1425			goto bad;
1426	}
1427
1428	/* Root hash signature is  a optional parameter*/
1429	r = verity_verify_root_hash(root_hash_digest_to_validate,
1430				    strlen(root_hash_digest_to_validate),
1431				    verify_args.sig,
1432				    verify_args.sig_size);
1433	if (r < 0) {
1434		ti->error = "Root hash verification failed";
1435		goto bad;
1436	}
1437	v->hash_per_block_bits =
1438		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1439
1440	v->levels = 0;
1441	if (v->data_blocks)
1442		while (v->hash_per_block_bits * v->levels < 64 &&
1443		       (unsigned long long)(v->data_blocks - 1) >>
1444		       (v->hash_per_block_bits * v->levels))
1445			v->levels++;
1446
1447	if (v->levels > DM_VERITY_MAX_LEVELS) {
1448		ti->error = "Too many tree levels";
1449		r = -E2BIG;
1450		goto bad;
1451	}
1452
1453	hash_position = v->hash_start;
1454	for (i = v->levels - 1; i >= 0; i--) {
1455		sector_t s;
1456
1457		v->hash_level_block[i] = hash_position;
1458		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1459					>> ((i + 1) * v->hash_per_block_bits);
1460		if (hash_position + s < hash_position) {
1461			ti->error = "Hash device offset overflow";
1462			r = -E2BIG;
1463			goto bad;
1464		}
1465		hash_position += s;
1466	}
1467	v->hash_blocks = hash_position;
1468
1469	r = mempool_init_page_pool(&v->recheck_pool, 1, 0);
1470	if (unlikely(r)) {
1471		ti->error = "Cannot allocate mempool";
1472		goto bad;
1473	}
1474
1475	v->io = dm_io_client_create();
1476	if (IS_ERR(v->io)) {
1477		r = PTR_ERR(v->io);
1478		v->io = NULL;
1479		ti->error = "Cannot allocate dm io";
1480		goto bad;
1481	}
1482
1483	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1484		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1485		dm_bufio_alloc_callback, NULL,
1486		v->use_bh_wq ? DM_BUFIO_CLIENT_NO_SLEEP : 0);
1487	if (IS_ERR(v->bufio)) {
1488		ti->error = "Cannot initialize dm-bufio";
1489		r = PTR_ERR(v->bufio);
1490		v->bufio = NULL;
1491		goto bad;
1492	}
1493
1494	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1495		ti->error = "Hash device is too small";
1496		r = -E2BIG;
1497		goto bad;
1498	}
1499
1500	/*
1501	 * Using WQ_HIGHPRI improves throughput and completion latency by
1502	 * reducing wait times when reading from a dm-verity device.
1503	 *
1504	 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
1505	 * allows verify_wq to preempt softirq since verification in BH workqueue
1506	 * will fall-back to using it for error handling (or if the bufio cache
1507	 * doesn't have required hashes).
1508	 */
1509	v->verify_wq = alloc_workqueue("kverityd", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1510	if (!v->verify_wq) {
1511		ti->error = "Cannot allocate workqueue";
1512		r = -ENOMEM;
1513		goto bad;
1514	}
1515
1516	ti->per_io_data_size = sizeof(struct dm_verity_io) +
1517				v->ahash_reqsize + v->digest_size * 2;
1518
1519	r = verity_fec_ctr(v);
1520	if (r)
1521		goto bad;
1522
1523	ti->per_io_data_size = roundup(ti->per_io_data_size,
1524				       __alignof__(struct dm_verity_io));
1525
1526	verity_verify_sig_opts_cleanup(&verify_args);
1527
1528	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
1529
1530	return 0;
1531
1532bad:
1533
1534	verity_verify_sig_opts_cleanup(&verify_args);
1535	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
1536	verity_dtr(ti);
1537
1538	return r;
1539}
1540
1541/*
1542 * Check whether a DM target is a verity target.
1543 */
1544bool dm_is_verity_target(struct dm_target *ti)
1545{
1546	return ti->type->module == THIS_MODULE;
1547}
1548
1549/*
1550 * Get the verity mode (error behavior) of a verity target.
1551 *
1552 * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity
1553 * target.
1554 */
1555int dm_verity_get_mode(struct dm_target *ti)
1556{
1557	struct dm_verity *v = ti->private;
1558
1559	if (!dm_is_verity_target(ti))
1560		return -EINVAL;
1561
1562	return v->mode;
1563}
1564
1565/*
1566 * Get the root digest of a verity target.
1567 *
1568 * Returns a copy of the root digest, the caller is responsible for
1569 * freeing the memory of the digest.
1570 */
1571int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size)
1572{
1573	struct dm_verity *v = ti->private;
1574
1575	if (!dm_is_verity_target(ti))
1576		return -EINVAL;
1577
1578	*root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL);
1579	if (*root_digest == NULL)
1580		return -ENOMEM;
1581
1582	*digest_size = v->digest_size;
1583
1584	return 0;
1585}
1586
1587static struct target_type verity_target = {
1588	.name		= "verity",
1589	.features	= DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
1590	.version	= {1, 10, 0},
1591	.module		= THIS_MODULE,
1592	.ctr		= verity_ctr,
1593	.dtr		= verity_dtr,
1594	.map		= verity_map,
1595	.status		= verity_status,
1596	.prepare_ioctl	= verity_prepare_ioctl,
1597	.iterate_devices = verity_iterate_devices,
1598	.io_hints	= verity_io_hints,
1599};
1600module_dm(verity);
1601
1602MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1603MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1604MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1605MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1606MODULE_LICENSE("GPL");
1607