1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2015 Google, Inc.
4 *
5 * Author: Sami Tolvanen <samitolvanen@google.com>
6 */
7
8#include "dm-verity-fec.h"
9#include <linux/math64.h>
10
11#define DM_MSG_PREFIX	"verity-fec"
12
13/*
14 * If error correction has been configured, returns true.
15 */
16bool verity_fec_is_enabled(struct dm_verity *v)
17{
18	return v->fec && v->fec->dev;
19}
20
21/*
22 * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable
23 * length fields.
24 */
25static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io)
26{
27	return (struct dm_verity_fec_io *)
28		((char *)io + io->v->ti->per_io_data_size - sizeof(struct dm_verity_fec_io));
29}
30
31/*
32 * Return an interleaved offset for a byte in RS block.
33 */
34static inline u64 fec_interleave(struct dm_verity *v, u64 offset)
35{
36	u32 mod;
37
38	mod = do_div(offset, v->fec->rsn);
39	return offset + mod * (v->fec->rounds << v->data_dev_block_bits);
40}
41
42/*
43 * Decode an RS block using Reed-Solomon.
44 */
45static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio,
46			  u8 *data, u8 *fec, int neras)
47{
48	int i;
49	uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN];
50
51	for (i = 0; i < v->fec->roots; i++)
52		par[i] = fec[i];
53
54	return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras,
55			  fio->erasures, 0, NULL);
56}
57
58/*
59 * Read error-correcting codes for the requested RS block. Returns a pointer
60 * to the data block. Caller is responsible for releasing buf.
61 */
62static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index,
63			   unsigned int *offset, struct dm_buffer **buf,
64			   unsigned short ioprio)
65{
66	u64 position, block, rem;
67	u8 *res;
68
69	position = (index + rsb) * v->fec->roots;
70	block = div64_u64_rem(position, v->fec->io_size, &rem);
71	*offset = (unsigned int)rem;
72
73	res = dm_bufio_read_with_ioprio(v->fec->bufio, block, buf, ioprio);
74	if (IS_ERR(res)) {
75		DMERR("%s: FEC %llu: parity read failed (block %llu): %ld",
76		      v->data_dev->name, (unsigned long long)rsb,
77		      (unsigned long long)block, PTR_ERR(res));
78		*buf = NULL;
79	}
80
81	return res;
82}
83
84/* Loop over each preallocated buffer slot. */
85#define fec_for_each_prealloc_buffer(__i) \
86	for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++)
87
88/* Loop over each extra buffer slot. */
89#define fec_for_each_extra_buffer(io, __i) \
90	for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++)
91
92/* Loop over each allocated buffer. */
93#define fec_for_each_buffer(io, __i) \
94	for (__i = 0; __i < (io)->nbufs; __i++)
95
96/* Loop over each RS block in each allocated buffer. */
97#define fec_for_each_buffer_rs_block(io, __i, __j) \
98	fec_for_each_buffer(io, __i) \
99		for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++)
100
101/*
102 * Return a pointer to the current RS block when called inside
103 * fec_for_each_buffer_rs_block.
104 */
105static inline u8 *fec_buffer_rs_block(struct dm_verity *v,
106				      struct dm_verity_fec_io *fio,
107				      unsigned int i, unsigned int j)
108{
109	return &fio->bufs[i][j * v->fec->rsn];
110}
111
112/*
113 * Return an index to the current RS block when called inside
114 * fec_for_each_buffer_rs_block.
115 */
116static inline unsigned int fec_buffer_rs_index(unsigned int i, unsigned int j)
117{
118	return (i << DM_VERITY_FEC_BUF_RS_BITS) + j;
119}
120
121/*
122 * Decode all RS blocks from buffers and copy corrected bytes into fio->output
123 * starting from block_offset.
124 */
125static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_io *io,
126			   struct dm_verity_fec_io *fio, u64 rsb, int byte_index,
127			   unsigned int block_offset, int neras)
128{
129	int r, corrected = 0, res;
130	struct dm_buffer *buf;
131	unsigned int n, i, offset;
132	u8 *par, *block;
133	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
134
135	par = fec_read_parity(v, rsb, block_offset, &offset, &buf, bio_prio(bio));
136	if (IS_ERR(par))
137		return PTR_ERR(par);
138
139	/*
140	 * Decode the RS blocks we have in bufs. Each RS block results in
141	 * one corrected target byte and consumes fec->roots parity bytes.
