1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2011-2012 Red Hat, Inc.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm-thin-metadata.h"
9#include "persistent-data/dm-btree.h"
10#include "persistent-data/dm-space-map.h"
11#include "persistent-data/dm-space-map-disk.h"
12#include "persistent-data/dm-transaction-manager.h"
13
14#include <linux/list.h>
15#include <linux/device-mapper.h>
16#include <linux/workqueue.h>
17
18/*
19 *--------------------------------------------------------------------------
20 * As far as the metadata goes, there is:
21 *
22 * - A superblock in block zero, taking up fewer than 512 bytes for
23 *   atomic writes.
24 *
25 * - A space map managing the metadata blocks.
26 *
27 * - A space map managing the data blocks.
28 *
29 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
30 *
31 * - A hierarchical btree, with 2 levels which effectively maps (thin
32 *   dev id, virtual block) -> block_time.  Block time is a 64-bit
33 *   field holding the time in the low 24 bits, and block in the top 40
34 *   bits.
35 *
36 * BTrees consist solely of btree_nodes, that fill a block.  Some are
37 * internal nodes, as such their values are a __le64 pointing to other
38 * nodes.  Leaf nodes can store data of any reasonable size (ie. much
39 * smaller than the block size).  The nodes consist of the header,
40 * followed by an array of keys, followed by an array of values.  We have
41 * to binary search on the keys so they're all held together to help the
42 * cpu cache.
43 *
44 * Space maps have 2 btrees:
45 *
46 * - One maps a uint64_t onto a struct index_entry.  Which points to a
47 *   bitmap block, and has some details about how many free entries there
48 *   are etc.
49 *
50 * - The bitmap blocks have a header (for the checksum).  Then the rest
51 *   of the block is pairs of bits.  With the meaning being:
52 *
53 *   0 - ref count is 0
54 *   1 - ref count is 1
55 *   2 - ref count is 2
56 *   3 - ref count is higher than 2
57 *
58 * - If the count is higher than 2 then the ref count is entered in a
59 *   second btree that directly maps the block_address to a uint32_t ref
60 *   count.
61 *
62 * The space map metadata variant doesn't have a bitmaps btree.  Instead
63 * it has one single blocks worth of index_entries.  This avoids
64 * recursive issues with the bitmap btree needing to allocate space in
65 * order to insert.  With a small data block size such as 64k the
66 * metadata support data devices that are hundreds of terrabytes.
67 *
68 * The space maps allocate space linearly from front to back.  Space that
69 * is freed in a transaction is never recycled within that transaction.
70 * To try and avoid fragmenting _free_ space the allocator always goes
71 * back and fills in gaps.
72 *
73 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
74 * from the block manager.
75 *--------------------------------------------------------------------------
76 */
77
78#define DM_MSG_PREFIX   "thin metadata"
79
80#define THIN_SUPERBLOCK_MAGIC 27022010
81#define THIN_SUPERBLOCK_LOCATION 0
82#define THIN_VERSION 2
83#define SECTOR_TO_BLOCK_SHIFT 3
84
85/*
86 * For btree insert:
87 *  3 for btree insert +
88 *  2 for btree lookup used within space map
89 * For btree remove:
90 *  2 for shadow spine +
91 *  4 for rebalance 3 child node
92 */
93#define THIN_MAX_CONCURRENT_LOCKS 6
94
95/* This should be plenty */
96#define SPACE_MAP_ROOT_SIZE 128
97
98/*
99 * Little endian on-disk superblock and device details.
100 */
101struct thin_disk_superblock {
102	__le32 csum;	/* Checksum of superblock except for this field. */
103	__le32 flags;
104	__le64 blocknr;	/* This block number, dm_block_t. */
105
106	__u8 uuid[16];
107	__le64 magic;
108	__le32 version;
109	__le32 time;
110
111	__le64 trans_id;
112
113	/*
114	 * Root held by userspace transactions.
115	 */
116	__le64 held_root;
117
118	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
119	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
120
121	/*
122	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
123	 */
124	__le64 data_mapping_root;
125
126	/*
127	 * Device detail root mapping dev_id -> device_details
128	 */
129	__le64 device_details_root;
130
131	__le32 data_block_size;		/* In 512-byte sectors. */
132
133	__le32 metadata_block_size;	/* In 512-byte sectors. */
134	__le64 metadata_nr_blocks;
135
136	__le32 compat_flags;
137	__le32 compat_ro_flags;
138	__le32 incompat_flags;
139} __packed;
140
141struct disk_device_details {
142	__le64 mapped_blocks;
143	__le64 transaction_id;		/* When created. */
144	__le32 creation_time;
145	__le32 snapshotted_time;
146} __packed;
147
148struct dm_pool_metadata {
149	struct hlist_node hash;
150
151	struct block_device *bdev;
152	struct dm_block_manager *bm;
153	struct dm_space_map *metadata_sm;
154	struct dm_space_map *data_sm;
155	struct dm_transaction_manager *tm;
156	struct dm_transaction_manager *nb_tm;
157
158	/*
159	 * Two-level btree.
160	 * First level holds thin_dev_t.
161	 * Second level holds mappings.
162	 */
163	struct dm_btree_info info;
164
165	/*
166	 * Non-blocking version of the above.
167	 */
168	struct dm_btree_info nb_info;
169
170	/*
171	 * Just the top level for deleting whole devices.
172	 */
173	struct dm_btree_info tl_info;
174
175	/*
176	 * Just the bottom level for creating new devices.
177	 */
178	struct dm_btree_info bl_info;
179
180	/*
181	 * Describes the device details btree.
182	 */
183	struct dm_btree_info details_info;
184
185	struct rw_semaphore root_lock;
186	uint32_t time;
187	dm_block_t root;
188	dm_block_t details_root;
189	struct list_head thin_devices;
190	uint64_t trans_id;
191	unsigned long flags;
192	sector_t data_block_size;
193
194	/*
195	 * Pre-commit callback.
196	 *
197	 * This allows the thin provisioning target to run a callback before
198	 * the metadata are committed.
199	 */
200	dm_pool_pre_commit_fn pre_commit_fn;
201	void *pre_commit_context;
202
203	/*
204	 * We reserve a section of the metadata for commit overhead.
205	 * All reported space does *not* include this.
206	 */
207	dm_block_t metadata_reserve;
208
209	/*
210	 * Set if a transaction has to be aborted but the attempt to roll back
211	 * to the previous (good) transaction failed.  The only pool metadata
212	 * operation possible in this state is the closing of the device.
213	 */
214	bool fail_io:1;
215
216	/*
217	 * Set once a thin-pool has been accessed through one of the interfaces
218	 * that imply the pool is in-service (e.g. thin devices created/deleted,
219	 * thin-pool message, metadata snapshots, etc).
220	 */
221	bool in_service:1;
222
223	/*
224	 * Reading the space map roots can fail, so we read it into these
225	 * buffers before the superblock is locked and updated.
