1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright 2023 Red Hat
4 */
5
6#include "geometry.h"
7
8#include <linux/compiler.h>
9#include <linux/log2.h>
10
11#include "errors.h"
12#include "logger.h"
13#include "memory-alloc.h"
14#include "permassert.h"
15
16#include "delta-index.h"
17#include "indexer.h"
18
19/*
20 * An index volume is divided into a fixed number of fixed-size chapters, each consisting of a
21 * fixed number of fixed-size pages. The volume layout is defined by two constants and four
22 * parameters. The constants are that index records are 32 bytes long (16-byte block name plus
23 * 16-byte metadata) and that open chapter index hash slots are one byte long. The four parameters
24 * are the number of bytes in a page, the number of record pages in a chapter, the number of
25 * chapters in a volume, and the number of chapters that are sparse. From these parameters, we can
26 * derive the rest of the layout and other index properties.
27 *
28 * The index volume is sized by its maximum memory footprint. For a dense index, the persistent
29 * storage is about 10 times the size of the memory footprint. For a sparse index, the persistent
30 * storage is about 100 times the size of the memory footprint.
31 *
32 * For a small index with a memory footprint less than 1GB, there are three possible memory
33 * configurations: 0.25GB, 0.5GB and 0.75GB. The default geometry for each is 1024 index records
34 * per 32 KB page, 1024 chapters per volume, and either 64, 128, or 192 record pages per chapter
35 * (resulting in 6, 13, or 20 index pages per chapter) depending on the memory configuration. For
36 * the VDO default of a 0.25 GB index, this yields a deduplication window of 256 GB using about 2.5
37 * GB for the persistent storage and 256 MB of RAM.
38 *
39 * For a larger index with a memory footprint that is a multiple of 1 GB, the geometry is 1024
40 * index records per 32 KB page, 256 record pages per chapter, 26 index pages per chapter, and 1024
41 * chapters for every GB of memory footprint. For a 1 GB volume, this yields a deduplication window
42 * of 1 TB using about 9GB of persistent storage and 1 GB of RAM.
43 *
44 * The above numbers hold for volumes which have no sparse chapters. A sparse volume has 10 times
45 * as many chapters as the corresponding non-sparse volume, which provides 10 times the
46 * deduplication window while using 10 times as much persistent storage as the equivalent
47 * non-sparse volume with the same memory footprint.
48 *
49 * If the volume has been converted from a non-lvm format to an lvm volume, the number of chapters
50 * per volume will have been reduced by one by eliminating physical chapter 0, and the virtual
51 * chapter that formerly mapped to physical chapter 0 may be remapped to another physical chapter.
52 * This remapping is expressed by storing which virtual chapter was remapped, and which physical
53 * chapter it was moved to.
54 */
55
56int uds_make_index_geometry(size_t bytes_per_page, u32 record_pages_per_chapter,
57			    u32 chapters_per_volume, u32 sparse_chapters_per_volume,
58			    u64 remapped_virtual, u64 remapped_physical,
59			    struct index_geometry **geometry_ptr)
60{
61	int result;
62	struct index_geometry *geometry;
63
64	result = vdo_allocate(1, struct index_geometry, "geometry", &geometry);
65	if (result != VDO_SUCCESS)
66		return result;
67
68	geometry->bytes_per_page = bytes_per_page;
69	geometry->record_pages_per_chapter = record_pages_per_chapter;
70	geometry->chapters_per_volume = chapters_per_volume;
71	geometry->sparse_chapters_per_volume = sparse_chapters_per_volume;
72	geometry->dense_chapters_per_volume = chapters_per_volume - sparse_chapters_per_volume;
73	geometry->remapped_virtual = remapped_virtual;
74	geometry->remapped_physical = remapped_physical;
75
76	geometry->records_per_page = bytes_per_page / BYTES_PER_RECORD;
77	geometry->records_per_chapter = geometry->records_per_page * record_pages_per_chapter;
78	geometry->records_per_volume = (u64) geometry->records_per_chapter * chapters_per_volume;
79
80	geometry->chapter_mean_delta = 1 << DEFAULT_CHAPTER_MEAN_DELTA_BITS;
81	geometry->chapter_payload_bits = bits_per(record_pages_per_chapter - 1);
82	/*
83	 * We want 1 delta list for every 64 records in the chapter.
84	 * The "| 077" ensures that the chapter_delta_list_bits computation
85	 * does not underflow.