142	 */
143	fec_for_each_buffer_rs_block(fio, n, i) {
144		block = fec_buffer_rs_block(v, fio, n, i);
145		res = fec_decode_rs8(v, fio, block, &par[offset], neras);
146		if (res < 0) {
147			r = res;
148			goto error;
149		}
150
151		corrected += res;
152		fio->output[block_offset] = block[byte_index];
153
154		block_offset++;
155		if (block_offset >= 1 << v->data_dev_block_bits)
156			goto done;
157
158		/* read the next block when we run out of parity bytes */
159		offset += v->fec->roots;
160		if (offset >= v->fec->io_size) {
161			dm_bufio_release(buf);
162
163			par = fec_read_parity(v, rsb, block_offset, &offset, &buf, bio_prio(bio));
164			if (IS_ERR(par))
165				return PTR_ERR(par);
166		}
167	}
168done:
169	r = corrected;
170error:
171	dm_bufio_release(buf);
172
173	if (r < 0 && neras)
174		DMERR_LIMIT("%s: FEC %llu: failed to correct: %d",
175			    v->data_dev->name, (unsigned long long)rsb, r);
176	else if (r > 0)
177		DMWARN_LIMIT("%s: FEC %llu: corrected %d errors",
178			     v->data_dev->name, (unsigned long long)rsb, r);
179
180	return r;
181}
182
183/*
184 * Locate data block erasures using verity hashes.
185 */
186static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
187			  u8 *want_digest, u8 *data)
188{
189	if (unlikely(verity_hash(v, verity_io_hash_req(v, io),
190				 data, 1 << v->data_dev_block_bits,
191				 verity_io_real_digest(v, io), true)))
192		return 0;
193
194	return memcmp(verity_io_real_digest(v, io), want_digest,
195		      v->digest_size) != 0;
196}
197
198/*
199 * Read data blocks that are part of the RS block and deinterleave as much as
200 * fits into buffers. Check for erasure locations if @neras is non-NULL.
201 */
202static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io,
203			 u64 rsb, u64 target, unsigned int block_offset,
204			 int *neras)
205{
206	bool is_zero;
207	int i, j, target_index = -1;
208	struct dm_buffer *buf;
209	struct dm_bufio_client *bufio;
210	struct dm_verity_fec_io *fio = fec_io(io);
211	u64 block, ileaved;
212	u8 *bbuf, *rs_block;
213	u8 want_digest[HASH_MAX_DIGESTSIZE];
214	unsigned int n, k;
215	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
216
217	if (neras)
218		*neras = 0;
219
220	if (WARN_ON(v->digest_size > sizeof(want_digest)))
221		return -EINVAL;
222
223	/*
224	 * read each of the rsn data blocks that are part of the RS block, and
225	 * interleave contents to available bufs
226	 */
227	for (i = 0; i < v->fec->rsn; i++) {
228		ileaved = fec_interleave(v, rsb * v->fec->rsn + i);
229
230		/*
231		 * target is the data block we want to correct, target_index is
232		 * the index of this block within the rsn RS blocks
233		 */
234		if (ileaved == target)
235			target_index = i;
236
237		block = ileaved >> v->data_dev_block_bits;
238		bufio = v->fec->data_bufio;
239
240		if (block >= v->data_blocks) {
241			block -= v->data_blocks;
242
243			/*
244			 * blocks outside the area were assumed to contain
245			 * zeros when encoding data was generated
246			 */
247			if (unlikely(block >= v->fec->hash_blocks))
248				continue;
249
250			block += v->hash_start;
251			bufio = v->bufio;
252		}
253
254		bbuf = dm_bufio_read_with_ioprio(bufio, block, &buf, bio_prio(bio));
255		if (IS_ERR(bbuf)) {
256			DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld",
257				     v->data_dev->name,
258				     (unsigned long long)rsb,
259				     (unsigned long long)block, PTR_ERR(bbuf));
260
261			/* assume the block is corrupted */
262			if (neras && *neras <= v->fec->roots)
263				fio->erasures[(*neras)++] = i;
264
265			continue;
266		}
267
268		/* locate erasures if the block is on the data device */
269		if (bufio == v->fec->data_bufio &&
270		    verity_hash_for_block(v, io, block, want_digest,
271					  &is_zero) == 0) {
272			/* skip known zero blocks entirely */
273			if (is_zero)
274				goto done;
275
276			/*