226	 */
227	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
228	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
229};
230
231struct dm_thin_device {
232	struct list_head list;
233	struct dm_pool_metadata *pmd;
234	dm_thin_id id;
235
236	int open_count;
237	bool changed:1;
238	bool aborted_with_changes:1;
239	uint64_t mapped_blocks;
240	uint64_t transaction_id;
241	uint32_t creation_time;
242	uint32_t snapshotted_time;
243};
244
245/*
246 *--------------------------------------------------------------
247 * superblock validator
248 *--------------------------------------------------------------
249 */
250#define SUPERBLOCK_CSUM_XOR 160774
251
252static void sb_prepare_for_write(struct dm_block_validator *v,
253				 struct dm_block *b,
254				 size_t block_size)
255{
256	struct thin_disk_superblock *disk_super = dm_block_data(b);
257
258	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
259	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
260						      block_size - sizeof(__le32),
261						      SUPERBLOCK_CSUM_XOR));
262}
263
264static int sb_check(struct dm_block_validator *v,
265		    struct dm_block *b,
266		    size_t block_size)
267{
268	struct thin_disk_superblock *disk_super = dm_block_data(b);
269	__le32 csum_le;
270
271	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
272		DMERR("%s failed: blocknr %llu: wanted %llu",
273		      __func__, le64_to_cpu(disk_super->blocknr),
274		      (unsigned long long)dm_block_location(b));
275		return -ENOTBLK;
276	}
277
278	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
279		DMERR("%s failed: magic %llu: wanted %llu",
280		      __func__, le64_to_cpu(disk_super->magic),
281		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
282		return -EILSEQ;
283	}
284
285	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
286					     block_size - sizeof(__le32),
287					     SUPERBLOCK_CSUM_XOR));
288	if (csum_le != disk_super->csum) {
289		DMERR("%s failed: csum %u: wanted %u",
290		      __func__, le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
291		return -EILSEQ;
292	}
293
294	return 0;
295}
296
297static struct dm_block_validator sb_validator = {
298	.name = "superblock",
299	.prepare_for_write = sb_prepare_for_write,
300	.check = sb_check
301};
302
303/*
304 *--------------------------------------------------------------
305 * Methods for the btree value types
306 *--------------------------------------------------------------
307 */
308static uint64_t pack_block_time(dm_block_t b, uint32_t t)
309{
310	return (b << 24) | t;
311}
312
313static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
314{
315	*b = v >> 24;
316	*t = v & ((1 << 24) - 1);
317}
318
319/*
320 * It's more efficient to call dm_sm_{inc,dec}_blocks as few times as
321 * possible.  'with_runs' reads contiguous runs of blocks, and calls the
322 * given sm function.
323 */
324typedef int (*run_fn)(struct dm_space_map *, dm_block_t, dm_block_t);
325
326static void with_runs(struct dm_space_map *sm, const __le64 *value_le, unsigned int count, run_fn fn)
327{
328	uint64_t b, begin, end;
329	uint32_t t;
330	bool in_run = false;
331	unsigned int i;
332
333	for (i = 0; i < count; i++, value_le++) {
334		/* We know value_le is 8 byte aligned */
335		unpack_block_time(le64_to_cpu(*value_le), &b, &t);
336
337		if (in_run) {
338			if (b == end) {
339				end++;
340			} else {
341				fn(sm, begin, end);
342				begin = b;
343				end = b + 1;
344			}
345		} else {
346			in_run = true;
347			begin = b;
348			end = b + 1;
349		}
350	}
351
352	if (in_run)
353		fn(sm, begin, end);
354}
355
356static void data_block_inc(void *context, const void *value_le, unsigned int count)
357{
358	with_runs((struct dm_space_map *) context,
359		  (const __le64 *) value_le, count, dm_sm_inc_blocks);
360}
361
362static void data_block_dec(void *context, const void *value_le, unsigned int count)
363{
364	with_runs((struct dm_space_map *) context,
365		  (const __le64 *) value_le, count, dm_sm_dec_blocks);
366}
367
368static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
369{
370	__le64 v1_le, v2_le;
371	uint64_t b1, b2;
372	uint32_t t;
373
374	memcpy(&v1_le, value1_le, sizeof(v1_le));
375	memcpy(&v2_le, value2_le, sizeof(v2_le));
376	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
377	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
378
379	return b1 == b2;
380}
381
382static void subtree_inc(void *context, const void *value, unsigned int count)
383{
384	struct dm_btree_info *info = context;
385	const __le64 *root_le = value;
386	unsigned int i;
387
388	for (i = 0; i < count; i++, root_le++)
389		dm_tm_inc(info->tm, le64_to_cpu(*root_le));
390}
391
392static void subtree_dec(void *context, const void *value, unsigned int count)
393{
394	struct dm_btree_info *info = context;
395	const __le64 *root_le = value;
396	unsigned int i;
397
398	for (i = 0; i < count; i++, root_le++)
399		if (dm_btree_del(info, le64_to_cpu(*root_le)))
400			DMERR("btree delete failed");
401}
402
403static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
404{
405	__le64 v1_le, v2_le;
406
407	memcpy(&v1_le, value1_le, sizeof(v1_le));
408	memcpy(&v2_le, value2_le, sizeof(v2_le));
409
410	return v1_le == v2_le;
411}
412
413/*----------------------------------------------------------------*/
414
415/*
416 * Variant that is used for in-core only changes or code that
417 * shouldn't put the pool in service on its own (e.g. commit).
418 */
419static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
420	__acquires(pmd->root_lock)
421{
422	down_write(&pmd->root_lock);
423}
424
425static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
426{
427	pmd_write_lock_in_core(pmd);
428	if (unlikely(!pmd->in_service))
429		pmd->in_service = true;
430}
431
432static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
433	__releases(pmd->root_lock)
434{
435	up_write(&pmd->root_lock);
436}
437
438/*----------------------------------------------------------------*/
439
440static int superblock_lock_zero(struct dm_pool_metadata *pmd,
441				struct dm_block **sblock)
442{
443	return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
444				     &sb_validator, sblock);
445}
446
447static int superblock_lock(struct dm_pool_metadata *pmd,
448			   struct dm_block **sblock)
449{
450	return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
451				&sb_validator, sblock);
452}
453
454static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
455{
456	int r;
457	unsigned int i;
458	struct dm_block *b;
459	__le64 *data_le, zero = cpu_to_le64(0);
460	unsigned int block_size = dm_bm_block_size(bm) / sizeof(__le64);
461
462	/*
463	 * We can't use a validator here - it may be all zeroes.