86	 */
87	geometry->chapter_delta_list_bits =
88		bits_per((geometry->records_per_chapter - 1) | 077) - 6;
89	geometry->delta_lists_per_chapter = 1 << geometry->chapter_delta_list_bits;
90	/* We need enough address bits to achieve the desired mean delta. */
91	geometry->chapter_address_bits =
92		(DEFAULT_CHAPTER_MEAN_DELTA_BITS -
93		 geometry->chapter_delta_list_bits +
94		 bits_per(geometry->records_per_chapter - 1));
95	geometry->index_pages_per_chapter =
96		uds_get_delta_index_page_count(geometry->records_per_chapter,
97					       geometry->delta_lists_per_chapter,
98					       geometry->chapter_mean_delta,
99					       geometry->chapter_payload_bits,
100					       bytes_per_page);
101
102	geometry->pages_per_chapter = geometry->index_pages_per_chapter + record_pages_per_chapter;
103	geometry->pages_per_volume = geometry->pages_per_chapter * chapters_per_volume;
104	geometry->bytes_per_volume =
105		bytes_per_page * (geometry->pages_per_volume + HEADER_PAGES_PER_VOLUME);
106
107	*geometry_ptr = geometry;
108	return UDS_SUCCESS;
109}
110
111int uds_copy_index_geometry(struct index_geometry *source,
112			    struct index_geometry **geometry_ptr)
113{
114	return uds_make_index_geometry(source->bytes_per_page,
115				       source->record_pages_per_chapter,
116				       source->chapters_per_volume,
117				       source->sparse_chapters_per_volume,
118				       source->remapped_virtual, source->remapped_physical,
119				       geometry_ptr);
120}
121
122void uds_free_index_geometry(struct index_geometry *geometry)
123{
124	vdo_free(geometry);
125}
126
127u32 __must_check uds_map_to_physical_chapter(const struct index_geometry *geometry,
128					     u64 virtual_chapter)
129{
130	u64 delta;
131
132	if (!uds_is_reduced_index_geometry(geometry))
133		return virtual_chapter % geometry->chapters_per_volume;
134
135	if (likely(virtual_chapter > geometry->remapped_virtual)) {
136		delta = virtual_chapter - geometry->remapped_virtual;
137		if (likely(delta > geometry->remapped_physical))
138			return delta % geometry->chapters_per_volume;
139		else
140			return delta - 1;
141	}
142
143	if (virtual_chapter == geometry->remapped_virtual)
144		return geometry->remapped_physical;
145
146	delta = geometry->remapped_virtual - virtual_chapter;
147	if (delta < geometry->chapters_per_volume)
148		return geometry->chapters_per_volume - delta;
149
150	/* This chapter is so old the answer doesn't matter. */
151	return 0;
152}
153
154/* Check whether any sparse chapters are in use. */
155bool uds_has_sparse_chapters(const struct index_geometry *geometry,
156			     u64 oldest_virtual_chapter, u64 newest_virtual_chapter)
157{
158	return uds_is_sparse_index_geometry(geometry) &&
159		((newest_virtual_chapter - oldest_virtual_chapter + 1) >
160		 geometry->dense_chapters_per_volume);
161}
162
163bool uds_is_chapter_sparse(const struct index_geometry *geometry,
164			   u64 oldest_virtual_chapter, u64 newest_virtual_chapter,
165			   u64 virtual_chapter_number)
166{
167	return uds_has_sparse_chapters(geometry, oldest_virtual_chapter,
168				       newest_virtual_chapter) &&
169		((virtual_chapter_number + geometry->dense_chapters_per_volume) <=
170		 newest_virtual_chapter);
171}
172
173/* Calculate how many chapters to expire after opening the newest chapter. */
174u32 uds_chapters_to_expire(const struct index_geometry *geometry, u64 newest_chapter)
175{
176	/* If the index isn't full yet, don't expire anything. */
177	if (newest_chapter < geometry->chapters_per_volume)
178		return 0;
179
180	/* If a chapter is out of order... */
181	if (geometry->remapped_physical > 0) {
182		u64 oldest_chapter = newest_chapter - geometry->chapters_per_volume;
183
184		/*
185		 * ... expire an extra chapter when expiring the moved chapter to free physical
186		 * space for the new chapter ...
187		 */
188		if (oldest_chapter == geometry->remapped_virtual)
189			return 2;
190
191		/*
192		 * ... but don't expire anything when the new chapter will use the physical chapter
193		 * freed by expiring the moved chapter.
194		 */
195		if (oldest_chapter == (geometry->remapped_virtual + geometry->remapped_physical))
196			return 0;
197	}
198
199	/* Normally, just expire one. */
200	return 1;
201}
202