277			 * skip if we have already found the theoretical
278			 * maximum number (i.e. fec->roots) of erasures
279			 */
280			if (neras && *neras <= v->fec->roots &&
281			    fec_is_erasure(v, io, want_digest, bbuf))
282				fio->erasures[(*neras)++] = i;
283		}
284
285		/*
286		 * deinterleave and copy the bytes that fit into bufs,
287		 * starting from block_offset
288		 */
289		fec_for_each_buffer_rs_block(fio, n, j) {
290			k = fec_buffer_rs_index(n, j) + block_offset;
291
292			if (k >= 1 << v->data_dev_block_bits)
293				goto done;
294
295			rs_block = fec_buffer_rs_block(v, fio, n, j);
296			rs_block[i] = bbuf[k];
297		}
298done:
299		dm_bufio_release(buf);
300	}
301
302	return target_index;
303}
304
305/*
306 * Allocate RS control structure and FEC buffers from preallocated mempools,
307 * and attempt to allocate as many extra buffers as available.
308 */
309static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
310{
311	unsigned int n;
312
313	if (!fio->rs)
314		fio->rs = mempool_alloc(&v->fec->rs_pool, GFP_NOIO);
315
316	fec_for_each_prealloc_buffer(n) {
317		if (fio->bufs[n])
318			continue;
319
320		fio->bufs[n] = mempool_alloc(&v->fec->prealloc_pool, GFP_NOWAIT);
321		if (unlikely(!fio->bufs[n])) {
322			DMERR("failed to allocate FEC buffer");
323			return -ENOMEM;
324		}
325	}
326
327	/* try to allocate the maximum number of buffers */
328	fec_for_each_extra_buffer(fio, n) {
329		if (fio->bufs[n])
330			continue;
331
332		fio->bufs[n] = mempool_alloc(&v->fec->extra_pool, GFP_NOWAIT);
333		/* we can manage with even one buffer if necessary */
334		if (unlikely(!fio->bufs[n]))
335			break;
336	}
337	fio->nbufs = n;
338
339	if (!fio->output)
340		fio->output = mempool_alloc(&v->fec->output_pool, GFP_NOIO);
341
342	return 0;
343}
344
345/*
346 * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are
347 * zeroed before deinterleaving.
348 */
349static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
350{
351	unsigned int n;
352
353	fec_for_each_buffer(fio, n)
354		memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS);
355
356	memset(fio->erasures, 0, sizeof(fio->erasures));
357}
358
359/*
360 * Decode all RS blocks in a single data block and return the target block
361 * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses
362 * hashes to locate erasures.
363 */
364static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
365			  struct dm_verity_fec_io *fio, u64 rsb, u64 offset,
366			  bool use_erasures)
367{
368	int r, neras = 0;
369	unsigned int pos;
370
371	r = fec_alloc_bufs(v, fio);
372	if (unlikely(r < 0))
373		return r;
374
375	for (pos = 0; pos < 1 << v->data_dev_block_bits; ) {
376		fec_init_bufs(v, fio);
377
378		r = fec_read_bufs(v, io, rsb, offset, pos,
379				  use_erasures ? &neras : NULL);
380		if (unlikely(r < 0))
381			return r;
382
383		r = fec_decode_bufs(v, io, fio, rsb, r, pos, neras);
384		if (r < 0)
385			return r;
386
387		pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS;
388	}
389
390	/* Always re-validate the corrected block against the expected hash */
391	r = verity_hash(v, verity_io_hash_req(v, io), fio->output,
392			1 << v->data_dev_block_bits,
393			verity_io_real_digest(v, io), true);
394	if (unlikely(r < 0))
395		return r;
396
397	if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
398		   v->digest_size)) {
399		DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)",
400			    v->data_dev->name, (unsigned long long)rsb, neras);
401		return -EILSEQ;
402	}
403
404	return 0;
405}
406
407static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data,
408		       size_t len)
409{
410	struct dm_verity_fec_io *fio = fec_io(io);
411
412	memcpy(data, &fio->output[fio->output_pos], len);
413	fio->output_pos += len;
414
415	return 0;
416}
417
418/*
419 * Correct errors in a block. Copies corrected block to dest if non-NULL,
420 * otherwise to a bio_vec starting from iter.