464	 */
465	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
466	if (r)
467		return r;
468
469	data_le = dm_block_data(b);
470	*result = 1;
471	for (i = 0; i < block_size; i++) {
472		if (data_le[i] != zero) {
473			*result = 0;
474			break;
475		}
476	}
477
478	dm_bm_unlock(b);
479
480	return 0;
481}
482
483static void __setup_btree_details(struct dm_pool_metadata *pmd)
484{
485	pmd->info.tm = pmd->tm;
486	pmd->info.levels = 2;
487	pmd->info.value_type.context = pmd->data_sm;
488	pmd->info.value_type.size = sizeof(__le64);
489	pmd->info.value_type.inc = data_block_inc;
490	pmd->info.value_type.dec = data_block_dec;
491	pmd->info.value_type.equal = data_block_equal;
492
493	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
494	pmd->nb_info.tm = pmd->nb_tm;
495
496	pmd->tl_info.tm = pmd->tm;
497	pmd->tl_info.levels = 1;
498	pmd->tl_info.value_type.context = &pmd->bl_info;
499	pmd->tl_info.value_type.size = sizeof(__le64);
500	pmd->tl_info.value_type.inc = subtree_inc;
501	pmd->tl_info.value_type.dec = subtree_dec;
502	pmd->tl_info.value_type.equal = subtree_equal;
503
504	pmd->bl_info.tm = pmd->tm;
505	pmd->bl_info.levels = 1;
506	pmd->bl_info.value_type.context = pmd->data_sm;
507	pmd->bl_info.value_type.size = sizeof(__le64);
508	pmd->bl_info.value_type.inc = data_block_inc;
509	pmd->bl_info.value_type.dec = data_block_dec;
510	pmd->bl_info.value_type.equal = data_block_equal;
511
512	pmd->details_info.tm = pmd->tm;
513	pmd->details_info.levels = 1;
514	pmd->details_info.value_type.context = NULL;
515	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
516	pmd->details_info.value_type.inc = NULL;
517	pmd->details_info.value_type.dec = NULL;
518	pmd->details_info.value_type.equal = NULL;
519}
520
521static int save_sm_roots(struct dm_pool_metadata *pmd)
522{
523	int r;
524	size_t len;
525
526	r = dm_sm_root_size(pmd->metadata_sm, &len);
527	if (r < 0)
528		return r;
529
530	r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
531	if (r < 0)
532		return r;
533
534	r = dm_sm_root_size(pmd->data_sm, &len);
535	if (r < 0)
536		return r;
537
538	return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
539}
540
541static void copy_sm_roots(struct dm_pool_metadata *pmd,
542			  struct thin_disk_superblock *disk)
543{
544	memcpy(&disk->metadata_space_map_root,
545	       &pmd->metadata_space_map_root,
546	       sizeof(pmd->metadata_space_map_root));
547
548	memcpy(&disk->data_space_map_root,
549	       &pmd->data_space_map_root,
550	       sizeof(pmd->data_space_map_root));
551}
552
553static int __write_initial_superblock(struct dm_pool_metadata *pmd)
554{
555	int r;
556	struct dm_block *sblock;
557	struct thin_disk_superblock *disk_super;
558	sector_t bdev_size = bdev_nr_sectors(pmd->bdev);
559
560	if (bdev_size > THIN_METADATA_MAX_SECTORS)
561		bdev_size = THIN_METADATA_MAX_SECTORS;
562
563	r = dm_sm_commit(pmd->data_sm);
564	if (r < 0)
565		return r;
566
567	r = dm_tm_pre_commit(pmd->tm);
568	if (r < 0)
569		return r;
570
571	r = save_sm_roots(pmd);
572	if (r < 0)
573		return r;
574
575	r = superblock_lock_zero(pmd, &sblock);
576	if (r)
577		return r;
578
579	disk_super = dm_block_data(sblock);
580	disk_super->flags = 0;
581	memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
582	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
583	disk_super->version = cpu_to_le32(THIN_VERSION);
584	disk_super->time = 0;
585	disk_super->trans_id = 0;
586	disk_super->held_root = 0;
587
588	copy_sm_roots(pmd, disk_super);
589
590	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
591	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
592	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
593	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
594	disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
595
596	return dm_tm_commit(pmd->tm, sblock);
597}
598
599static int __format_metadata(struct dm_pool_metadata *pmd)
600{
601	int r;
602
603	r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
604				 &pmd->tm, &pmd->metadata_sm);
605	if (r < 0) {
606		pmd->tm = NULL;
607		pmd->metadata_sm = NULL;
608		DMERR("tm_create_with_sm failed");
609		return r;
610	}
611
612	pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
613	if (IS_ERR(pmd->data_sm)) {
614		DMERR("sm_disk_create failed");
615		r = PTR_ERR(pmd->data_sm);
616		pmd->data_sm = NULL;
617		goto bad_cleanup_tm;
618	}
619
620	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
621	if (!pmd->nb_tm) {
622		DMERR("could not create non-blocking clone tm");
623		r = -ENOMEM;
624		goto bad_cleanup_data_sm;
625	}
626
627	__setup_btree_details(pmd);
628
629	r = dm_btree_empty(&pmd->info, &pmd->root);
630	if (r < 0)
631		goto bad_cleanup_nb_tm;
632
633	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
634	if (r < 0) {
635		DMERR("couldn't create devices root");
636		goto bad_cleanup_nb_tm;
637	}
638
639	r = __write_initial_superblock(pmd);
640	if (r)
641		goto bad_cleanup_nb_tm;
642
643	return 0;
644
645bad_cleanup_nb_tm:
646	dm_tm_destroy(pmd->nb_tm);
647	pmd->nb_tm = NULL;
648bad_cleanup_data_sm:
649	dm_sm_destroy(pmd->data_sm);
650	pmd->data_sm = NULL;
651bad_cleanup_tm:
652	dm_tm_destroy(pmd->tm);
653	pmd->tm = NULL;
654	dm_sm_destroy(pmd->metadata_sm);
655	pmd->metadata_sm = NULL;
656
657	return r;
658}
659
660static int __check_incompat_features(struct thin_disk_superblock *disk_super,
661				     struct dm_pool_metadata *pmd)
662{
663	uint32_t features;
664
665	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
666	if (features) {
667		DMERR("could not access metadata due to unsupported optional features (%lx).",
668		      (unsigned long)features);
669		return -EINVAL;
670	}
671
672	/*
673	 * Check for read-only metadata to skip the following RDWR checks.
674	 */
675	if (bdev_read_only(pmd->bdev))
676		return 0;
677
678	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
679	if (features) {
680		DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
681		      (unsigned long)features);
682		return -EINVAL;
683	}
684
685	return 0;
686}
687
688static int __open_metadata(struct dm_pool_metadata *pmd)
689{
690	int r;
691	struct dm_block *sblock;
692	struct thin_disk_superblock *disk_super;
693
694	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
695			    &sb_validator, &sblock);
696	if (r < 0) {
697		DMERR("couldn't read superblock");
698		return r;
699	}
700
701	disk_super = dm_block_data(sblock);
702
703	/* Verify the data block size hasn't changed */
704	if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
705		DMERR("changing the data block size (from %u to %llu) is not supported",
706		      le32_to_cpu(disk_super->data_block_size),
707		      (unsigned long long)pmd->data_block_size);
708		r = -EINVAL;
709		goto bad_unlock_sblock;
710	}
711
712	r = __check_incompat_features(disk_super, pmd);
713	if (r < 0)
714		goto bad_unlock_sblock;
715
716	r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
717			       disk_super->metadata_space_map_root,
718			       sizeof(disk_super->metadata_space_map_root),
719			       &pmd->tm, &pmd->metadata_sm);
720	if (r < 0) {
721		pmd->tm = NULL;
722		pmd->metadata_sm = NULL;
723		DMERR("tm_open_with_sm failed");
724		goto bad_unlock_sblock;
725	}
726
727	pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
728				       sizeof(disk_super->data_space_map_root));
729	if (IS_ERR(pmd->data_sm)) {
730		DMERR("sm_disk_open failed");
731		r = PTR_ERR(pmd->data_sm);
732		pmd->data_sm = NULL;
733		goto bad_cleanup_tm;
734	}
735
736	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
737	if (!pmd->nb_tm) {
738		DMERR("could not create non-blocking clone tm");
739		r = -ENOMEM;
740		goto bad_cleanup_data_sm;
741	}
742
743	/*
744	 * For pool metadata opening process, root setting is redundant
745	 * because it will be set again in __begin_transaction(). But dm
746	 * pool aborting process really needs to get last transaction's
747	 * root to avoid accessing broken btree.
748	 */
749	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
750	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
751
752	__setup_btree_details(pmd);
753	dm_bm_unlock(sblock);
754
755	return 0;
756
757bad_cleanup_data_sm:
758	dm_sm_destroy(pmd->data_sm);
759	pmd->data_sm = NULL;
760bad_cleanup_tm:
761	dm_tm_destroy(pmd->tm);
762	pmd->tm = NULL;
763	dm_sm_destroy(pmd->metadata_sm);
764	pmd->metadata_sm = NULL;
765bad_unlock_sblock:
766	dm_bm_unlock(sblock);
767
768	return r;
769}
770
771static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
772{
773	int r, unformatted;
774
775	r = __superblock_all_zeroes(pmd->bm, &unformatted);
776	if (r)
777		return r;
778
779	if (unformatted)
780		return format_device ? __format_metadata(pmd) : -EPERM;
781
782	return __open_metadata(pmd);
783}
784
785static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
786{
787	int r;
788
789	pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
790					  THIN_MAX_CONCURRENT_LOCKS);
791	if (IS_ERR(pmd->bm)) {
792		DMERR("could not create block manager");
793		r = PTR_ERR(pmd->bm);
794		pmd->bm = NULL;
795		return r;
796	}
797
798	r = __open_or_format_metadata(pmd, format_device);
799	if (r) {
800		dm_block_manager_destroy(pmd->bm);
801		pmd->bm = NULL;
802	}
803
804	return r;
805}
806
807static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd,
808					      bool destroy_bm)
809{
810	dm_sm_destroy(pmd->data_sm);
811	pmd->data_sm = NULL;
812	dm_sm_destroy(pmd->metadata_sm);
813	pmd->metadata_sm = NULL;
814	dm_tm_destroy(pmd->nb_tm);
815	pmd->nb_tm = NULL;
816	dm_tm_destroy(pmd->tm);
817	pmd->tm = NULL;
818	if (destroy_bm)
819		dm_block_manager_destroy(pmd->bm);
820}
821
822static int __begin_transaction(struct dm_pool_metadata *pmd)
823{
824	int r;
825	struct thin_disk_superblock *disk_super;
826	struct dm_block *sblock;
827
828	/*
829	 * We re-read the superblock every time.  Shouldn't need to do this
830	 * really.
831	 */
832	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
833			    &sb_validator, &sblock);
834	if (r)
835		return r;
836
837	disk_super = dm_block_data(sblock);
838	pmd->time = le32_to_cpu(disk_super->time);
839	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
840	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
841	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
842	pmd->flags = le32_to_cpu(disk_super->flags);
843	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
844
845	dm_bm_unlock(sblock);
846	return 0;
847}
848
849static int __write_changed_details(struct dm_pool_metadata *pmd)
850{
851	int r;
852	struct dm_thin_device *td, *tmp;
853	struct disk_device_details details;
854	uint64_t key;
855
856	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
857		if (!td->changed)
858			continue;
859
860		key = td->id;
861
862		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
863		details.transaction_id = cpu_to_le64(td->transaction_id);
864		details.creation_time = cpu_to_le32(td->creation_time);
865		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
866		__dm_bless_for_disk(&details);
867
868		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
869				    &key, &details, &pmd->details_root);
870		if (r)
871			return r;
872
873		if (td->open_count)
874			td->changed = false;
875		else {
876			list_del(&td->list);
877			kfree(td);
878		}
879	}
880
881	return 0;
882}
883
884static int __commit_transaction(struct dm_pool_metadata *pmd)
885{
886	int r;
887	struct thin_disk_superblock *disk_super;
888	struct dm_block *sblock;
889
890	/*
891	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
892	 */
893	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
894	BUG_ON(!rwsem_is_locked(&pmd->root_lock));
895
896	if (unlikely(!pmd->in_service))
897		return 0;
898
899	if (pmd->pre_commit_fn) {
900		r = pmd->pre_commit_fn(pmd->pre_commit_context);
901		if (r < 0) {
902			DMERR("pre-commit callback failed");
903			return r;
904		}
905	}
906
907	r = __write_changed_details(pmd);
908	if (r < 0)
909		return r;
910
911	r = dm_sm_commit(pmd->data_sm);
912	if (r < 0)
913		return r;
914
915	r = dm_tm_pre_commit(pmd->tm);
916	if (r < 0)
917		return r;
918
919	r = save_sm_roots(pmd);
920	if (r < 0)
921		return r;
922
923	r = superblock_lock(pmd, &sblock);
924	if (r)
925		return r;
926
927	disk_super = dm_block_data(sblock);
928	disk_super->time = cpu_to_le32(pmd->time);
929	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
930	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
931	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
932	disk_super->flags = cpu_to_le32(pmd->flags);
933
934	copy_sm_roots(pmd, disk_super);
935
936	return dm_tm_commit(pmd->tm, sblock);
937}
938
939static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
940{
941	int r;
942	dm_block_t total;
943	dm_block_t max_blocks = 4096; /* 16M */
944
945	r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
946	if (r) {
947		DMERR("could not get size of metadata device");
948		pmd->metadata_reserve = max_blocks;
949	} else
950		pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
951}
952
953struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
954					       sector_t data_block_size,
955					       bool format_device)
956{
957	int r;
958	struct dm_pool_metadata *pmd;
959
960	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
961	if (!pmd) {
962		DMERR("could not allocate metadata struct");
963		return ERR_PTR(-ENOMEM);
964	}
965
966	init_rwsem(&pmd->root_lock);
967	pmd->time = 0;
968	INIT_LIST_HEAD(&pmd->thin_devices);
969	pmd->fail_io = false;
970	pmd->in_service = false;
971	pmd->bdev = bdev;
972	pmd->data_block_size = data_block_size;
973	pmd->pre_commit_fn = NULL;
974	pmd->pre_commit_context = NULL;
975
976	r = __create_persistent_data_objects(pmd, format_device);
977	if (r) {
978		kfree(pmd);
979		return ERR_PTR(r);
980	}
981
982	r = __begin_transaction(pmd);
983	if (r < 0) {
984		if (dm_pool_metadata_close(pmd) < 0)
985			DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
986		return ERR_PTR(r);
987	}
988
989	__set_metadata_reserve(pmd);
990
991	return pmd;
992}
993
994int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
995{
996	int r;
997	unsigned int open_devices = 0;
998	struct dm_thin_device *td, *tmp;
999
1000	down_read(&pmd->root_lock);
1001	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1002		if (td->open_count)
1003			open_devices++;
1004		else {
1005			list_del(&td->list);
1006			kfree(td);
1007		}
1008	}
1009	up_read(&pmd->root_lock);
1010
1011	if (open_devices) {
1012		DMERR("attempt to close pmd when %u device(s) are still open",
1013		       open_devices);
1014		return -EBUSY;
1015	}
1016
1017	pmd_write_lock_in_core(pmd);
1018	if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) {
1019		r = __commit_transaction(pmd);
1020		if (r < 0)
1021			DMWARN("%s: __commit_transaction() failed, error = %d",
1022			       __func__, r);
1023	}
1024	pmd_write_unlock(pmd);
1025	__destroy_persistent_data_objects(pmd, true);
1026
1027	kfree(pmd);
1028	return 0;
1029}
1030
1031/*
1032 * __open_device: Returns @td corresponding to device with id @dev,
1033 * creating it if @create is set and incrementing @td->open_count.