421 */
422int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
423		      enum verity_block_type type, sector_t block, u8 *dest,
424		      struct bvec_iter *iter)
425{
426	int r;
427	struct dm_verity_fec_io *fio = fec_io(io);
428	u64 offset, res, rsb;
429
430	if (!verity_fec_is_enabled(v))
431		return -EOPNOTSUPP;
432
433	if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) {
434		DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name);
435		return -EIO;
436	}
437
438	fio->level++;
439
440	if (type == DM_VERITY_BLOCK_TYPE_METADATA)
441		block = block - v->hash_start + v->data_blocks;
442
443	/*
444	 * For RS(M, N), the continuous FEC data is divided into blocks of N
445	 * bytes. Since block size may not be divisible by N, the last block
446	 * is zero padded when decoding.
447	 *
448	 * Each byte of the block is covered by a different RS(M, N) code,
449	 * and each code is interleaved over N blocks to make it less likely
450	 * that bursty corruption will leave us in unrecoverable state.
451	 */
452
453	offset = block << v->data_dev_block_bits;
454	res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits);
455
456	/*
457	 * The base RS block we can feed to the interleaver to find out all
458	 * blocks required for decoding.
459	 */
460	rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits);
461
462	/*
463	 * Locating erasures is slow, so attempt to recover the block without
464	 * them first. Do a second attempt with erasures if the corruption is
465	 * bad enough.
466	 */
467	r = fec_decode_rsb(v, io, fio, rsb, offset, false);
468	if (r < 0) {
469		r = fec_decode_rsb(v, io, fio, rsb, offset, true);
470		if (r < 0)
471			goto done;
472	}
473
474	if (dest)
475		memcpy(dest, fio->output, 1 << v->data_dev_block_bits);
476	else if (iter) {
477		fio->output_pos = 0;
478		r = verity_for_bv_block(v, io, iter, fec_bv_copy);
479	}
480
481done:
482	fio->level--;
483	return r;
484}
485
486/*
487 * Clean up per-bio data.
488 */
489void verity_fec_finish_io(struct dm_verity_io *io)
490{
491	unsigned int n;
492	struct dm_verity_fec *f = io->v->fec;
493	struct dm_verity_fec_io *fio = fec_io(io);
494
495	if (!verity_fec_is_enabled(io->v))
496		return;
497
498	mempool_free(fio->rs, &f->rs_pool);
499
500	fec_for_each_prealloc_buffer(n)
501		mempool_free(fio->bufs[n], &f->prealloc_pool);
502
503	fec_for_each_extra_buffer(fio, n)
504		mempool_free(fio->bufs[n], &f->extra_pool);
505
506	mempool_free(fio->output, &f->output_pool);
507}
508
509/*
510 * Initialize per-bio data.
511 */
512void verity_fec_init_io(struct dm_verity_io *io)
513{
514	struct dm_verity_fec_io *fio = fec_io(io);
515
516	if (!verity_fec_is_enabled(io->v))
517		return;
518
519	fio->rs = NULL;
520	memset(fio->bufs, 0, sizeof(fio->bufs));
521	fio->nbufs = 0;
522	fio->output = NULL;
523	fio->level = 0;
524}
525
526/*
527 * Append feature arguments and values to the status table.