1034 * On failure, @td is undefined.
1035 */
1036static int __open_device(struct dm_pool_metadata *pmd,
1037			 dm_thin_id dev, int create,
1038			 struct dm_thin_device **td)
1039{
1040	int r, changed = 0;
1041	struct dm_thin_device *td2;
1042	uint64_t key = dev;
1043	struct disk_device_details details_le;
1044
1045	/*
1046	 * If the device is already open, return it.
1047	 */
1048	list_for_each_entry(td2, &pmd->thin_devices, list)
1049		if (td2->id == dev) {
1050			/*
1051			 * May not create an already-open device.
1052			 */
1053			if (create)
1054				return -EEXIST;
1055
1056			td2->open_count++;
1057			*td = td2;
1058			return 0;
1059		}
1060
1061	/*
1062	 * Check the device exists.
1063	 */
1064	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1065			    &key, &details_le);
1066	if (r) {
1067		if (r != -ENODATA || !create)
1068			return r;
1069
1070		/*
1071		 * Create new device.
1072		 */
1073		changed = 1;
1074		details_le.mapped_blocks = 0;
1075		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1076		details_le.creation_time = cpu_to_le32(pmd->time);
1077		details_le.snapshotted_time = cpu_to_le32(pmd->time);
1078	}
1079
1080	*td = kmalloc(sizeof(**td), GFP_NOIO);
1081	if (!*td)
1082		return -ENOMEM;
1083
1084	(*td)->pmd = pmd;
1085	(*td)->id = dev;
1086	(*td)->open_count = 1;
1087	(*td)->changed = changed;
1088	(*td)->aborted_with_changes = false;
1089	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1090	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1091	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
1092	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1093
1094	list_add(&(*td)->list, &pmd->thin_devices);
1095
1096	return 0;
1097}
1098
1099static void __close_device(struct dm_thin_device *td)
1100{
1101	--td->open_count;
1102}
1103
1104static int __create_thin(struct dm_pool_metadata *pmd,
1105			 dm_thin_id dev)
1106{
1107	int r;
1108	dm_block_t dev_root;
1109	uint64_t key = dev;
1110	struct dm_thin_device *td;
1111	__le64 value;
1112
1113	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1114			    &key, NULL);
1115	if (!r)
1116		return -EEXIST;
1117
1118	/*
1119	 * Create an empty btree for the mappings.
1120	 */
1121	r = dm_btree_empty(&pmd->bl_info, &dev_root);
1122	if (r)
1123		return r;
1124
1125	/*
1126	 * Insert it into the main mapping tree.
1127	 */
1128	value = cpu_to_le64(dev_root);
1129	__dm_bless_for_disk(&value);
1130	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1131	if (r) {
1132		dm_btree_del(&pmd->bl_info, dev_root);
1133		return r;
1134	}
1135
1136	r = __open_device(pmd, dev, 1, &td);
1137	if (r) {
1138		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1139		dm_btree_del(&pmd->bl_info, dev_root);
1140		return r;
1141	}
1142	__close_device(td);
1143
1144	return r;
1145}
1146
1147int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1148{
1149	int r = -EINVAL;
1150
1151	pmd_write_lock(pmd);
1152	if (!pmd->fail_io)
1153		r = __create_thin(pmd, dev);
1154	pmd_write_unlock(pmd);
1155
1156	return r;
1157}
1158
1159static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1160				  struct dm_thin_device *snap,
1161				  dm_thin_id origin, uint32_t time)
1162{
1163	int r;
1164	struct dm_thin_device *td;
1165
1166	r = __open_device(pmd, origin, 0, &td);
1167	if (r)
1168		return r;
1169
1170	td->changed = true;
1171	td->snapshotted_time = time;
1172
1173	snap->mapped_blocks = td->mapped_blocks;
1174	snap->snapshotted_time = time;
1175	__close_device(td);
1176
1177	return 0;
1178}
1179
1180static int __create_snap(struct dm_pool_metadata *pmd,
1181			 dm_thin_id dev, dm_thin_id origin)
1182{
1183	int r;
1184	dm_block_t origin_root;
1185	uint64_t key = origin, dev_key = dev;
1186	struct dm_thin_device *td;
1187	__le64 value;
1188
1189	/* check this device is unused */
1190	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1191			    &dev_key, NULL);
1192	if (!r)
1193		return -EEXIST;
1194
1195	/* find the mapping tree for the origin */
1196	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1197	if (r)
1198		return r;
1199	origin_root = le64_to_cpu(value);
1200
1201	/* clone the origin, an inc will do */
1202	dm_tm_inc(pmd->tm, origin_root);
1203
1204	/* insert into the main mapping tree */
1205	value = cpu_to_le64(origin_root);
1206	__dm_bless_for_disk(&value);
1207	key = dev;
1208	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1209	if (r) {
1210		dm_tm_dec(pmd->tm, origin_root);
1211		return r;
1212	}
1213
1214	pmd->time++;
1215
1216	r = __open_device(pmd, dev, 1, &td);
1217	if (r)
1218		goto bad;
1219
1220	r = __set_snapshot_details(pmd, td, origin, pmd->time);
1221	__close_device(td);
1222
1223	if (r)
1224		goto bad;
1225
1226	return 0;
1227
1228bad:
1229	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1230	dm_btree_remove(&pmd->details_info, pmd->details_root,
1231			&key, &pmd->details_root);
1232	return r;
1233}
1234
1235int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1236				 dm_thin_id dev,
1237				 dm_thin_id origin)
1238{
1239	int r = -EINVAL;
1240
1241	pmd_write_lock(pmd);
1242	if (!pmd->fail_io)
1243		r = __create_snap(pmd, dev, origin);
1244	pmd_write_unlock(pmd);
1245
1246	return r;
1247}
1248
1249static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1250{
1251	int r;
1252	uint64_t key = dev;
1253	struct dm_thin_device *td;
1254
1255	/* TODO: failure should mark the transaction invalid */
1256	r = __open_device(pmd, dev, 0, &td);
1257	if (r)
1258		return r;
1259
1260	if (td->open_count > 1) {
1261		__close_device(td);
1262		return -EBUSY;
1263	}
1264
1265	list_del(&td->list);
1266	kfree(td);
1267	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1268			    &key, &pmd->details_root);
1269	if (r)
1270		return r;
1271
1272	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1273	if (r)
1274		return r;
1275
1276	return 0;
1277}
1278
1279int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1280			       dm_thin_id dev)
1281{
1282	int r = -EINVAL;
1283
1284	pmd_write_lock(pmd);
1285	if (!pmd->fail_io)
1286		r = __delete_device(pmd, dev);
1287	pmd_write_unlock(pmd);
1288
1289	return r;
1290}
1291
1292int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1293					uint64_t current_id,
1294					uint64_t new_id)
1295{
1296	int r = -EINVAL;
1297
1298	pmd_write_lock(pmd);
1299
1300	if (pmd->fail_io)
1301		goto out;
1302
1303	if (pmd->trans_id != current_id) {
1304		DMERR("mismatched transaction id");
1305		goto out;
1306	}
1307
1308	pmd->trans_id = new_id;
1309	r = 0;
1310
1311out:
1312	pmd_write_unlock(pmd);
1313
1314	return r;
1315}
1316
1317int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1318					uint64_t *result)
1319{
1320	int r = -EINVAL;
1321
1322	down_read(&pmd->root_lock);
1323	if (!pmd->fail_io) {
1324		*result = pmd->trans_id;
1325		r = 0;
1326	}
1327	up_read(&pmd->root_lock);
1328
1329	return r;
1330}
1331
1332static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1333{
1334	int r, inc;
1335	struct thin_disk_superblock *disk_super;
1336	struct dm_block *copy, *sblock;
1337	dm_block_t held_root;
1338
1339	/*
1340	 * We commit to ensure the btree roots which we increment in a
1341	 * moment are up to date.
1342	 */
1343	r = __commit_transaction(pmd);
1344	if (r < 0) {
1345		DMWARN("%s: __commit_transaction() failed, error = %d",
1346		       __func__, r);
1347		return r;
1348	}
1349
1350	/*
1351	 * Copy the superblock.
1352	 */
1353	dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1354	r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1355			       &sb_validator, &copy, &inc);
1356	if (r)
1357		return r;
1358
1359	BUG_ON(!inc);
1360
1361	held_root = dm_block_location(copy);
1362	disk_super = dm_block_data(copy);
1363
1364	if (le64_to_cpu(disk_super->held_root)) {
1365		DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1366
1367		dm_tm_dec(pmd->tm, held_root);
1368		dm_tm_unlock(pmd->tm, copy);
1369		return -EBUSY;
1370	}
1371
1372	/*
1373	 * Wipe the spacemap since we're not publishing this.
1374	 */
1375	memset(&disk_super->data_space_map_root, 0,
1376	       sizeof(disk_super->data_space_map_root));
1377	memset(&disk_super->metadata_space_map_root, 0,
1378	       sizeof(disk_super->metadata_space_map_root));
1379
1380	/*
1381	 * Increment the data structures that need to be preserved.
1382	 */
1383	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1384	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1385	dm_tm_unlock(pmd->tm, copy);
1386
1387	/*
1388	 * Write the held root into the superblock.
1389	 */
1390	r = superblock_lock(pmd, &sblock);
1391	if (r) {
1392		dm_tm_dec(pmd->tm, held_root);
1393		return r;
1394	}
1395
1396	disk_super = dm_block_data(sblock);
1397	disk_super->held_root = cpu_to_le64(held_root);
1398	dm_bm_unlock(sblock);
1399	return 0;
1400}
1401
1402int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1403{
1404	int r = -EINVAL;
1405
1406	pmd_write_lock(pmd);
1407	if (!pmd->fail_io)
1408		r = __reserve_metadata_snap(pmd);
1409	pmd_write_unlock(pmd);
1410
1411	return r;
1412}
1413
1414static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1415{
1416	int r;
1417	struct thin_disk_superblock *disk_super;
1418	struct dm_block *sblock, *copy;
1419	dm_block_t held_root;
1420
1421	r = superblock_lock(pmd, &sblock);
1422	if (r)
1423		return r;
1424
1425	disk_super = dm_block_data(sblock);
1426	held_root = le64_to_cpu(disk_super->held_root);
1427	disk_super->held_root = cpu_to_le64(0);
1428
1429	dm_bm_unlock(sblock);
1430
1431	if (!held_root) {
1432		DMWARN("No pool metadata snapshot found: nothing to release.");
1433		return -EINVAL;
1434	}
1435
1436	r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1437	if (r)
1438		return r;
1439
1440	disk_super = dm_block_data(copy);
1441	dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1442	dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1443	dm_sm_dec_block(pmd->metadata_sm, held_root);
1444
1445	dm_tm_unlock(pmd->tm, copy);
1446
1447	return 0;
1448}
1449
1450int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1451{
1452	int r = -EINVAL;
1453
1454	pmd_write_lock(pmd);
1455	if (!pmd->fail_io)
1456		r = __release_metadata_snap(pmd);
1457	pmd_write_unlock(pmd);
1458
1459	return r;
1460}
1461
1462static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1463			       dm_block_t *result)
1464{
1465	int r;
1466	struct thin_disk_superblock *disk_super;
1467	struct dm_block *sblock;
1468
1469	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1470			    &sb_validator, &sblock);
1471	if (r)
1472		return r;
1473
1474	disk_super = dm_block_data(sblock);
1475	*result = le64_to_cpu(disk_super->held_root);
1476
1477	dm_bm_unlock(sblock);
1478
1479	return 0;
1480}
1481
1482int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1483			      dm_block_t *result)
1484{
1485	int r = -EINVAL;
1486
1487	down_read(&pmd->root_lock);
1488	if (!pmd->fail_io)
1489		r = __get_metadata_snap(pmd, result);
1490	up_read(&pmd->root_lock);
1491
1492	return r;
1493}
1494
1495int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1496			     struct dm_thin_device **td)
1497{
1498	int r = -EINVAL;
1499
1500	pmd_write_lock_in_core(pmd);
1501	if (!pmd->fail_io)
1502		r = __open_device(pmd, dev, 0, td);
1503	pmd_write_unlock(pmd);
1504
1505	return r;
1506}
1507
1508int dm_pool_close_thin_device(struct dm_thin_device *td)
1509{
1510	pmd_write_lock_in_core(td->pmd);
1511	__close_device(td);
1512	pmd_write_unlock(td->pmd);
1513
1514	return 0;
1515}
1516
1517dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1518{
1519	return td->id;
1520}
1521
1522/*
1523 * Check whether @time (of block creation) is older than @td's last snapshot.
1524 * If so then the associated block is shared with the last snapshot device.
1525 * Any block on a device created *after* the device last got snapshotted is
1526 * necessarily not shared.