528 */
529unsigned int verity_fec_status_table(struct dm_verity *v, unsigned int sz,
530				 char *result, unsigned int maxlen)
531{
532	if (!verity_fec_is_enabled(v))
533		return sz;
534
535	DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s "
536	       DM_VERITY_OPT_FEC_BLOCKS " %llu "
537	       DM_VERITY_OPT_FEC_START " %llu "
538	       DM_VERITY_OPT_FEC_ROOTS " %d",
539	       v->fec->dev->name,
540	       (unsigned long long)v->fec->blocks,
541	       (unsigned long long)v->fec->start,
542	       v->fec->roots);
543
544	return sz;
545}
546
547void verity_fec_dtr(struct dm_verity *v)
548{
549	struct dm_verity_fec *f = v->fec;
550
551	if (!verity_fec_is_enabled(v))
552		goto out;
553
554	mempool_exit(&f->rs_pool);
555	mempool_exit(&f->prealloc_pool);
556	mempool_exit(&f->extra_pool);
557	mempool_exit(&f->output_pool);
558	kmem_cache_destroy(f->cache);
559
560	if (f->data_bufio)
561		dm_bufio_client_destroy(f->data_bufio);
562	if (f->bufio)
563		dm_bufio_client_destroy(f->bufio);
564
565	if (f->dev)
566		dm_put_device(v->ti, f->dev);
567out:
568	kfree(f);
569	v->fec = NULL;
570}
571
572static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data)
573{
574	struct dm_verity *v = pool_data;
575
576	return init_rs_gfp(8, 0x11d, 0, 1, v->fec->roots, gfp_mask);
577}
578
579static void fec_rs_free(void *element, void *pool_data)
580{
581	struct rs_control *rs = element;
582
583	if (rs)
584		free_rs(rs);
585}
586
587bool verity_is_fec_opt_arg(const char *arg_name)
588{
589	return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) ||
590		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) ||
591		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) ||
592		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS));
593}
594
595int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
596			      unsigned int *argc, const char *arg_name)
597{
598	int r;
599	struct dm_target *ti = v->ti;
600	const char *arg_value;
601	unsigned long long num_ll;
602	unsigned char num_c;
603	char dummy;
604
605	if (!*argc) {
606		ti->error = "FEC feature arguments require a value";
607		return -EINVAL;
608	}
609
610	arg_value = dm_shift_arg(as);
611	(*argc)--;
612
613	if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) {
614		r = dm_get_device(ti, arg_value, BLK_OPEN_READ, &v->fec->dev);
615		if (r) {
616			ti->error = "FEC device lookup failed";
617			return r;
618		}
619
620	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) {
621		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
622		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
623		     >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
624			ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
625			return -EINVAL;
626		}
627		v->fec->blocks = num_ll;
628
629	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) {
630		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
631		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >>
632		     (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
633			ti->error = "Invalid " DM_VERITY_OPT_FEC_START;
634			return -EINVAL;
635		}
636		v->fec->start = num_ll;
637
638	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) {
639		if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c ||
640		    num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) ||
641		    num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) {
642			ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS;
643			return -EINVAL;
644		}
645		v->fec->roots = num_c;
646
647	} else {
648		ti->error = "Unrecognized verity FEC feature request";
649		return -EINVAL;
650	}
651
652	return 0;
653}
654
655/*
656 * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr.
657 */
658int verity_fec_ctr_alloc(struct dm_verity *v)
659{
660	struct dm_verity_fec *f;
661
662	f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL);
663	if (!f) {
664		v->ti->error = "Cannot allocate FEC structure";
665		return -ENOMEM;
666	}
667	v->fec = f;
668
669	return 0;
670}
671
672/*
673 * Validate arguments and preallocate memory. Must be called after arguments
674 * have been parsed using verity_fec_parse_opt_args.
675 */
676int verity_fec_ctr(struct dm_verity *v)
677{
678	struct dm_verity_fec *f = v->fec;
679	struct dm_target *ti = v->ti;
680	u64 hash_blocks, fec_blocks;
681	int ret;
682
683	if (!verity_fec_is_enabled(v)) {
684		verity_fec_dtr(v);
685		return 0;
686	}
687
688	/*
689	 * FEC is computed over data blocks, possible metadata, and
690	 * hash blocks. In other words, FEC covers total of fec_blocks
691	 * blocks consisting of the following:
692	 *
693	 *  data blocks | hash blocks | metadata (optional)
694	 *
695	 * We allow metadata after hash blocks to support a use case
696	 * where all data is stored on the same device and FEC covers
697	 * the entire area.
698	 *
699	 * If metadata is included, we require it to be available on the
700	 * hash device after the hash blocks.
701	 */
702
703	hash_blocks = v->hash_blocks - v->hash_start;
704
705	/*
706	 * Require matching block sizes for data and hash devices for
707	 * simplicity.