1527 */
1528static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1529{
1530	return td->snapshotted_time > time;
1531}
1532
1533static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1534				 struct dm_thin_lookup_result *result)
1535{
1536	uint64_t block_time = 0;
1537	dm_block_t exception_block;
1538	uint32_t exception_time;
1539
1540	block_time = le64_to_cpu(value);
1541	unpack_block_time(block_time, &exception_block, &exception_time);
1542	result->block = exception_block;
1543	result->shared = __snapshotted_since(td, exception_time);
1544}
1545
1546static int __find_block(struct dm_thin_device *td, dm_block_t block,
1547			int can_issue_io, struct dm_thin_lookup_result *result)
1548{
1549	int r;
1550	__le64 value;
1551	struct dm_pool_metadata *pmd = td->pmd;
1552	dm_block_t keys[2] = { td->id, block };
1553	struct dm_btree_info *info;
1554
1555	if (can_issue_io)
1556		info = &pmd->info;
1557	else
1558		info = &pmd->nb_info;
1559
1560	r = dm_btree_lookup(info, pmd->root, keys, &value);
1561	if (!r)
1562		unpack_lookup_result(td, value, result);
1563
1564	return r;
1565}
1566
1567int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1568		       int can_issue_io, struct dm_thin_lookup_result *result)
1569{
1570	int r;
1571	struct dm_pool_metadata *pmd = td->pmd;
1572
1573	down_read(&pmd->root_lock);
1574	if (pmd->fail_io) {
1575		up_read(&pmd->root_lock);
1576		return -EINVAL;
1577	}
1578
1579	r = __find_block(td, block, can_issue_io, result);
1580
1581	up_read(&pmd->root_lock);
1582	return r;
1583}
1584
1585static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1586					  dm_block_t *vblock,
1587					  struct dm_thin_lookup_result *result)
1588{
1589	int r;
1590	__le64 value;
1591	struct dm_pool_metadata *pmd = td->pmd;
1592	dm_block_t keys[2] = { td->id, block };
1593
1594	r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1595	if (!r)
1596		unpack_lookup_result(td, value, result);
1597
1598	return r;
1599}
1600
1601static int __find_mapped_range(struct dm_thin_device *td,
1602			       dm_block_t begin, dm_block_t end,
1603			       dm_block_t *thin_begin, dm_block_t *thin_end,
1604			       dm_block_t *pool_begin, bool *maybe_shared)
1605{
1606	int r;
1607	dm_block_t pool_end;
1608	struct dm_thin_lookup_result lookup;
1609
1610	if (end < begin)
1611		return -ENODATA;
1612
1613	r = __find_next_mapped_block(td, begin, &begin, &lookup);
1614	if (r)
1615		return r;
1616
1617	if (begin >= end)
1618		return -ENODATA;
1619
1620	*thin_begin = begin;
1621	*pool_begin = lookup.block;
1622	*maybe_shared = lookup.shared;
1623
1624	begin++;
1625	pool_end = *pool_begin + 1;
1626	while (begin != end) {
1627		r = __find_block(td, begin, true, &lookup);
1628		if (r) {
1629			if (r == -ENODATA)
1630				break;
1631
1632			return r;
1633		}
1634
1635		if ((lookup.block != pool_end) ||
1636		    (lookup.shared != *maybe_shared))
1637			break;
1638
1639		pool_end++;
1640		begin++;
1641	}
1642
1643	*thin_end = begin;
1644	return 0;
1645}
1646
1647int dm_thin_find_mapped_range(struct dm_thin_device *td,
1648			      dm_block_t begin, dm_block_t end,
1649			      dm_block_t *thin_begin, dm_block_t *thin_end,
1650			      dm_block_t *pool_begin, bool *maybe_shared)
1651{
1652	int r = -EINVAL;
1653	struct dm_pool_metadata *pmd = td->pmd;
1654
1655	down_read(&pmd->root_lock);
1656	if (!pmd->fail_io) {
1657		r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1658					pool_begin, maybe_shared);
1659	}
1660	up_read(&pmd->root_lock);
1661
1662	return r;
1663}
1664
1665static int __insert(struct dm_thin_device *td, dm_block_t block,
1666		    dm_block_t data_block)
1667{
1668	int r, inserted;
1669	__le64 value;
1670	struct dm_pool_metadata *pmd = td->pmd;
1671	dm_block_t keys[2] = { td->id, block };
1672
1673	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1674	__dm_bless_for_disk(&value);
1675
1676	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1677				   &pmd->root, &inserted);
1678	if (r)
1679		return r;
1680
1681	td->changed = true;
1682	if (inserted)
1683		td->mapped_blocks++;
1684
1685	return 0;
1686}
1687
1688int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1689			 dm_block_t data_block)
1690{
1691	int r = -EINVAL;
1692
1693	pmd_write_lock(td->pmd);
1694	if (!td->pmd->fail_io)
1695		r = __insert(td, block, data_block);
1696	pmd_write_unlock(td->pmd);
1697
1698	return r;
1699}
1700
1701static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1702{
1703	int r;
1704	unsigned int count, total_count = 0;
1705	struct dm_pool_metadata *pmd = td->pmd;
1706	dm_block_t keys[1] = { td->id };
1707	__le64 value;
1708	dm_block_t mapping_root;
1709
1710	/*
1711	 * Find the mapping tree
1712	 */
1713	r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1714	if (r)
1715		return r;
1716
1717	/*
1718	 * Remove from the mapping tree, taking care to inc the
1719	 * ref count so it doesn't get deleted.
1720	 */
1721	mapping_root = le64_to_cpu(value);
1722	dm_tm_inc(pmd->tm, mapping_root);
1723	r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1724	if (r)
1725		return r;
1726
1727	/*
1728	 * Remove leaves stops at the first unmapped entry, so we have to
1729	 * loop round finding mapped ranges.
1730	 */
1731	while (begin < end) {
1732		r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1733		if (r == -ENODATA)
1734			break;
1735
1736		if (r)
1737			return r;
1738
1739		if (begin >= end)
1740			break;
1741
1742		r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1743		if (r)
1744			return r;
1745
1746		total_count += count;
1747	}
1748
1749	td->mapped_blocks -= total_count;
1750	td->changed = true;
1751
1752	/*
1753	 * Reinsert the mapping tree.
1754	 */
1755	value = cpu_to_le64(mapping_root);
1756	__dm_bless_for_disk(&value);
1757	return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1758}
1759
1760int dm_thin_remove_range(struct dm_thin_device *td,
1761			 dm_block_t begin, dm_block_t end)
1762{
1763	int r = -EINVAL;
1764
1765	pmd_write_lock(td->pmd);
1766	if (!td->pmd->fail_io)
1767		r = __remove_range(td, begin, end);
1768	pmd_write_unlock(td->pmd);
1769
1770	return r;
1771}
1772
1773int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1774{
1775	int r = -EINVAL;
1776	uint32_t ref_count;
1777
1778	down_read(&pmd->root_lock);
1779	if (!pmd->fail_io) {
1780		r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1781		if (!r)
1782			*result = (ref_count > 1);
1783	}
1784	up_read(&pmd->root_lock);
1785
1786	return r;
1787}
1788
1789int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1790{
1791	int r = -EINVAL;
1792
1793	pmd_write_lock(pmd);
1794	if (!pmd->fail_io)
1795		r = dm_sm_inc_blocks(pmd->data_sm, b, e);
1796	pmd_write_unlock(pmd);
1797
1798	return r;
1799}
1800
1801int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1802{
1803	int r = -EINVAL;
1804
1805	pmd_write_lock(pmd);
1806	if (!pmd->fail_io)
1807		r = dm_sm_dec_blocks(pmd->data_sm, b, e);
1808	pmd_write_unlock(pmd);
1809
1810	return r;
1811}
1812
1813bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1814{
1815	int r;
1816
1817	down_read(&td->pmd->root_lock);
1818	r = td->changed;
1819	up_read(&td->pmd->root_lock);
1820
1821	return r;
1822}
1823
1824bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1825{
1826	bool r = false;
1827	struct dm_thin_device *td, *tmp;
1828
1829	down_read(&pmd->root_lock);
1830	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1831		if (td->changed) {
1832			r = td->changed;
1833			break;
1834		}
1835	}
1836	up_read(&pmd->root_lock);
1837
1838	return r;
1839}
1840
1841bool dm_thin_aborted_changes(struct dm_thin_device *td)
1842{
1843	bool r;
1844
1845	down_read(&td->pmd->root_lock);
1846	r = td->aborted_with_changes;
1847	up_read(&td->pmd->root_lock);
1848
1849	return r;
1850}
1851
1852int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1853{
1854	int r = -EINVAL;
1855
1856	pmd_write_lock(pmd);
1857	if (!pmd->fail_io)
1858		r = dm_sm_new_block(pmd->data_sm, result);
1859	pmd_write_unlock(pmd);
1860
1861	return r;
1862}
1863
1864int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1865{
1866	int r = -EINVAL;
1867
1868	/*
1869	 * Care is taken to not have commit be what
1870	 * triggers putting the thin-pool in-service.