708	 */
709	if (v->data_dev_block_bits != v->hash_dev_block_bits) {
710		ti->error = "Block sizes must match to use FEC";
711		return -EINVAL;
712	}
713
714	if (!f->roots) {
715		ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS;
716		return -EINVAL;
717	}
718	f->rsn = DM_VERITY_FEC_RSM - f->roots;
719
720	if (!f->blocks) {
721		ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS;
722		return -EINVAL;
723	}
724
725	f->rounds = f->blocks;
726	if (sector_div(f->rounds, f->rsn))
727		f->rounds++;
728
729	/*
730	 * Due to optional metadata, f->blocks can be larger than
731	 * data_blocks and hash_blocks combined.
732	 */
733	if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) {
734		ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
735		return -EINVAL;
736	}
737
738	/*
739	 * Metadata is accessed through the hash device, so we require
740	 * it to be large enough.
741	 */
742	f->hash_blocks = f->blocks - v->data_blocks;
743	if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) {
744		ti->error = "Hash device is too small for "
745			DM_VERITY_OPT_FEC_BLOCKS;
746		return -E2BIG;
747	}
748
749	if ((f->roots << SECTOR_SHIFT) & ((1 << v->data_dev_block_bits) - 1))
750		f->io_size = 1 << v->data_dev_block_bits;
751	else
752		f->io_size = v->fec->roots << SECTOR_SHIFT;
753
754	f->bufio = dm_bufio_client_create(f->dev->bdev,
755					  f->io_size,
756					  1, 0, NULL, NULL, 0);
757	if (IS_ERR(f->bufio)) {
758		ti->error = "Cannot initialize FEC bufio client";
759		return PTR_ERR(f->bufio);
760	}
761
762	dm_bufio_set_sector_offset(f->bufio, f->start << (v->data_dev_block_bits - SECTOR_SHIFT));
763
764	fec_blocks = div64_u64(f->rounds * f->roots, v->fec->roots << SECTOR_SHIFT);
765	if (dm_bufio_get_device_size(f->bufio) < fec_blocks) {
766		ti->error = "FEC device is too small";
767		return -E2BIG;
768	}
769
770	f->data_bufio = dm_bufio_client_create(v->data_dev->bdev,
771					       1 << v->data_dev_block_bits,
772					       1, 0, NULL, NULL, 0);
773	if (IS_ERR(f->data_bufio)) {
774		ti->error = "Cannot initialize FEC data bufio client";
775		return PTR_ERR(f->data_bufio);
776	}
777
778	if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) {
779		ti->error = "Data device is too small";
780		return -E2BIG;
781	}
782
783	/* Preallocate an rs_control structure for each worker thread */
784	ret = mempool_init(&f->rs_pool, num_online_cpus(), fec_rs_alloc,
785			   fec_rs_free, (void *) v);
786	if (ret) {
787		ti->error = "Cannot allocate RS pool";
788		return ret;
789	}
790
791	f->cache = kmem_cache_create("dm_verity_fec_buffers",
792				     f->rsn << DM_VERITY_FEC_BUF_RS_BITS,
793				     0, 0, NULL);
794	if (!f->cache) {
795		ti->error = "Cannot create FEC buffer cache";
796		return -ENOMEM;
797	}
798
799	/* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */
800	ret = mempool_init_slab_pool(&f->prealloc_pool, num_online_cpus() *
801				     DM_VERITY_FEC_BUF_PREALLOC,
802				     f->cache);
803	if (ret) {
804		ti->error = "Cannot allocate FEC buffer prealloc pool";
805		return ret;
806	}
807
808	ret = mempool_init_slab_pool(&f->extra_pool, 0, f->cache);
809	if (ret) {
810		ti->error = "Cannot allocate FEC buffer extra pool";
811		return ret;
812	}
813
814	/* Preallocate an output buffer for each thread */
815	ret = mempool_init_kmalloc_pool(&f->output_pool, num_online_cpus(),
816					1 << v->data_dev_block_bits);
817	if (ret) {
818		ti->error = "Cannot allocate FEC output pool";
819		return ret;
820	}
821
822	/* Reserve space for our per-bio data */
823	ti->per_io_data_size += sizeof(struct dm_verity_fec_io);
824
825	return 0;
826}
827