1871	 */
1872	pmd_write_lock_in_core(pmd);
1873	if (pmd->fail_io)
1874		goto out;
1875
1876	r = __commit_transaction(pmd);
1877	if (r < 0)
1878		goto out;
1879
1880	/*
1881	 * Open the next transaction.
1882	 */
1883	r = __begin_transaction(pmd);
1884out:
1885	pmd_write_unlock(pmd);
1886	return r;
1887}
1888
1889static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1890{
1891	struct dm_thin_device *td;
1892
1893	list_for_each_entry(td, &pmd->thin_devices, list)
1894		td->aborted_with_changes = td->changed;
1895}
1896
1897int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1898{
1899	int r = -EINVAL;
1900
1901	/* fail_io is double-checked with pmd->root_lock held below */
1902	if (unlikely(pmd->fail_io))
1903		return r;
1904
1905	pmd_write_lock(pmd);
1906	if (pmd->fail_io) {
1907		pmd_write_unlock(pmd);
1908		return r;
1909	}
1910	__set_abort_with_changes_flags(pmd);
1911
1912	/* destroy data_sm/metadata_sm/nb_tm/tm */
1913	__destroy_persistent_data_objects(pmd, false);
1914
1915	/* reset bm */
1916	dm_block_manager_reset(pmd->bm);
1917
1918	/* rebuild data_sm/metadata_sm/nb_tm/tm */
1919	r = __open_or_format_metadata(pmd, false);
1920	if (r)
1921		pmd->fail_io = true;
1922	pmd_write_unlock(pmd);
1923	return r;
1924}
1925
1926int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1927{
1928	int r = -EINVAL;
1929
1930	down_read(&pmd->root_lock);
1931	if (!pmd->fail_io)
1932		r = dm_sm_get_nr_free(pmd->data_sm, result);
1933	up_read(&pmd->root_lock);
1934
1935	return r;
1936}
1937
1938int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1939					  dm_block_t *result)
1940{
1941	int r = -EINVAL;
1942
1943	down_read(&pmd->root_lock);
1944	if (!pmd->fail_io)
1945		r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1946
1947	if (!r) {
1948		if (*result < pmd->metadata_reserve)
1949			*result = 0;
1950		else
1951			*result -= pmd->metadata_reserve;
1952	}
1953	up_read(&pmd->root_lock);
1954
1955	return r;
1956}
1957
1958int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1959				  dm_block_t *result)
1960{
1961	int r = -EINVAL;
1962
1963	down_read(&pmd->root_lock);
1964	if (!pmd->fail_io)
1965		r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1966	up_read(&pmd->root_lock);
1967
1968	return r;
1969}
1970
1971int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1972{
1973	int r = -EINVAL;
1974
1975	down_read(&pmd->root_lock);
1976	if (!pmd->fail_io)
1977		r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1978	up_read(&pmd->root_lock);
1979
1980	return r;
1981}
1982
1983int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1984{
1985	int r = -EINVAL;
1986	struct dm_pool_metadata *pmd = td->pmd;
1987
1988	down_read(&pmd->root_lock);
1989	if (!pmd->fail_io) {
1990		*result = td->mapped_blocks;
1991		r = 0;
1992	}
1993	up_read(&pmd->root_lock);
1994
1995	return r;
1996}
1997
1998static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1999{
2000	int r;
2001	__le64 value_le;
2002	dm_block_t thin_root;
2003	struct dm_pool_metadata *pmd = td->pmd;
2004
2005	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
2006	if (r)
2007		return r;
2008
2009	thin_root = le64_to_cpu(value_le);
2010
2011	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
2012}
2013
2014int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
2015				     dm_block_t *result)
2016{
2017	int r = -EINVAL;
2018	struct dm_pool_metadata *pmd = td->pmd;
2019
2020	down_read(&pmd->root_lock);
2021	if (!pmd->fail_io)
2022		r = __highest_block(td, result);
2023	up_read(&pmd->root_lock);
2024
2025	return r;
2026}
2027
2028static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
2029{
2030	int r;
2031	dm_block_t old_count;
2032
2033	r = dm_sm_get_nr_blocks(sm, &old_count);
2034	if (r)
2035		return r;
2036
2037	if (new_count == old_count)
2038		return 0;
2039
2040	if (new_count < old_count) {
2041		DMERR("cannot reduce size of space map");
2042		return -EINVAL;
2043	}
2044
2045	return dm_sm_extend(sm, new_count - old_count);
2046}
2047
2048int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2049{
2050	int r = -EINVAL;
2051
2052	pmd_write_lock(pmd);
2053	if (!pmd->fail_io)
2054		r = __resize_space_map(pmd->data_sm, new_count);
2055	pmd_write_unlock(pmd);
2056
2057	return r;
2058}
2059
2060int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2061{
2062	int r = -EINVAL;
2063
2064	pmd_write_lock(pmd);
2065	if (!pmd->fail_io) {
2066		r = __resize_space_map(pmd->metadata_sm, new_count);
2067		if (!r)
2068			__set_metadata_reserve(pmd);
2069	}
2070	pmd_write_unlock(pmd);
2071
2072	return r;
2073}
2074
2075void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2076{
2077	pmd_write_lock_in_core(pmd);
2078	dm_bm_set_read_only(pmd->bm);
2079	pmd_write_unlock(pmd);
2080}
2081
2082void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2083{
2084	pmd_write_lock_in_core(pmd);
2085	dm_bm_set_read_write(pmd->bm);
2086	pmd_write_unlock(pmd);
2087}
2088
2089int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2090					dm_block_t threshold,
2091					dm_sm_threshold_fn fn,
2092					void *context)
2093{
2094	int r = -EINVAL;
2095
2096	pmd_write_lock_in_core(pmd);
2097	if (!pmd->fail_io) {
2098		r = dm_sm_register_threshold_callback(pmd->metadata_sm,
2099						      threshold, fn, context);
2100	}
2101	pmd_write_unlock(pmd);
2102
2103	return r;
2104}
2105
2106void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2107					  dm_pool_pre_commit_fn fn,
2108					  void *context)
2109{
2110	pmd_write_lock_in_core(pmd);
2111	pmd->pre_commit_fn = fn;
2112	pmd->pre_commit_context = context;
2113	pmd_write_unlock(pmd);
2114}
2115
2116int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2117{
2118	int r = -EINVAL;
2119	struct dm_block *sblock;
2120	struct thin_disk_superblock *disk_super;
2121
2122	pmd_write_lock(pmd);
2123	if (pmd->fail_io)
2124		goto out;
2125
2126	pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2127
2128	r = superblock_lock(pmd, &sblock);
2129	if (r) {
2130		DMERR("couldn't lock superblock");
2131		goto out;
2132	}
2133
2134	disk_super = dm_block_data(sblock);
2135	disk_super->flags = cpu_to_le32(pmd->flags);
2136
2137	dm_bm_unlock(sblock);
2138out:
2139	pmd_write_unlock(pmd);
2140	return r;
2141}
2142
2143bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2144{
2145	bool needs_check;
2146
2147	down_read(&pmd->root_lock);
2148	needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2149	up_read(&pmd->root_lock);
2150
2151	return needs_check;
2152}
2153
2154void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2155{
2156	down_read(&pmd->root_lock);
2157	if (!pmd->fail_io)
2158		dm_tm_issue_prefetches(pmd->tm);
2159	up_read(&pmd->root_lock);
2160}
2161